101
|
Andres-Terre M, McGuire HM, Pouliot Y, Bongen E, Sweeney TE, Tato CM, Khatri P. Integrated, Multi-cohort Analysis Identifies Conserved Transcriptional Signatures across Multiple Respiratory Viruses. Immunity 2016; 43:1199-211. [PMID: 26682989 PMCID: PMC4684904 DOI: 10.1016/j.immuni.2015.11.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/03/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022]
Abstract
Respiratory viral infections are a significant burden to healthcare worldwide. Many whole genome expression profiles have identified different respiratory viral infection signatures, but these have not translated to clinical practice. Here, we performed two integrated, multi-cohort analyses of publicly available transcriptional data of viral infections. First, we identified a common host signature across different respiratory viral infections that could distinguish (1) individuals with viral infections from healthy controls and from those with bacterial infections, and (2) symptomatic from asymptomatic subjects prior to symptom onset in challenge studies. Second, we identified an influenza-specific host response signature that (1) could distinguish influenza-infected samples from those with bacterial and other respiratory viral infections, (2) was a diagnostic and prognostic marker in influenza-pneumonia patients and influenza challenge studies, and (3) was predictive of response to influenza vaccine. Our results have applications in the diagnosis, prognosis, and identification of drug targets in viral infections. MVS is a common transcriptional host response to respiratory viral infection MVS could be used in clinics as a diagnostic and/or prognostic biomarker IMS distinguishes influenza from other viral and bacterial infections IMS correlates with infection symptomatology and vaccine response
Collapse
Affiliation(s)
- Marta Andres-Terre
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Helen M McGuire
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Yannick Pouliot
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Erika Bongen
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Timothy E Sweeney
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA; Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Cristina M Tato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, USA; Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
102
|
Gene signatures related to HAI response following influenza A/H1N1 vaccine in older individuals. Heliyon 2016; 2:e00098. [PMID: 27441275 PMCID: PMC4946173 DOI: 10.1016/j.heliyon.2016.e00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022] Open
Abstract
To assess gene signatures related to humoral response among healthy older subjects following seasonal influenza vaccination, we studied 94 healthy adults (50–74 years old) who received one documented dose of licensed trivalent influenza vaccine containing the A/California/7/2009 (H1N1)-like virus strain. Influenza-specific antibody (HAI) titer in serum samples and next-generation sequencing on PBMCs were performed using blood samples collected prior to (Day 0) and at two timepoints after (Days 3 and 28) vaccination. We identified a number of uncharacterized genes (ZNF300, NUP1333, KLK1 and others) and confirmed previous studies demonstrating specific genes/genesets that are important mediators of host immune responses and that displayed associations with antibody response to influenza A/H1N1 vaccine. These included interferon-regulatory transcription factors (IRF1/IRF2/IRF6/IRF7/IRF9), chemokine/chemokine receptors (CCR5/CCR9/CCL5), cytokine/cytokine receptors (IFNG/IL10RA/TNFRSF1A), protein kinases (MAP2K4/MAPK3), growth factor receptor (TGFBR1). The identification of gene signatures associated with antibody response represents an early stage in the science for which further research is needed. Such research may assist in the design of better vaccines to facilitate improved defenses against new influenza virus strains, as well as better understanding the genetic drivers of immune responses.
Collapse
|
103
|
Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M, Rouphael N, Frasca D, Gersten M, Mehta AK, Gaujoux R, Li GM, Gupta S, Ahmed R, Mulligan MJ, Shen-Orr S, Blomberg BB, Subramaniam S, Pulendran B. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 2016; 43:1186-98. [PMID: 26682988 DOI: 10.1016/j.immuni.2015.11.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/17/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons and in diverse populations is unknown. We applied systems approaches to study immune responses in young, elderly, and diabetic subjects vaccinated with the seasonal influenza vaccine across five consecutive seasons. Signatures of innate immunity and plasmablasts correlated with and predicted influenza antibody titers at 1 month after vaccination with >80% accuracy across multiple seasons but were not associated with the longevity of the response. Baseline signatures of lymphocyte and monocyte inflammation were positively and negatively correlated, respectively, with antibody responses at 1 month. Finally, integrative analysis of microRNAs and transcriptomic profiling revealed potential regulators of vaccine immunity. These results identify shared vaccine-induced signatures across multiple seasons and in diverse populations and might help guide the development of next-generation vaccines that provide persistent immunity against influenza.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo 05508, Brazil; Department of Pathology, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA
| | - Thomas Hagan
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Sai S Duraisingham
- Department of Immunology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Oxford OX3 7J, UK
| | - Eva K Lee
- Center for Operations Research in Medicine & Healthcare, School of Industrial & Systems Engineering, Georgia Institute of Technology, North Avenue NW, Atlanta, GA 30332, USA
| | - Marcin Kwissa
- Institute for Molecular Engineering, University of Chicago, 5640 S. Elis Avenue, Chicago, IL 60637, USA
| | - Nadine Rouphael
- Hope Clinic of Emory University, 500 Irvin Court/Suite 200, Atlanta, GA 30030, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | - Merril Gersten
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Aneesh K Mehta
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA
| | - Renaud Gaujoux
- Department of Immunology, Faculty of Medicine, Technion, 1 Efron Street, Haifa 3109601, Israel
| | - Gui-Mei Li
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Mark J Mulligan
- Hope Clinic of Emory University, 500 Irvin Court/Suite 200, Atlanta, GA 30030, USA
| | - Shai Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion, 1 Efron Street, Haifa 3109601, Israel
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA.
| | - Bali Pulendran
- Department of Pathology, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| |
Collapse
|
104
|
An interaction quantitative trait loci tool implicates epistatic functional variants in an apoptosis pathway in smallpox vaccine eQTL data. Genes Immun 2016; 17:244-50. [PMID: 27052692 DOI: 10.1038/gene.2016.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/06/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
Abstract
Expression quantitative trait loci (eQTL) studies have functionalized nucleic acid variants through the regulation of gene expression. Although most eQTL studies only examine the effects of single variants on transcription, a more complex process of variant-variant interaction (epistasis) may regulate transcription. Herein, we describe a tool called interaction QTL (iQTL) designed to efficiently detect epistatic interactions that regulate gene expression. To maximize biological relevance and minimize the computational and hypothesis testing burden, iQTL restricts interactions such that one variant is within a user-defined proximity of the transcript (cis-regulatory). We apply iQTL to a data set of 183 smallpox vaccine study participants with genome-wide association study and gene expression data from unstimulated samples and samples stimulated by inactivated vaccinia virus. While computing only 0.15% of possible interactions, we identify 11 probe sets whose expression is regulated through a variant-variant interaction. We highlight the functional epistatic interactions among apoptosis-related genes, DIABLO, TRAPPC4 and FADD, in the context of smallpox vaccination. We also use an integrative network approach to characterize these iQTL interactions in a posterior network of known prior functional interactions. iQTL is an efficient, open-source tool to analyze variant interactions in eQTL studies, providing better understanding of the function of epistasis in immune response and other complex phenotypes.
Collapse
|
105
|
Zimmermann MT, Oberg AL, Grill DE, Ovsyannikova IG, Haralambieva IH, Kennedy RB, Poland GA. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination. PLoS One 2016; 11:e0152034. [PMID: 27031986 PMCID: PMC4816338 DOI: 10.1371/journal.pone.0152034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/11/2023] Open
Abstract
Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.
Collapse
Affiliation(s)
- Michael T. Zimmermann
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ann L. Oberg
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diane E. Grill
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
106
|
Abstract
Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4(+) T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS(+) (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.
Collapse
|
107
|
Nakaya HI, Clutterbuck E, Kazmin D, Wang L, Cortese M, Bosinger SE, Patel NB, Zak DE, Aderem A, Dong T, Del Giudice G, Rappuoli R, Cerundolo V, Pollard AJ, Pulendran B, Siegrist CA. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc Natl Acad Sci U S A 2016; 113:1853-8. [PMID: 26755593 PMCID: PMC4763735 DOI: 10.1073/pnas.1519690113] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dynamics and molecular mechanisms underlying vaccine immunity in early childhood remain poorly understood. Here we applied systems approaches to investigate the innate and adaptive responses to trivalent inactivated influenza vaccine (TIV) and MF59-adjuvanted TIV (ATIV) in 90 14- to 24-mo-old healthy children. MF59 enhanced the magnitude and kinetics of serum antibody titers following vaccination, and induced a greater frequency of vaccine specific, multicytokine-producing CD4(+) T cells. Compared with transcriptional responses to TIV vaccination previously reported in adults, responses to TIV in infants were markedly attenuated, limited to genes regulating antiviral and antigen presentation pathways, and observed only in a subset of vaccinees. In contrast, transcriptional responses to ATIV boost were more homogenous and robust. Interestingly, a day 1 gene signature characteristic of the innate response (antiviral IFN genes, dendritic cell, and monocyte responses) correlated with hemagglutination at day 28. These findings demonstrate that MF59 enhances the magnitude, kinetics, and consistency of the innate and adaptive response to vaccination with the seasonal influenza vaccine during early childhood, and identify potential molecular correlates of antibody responses.
Collapse
Affiliation(s)
- Helder I Nakaya
- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, 05508, São Paulo, Brazil; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Dmitri Kazmin
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329
| | - Lili Wang
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mario Cortese
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329
| | - Steven E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329; Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Nirav B Patel
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322
| | - Daniel E Zak
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | - Rino Rappuoli
- Research Center, Novartis Vaccines, 53100 Siena, Italy;
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| | - Bali Pulendran
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329;
| | - Claire-Anne Siegrist
- WHO Collaborative Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
108
|
Jacobson RM, Grill DE, Oberg AL, Tosh PK, Ovsyannikova IG, Poland GA. Profiles of influenza A/H1N1 vaccine response using hemagglutination-inhibition titers. Hum Vaccin Immunother 2016; 11:961-9. [PMID: 25835513 DOI: 10.1080/21645515.2015.1011990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To identify distinct antibody profiles among adults 50-to-74 years old using influenza A/H1N1 HI titers up to 75 days after vaccination. Healthy subjects 50 to 74 years old received the 2010-2011 trivalent inactivated influenza vaccine. We measured venous samples from Days 0, 28, and 75 for HI and VNA and B-cell ELISPOTs. Of 106 subjects, HI titers demonstrated a ceiling effect for 11 or 10% for those with a pre-vaccination HI titer of 1:640 where no subject post-vaccination had an increase in titer. Of the remaining 95 subjects, only 37 or 35% overall had at least a 4-fold increase by Day 28. Of these 37, 3 waned at least 4-fold, and 13 others 2-fold. Thus 15% of the subjects showed waning antibody titers by Day 75. More than half failed to respond at all. The profiles populated by these subjects as defined by HI did not vary with age or gender. The VNA results mimicked the HI profiles, but the profiles for B-cell ELISPOT did not. HI titers at Days 0, 28, and 75 populate 4 biologically plausible profiles. Limitations include lack of consensus for operationally defining waning as well as for the apparent ceiling. Furthermore, though well accepted as a marker for vaccine response, assigning thresholds with HI has limitations. However, VNA closely matches HI in populating these profiles. Thus, we hold that these profiles, having face- and content-validity, may provide a basis for understanding variation in genomic and transcriptomic response to influenza vaccination in this age group.
Collapse
Key Words
- ASC, Antibody-Secreting Cells
- ELISPOT, Enzyme-Linked ImmunoSpot
- Et al., Et alia (and others)
- H1N1 subtype
- HI, Hemagglutination-Inhibition
- IQR, Interquartile Range
- IgG, Immunoglobulin G
- MDCK, Madin-Darby Canine Kidney
- PFU, Plaque-Forming Units
- RBC, Red Blood Cells
- TCID50, Tissue Culture Infectious Dose 50
- VNA, Virus Neutralization Assay
- WHO, World Health Organization
- aging
- antibodies
- hemagglutination inhibition tests
- hemagglutinin glycoproteins
- influenza a virus
- influenza vaccines
- influenza virus
- p, p-value
- viral
- μl, Microliters
Collapse
|
109
|
Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0146. [PMID: 25964458 DOI: 10.1098/rstb.2014.0146] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccination has been tremendously successful saving lives and preventing infections. However, the development of vaccines against global pandemics such as HIV, malaria and tuberculosis has been obstructed by several challenges. A major challenge is the lack of knowledge about the correlates and mechanisms of protective immunity. Recent advances in the application of systems biological approaches to analyse immune responses to vaccination in humans are beginning to yield new insights about mechanisms of vaccine immunity, and to define molecular signatures, induced rapidly after vaccination, that correlate with and predict vaccine induced immunity. Here, we review these advances and discuss the potential of this systems vaccinology approach in defining novel correlates of protection in clinical trials, and in infection-induced 'experimental challenge models' in humans.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Atlanta, GA 30329, USA Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
110
|
Sobolev O, Binda E, O'Farrell S, Lorenc A, Pradines J, Huang Y, Duffner J, Schulz R, Cason J, Zambon M, Malim MH, Peakman M, Cope A, Capila I, Kaundinya GV, Hayday AC. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat Immunol 2016; 17:204-13. [PMID: 26726811 PMCID: PMC6485475 DOI: 10.1038/ni.3328] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022]
Abstract
Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.
Collapse
Affiliation(s)
- Olga Sobolev
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- ImmunoSurveillance Laboratory, Francis Crick Institute, Lincoln's Inn Laboratories, London, UK
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Elisa Binda
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico San Matteo/University of Pavia, Pavia, Italy
| | - Sean O'Farrell
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- ImmunoSurveillance Laboratory, Francis Crick Institute, Lincoln's Inn Laboratories, London, UK
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Anna Lorenc
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Joel Pradines
- Momenta Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | - Jay Duffner
- Momenta Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Reiner Schulz
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
- Department of Genetics, King's College London, London, UK
| | - John Cason
- Department of Infectious Diseases, King's College London, London, UK
| | - Maria Zambon
- Health Protection Agency, Porton Down, Salisbury, UK
| | - Michael H Malim
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
- Department of Infectious Diseases, King's College London, London, UK
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Andrew Cope
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
- Academic Department of Rheumatology, Centre for Molecular and Cell Biology of Inflammation, King's College London, UK
| | - Ishan Capila
- Momenta Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- ImmunoSurveillance Laboratory, Francis Crick Institute, Lincoln's Inn Laboratories, London, UK
- Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, UK
| |
Collapse
|
111
|
Lau WW, Tsang JS. Humoral Fingerprinting of Immune Responses: 'Super-Resolution', High-Dimensional Serology. Trends Immunol 2016; 37:167-169. [PMID: 26830541 DOI: 10.1016/j.it.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
In a recent study, Chung et al. report the development of a high-dimensional approach to assess humoral responses to immune perturbation that goes beyond antibody neutralization and titers. This approach enables the identification of potentially novel correlates and mechanisms of protective immunity to HIV vaccination, thus offering a glimpse of how dense phenotyping of serological responses coupled with bioinformatics analysis could lead to much-sought-after markers of protective vaccination responses.
Collapse
Affiliation(s)
- William W Lau
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
112
|
Kidd BA. Decoding the immune response to successful influenza vaccination. Nat Immunol 2016; 17:113-4. [DOI: 10.1038/ni.3372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
113
|
Frasca D, Blomberg BB. B Cell-Specific Biomarkers for Optimal Antibody Responses to Influenza Vaccination and Molecular Pathways That Reduce B Cell Function with Aging. Crit Rev Immunol 2016; 36:523-537. [PMID: 28845758 DOI: 10.1615/critrevimmunol.2017020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review highlights recent findings on the effects of aging on influenza vaccine responses, with major emphasis on T and B cells, which are significantly impaired by aging. We discuss changes in T cell production and thymic output; T cell subsets; and TCR repertoire, function, and response to latent persistent infection. We also discuss changes in B cell subsets, repertoire, and function, and how function is impaired by increased intrinsic B cell inflammation and reduced signal transduction. This review presents age-related effects on antigen-presenting cells, summarizes recent studies, including our own, aimed at the identification of biomarkers of protective vaccine responses, and provides examples of recent technical advances and insights into human vaccine responses that are helping to define the features associated with successful vaccination and that may enable a more predictive vaccinology in the future.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
114
|
Abstract
The strategies employed in vaccinology have improved since the seminal work of Edward Jenner in the eighteenth century. Stimulated by failure to develop vaccines for cancers and chronic infectious diseases as well as an emergence of a multitude of new technologies not available earlier, vaccinology has moved from a largely experimental art to a new phase of innovation. Currently, immune reactions can be predicted and modeled before they occur and formulations can be optimized in advance for genetic background, age, sex, lifestyle, environmental factors, and microbiome. A multitude of scientific insights and technological advancements have led us to this current status, yet possibly none of the recent developments is individually more promising to achieve these goals than the interdisciplinary science of systems vaccinology. This review summarizes current trends and applications of systems vaccinology, including technically tangible areas of vaccine and immunology research which allow the transformative process into a truly broad understanding of vaccines, thereby effectively modeling interaction of vaccines with health and disease. It is becoming clear that a multitude of factors have to be considered to understand inter-patient variability of vaccine responses including those characterized from the interfaces between the immune system, microbiome, metabolome, and the nervous system.
Collapse
|
115
|
Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJL, Onengut-Gumuscu S, Kidd BA, Maecker HT, Concannon P, Dekker CL, Thomas PG, Davis MM. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 2015; 7:281ra43. [PMID: 25834109 DOI: 10.1126/scitranslmed.aaa2293] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytomegalovirus (CMV) is a β-herpesvirus present in a latent form in most people worldwide. In immunosuppressed individuals, CMV can reactivate and cause serious clinical complications, but the effect of the latent state on healthy people remains elusive. We undertook a systems approach to understand the differences between seropositive and negative subjects and measured hundreds of immune system components from blood samples including cytokines and chemokines, immune cell phenotyping, gene expression, ex vivo cell responses to cytokine stimuli, and the antibody response to seasonal influenza vaccination. As expected, we found decreased responses to vaccination and an overall down-regulation of immune components in aged individuals regardless of CMV status. In contrast, CMV-seropositive young adults exhibited enhanced antibody responses to influenza vaccination, increased CD8(+) T cell sensitivity, and elevated levels of circulating interferon-γ compared to seronegative individuals. Experiments with young mice infected with murine CMV also showed significant protection from an influenza virus challenge compared with uninfected animals, although this effect declined with time. These data show that CMV and its murine equivalent can have a beneficial effect on the immune response of young, healthy individuals, which may explain the ubiquity of CMV infection in humans and many other species.
Collapse
Affiliation(s)
- David Furman
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Vladimir Jojic
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shalini Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shai S Shen-Orr
- Department of Immunology, Rappaport Institute of Medical Research, Faculty of Medicine and Faculty of Biology, Technion, Haifa 32000, Israel
| | - Cesar J L Angel
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Brian A Kidd
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA. Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Cornelia L Dekker
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA. Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA. The Howard Hughes Medical Institute.
| |
Collapse
|
116
|
Galassie AC, Link AJ. Proteomic contributions to our understanding of vaccine and immune responses. Proteomics Clin Appl 2015; 9:972-89. [PMID: 26172619 PMCID: PMC4713355 DOI: 10.1002/prca.201500054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 01/19/2023]
Abstract
Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses.
Collapse
Affiliation(s)
| | - Andrew J. Link
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
117
|
Application of "Systems Vaccinology" to Evaluate Inflammation and Reactogenicity of Adjuvanted Preventative Vaccines. J Immunol Res 2015; 2015:909406. [PMID: 26380327 PMCID: PMC4562180 DOI: 10.1155/2015/909406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 01/14/2023] Open
Abstract
Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity. Predictive biomarkers of relatively frequent inflammatory reactogenicity may be identified in systems vaccinology studies involving tens or hundreds of participants and used to screen new vaccines and adjuvants in in vitro, ex vivo, animal, or human models. The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology. The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models. Discriminatory profiles or biomarkers are being identified, which require validation in large trials involving thousands of participants before they can be generalized. Ultimately, it is to be hoped that the knowledge gained from such initiatives will provide tools to the industry, academia, and regulators to select optimal noninflammatory but immunogenic and effective vaccine adjuvant combinations, thereby shortening product development cycles and identifying unsuitable vaccine candidates that would fail in expensive late stage development or postmarketing.
Collapse
|
118
|
Tsang JS. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol 2015; 36:479-93. [PMID: 26187853 PMCID: PMC4979540 DOI: 10.1016/j.it.2015.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022]
Abstract
The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis.
Collapse
Affiliation(s)
- John S Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA; Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
119
|
Trondsen M, Aqrawi LA, Zhou F, Pedersen G, Trieu MC, Zhou P, Cox RJ. Induction of Local Secretory IgA and Multifunctional CD4⁺ T-helper Cells Following Intranasal Immunization with a H5N1 Whole Inactivated Influenza Virus Vaccine in BALB/c Mice. Scand J Immunol 2015; 81:305-17. [PMID: 25737202 DOI: 10.1111/sji.12288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Avian influenza subunit vaccines have been shown to be poorly immunogenic, leading to the re-evaluation of the immunogenic and dose-sparing potential of whole virus vaccines. In this study, we investigated the immune responses after one or two doses of intramuscular or intranasal whole inactivated influenza H5N1 virus vaccine in BALB/c mice. Serum samples and nasal washings were collected weekly post-vaccination and analysed using enzyme-linked immunosorbent assay (ELISA). Sera were also analysed by the haemagglutination inhibition (HI) assay. Antibody-secreting cells were measured in lymphocytes from spleen and bone marrow via enzyme-linked immunospot (ELISPOT). Splenocytes were stimulated in vitro, and T-helper profiles were measured through multiplex bead assay in the supernatants, or intracellularly by multiparametric flow cytometry. Both vaccine routes induced high HI titres following the second immunization (intramuscular = 370, intranasal = 230). Moreover, the intramuscular group showed significantly higher levels of serum IgG (P < 0.01), IgG1 (P < 0.01) and IgG2a (P < 0.01) following the second vaccine dose, while the intranasal group exhibited significantly higher levels of serum IgA (P < 0.05) and local IgA (P < 0.01) in the nasal washings. Also, IgA antibody-secreting cells were found in significantly higher numbers in the intranasal group in both the spleen (P < 0.01) and the bone marrow (P < 0.01). Moreover, Th1 (TNF-α, IL-2, IFN-γ) and Th2 (IL-4, IL-5, IL-10) cytokines were expressed by both groups, yet only the intranasal group expressed the Th17 marker IL-17. As the intranasal vaccines induce local IgA and are easily administered, we suggest the intranasally administered whole virus vaccine as a promising candidate for a pandemic H5N1 vaccine.
Collapse
Affiliation(s)
- M Trondsen
- The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
120
|
Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine 2015; 33:5271-81. [PMID: 26232539 DOI: 10.1016/j.vaccine.2015.06.117] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/26/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
The immune system is a network of specialized cell types and tissues that communicates via cytokines and direct contact, to orchestrate specific types of defensive responses. Until recently, we could only study immune responses in a piecemeal, highly focused fashion, on major components like antibodies to the pathogen. But recent advances in technology and in our understanding of the many components of the system, innate and adaptive, have made possible a broader approach, where both the multiple responding cells and cytokines in the blood are measured. This systems immunology approach to a vaccine response or an infection gives us a more holistic picture of the different parts of the immune system that are mobilized and should allow us a much better understanding of the pathways and mechanisms of such responses, as well as to predict vaccine efficacy in different populations well in advance of efficacy studies. Here we summarize the different technologies and methods and discuss how they can inform us about the differences between diseases and vaccines, and how they can greatly accelerate vaccine development.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
121
|
Thakar J, Mohanty S, West AP, Joshi SR, Ueda I, Wilson J, Meng H, Blevins TP, Tsang S, Trentalange M, Siconolfi B, Park K, Gill TM, Belshe RB, Kaech SM, Shadel GS, Kleinstein SH, Shaw AC. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging (Albany NY) 2015; 7:38-52. [PMID: 25596819 PMCID: PMC4356402 DOI: 10.18632/aging.100720] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age ≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.
Collapse
Affiliation(s)
- Juilee Thakar
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester NY 14642, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - A Phillip West
- Department of Pathology and Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Samit R Joshi
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jean Wilson
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tamara P Blevins
- Center for Vaccine Development, Saint Louis University, St. Louis, MO 63104, USA
| | - Sui Tsang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Trentalange
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Barbara Siconolfi
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Koonam Park
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas M Gill
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Robert B Belshe
- Center for Vaccine Development, Saint Louis University, St. Louis, MO 63104, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gerald S Shadel
- Department of Pathology and Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicince, New Haven, CT 06520, USA
| |
Collapse
|
122
|
Montgomery RR, Shaw AC. Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol 2015; 98:937-43. [PMID: 26188078 DOI: 10.1189/jlb.5mr0315-104r] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022] Open
Abstract
Immunosenescence, describing alterations, including decline of immune responses with age, is comprised of inappropriate elevations, decreases, and dysregulated immune responses, leading to more severe consequences of bacterial and viral infections and reduced responses to vaccination. In adaptive immunity, these changes include increased proportions of antigen-experienced B and T cells at the cost of naïve cell populations. Innate immune changes in aging are complex in spanning multiple cell types, activation states, and tissue context. Innate immune responses are dampened in aging, yet there is also a paradoxical increase in certain signaling pathways and cytokine levels. Here, we review recent progress and highlight novel directions for expected advances that can lead the aging field to a new era of discovery that will embrace the complexity of aging in human populations.
Collapse
Affiliation(s)
- Ruth R Montgomery
- Sections of *Rheumatology and Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Sections of *Rheumatology and Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
123
|
Oberg AL, McKinney BA, Schaid DJ, Pankratz VS, Kennedy RB, Poland GA. Lessons learned in the analysis of high-dimensional data in vaccinomics. Vaccine 2015; 33:5262-70. [PMID: 25957070 DOI: 10.1016/j.vaccine.2015.04.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The field of vaccinology is increasingly moving toward the generation, analysis, and modeling of extremely large and complex high-dimensional datasets. We have used data such as these in the development and advancement of the field of vaccinomics to enable prediction of vaccine responses and to develop new vaccine candidates. However, the application of systems biology to what has been termed "big data," or "high-dimensional data," is not without significant challenges-chief among them a paucity of gold standard analysis and modeling paradigms with which to interpret the data. In this article, we relate some of the lessons we have learned over the last decade of working with high-dimensional, high-throughput data as applied to the field of vaccinomics. The value of such efforts, however, is ultimately to better understand the immune mechanisms by which protective and non-protective responses to vaccines are generated, and to use this information to support a personalized vaccinology approach in creating better, and safer, vaccines for the public health.
Collapse
Affiliation(s)
- Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Brett A McKinney
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - V Shane Pankratz
- UNM Health Sciences Library & Informatics Center, Division of Nephrology, University of New Mexico, Albuquerque, NM, USA
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
124
|
Sridhar S, Begom S, Hoschler K, Bermingham A, Adamson W, Carman W, Riley S, Lalvani A. Longevity and determinants of protective humoral immunity after pandemic influenza infection. Am J Respir Crit Care Med 2015; 191:325-32. [PMID: 25506631 DOI: 10.1164/rccm.201410-1798oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Antibodies to influenza hemagglutinin are the primary correlate of protection against infection. The strength and persistence of this immune response influences viral evolution and consequently the nature of influenza epidemics. However, the durability and immune determinants of induction of humoral immunity after primary influenza infection remain unclear. OBJECTIVES The spread of a novel H1N1 (A[H1N1]pdm09) virus in 2009 through an unexposed population offered a natural experiment to assess the nature and longevity of humoral immunity after a single primary influenza infection. METHODS We followed A(H1N1)pdm09-seronegative adults through two influenza seasons (2009-2011) as they developed A(H1N1)pdm09 influenza infection or were vaccinated. Antibodies to A(H1N1)pdm09 virus were measured by hemagglutination-inhibition assay in individuals with paired serum samples collected preinfection and postinfection or vaccination to assess durability of humoral immunity. Preexisting A(H1N1)pdm09-specific multicytokine-secreting CD4 and CD8 T cells were quantified by multiparameter flow cytometry to test the hypothesis that higher frequencies of CD4(+) T-cell responses predict stronger antibody induction after infection or vaccination. MEASUREMENTS AND MAIN RESULTS Antibodies induced by natural infection persisted at constant high titer for a minimum of approximately 15 months. Contrary to our initial hypothesis, the fold increase in A(H1N1)pdm09-specific antibody titer after infection was inversely correlated to the frequency of preexisting circulating A(H1N1)pdm09-specific CD4(+)IL-2(+)IFN-γ(-)TNF-α(-) T cells (r = -0.4122; P = 0.03). CONCLUSIONS The longevity of protective humoral immunity after influenza infection has important implications for influenza transmission dynamics and vaccination policy, and identification of its predictive cellular immune correlate could guide vaccine development and evaluation.
Collapse
Affiliation(s)
- Saranya Sridhar
- 1 Section of Respiratory Infections, National Heart and Lung Institute, and
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Hagan T, Nakaya HI, Subramaniam S, Pulendran B. Systems vaccinology: Enabling rational vaccine design with systems biological approaches. Vaccine 2015; 33:5294-301. [PMID: 25858860 DOI: 10.1016/j.vaccine.2015.03.072] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 01/25/2023]
Abstract
Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines.
Collapse
Affiliation(s)
- Thomas Hagan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bali Pulendran
- Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
126
|
A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination. PLoS One 2015; 10:e0118528. [PMID: 25706537 PMCID: PMC4338067 DOI: 10.1371/journal.pone.0118528] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Collapse
|
127
|
Lee Y, Kim YJ, Jung YJ, Kim KH, Kwon YM, Kim SI, Kang SM. Systems biology from virus to humans. J Anal Sci Technol 2015; 6:3. [PMID: 26269748 PMCID: PMC4527316 DOI: 10.1186/s40543-015-0047-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Natural infection and then recovery are considered to be the most effective means for hosts to build protective immunity. Thus, mimicking natural infection of pathogens, many live attenuated vaccines such as influenza virus, and yellow fever vaccine 17D were developed and have been successfully used to induce protective immunity. However, humans fail to generate long-term protective immunity to some pathogens after natural infection such as influenza virus, respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV) even if they survive initial infections. Many vaccines are suboptimal since much mortality is still occurring, which is exampled by influenza and tuberculosis. It is critically important to increase our understanding on protein components of pathogens and vaccines as well as cellular and host responses to infections and vaccinations. Here, we highlight recent advances in gene transcripts and protein analysis results in the systems biology to enhance our understanding of viral pathogens, vaccines, and host cell responses.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, 305-333 South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
128
|
GASPARINI R, AMICIZIA D, LAI P, BRAGAZZI N, PANATTO D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2014; 55:109-29. [PMID: 26137785 PMCID: PMC4718316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the first part of this overview, we described the life cycle of the influenza virus and the pharmacological action of the currently available drugs. This second part provides an overview of the molecular mechanisms and targets of still-experimental drugs for the treatment and management of influenza. Briefly, we can distinguish between compounds with anti-influenza activity that target influenza virus proteins or genes, and molecules that target host components that are essential for viral replication and propagation. These latter compounds have been developed quite recently. Among the first group, we will focus especially on hemagglutinin, M2 channel and neuraminidase inhibitors. The second group of compounds may pave the way for personalized treatment and influenza management. Combination therapies are also discussed. In recent decades, few antiviral molecules against influenza virus infections have been available; this has conditioned their use during human and animal outbreaks. Indeed, during seasonal and pandemic outbreaks, antiviral drugs have usually been administered in mono-therapy and, sometimes, in an uncontrolled manner to farm animals. This has led to the emergence of viral strains displaying resistance, especially to compounds of the amantadane family. For this reason, it is particularly important to develop new antiviral drugs against influenza viruses. Indeed, although vaccination is the most powerful means of mitigating the effects of influenza epidemics, antiviral drugs can be very useful, particularly in delaying the spread of new pandemic viruses, thereby enabling manufacturers to prepare large quantities of pandemic vaccine. In addition, antiviral drugs are particularly valuable in complicated cases of influenza, especially in hospitalized patients. To write this overview, we mined various databases, including Embase, PubChem, DrugBank and Chemical Abstracts Service, and patent repositories.
Collapse
Affiliation(s)
- R. GASPARINI
- Correspondence: R. Gasparini, Department of Health Sciences of Genoa University, via Pastore 1, 16132 Genoa, Italy - E-mail:
| | | | | | | | | |
Collapse
|
129
|
Systems immunology reveals markers of susceptibility to West Nile virus infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:6-16. [PMID: 25355795 DOI: 10.1128/cvi.00508-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
West Nile virus (WNV) infection is usually asymptomatic but can cause severe neurological disease and death, particularly in older patients, and how individual variations in immunity contribute to disease severity is not yet defined. Animal studies identified a role for several immunity-related genes that determine the severity of infection. We have integrated systems-level transcriptional and functional data sets from stratified cohorts of subjects with a history of WNV infection to define whether these markers can distinguish susceptibility in a human population. Transcriptional profiles combined with immunophenotyping of primary cells identified a predictive signature of susceptibility that was detectable years after acute infection (67% accuracy), with the most prominent alteration being decreased IL1B induction following ex vivo infection of macrophages with WNV. Deconvolution analysis also determined a significant role for CXCL10 expression in myeloid dendritic cells. This systems analysis identified markers of pathogenic mechanisms and offers insights into potential therapeutic strategies.
Collapse
|
130
|
Furman D. Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men. Expert Rev Vaccines 2014; 14:461-71. [PMID: 25278153 DOI: 10.1586/14760584.2015.966694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Weaker immune responses are often observed in males compared to females. Since female hormones have proinflammatory properties and androgens have potent immunomodulatory effects, this sexual dimorphism in the immune response seems to be hormone dependent. Despite our current knowledge about the effect of sex hormones on immune cells, definition of the factors driving the sex differences in immunoclinical outcomes, such as the diminished response to infection and vaccination observed in men or the higher rates of autoimmunity observed in females, remains elusive. Recently, systems approaches to immune function have started to suggest a way toward establishing this connection. Such studies promise to improve our understanding of the mechanisms underlying the sexual dimorphism observed in the human immune system.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, Stanford University, 279 Campus Drive, B240 Beckman Center, Stanford, CA 94305-5124, USA
| |
Collapse
|
131
|
O'Gorman WE, Huang H, Wei YL, Davis KL, Leipold MD, Bendall SC, Kidd BA, Dekker CL, Maecker HT, Chien YH, Davis MM. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors. Vaccine 2014; 32:5989-97. [PMID: 25203448 DOI: 10.1016/j.vaccine.2014.07.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022]
Abstract
Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes.
Collapse
Affiliation(s)
- William E O'Gorman
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Huang Huang
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Yu-Ling Wei
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Kara L Davis
- Department of Pediatrics, Stanford University, Stanford, CA 94305, United States
| | - Michael D Leipold
- Human Immune Monitoring Center, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Sean C Bendall
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Brian A Kidd
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University, Stanford, CA 94305, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Yueh-Hsiu Chien
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Mark M Davis
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
132
|
Raeven RHM, Brummelman J, Pennings JLA, Nijst OEM, Kuipers B, Blok LER, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One 2014; 9:e104548. [PMID: 25137043 PMCID: PMC4138111 DOI: 10.1371/journal.pone.0104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cecile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G. H. Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
133
|
Systems vaccinology: probing humanity's diverse immune systems with vaccines. Proc Natl Acad Sci U S A 2014; 111:12300-6. [PMID: 25136102 DOI: 10.1073/pnas.1400476111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.
Collapse
|
134
|
Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, Wang E, Olnes MJ, Narayanan M, Golding H, Moir S, Dickler HB, Perl S, Cheung F. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 2014; 157:499-513. [PMID: 24725414 DOI: 10.1016/j.cell.2014.03.031] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/06/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023]
Abstract
A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention.
Collapse
Affiliation(s)
- John S Tsang
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Pamela L Schwartzberg
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi Xie
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ena Wang
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Olnes
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA; Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manikandan Narayanan
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hana Golding
- Laboratory of Retrovirus Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Howard B Dickler
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shira Perl
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
135
|
Jiang J, Miyata M, Chan C, Ngoh SY, Liew WC, Saju JM, Ng KS, Wong FS, Lee YS, Chang SF, Orbán L. Differential transcriptomic response in the spleen and head kidney following vaccination and infection of Asian seabass with Streptococcus iniae. PLoS One 2014; 9:e99128. [PMID: 24992587 PMCID: PMC4081116 DOI: 10.1371/journal.pone.0099128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is an important strategy in the protection of aquaculture species from major diseases. However, we still do not have a good understanding of the mechanisms underlying vaccine-induced disease resistance. This is further complicated by the presence of several lymphoid organs that play different roles when mounting an immune response. In this study, we attempt to elucidate some of these mechanisms using a microarray-based approach. Asian seabass (Lates calcarifer) were vaccinated against Streptococcus iniae and the transcriptomic changes within the spleen and head kidney at one and seven days post-vaccination were profiled. We subsequently challenged the seabass at three weeks post-vaccination with live S. iniae and similarly profiled the transcriptomes of the two organs after the challenge. We found that vaccination induced an early, but transient transcriptomic change in the spleens and a delayed response in the head kidneys, which became more similar to one another compared to un-vaccinated ones. When challenged with the pathogen, the spleen, but not the head kidneys, responded transcriptomically at 25-29 hours post-challenge. A unique set of genes, in particular those involved in the activation of NF-κB signaling, was up-regulated in the vaccinated spleens upon pathogen challenge but not in the un-vaccinated spleens. A semi-quantitative PCR detection of S. iniae using metagenomic DNA extracted from the water containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. This result indicated that vaccination not only led to a successful immune defense against the infection, but also reduced the chances for horizontal transmission of the pathogen. In conclusion, we have provided a transcriptomic analysis of how the teleost spleen and head kidneys responded to vaccination and subsequent infection. The different responses from the two organs are suggestive of their unique roles in establishing a vaccine-induced disease resistance.
Collapse
Affiliation(s)
- Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Agri-Food and Veterinary Authority of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Masato Miyata
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Candy Chan
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Si Yan Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Jolly M. Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Kah Sing Ng
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Fong Sian Wong
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Yeng Sheng Lee
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Siow Foong Chang
- MSD Animal Health Innovation, Singapore, Republic of Singapore
- * E-mail: (SFC); (LO)
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
- Centre for Comparative Genomics, Murdoch University, Murdoch, Australia
- * E-mail: (SFC); (LO)
| |
Collapse
|
136
|
Abstract
The success of vaccines developed since the beginning of the 20th century, has enabled the conquest of several childhood diseases preventing death and or disability for millions of children. But, globally, the number of children will soon be surpassed by the number of adults over the age of 65. The active lifestyle of these older individuals, coupled with a degree of immune deficiency recognised within this population will lead to a change in the profile of diseases affecting the elderly. The challenge for policy makers and also those involved in primary healthcare is how to protect this population from communicable diseases and keep them healthy, autonomous and independent when vaccines in the main have been developed for use on children and young adults.
Collapse
|
137
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
138
|
Matsumiya M, Harris SA, Satti I, Stockdale L, Tanner R, O'Shea MK, Tameris M, Mahomed H, Hatherill M, Scriba TJ, Hanekom WA, McShane H, Fletcher HA. Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response. BMC Infect Dis 2014; 14:314. [PMID: 24912498 PMCID: PMC4061512 DOI: 10.1186/1471-2334-14-314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/28/2014] [Indexed: 01/08/2023] Open
Abstract
Background Tuberculosis (TB) remains a global health problem, with vaccination likely to be a necessary part of a successful control strategy. Results of the first Phase 2b efficacy trial of a candidate vaccine, MVA85A, evaluated in BCG-vaccinated infants were published last year. Although no improvement in efficacy above BCG alone was seen, cryopreserved samples from this trial provide an opportunity to study the immune response to vaccination in this population. Methods We investigated blood samples taken before vaccination (baseline) and one and 28 days post-vaccination with MVA85A or placebo (Candin). The IFN-γ ELISpot assay was performed at baseline and on day 28 to quantify the adaptive response to Ag85A peptides. Gene expression analysis was performed at all three timepoints to identify early gene signatures predictive of the magnitude of the subsequent adaptive T cell response using the significance analysis of microarrays (SAM) statistical package and gene set enrichment analysis. Results One day post-MVA85A, there is an induction of inflammatory pathways compared to placebo samples. Modules associated with myeloid cells and inflammation pre- and one day post-MVA85A correlate with a higher IFN-γ ELISpot response post-vaccination. By contrast, previous work done in UK adults shows early inflammation in this population is not associated with a strong T cell response but that induction of regulatory pathways inversely correlates with the magnitude of the T cell response. This may be indicative of important mechanistic differences in how T cell responses develop in these two populations following vaccination with MVA85A. Conclusion The results suggest the capacity of MVA85A to induce a strong innate response is key to the initiation of an adaptive immune response in South African infants but induction of regulatory pathways may be more important in UK adults. Understanding differences in immune response to vaccination between populations is likely to be an important aspect of developing successful vaccines and vaccination strategies. Trial registration ClinicalTrials.gov number
NCT00953927
Collapse
Affiliation(s)
- Magali Matsumiya
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Association between latent proviral characteristics and immune activation in antiretrovirus-treated human immunodeficiency virus type 1-infected adults. J Virol 2014; 88:8629-39. [PMID: 24850730 DOI: 10.1128/jvi.01257-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Generalized immune activation during HIV infection is associated with an increased risk of cardiovascular disease, neurocognitive disease, osteoporosis, metabolic disorders, and physical frailty. The mechanisms driving this immune activation are poorly understood, particularly for individuals effectively treated with antiretroviral medications. We hypothesized that viral characteristics such as sequence diversity may play a role in driving HIV-associated immune activation. We therefore sequenced proviral DNA isolated from peripheral blood mononuclear cells from HIV-infected individuals on fully suppressive antiretroviral therapy. We performed phylogenetic analyses, calculated viral diversity and divergence in the env and pol genes, and determined coreceptor tropism and the frequency of drug resistance mutations. Comprehensive immune profiling included quantification of immune cell subsets, plasma cytokine levels, and intracellular signaling responses in T cells, B cells, and monocytes. These antiretroviral therapy-treated HIV-infected individuals exhibited a wide range of diversity and divergence in both env and pol genes. However, proviral diversity and divergence in env and pol, coreceptor tropism, and the level of drug resistance did not significantly correlate with markers of immune activation. A clinical history of virologic failure was also not significantly associated with levels of immune activation, indicating that a history of virologic failure does not inexorably lead to increased immune activation as long as suppressive antiretroviral medications are provided. Overall, this study demonstrates that latent viral diversity is unlikely to be a major driver of persistent HIV-associated immune activation. IMPORTANCE Chronic immune activation, which is associated with cardiovascular disease, neurologic disease, and early aging, is likely to be a major driver of morbidity and mortality in HIV-infected individuals. Although treatment of HIV with antiretroviral medications decreases the level of immune activation, levels do not return to normal. The factors driving this persistent immune activation, particularly during effective treatment, are poorly understood. In this study, we investigated whether characteristics of the latent, integrated HIV provirus that persists during treatment are associated with immune activation. We found no relationship between latent viral characteristics and immune activation in treated individuals, indicating that qualities of the provirus are unlikely to be a major driver of persistent inflammation. We also found that individuals who had previously failed treatment but were currently effectively treated did not have significantly increased levels of immune activation, providing hope that past treatment failures do not have a lifelong "legacy" impact.
Collapse
|
140
|
Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND, Kirkland JL. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol 2014; 29:62-8. [PMID: 24820347 DOI: 10.1016/j.coi.2014.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/13/2023]
Abstract
Aging can lead to immunosenescence, which dramatically impairs the hosts' ability to develop protective immune responses to vaccine antigens. Reasons for this are not well understood. This topic's importance is reflected in the increases in morbidity and mortality due to infectious diseases among elderly persons, a population growing in size globally, and the significantly lower adaptive immune responses generated to vaccines in this population. Here, we endeavor to summarize the existing data on the genetic and immunologic correlates of immunosenescence with respect to vaccine response. We cover how the application of systems biology can advance our understanding of vaccine immunosenescence, with a view toward how such information could lead to strategies to overcome the lower immunogenicity of vaccines in the elderly.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | - James L Kirkland
- Robert & Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
141
|
Abstract
Of all infectious diseases, tuberculosis (TB) remains one of the most important causes of morbidity and mortality. Recent advances in understanding the biology of Mycobacterium tuberculosis (Mtb) infection and the immune response of the infected host have led to the development of several new vaccines, a number of which are already undergoing clinical trials. These include pre-exposure prime vaccines, which could replace bacille Calmette-Guérin (BCG), and pre-exposure booster vaccines given in addition to BCG. Infants are the target population of these two types of vaccines. In addition, several postexposure vaccines given during adolescence or adult life, in addition to BCG as a priming vaccine during infancy, are undergoing clinical testing. Therapeutic vaccines are currently being assessed for their potential to cure active TB as an adjunct to chemotherapy. BCG replacement vaccines are viable recombinant BCG or double-deletion mutants of Mtb. All booster vaccines are composed of one or several antigens, either expressed by viral vectors or formulated with adjuvants. Therapeutic vaccines are killed mycobacterial preparations. Finally, multivariate biomarkers and biosignatures are being generated from high-throughput data with the aim of providing better diagnostic tools to specifically determine TB progression. Here, we provide a technical overview of these recent developments as well of the relevant computational approaches and highlight the obstacles that still need to be overcome.
Collapse
Affiliation(s)
- J Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | |
Collapse
|
142
|
Kennedy RB, Ovsyannikova IG, Lambert ND, Haralambieva IH, Poland GA. The personal touch: strategies toward personalized vaccines and predicting immune responses to them. Expert Rev Vaccines 2014; 13:657-69. [PMID: 24702429 DOI: 10.1586/14760584.2014.905744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The impact of vaccines on public health and wellbeing has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as hepatitis C, malaria or tuberculosis, as well as new and re-emerging pathogens for which we lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population.
Collapse
|
143
|
Unifying immunology with informatics and multiscale biology. Nat Immunol 2014; 15:118-27. [PMID: 24448569 DOI: 10.1038/ni.2787] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology.
Collapse
|
144
|
The promised land of human immunology. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2014; 78:203-13. [PMID: 24638855 DOI: 10.1101/sqb.2013.78.022905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Advances in technology and data analysis have made it possible to take a new look at human immunology. These advances run the gamut from systems biology approaches, which are likely in the vanguard of how we can start "to put the pieces together" of immune function, to a deeper understanding of specific diseases and vaccines and the immune repertoire. In our own experience, we have also found that asking simple questions about human immunity has often given us very surprising answers, causing a rethink of established dogma. Thus, we have developed a new perspective on the nature of the αβ TCR repertoire and also the likely role of T-cell repertoire (TCR) cross-reactivity in generating T memory independent of specific antigen interactions. These findings show that human immunology is not just a necessary step for "translating" basic immunology to treat diseases or develop better vaccines, but is also an important complement to the inbred mouse model.
Collapse
|
145
|
Challenges and responses in human vaccine development. Curr Opin Immunol 2014; 28:18-26. [PMID: 24561742 DOI: 10.1016/j.coi.2014.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 01/01/2023]
Abstract
Human vaccine development remains challenging because of the highly sophisticated evasion mechanisms of pathogens for which vaccines are not yet available. Recent years have witnessed both successes and failures of novel vaccine design and the strength of iterative approaches is increasingly appreciated. These combine discovery of novel antigens, adjuvants and vectors in the preclinical stage with computational analyses of clinical data to accelerate vaccine design. Reverse and structural vaccinology have revealed novel antigen candidates and molecular immunology has led to the formulation of promising adjuvants. Gene expression profiles and immune parameters in patients, vaccinees and healthy controls have formed the basis for biosignatures that will provide guidelines for future vaccine design.
Collapse
|
146
|
Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S, Carlone GM, Quinn C, Chaussabel D, Palucka AK, Mulligan MJ, Ahmed R, Stephens DS, Nakaya HI, Pulendran B. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 2014; 15:195-204. [PMID: 24336226 PMCID: PMC3946932 DOI: 10.1038/ni.2789] [Citation(s) in RCA: 542] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/14/2013] [Indexed: 12/18/2022]
Abstract
Many vaccines induce protective immunity via antibodies. Systems biology approaches have been used to determine signatures that can be used to predict vaccine-induced immunity in humans, but whether there is a 'universal signature' that can be used to predict antibody responses to any vaccine is unknown. Here we did systems analyses of immune responses to the polysaccharide and conjugate vaccines against meningococcus in healthy adults, in the broader context of published studies of vaccines against yellow fever virus and influenza virus. To achieve this, we did a large-scale network integration of publicly available human blood transcriptomes and systems-scale databases in specific biological contexts and deduced a set of transcription modules in blood. Those modules revealed distinct transcriptional signatures of antibody responses to different classes of vaccines, which provided key insights into primary viral, protein recall and anti-polysaccharide responses. Our results elucidate the early transcriptional programs that orchestrate vaccine immunity in humans and demonstrate the power of integrative network modeling.
Collapse
Affiliation(s)
- Shuzhao Li
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, Georgia, USA
| | - Sai Duraisingham
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sandra Romero-Steiner
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Presnell
- Benaroya Research Institute, Seattle, Washington, USA
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Carl Davis
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Daniel S Schmidt
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott E Johnson
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrea Milton
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gowrisankar Rajam
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sudhir Kasturi
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - George M Carlone
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charlie Quinn
- Benaroya Research Institute, Seattle, Washington, USA
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Damien Chaussabel
- Benaroya Research Institute, Seattle, Washington, USA
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - A Karolina Palucka
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA
| | - Mark J Mulligan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, Georgia, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - David S Stephens
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helder I Nakaya
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
147
|
Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A 2013; 111:869-74. [PMID: 24367114 DOI: 10.1073/pnas.1321060111] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Females have generally more robust immune responses than males for reasons that are not well-understood. Here we used a systems analysis to investigate these differences by analyzing the neutralizing antibody response to a trivalent inactivated seasonal influenza vaccine (TIV) and a large number of immune system components, including serum cytokines and chemokines, blood cell subset frequencies, genome-wide gene expression, and cellular responses to diverse in vitro stimuli, in 53 females and 34 males of different ages. We found elevated antibody responses to TIV and expression of inflammatory cytokines in the serum of females compared with males regardless of age. This inflammatory profile correlated with the levels of phosphorylated STAT3 proteins in monocytes but not with the serological response to the vaccine. In contrast, using a machine learning approach, we identified a cluster of genes involved in lipid biosynthesis and previously shown to be up-regulated by testosterone that correlated with poor virus-neutralizing activity in men. Moreover, men with elevated serum testosterone levels and associated gene signatures exhibited the lowest antibody responses to TIV. These results demonstrate a strong association between androgens and genes involved in lipid metabolism, suggesting that these could be important drivers of the differences in immune responses between males and females.
Collapse
|
148
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 737] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
149
|
Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev 2013; 255:243-55. [PMID: 23947360 PMCID: PMC3748616 DOI: 10.1111/imr.12099] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new fringe benefit: lessons in viral immunology.
Collapse
|
150
|
Shen-Orr SS, Furman D. Variability in the immune system: of vaccine responses and immune states. Curr Opin Immunol 2013; 25:542-7. [PMID: 23953808 PMCID: PMC3788704 DOI: 10.1016/j.coi.2013.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023]
Abstract
System-wide approaches are now being applied to study vaccine responses, whose mechanisms of action, and failure, are not well understood. These works have repeatedly shown vaccine response to be an orchestrated process involving multiple arms of immunity most noticeable sensing and innate components. Prediction of vaccine responses based on system-wide measures is achievable, but challenges remain for robust population wide predictions based only on pre-vaccination measures, especially in partially efficacious vaccines such as influenza. This is especially true in older adults, who are often less responsive to vaccination and exhibit high level of variation compared to young in many components of immunity. Despite this increase in variation, most of the studies on aging use group averages of immune phenotypes to model immune system behavior. Using systems approaches, it is possible to exploit this variation to form distinguishable clusters of phenotypes within and across individuals to discover underlying immune states.
Collapse
Affiliation(s)
- Shai S Shen-Orr
- Rappaport Institute of Medical Research, Faculty of Medicine and Faculty of Biology, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | |
Collapse
|