101
|
Young JS, Gogos AJ, Pereira MP, Morshed RA, Li J, Barkovich MJ, Hervey-Jumper SL, Berger MS. Effects of ventricular entry on patient outcome during glioblastoma resection. J Neurosurg 2021; 135:989-997. [PMID: 33418530 DOI: 10.3171/2020.7.jns201362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tumor proximity to the ventricle and ventricular entry (VE) during surgery have both been associated with worse prognoses; however, the interaction between these two factors is poorly understood. Given the benefit of maximal tumor resection, it is imperative for surgical planning and technique to know if VE has negative consequences for patient survival and tumor dissemination. METHODS The University of California, San Francisco tumor registry was searched for patients with newly diagnosed and recurrent supratentorial glioblastoma (GBM) who underwent resection by the senior author between 2013 and 2018. Tumor location with respect to the subventricular zone (SVZ), size, and extent of resection were assessed using pre- and postoperative imaging. VE was determined by postoperative imaging and/or the operative report. RESULTS In this 200-patient cohort of newly diagnosed and recurrent GBM, 26.5% of patients had VE during resection. Patients with VE were more likely to have preexisting subependymal disease (41.5% vs 15.0%, p < 0.001). Comparing patients with VE to those without VE, there was no difference in the rates of postoperative hydrocephalus (1.9% vs 4.8%, p = 0.36), ventriculoperitoneal shunting (0% vs 3.4%, p = 0.17), pseudomeningoceles (7.5% vs 5.4%, p = 0.58), or subdural hematomas (11.3% vs 3.4%, p = 0.07). Importantly, rates of subsequent leptomeningeal disease (7.5% vs 10.2%, p = 0.57) and distant parenchymal recurrence (17.0% vs 23.1%, p = 0.35) were not different between the groups. Newly diagnosed patients with tumors contacting the SVZ (type I or II) had worse survival than patients with tumors that did not contact the SVZ (type III or IV) (1.27 vs 1.84 years, p = 0.014, HR 1.8, 95% CI 1.08-3.03), but VE was not associated with worse survival in these patients with high-risk SVZ type I and II tumors (1.15 vs 1.68 years, p = 0.151, HR 0.59, 95% CI 0.26-1.34). CONCLUSIONS VE was well tolerated, with postoperative complications being rare events. There was no increase in leptomeningeal spread or distant parenchymal recurrence in patients with VE. Finally, although survival was worse for patients with preoperative subependymal disease, VE did not change survival for patients with tumors contacting the ventricle. Therefore, VE during GBM resection is not associated with adverse patient outcomes and should be used by surgeons to enhance extent of resection.■ CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: retrospective cohort; evidence: class II.
Collapse
Affiliation(s)
| | | | | | | | - Jing Li
- 1Department of Neurological Surgery
| | - Matthew J Barkovich
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | | | | |
Collapse
|
102
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
103
|
Zeng XX, Zeng J, Zhu B. Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Rev Neurosci 2021; 33:313-326. [PMID: 34529907 DOI: 10.1515/revneuro-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Glioblastoma remains lethal even when treated with standard therapy. This review aims to outline the recent development of various advanced therapeutics for glioblastoma and briefly discuss the potential impact of glioblastoma and some of its therapeutic approaches on the neurological function micturition control. Although immunotherapy led to success in treating hematological malignancies, but no similar success occurred in treatment for brain glioblastoma. Neither regenerative medicine nor stem cell therapy led to astounding success in glioblastoma. However, CRISPR Cas system holds potential in multiple applications due to its capacity to knock-in and knock-out genes, modify immune cells and cell receptors, which will enable it to address clinical challenges in immunotherapy such as CAR-T and regenerative therapy for brain glioblastoma, improving the precision and safety of these approaches. The studies mentioned in this review could indicate that glioblastoma is a malignant disease with multiple sophisticated barriers to be overcome and more challenges might arise in the attempt of researchers to yield a successful cure. A multimodal approach of future generation of refined and safe therapeutics derived from CRISPR Cas therapeutics, immunotherapy, and regenerative therapeutics mentioned in this review might prolong survival or even contribute towards a potential cure for glioblastoma.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Guangzhou United Family Hospital, Fangyuan Road 28, Haizhu District, Guangzhou, Postcode: 510000, Guangdong Province, P. R. China
| | - Jianwen Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Yinquan Road B24, Qingyuan City, Postcode: 511500, Guangdong Province, P. R. China
| | - Baoyi Zhu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Yinquan Road B24, Qingyuan City, Postcode: 511500, Guangdong Province, P. R. China
| |
Collapse
|
104
|
Demirci H, Kuzucu P, Seymen CM, Gülbahar Ö, Özişik P, Emmez H. The effect of antiepileptic drugs on re-myelinization of axons: Phenytoin, levetiracetam, carbamazepine, and valproic acid, used following traumatic brain injury. Clin Neurol Neurosurg 2021; 209:106911. [PMID: 34509750 DOI: 10.1016/j.clineuro.2021.106911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Traumatic brain injury is a major health and socioeconomic problem and the first cause of young death worldwide. For this reason, the prevention of post-traumatic brain injury and the research of new methods for it are important today. In this study, we aimed to determine whether the use of antiepileptic drugs contributed to axonal healing after traumatic brain injury. METHODS Thirty-six Long-Evans rats, each weighing 300-350 g, were used in this study. A total of 6 groups, including the sham, control, and 4 study groups, were determined. A 1.5 mm-sized trauma was created in the biparietal area with a blunt-tipped dissector. Carbamazepine phenytoin valproic acid and levetiracetam (phenytoin: 30 mg/kg, valproic acid: 60 mg/kg, levetiracetam: 80 mg/kg, and carbamazepine: 36 mg/kg) were intraperitoneally administered to the study groups, and the control group intraperitoneally received a physiological saline solution (15 ml/kg) twice daily for 3 days. After 72 h, hemispheres of the sacrificed subjects were taken for examination in biochemistry and histology. Glutathione, malondialdehyde, and NG2 levels in the samples were determined. RESULTS No significant difference was found in biochemical measurements. Histopathological examination revealed that the NG2 expression was more intense in the group treated with phenytoin and levetiracetam (phenytoin was partly higher) and the amount of edema decreased. The NG2 expression increased and the edema decreased, though lower in the group treated with carbamazepine and valproic acid, compared with phenytoin and levetiracetam. An increase in the NG2 expression and edema intensity were determined in the control and sham groups. CONCLUSION Antiepileptic drug selection after traumatic brain injury is an important medical matter. Although the patient-oriented selection is essential, the study suggests that the choice of phenytoin, levetiracetam carbamazepine, and valproic acid will, respectively, have an accelerating effect for axonal healing.
Collapse
Affiliation(s)
- Harun Demirci
- Department of Neurosurgery,Ankara Yildirim Beyazit University Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey.
| | - Pelin Kuzucu
- Department of Neurosurgery, University of Health Sciences, Gülhane Faculty of Medicine, Ankara, Turkey.
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Özlem Gülbahar
- Department of Department of Clinical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Pınar Özişik
- Department of Neurosurgery,Ankara Yildirim Beyazit University Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey.
| | - Hakan Emmez
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
105
|
Periventricular zone involvement as a predictor of survival in glioblastoma patients: A single centre cohort-comparison investigation concerning a distinct clinical entity. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
106
|
Zhang S, Zhao F, Zhou T, Liu D, Yao X, Fu W, Liu Z, Lan C, Lai Z, Liu C, Li H, Li Y, Hu S, Yin Y, Tan L, Li W, Li F, Hu R, Feng H. Combination of the Distance From Tumor Edge to Subventricular Zone and IDH Mutation Predicts Prognosis of Patients With Glioma. Front Oncol 2021; 11:693693. [PMID: 34490090 PMCID: PMC8417404 DOI: 10.3389/fonc.2021.693693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Both subventricular zone (SVZ) contact and isocitrate dehydrogenase 1 (IDH1) mutation have been reported to be related to the outcome of glioma, respectively. However, far too little attention has been paid to the role of tumor edge-SVZ distance in the outcome of glioma. We aim to assess the value of tumor-SVZ distance, as well as combined tumor-SVZ distance and IDH status, in predicting the outcome of gliomas (WHO grade II-IV). Here, the MR images and clinical data from 146 patients were included in the current study. The relationship between survival and the tumor-SVZ distance as well as survival and combination of tumor-SVZ distance and IDH status were determined via univariate and multivariate analyses. In univariate analysis of tumor-SVZ distance, the patients were divided into three types (SVZ involvement, tumor-SVZ distance from 0 to 10 mm, and tumor-SVZ distance >10 mm). The results showed that the OS (p = 0.02) and PFS (p = 0.002) for the patients had a positive correlation with the tumor-SVZ distance. In addition, simple linear correlation found a significant relationship between the two parameters (OS and PFS) and tumor-SVZ distance in patients with non-SVZ-contacting glioma. Combination analysis of the tumor-SVZ distance and IDH status showed that IDH1 mutation and SVZ non-involvement enable favorable outcomes, whereas IDH1 wild type with SVZ involvement indicates a significantly worse prognosis in all patients. Moreover, in patients with non-SVZ-contacting glioma, IDH1 mutation concurrent with tumor-SVZ distance >10 mm has better OS and PFS. IDH1 wild type and tumor-SVZ distance from 0 to 10 mm suggest poorer OS and PFS. Multivariate analysis showed WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, gross total resection, and chemotherapy serve as independent predictors of OS. WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, and chemotherapy serve as independent predictors of PFS of patients with glioma. In conclusion, tumor-SVZ distance and IDH1 mutation status are the determinants affecting patient outcome.
Collapse
Affiliation(s)
- Shuixian Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengchun Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Yao
- Department of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenjuan Fu
- Department of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Lan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaopan Lai
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhong Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shengli Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
107
|
Glioblastomas within the Subventricular Zone Are Region-Specific Enriched for Mesenchymal Transition Markers: An Intratumoral Gene Expression Analysis. Cancers (Basel) 2021; 13:cancers13153764. [PMID: 34359668 PMCID: PMC8345101 DOI: 10.3390/cancers13153764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. In this study, we demonstrate that patient-derived glioblastoma samples from within the SVZ region show increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling as compared to glioblastoma samples from the same patient from outside the SVZ. These results suggest that intratumoral alterations in oncogenic signaling could be mediated by the SVZ microenvironment. Our findings offer rationale for specific targeting of the SVZ in the development of glioblastoma therapy. Abstract Background: Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. The SVZ microenvironment can influence gene expression in glioblastoma cells in preclinical models. We aimed to investigate whether the SVZ microenvironment has any influence on intratumoral gene expression patterns in glioblastoma patients. Methods: The publicly available Ivy Glioblastoma database contains clinical, radiological and whole exome sequencing data from multiple regions from resected glioblastomas. SVZ involvement of the various tissue samples was evaluated on MRI scans. In tumors that contacted the SVZ, we performed gene expression analyses and gene set enrichment analyses to compare gene (set) expression in tumor regions within the SVZ to tumor regions outside the SVZ. We also compared these samples to glioblastomas that did not contact the SVZ. Results: Within glioblastomas that contacted the SVZ, tissue samples within the SVZ showed enrichment of gene sets involved in (epithelial-)mesenchymal transition, NF-κB and STAT3 signaling, angiogenesis and hypoxia, compared to the samples outside of the SVZ region from the same tumors (p < 0.05, FDR < 0.25). Comparison of glioblastoma samples within the SVZ region to samples from tumors that did not contact the SVZ yielded similar results. In contrast, we observed no differences when comparing the samples outside of the SVZ from SVZ-contacting glioblastomas with samples from glioblastomas that did not contact the SVZ at all. Conclusion: Glioblastoma samples in the SVZ region are enriched for increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling, possibly mediated by the SVZ microenvironment.
Collapse
|
108
|
Brockman AA, Mobley BC, Ihrie RA. Histological Studies of the Ventricular-Subventricular Zone as Neural Stem Cell and Glioma Stem Cell Niche. J Histochem Cytochem 2021; 69:819-834. [PMID: 34310246 DOI: 10.1369/00221554211032003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The neural stem cell niche of the ventricular-subventricular zone supports the persistence of stem and progenitor cells in the mature brain. This niche has many notable cytoarchitectural features that affect the activity of stem cells and may also support the survival and growth of invading tumor cells. Histochemical studies of the niche have revealed many proteins that, in combination, can help to reveal stem-like cells in the normal or cancer context, although many caveats persist in the quest to consistently identify these cells in the human brain. Here, we explore the complex relationship between the persistent proliferative capacity of the neural stem cell niche and the malignant proliferation of brain tumors, with a special focus on histochemical identification of stem cells and stem-like tumor cells and an eye toward the potential application of high-dimensional imaging approaches to the field.
Collapse
Affiliation(s)
- Asa A Brockman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bret C Mobley
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
109
|
Abstract
Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on dis-ease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and re-build the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fun-damental questions regarding adult neurogenesis, cell source, and mecha-nisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| |
Collapse
|
110
|
Deng Y, Guo F, Han X, Huang X. Repetitive transcranial magnetic stimulation increases neurological function and endogenous neural stem cell migration via the SDF-1α/CXCR4 axis after cerebral infarction in rats. Exp Ther Med 2021; 22:1037. [PMID: 34373723 PMCID: PMC8343462 DOI: 10.3892/etm.2021.10469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neural stem cell (NSC) migration is closely associated with brain development and is reportedly involved during recovery from ischaemic stroke. Chemokine signalling mediated by stromal cell-derived factor 1α (SDF-1α) and its receptor CXC chemokine receptor 4 (CXCR4) has been previously documented to guide the migration of NSCs. Although repetitive transcranial magnetic stimulation (rTMS) can increase neurological function in a rat stroke model, its effects on the migration of NSCs and associated underlying mechanism remain unclear. Therefore, the present study investigated the effects of rTMS on ischaemic stroke following middle cerebral artery occlusion (MCAO). All rats underwent rTMS treatment 24 h after MCAO. Neurological function, using modified Neurological Severity Scores and grip strength test and NSC migration, which were measured using immunofluorescence staining, were analysed at 7 and 14 days after MCAO, before the protein expression levels of the SDF-1α/CXCR4 axis was evaluated using western blot analysis. AMD3100, a CXCR4 inhibitor, was used to assess the effects of SDF-1α/CXCR4 signalling. In addition, neuronal survival was investigated using Nissl staining at 14 days after MCAO. It was revealed that rTMS increased the neurological recovery of rats with MCAO, facilitated the migration of NSC, augmented the expression levels of the SDF-1α/CXCR4 axis and decreased neuronal loss. Furthermore, the rTMS-induced positive responses were significantly abolished by AMD3100. Overall, these results indicated that rTMS conferred therapeutic neuroprotective properties, which can restore neurological function after ischaemic stroke, in a manner that may be associated with the activation of the SDF-1α/CXCR4 axis.
Collapse
Affiliation(s)
- Yuguo Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Guo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaohua Han
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
111
|
Lao Y, Yu V, Pham A, Wang T, Cui J, Gallogly A, Chang E, Fan Z, Kaprealian T, Yang W, Sheng K. Quantitative Characterization of Tumor Proximity to Stem Cell Niches: Implications on Recurrence and Survival in GBM Patients. Int J Radiat Oncol Biol Phys 2021; 110:1180-1188. [PMID: 33600888 PMCID: PMC8238898 DOI: 10.1016/j.ijrobp.2021.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Emerging evidence has linked glioblastoma multiforme (GBM) recurrence and survival to stem cell niches (SCNs). However, the traditional tumor-ventricle distance is insufficiently powered for an accurate prediction. We aimed to use a novel inverse distance map for improved prediction. METHODS AND MATERIALS Two T1-magnetic resonance imaging data sets were included for a total of 237 preoperative scans for prognostic stratification and 55 follow-up scans for recurrent pattern identification. SCN, including the subventricular zone (SVZ) and subgranular zone (SGZ), were manually defined on a standard template. A proximity map was generated using the summed inverse distances to all SCN voxels. The mean and maximum proximity scores (PSm-SCN and PSmax-SCN) were calculated for each primary/recurrent tumor, deformably transformed into the template. The prognostic capacity of proximity score (PS)-derived metrics was assessed using Cox regression and log-rank tests. To evaluate the impact of SCNs on recurrence patterns, we performed group comparisons of PS-derived metrics between the primary and recurrent tumors. For comparison, the same analyses were conducted on PS derived from SVZ alone and traditional edge/center-to-ventricle metrics. RESULTS Among all SCN-derived features, PSm-SCN was the strongest survival predictor (P < .0001). PSmax-SCN was the best in risk stratification, using either evenly sorted (P = .0001) or k-means clustering methods (P = .0045). PS metrics based on SVZ only also correlated with overall survival and risk stratification, but to a lesser degree of significance. In contrast, edge/center-to-ventricle metrics showed weak to no prediction capacities in either task. Moreover, PSm-SCN,PSm-SVZ, and center-to-ventricle metrics revealed a significantly closer SCN distribution of recurrence than primary tumors. CONCLUSIONS We introduced a novel inverse distance-based metric to comprehensively capture the anatomic relationship between GBM tumors and SCN zones. The derived metrics outperformed traditional edge or center distance-based measurements in overall survival prediction, risk stratification, and recurrent pattern differentiation. Our results reveal the potential role of SGZ in recurrence aside from SVZ.
Collapse
Affiliation(s)
- Yi Lao
- Department of Radiation Oncology, University of California - Los Angeles, California
| | - Victoria Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Pham
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Theodore Wang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Jing Cui
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Audrey Gallogly
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Eric Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California, Los Angeles, California
| | - Tania Kaprealian
- Department of Radiation Oncology, University of California - Los Angeles, California
| | - Wensha Yang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California.
| | - Ke Sheng
- Department of Radiation Oncology, University of California - Los Angeles, California.
| |
Collapse
|
112
|
Du K, Zhang Z, Zeng Z, Tang J, Lee T, Sun T. Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death Dis 2021; 12:700. [PMID: 34262022 PMCID: PMC8280107 DOI: 10.1038/s41419-021-03992-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022]
Abstract
Proper development of the mammalian cerebral cortex relies on precise gene expression regulation, which is controlled by genetic, epigenetic, and epitranscriptomic factors. Here we generate RNA demethylase Fto and methyltransferase Mettl3 cortical-specific conditional knockout mice, and detect severe brain defects caused by Mettl3 deletion but not Fto knockout. Transcriptomic profiles using RNA sequencing indicate that knockout of Mettl3 causes a more dramatic alteration on gene transcription than that of Fto. Interestingly, we conduct ribosome profiling sequencing, and find that knockout of Mettl3 leads to a more severe disruption of translational regulation of mRNAs than deletion of Fto and results in altered translation of crucial genes in cortical radial glial cells and intermediate progenitors. Moreover, Mettl3 deletion causes elevated translation of a significant number of mRNAs, in particular major components in m6A methylation. Our findings indicate distinct functions of Mettl3 and Fto in brain development, and uncover a profound role of Mettl3 in regulating translation of major mRNAs that control proper cortical development.
Collapse
Affiliation(s)
- Kunzhao Du
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhen Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Jinling Tang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, USA
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
113
|
Ripari LB, Norton ES, Bodoque-Villar R, Jeanneret S, Lara-Velazquez M, Carrano A, Zarco N, Vazquez-Ramos CA, Quiñones-Hinojosa A, de la Rosa-Prieto C, Guerrero-Cázares H. Glioblastoma Proximity to the Lateral Ventricle Alters Neurogenic Cell Populations of the Subventricular Zone. Front Oncol 2021; 11:650316. [PMID: 34268110 PMCID: PMC8277421 DOI: 10.3389/fonc.2021.650316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor location plays a key role in the prognosis of patients, with GBM tumors located in close proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher incidence of distal recurrence. Though the reason for worse prognosis in these patients remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic niche contained within the lateral wall of the LVs. We present a novel rodent model to analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ. Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-distal counterparts and is accompanied by decreased median survival. Conversely, numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and progenitors contained within the SVZ are decreased as a result of GBM proximity to the LV. These results indicate that our rodent model is able to accurately recapitulate several of the clinical aspects of LV-associated GBM, including increased tumor growth and decreased median survival. Additionally, we have found the neurogenic and cell division process of the SVZ in these adult mice is negatively influenced according to the presence and proximity of the tumor mass. This model will be invaluable for further investigation into the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.
Collapse
Affiliation(s)
- Luisina B. Ripari
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Raquel Bodoque-Villar
- Translational Research Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Stephanie Jeanneret
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Faculty of Psychology and Sciences of Education, University of Geneva, Geneva, Switzerland
| | | | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Carlos de la Rosa-Prieto
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
114
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
115
|
Brognaro E. The inverse paradigm and the ancestral cell of IDH-wildtype glioblastoma. Clin Transl Oncol 2021; 24:13-23. [PMID: 34152549 DOI: 10.1007/s12094-021-02663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022]
Abstract
Rethinking IDH-wildtype glioblastoma through its unique features can help researchers find innovative and effective treatments. It is currently emerging that, after decades of therapeutic impasse, some traditional concepts regarding IDH-wildtype glioblastoma need to be supplemented and updated to overcome therapeutic resistance. Indeed, multiple clinical aspects and recent indirect and direct experimental data are providing evidence that the supratentorial brain parenchyma becomes entirely and quiescently micro-infiltrated long before primary tumor bulk growth. Furthermore, they are indicating that the known micro-infiltration that occurs during the IDH-wildtype glioblastoma growth and evolution is not at the origin of distant relapses. It follows that the ubiquitous supratentorial brain parenchyma micro-infiltration as a source for the development of widespread distant recurrences is actually due to the silent stage that precedes tumor growth rather than to the latter. All this implies that, in addition to the heterogeneity of the primary bulk, there is a second crucial cause of therapeutic resistance that has never hitherto been identified and challenged. In this regard, the ancestral founder cancer stem cell (CSC) appears as the key cell that can link the two causes of resistance.
Collapse
Affiliation(s)
- Enrico Brognaro
- Department of Neurosurgery, S. Maria della Misericordia Hospital, Viale Tre Martiri, 45100, Rovigo, Italy.
| |
Collapse
|
116
|
Li K, Song H, Wang C, Lin Z, Yi G, Yang R, Ni B, Wang Z, Zhu T, Zhang W, Wang X, Liu Z, Huang G, Liu Y. The Ependymal Region Prevents Glioblastoma From Penetrating Into the Ventricle via a Nonmechanical Force. Front Neuroanat 2021; 15:679405. [PMID: 34163334 PMCID: PMC8215287 DOI: 10.3389/fnana.2021.679405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intraventricular penetration is rare in glioblastoma (GBM). Whether the ependymal region including the ependyma and subventricular zone (SVZ) can prevent GBM invasion remains unclear. Methods Magnetic resonance imaging (MRI) and haematoxylin–eosin (HE) staining were performed to evaluate the size and anatomical locations of GBM. Binary logistic regression analysis was used to assess the correlation between tumor-ependyma contact, ventricle penetration and clinical characteristics. Cell migration and invasion were assessed via Transwell assays and an orthotopic transplantation model. Results Among 357 patients with GBM, the majority (66%) showed ependymal region contact, and 34 patients (10%) showed ventricle penetration of GBM. GBM cells were spread along the ependyma in the orthotopic transplantation model. The longest tumor diameter was an independent risk factor for GBM-ependymal region contact, as demonstrated by univariate (OR = 1.706, p < 0.0001) and multivariate logistic regression analyses (OR = 1.767, p < 0.0001), but was not associated with ventricle penetration. Cerebrospinal fluid (CSF) could significantly induce tumor cell migration (p < 0.0001), and GBM could grow in CSF. Compared with those from the cortex, cells from the ependymal region attenuated the invasion of C6 whether cocultured with C6 or mixed with Matrigel (p = 0.0054 and p = 0.0488). Immunofluorescence analysis shows a thin gap with GFAP expression delimiting the tumor and ependymal region. Conclusion The ependymal region might restrict GBM cells from entering the ventricle via a non-mechanical force. Further studies in this area may reveal mechanisms that occur in GBM patients and may enable the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Haimin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaohu Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiying Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Runwei Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowen Ni
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyu Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taichen Zhu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
117
|
Dissaux G, Dissaux B, Bourhis D, Schick U, Querellou S. 18F-FET PET/CT in Early Subventricular Zone Recurrence of Adult Glioblastoma. Clin Nucl Med 2021; 46:499-500. [PMID: 33795588 DOI: 10.1097/rlu.0000000000003639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Glioma stem cells (GSCs) are the source of tumor recurrence in glioblastoma and are capable of whole tumor regeneration once the treatment has concluded. Compelling evidence from the last decade suggests that GSC may arise from neural stem cells residing in the adult subventricular zone (SVZ). We report the findings of an 18F-FET PET/CT showing pathological uptake in SVZ with a tumor-background ratio of greater than 1.6, giving evidence for glioblastoma recurrence. This case highlights the particular attention to be paid to the SVZ given the possible development of GSC.
Collapse
|
118
|
Gu BJ, Kung DK, Chen HCI. Cell Therapy for Stroke: A Mechanistic Analysis. Neurosurgery 2021; 88:733-745. [PMID: 33370810 DOI: 10.1093/neuros/nyaa531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/26/2020] [Indexed: 11/12/2022] Open
Abstract
Cell therapy has been widely recognized as a promising strategy to enhance recovery in stroke survivors. However, despite an abundance of encouraging preclinical data, successful clinical translation remains elusive. As the field continues to advance, it is important to reexamine prior clinical trials in the context of their intended mechanisms, as this can inform future preclinical and translational efforts. In the present work, we review the major clinical trials of cell therapy for stroke and highlight a mechanistic shift between the earliest studies, which aimed to replace dead and damaged neurons, and later ones that focused on exploiting the various neuromodulatory effects afforded by stem cells. We discuss why both mechanisms are worth pursuing and emphasize the means through which cell replacement can still be achieved.
Collapse
Affiliation(s)
- Ben Jiahe Gu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David K Kung
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Han-Chiao Isaac Chen
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
119
|
Altered Cl - homeostasis hinders forebrain GABAergic interneuron migration in a mouse model of intellectual disability. Proc Natl Acad Sci U S A 2021; 118:2016034118. [PMID: 33376209 DOI: 10.1073/pnas.2016034118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impairments of inhibitory circuits are at the basis of most, if not all, cognitive deficits. The impact of OPHN1, a gene associate with intellectual disability (ID), on inhibitory neurons remains elusive. We addressed this issue by analyzing the postnatal migration of inhibitory interneurons derived from the subventricular zone in a validated mouse model of ID (OPHN1-/y mice). We found that the speed and directionality of migrating neuroblasts were deeply perturbed in OPHN1-/y mice. The significant reduction in speed was due to altered chloride (Cl-) homeostasis, while the overactivation of the OPHN1 downstream signaling pathway, RhoA kinase (ROCK), caused abnormalities in the directionality of the neuroblast progression in mutants. Blocking the cation-Cl- cotransporter KCC2 almost completely rescued the migration speed while proper directionality was restored upon ROCK inhibition. Our data unveil a strong impact of OPHN1 on GABAergic inhibitory interneurons and identify putative targets for successful therapeutic approaches.
Collapse
|
120
|
Hira VV, Molenaar RJ, Breznik B, Lah T, Aronica E, Van Noorden CJ. Immunohistochemical Detection of Neural Stem Cells and Glioblastoma Stem Cells in the Subventricular Zone of Glioblastoma Patients. J Histochem Cytochem 2021; 69:349-364. [PMID: 33596115 PMCID: PMC8091546 DOI: 10.1369/0022155421994679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J.F. Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
121
|
Hallaert G, Pinson H, Van den Broecke C, Sweldens C, Van Roost D, Kalala JP, Boterberg T. Survival impact of incidental subventricular zone irradiation in IDH-wildtype glioblastoma. Acta Oncol 2021; 60:613-619. [PMID: 33689536 DOI: 10.1080/0284186x.2021.1893899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE The subventricular zone (SVZ) is an important niche for neural stem cells but probably also for brain tumor propagating cells, including the glioblastoma stem cell. The SVZ may become a target for radiation therapy in glioblastoma patients. However, reports studying the effect of irradiation of the SVZ on glioblastoma patient survival show conflicting results. We studied the correlation between incidental SVZ radiation dose and survival in a cohort of isocitrate dehydrogenase-wildtype (IDHwt) glioblastoma patients with inclusion of important survival prognosticators. PATIENTS AND METHODS In this retrospective analysis, only adult patients with supratentorial IDHwt glioblastoma were included who were treated with temozolomide-based chemoradiotherapy after surgery. The SVZ was contoured on the radiotherapy planning imaging. Cox proportional regression overall survival (OS) analysis was used to study the correlation between SVZ dose and survival. Age, Karnofsky Performance Score, extent of resection and O6-methylguanine-methyl-DNA-transferase gene promoter (MGMTp) methylation were used as covariates in multivariate analysis. RESULTS In total, 137 patients were included. Median OS was 13.3 months. The MGMTp methylation was present in 40% of cases. Ipsilateral SVZ (iSVZ) mean dose was 44.4 Gy and 27.2 Gy for the contralateral SVZ (cSVZ). Univariate survival analysis showed an inverse relationship between cSVZ mean dose and OS (HR 1.029 (1.003-1.057); p= .032). However, there was no correlation between cSVZ mean dose and OS in multivariate analysis. iSVZ dose did not correlate with survival. CONCLUSION In this cohort of 137 IDHwt glioblastoma patients, iSVZ did not correlate with OS. Higher cSVZ dose was inversely correlated with OS in univariate survival analysis but lost its significance in multivariate analysis, including MGMTp-methylation. Hence, the correlation between SVZ radiation and glioblastoma patient survival remains unclear. Carefully designed prospective studies are needed to provide unequivocal results on this controversial topic.
Collapse
Affiliation(s)
- Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Harry Pinson
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Caroline Van den Broecke
- Department of Pathology, AZ St Lucas Gent, Gent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | - Dirk Van Roost
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
122
|
Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines 2021; 9:biomedicines9040381. [PMID: 33916593 PMCID: PMC8067000 DOI: 10.3390/biomedicines9040381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.
Collapse
|
123
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
124
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
125
|
Bender K, Träger M, Wahner H, Onken J, Scheel M, Beck M, Ehret F, Budach V, Kaul D. What is the role of the subventricular zone in radiotherapy of glioblastoma patients? Radiother Oncol 2021; 158:138-145. [PMID: 33636228 DOI: 10.1016/j.radonc.2021.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Current glioblastoma (GBM) therapies prolong survival, but overall prognosis is still poor. Irradiation of the subventricular zone (SVZ) has recently been discussed as a promising concept as this tissue harbors stem cells which seem to play a role in the initiation and recurrence of GBM. In this study, we retrospectively examined the relationship of SVZ irradiation dose and survival in a large, homogeneous GBM patient cohort. MATERIALS AND METHODS We included 200 GBM patients who had been treated at our institution with trimodal therapy (surgery, radiotherapy and chemotherapy) between 2009 and 2020. The SVZ was delineated, and dose-volume histograms were calculated and extracted. Tumors were classified according to their contact with the SVZ. The Kaplan-Meier method was used for survival analysis, and univariable and multivariable Cox regression (MVA) were used to determine prognostic effects on progression-free survival (PFS) and overall survival (OS). RESULTS Median PFS of the study group was 7.2 months; median OS was 15.1 months. In MVA (with mean dose to the ipsilateral SVZ as a continuous covariable), PFS was significantly lower for patients with a Karnofsky performance status (KPS) < 70% and without MGMT promoter methylation. Factors prognostic for shorter OS were old age, lower KPS, unmethylated MGMT status, SVZ contact and biopsy instead of subtotal- or gross total resection. There was no significant correlation between survival and SVZ dose. CONCLUSION In this cohort, an increased mean dose to the ipsilateral or contralateral SVZ did not correlate with improved survival in irradiated GBM patients in MVA. Patients whose tumor directly involved the SVZ showed worse OS in MVA.
Collapse
Affiliation(s)
- Katja Bender
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Malte Träger
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Helena Wahner
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Marcus Beck
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Felix Ehret
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Volker Budach
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - David Kaul
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany.
| |
Collapse
|
126
|
Gillispie GJ, Sah E, Krishnamurthy S, Ahmidouch MY, Zhang B, Orr ME. Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells-Implications for Cancer and Neurodegeneration. Life (Basel) 2021; 11:153. [PMID: 33671362 PMCID: PMC7922097 DOI: 10.3390/life11020153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular stress responses influence cell fate decisions. Apoptosis and proliferation represent opposing reactions to cellular stress or damage and may influence distinct health outcomes. Clinical and epidemiological studies consistently report inverse comorbidities between age-associated neurodegenerative diseases and cancer. This review discusses how one particular stress response, cellular senescence, may contribute to this inverse correlation. In mitotically competent cells, senescence is favorable over uncontrolled proliferation, i.e., cancer. However, senescent cells notoriously secrete deleterious molecules that drive disease, dysfunction and degeneration in surrounding tissue. In recent years, senescent cells have emerged as unexpected mediators of neurodegenerative diseases. The present review uses pre-defined criteria to evaluate evidence of cellular senescence in mitotically competent brain cells, highlights the discovery of novel molecular regulators and discusses how this single cell fate decision impacts cancer and degeneration in the brain. We also underscore methodological considerations required to appropriately evaluate the cellular senescence stress response in the brain.
Collapse
Affiliation(s)
- Gregory J. Gillispie
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric Sah
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
| | - Sudarshan Krishnamurthy
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Wake Forest University, Winston-Salem, NC 27109, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
127
|
Gómez-Oliva R, Domínguez-García S, Carrascal L, Abalos-Martínez J, Pardillo-Díaz R, Verástegui C, Castro C, Nunez-Abades P, Geribaldi-Doldán N. Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Front Oncol 2021; 10:614295. [PMID: 33585240 PMCID: PMC7878535 DOI: 10.3389/fonc.2020.614295] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of brain tumor characterized by its resistance to conventional therapies, including temozolomide, the most widely used chemotherapeutic agent in the treatment of GBM. Within the tumor, the presence of glioma stem cells (GSC) seems to be the reason for drug resistance. The discovery of GSC has boosted the search for new experimental models to study GBM, which allow the development of new GBM treatments targeting these cells. In here, we describe different strategies currently in use to study GBM. Initial GBM investigations were focused in the development of xenograft assays. Thereafter, techniques advanced to dissociate tumor cells into single-cell suspensions, which generate aggregates referred to as neurospheres, thus facilitating their selective expansion. Concomitantly, the finding of genes involved in the initiation and progression of GBM tumors, led to the generation of mice models for the GBM. The latest advances have been the use of GBM organoids or 3D-bioprinted mini-brains. 3D bio-printing mimics tissue cytoarchitecture by combining different types of cells interacting with each other and with extracellular matrix components. These in vivo models faithfully replicate human diseases in which the effect of new drugs can easily be tested. Based on recent data from human glioblastoma, this review critically evaluates the different experimental models used in the study of GB, including cell cultures, mouse models, brain organoids, and 3D bioprinting focusing in the advantages and disadvantages of each approach to understand the mechanisms involved in the progression and treatment response of this devastating disease.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Ricardo Pardillo-Díaz
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
128
|
Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. The Neuroprotective Properties, Functions, and Roles of Cannabis sativa in Selected Diseases Related to the Nervous System. Cent Nerv Syst Agents Med Chem 2021; 21:20-38. [PMID: 33504317 DOI: 10.2174/1871524921666210127110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions. METHODS Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered. RESULTS The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others. CONCLUSION In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.
Collapse
Affiliation(s)
- Onesimus Mahdi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad T H Baharuldin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Nurul Huda M Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Saravanan Jagadeesan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| | - Mohamad A M Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Selangor, Universiti Putra Malaysia, Sri Serdang 43400, Malaysia
| |
Collapse
|
129
|
Kim HJ, Park JW, Lee JH. Genetic Architectures and Cell-of-Origin in Glioblastoma. Front Oncol 2021; 10:615400. [PMID: 33552990 PMCID: PMC7859479 DOI: 10.3389/fonc.2020.615400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
An aggressive primary brain cancer, glioblastoma (GBM) is the most common cancer of the central nervous system in adults. However, an inability to identify its cell-of-origin has been a fundamental issue hindering further understanding of the nature and pathogenesis of GBM, as well as the development of novel therapeutic targets. Researchers have hypothesized that GBM arises from an accumulation of somatic mutations in neural stem cells (NSCs) and glial precursor cells that confer selective growth advantages, resulting in uncontrolled proliferation. In this review, we outline genomic perspectives on IDH-wildtype and IDH-mutant GBMs pathogenesis and the cell-of-origin harboring GBM driver mutations proposed by various GBM animal models. Additionally, we discuss the distinct neurodevelopmental programs observed in either IDH-wildtype or IDH-mutant GBMs. Further research into the cellular origin and lineage hierarchy of GBM will help with understanding the evolution of GBMs and with developing effective targets for treating GBM cancer cells.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jung Won Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,SoVarGen, Inc., Daejeon, South Korea
| |
Collapse
|
130
|
A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel) 2021; 13:cancers13020230. [PMID: 33435218 PMCID: PMC7827614 DOI: 10.3390/cancers13020230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is a highly aggressive and almost inevitably lethal brain tumor. Animal models for GBM are crucial to study how the tumor evolves in vivo and to test novel treatment options. Most currently available models are based on the transplantation of human GBM cells into mice with a defective immune system. However, this approach does not allow to study the contribution of immune cells to GBM growth and to test immunotherapies. Transplantation of murine GBM cells overcomes this limitation, however, up to now, only a limited number, which mostly do not mimic important characteristics of human GBM, have been available. Via in vivo passaging, we established a set of murine GBM cell lines that (i) can be easily cultivated and further genetically manipulated, (ii) upon transplantation develop tumors with phenotypic and pathological features of human GBM, and (iii) are available to be shared with the scientific community. Abstract Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.
Collapse
|
131
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
132
|
Jinnou H. Regeneration using endogenous neural stem cells following neonatal brain injury. Pediatr Int 2021; 63:13-21. [PMID: 32609915 DOI: 10.1111/ped.14368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023]
Abstract
Despite recent advancements in perinatal care, the incidence of neonatal brain injury has not decreased. No therapies are currently available to repair injured brain tissues. In the postnatal brain, neural stem cells reside in the ventricular-subventricular zone (V-SVZ) and continuously generate new immature neurons (neuroblasts). After brain injury in rodents, V-SVZ-derived neuroblasts migrate toward the injured area using blood vessels as a scaffold. Notably, the neonatal V-SVZ has a remarkable neurogenic capacity. Furthermore, compared with the adult brain, after neonatal brain injury, larger numbers of neuroblasts migrate toward the lesion, raising the possibility that the V-SVZ could be a source for endogenous neuronal regeneration after neonatal brain injury. We recently demonstrated that efficient migration of V-SVZ-derived neuroblasts toward a lesion is supported by neonatal radial glia via neural cadherin (N-cadherin)-mediated neuron-fiber contact, which promotes RhoA activity. Moreover, providing blood vessel- and radial glia-mimetic scaffolds for migrating neuroblasts promotes neuronal migration and improves functional gait behaviors after neonatal brain injury. In the V-SVZ, oligodendrocyte progenitor cells (OPCs) are also generated and migrate toward the surrounding white matter, where they differentiate and form myelin. After white matter injury in rodents, the production and subsequent migration of V-SVZ-derived OPCs are enhanced. In the neonatal period, administration of growth factors at a specific time promotes oligodendrocyte regeneration and functional recovery after brain injury. These findings suggest that activating the high regenerative capacity that is specific to the neonatal period could lead to the development of new therapeutic strategies for neonatal brain injury.
Collapse
Affiliation(s)
- Hideo Jinnou
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
133
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
134
|
Mistry AM, Mummareddy N, Salwi S, Davis LT, Ihrie RA. Glioblastoma Distance From the Subventricular Neural Stem Cell Niche Does Not Correlate With Survival. Front Oncol 2020; 10:564889. [PMID: 33363006 PMCID: PMC7759619 DOI: 10.3389/fonc.2020.564889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the relationship between survival and glioblastoma distance from the ventricular-subventricular neural stem cell niche (VSVZ). Methods 502 pre-operative gadolinium-enhanced, T1-weighted MRIs with glioblastoma retrieved from an institutional dataset (n = 252) and The Cancer Imaging Atlas (n=250) were independently reviewed. The shortest distance from the tumor contrast enhancement to the nearest lateral ventricular wall, the location of the VSVZ, was measured (GBM-VSVZDist). The relationship of GBM-VSVZDist with the proportion of glioblastomas at each distance point and overall survival was explored with a Pearson's correlation and Cox regression model, respectively, adjusting for the well-established glioblastoma prognosticators. Results 244/502 glioblastomas had VSVZ contact. The proportion of non-VSVZ-contacting glioblastomas correlated inversely with GBM-VSVZDist (partial Pearson's correlation adjusted for tumor volume R=-0.79, p=7.11x10-7). A fit of the Cox regression model adjusted for age at diagnosis, Karnofsky performance status score, post-operative treatment with temozolomide and/or radiotherapy, IDH1/2 mutation status, MGMT promoter methylation status, tumor volume, and extent of resection demonstrated a significantly decreased overall survival only when glioblastoma contacted the VSVZ. Overall survival did not correlate with GBM-VSVZDist. Conclusions In the two independent cohorts analyzed, glioblastomas at diagnosis were found in close proximity or in contact with the VSVZ with a proportion that decreased linearly with GBM-VSVZDist. Patient survival was only influenced by the presence or absence of a gadolinium-enhanced glioblastoma contact with the VSVZ. These results may guide analyses to test differential effectiveness of VSVZ radiation in VSVZ-contacting and non-contacting glioblastomas and/or inform patient selection criteria in clinical trials of glioblastoma radiation.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nishit Mummareddy
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sanjana Salwi
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Larry T Davis
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca A Ihrie
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
135
|
Lawlor K, Marques-Torrejon MA, Dharmalingham G, El-Azhar Y, Schneider MD, Pollard SM, Rodríguez TA. Glioblastoma stem cells induce quiescence in surrounding neural stem cells via Notch signaling. Genes Dev 2020; 34:1599-1604. [PMID: 33184225 PMCID: PMC7706704 DOI: 10.1101/gad.336917.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/01/2020] [Indexed: 01/17/2023]
Abstract
There is increasing evidence demonstrating that adult neural stem cells (NSCs) are a cell of origin of glioblastoma. Here we analyzed the interaction between transformed and wild-type NSCs isolated from the adult mouse subventricular zone niche. We found that transformed NSCs are refractory to quiescence-inducing signals. Unexpectedly, we also demonstrated that these cells induce quiescence in surrounding wild-type NSCs in a cell-cell contact and Notch signaling-dependent manner. Our findings therefore suggest that oncogenic mutations are propagated in the stem cell niche not just through cell-intrinsic advantages, but also by outcompeting neighboring stem cells through repression of their proliferation.
Collapse
Affiliation(s)
- Katerina Lawlor
- National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Gopuraja Dharmalingham
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Yasmine El-Azhar
- National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Steven M Pollard
- Centre for Regenerative Medicine, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
136
|
Fontán-Lozano Á, Morcuende S, Davis-López de Carrizosa MA, Benítez-Temiño B, Mejías R, Matarredona ER. To Become or Not to Become Tumorigenic: Subventricular Zone Versus Hippocampal Neural Stem Cells. Front Oncol 2020; 10:602217. [PMID: 33330101 PMCID: PMC7729188 DOI: 10.3389/fonc.2020.602217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain in two neurogenic regions: the subventricular zone lining the lateral ventricles and the dentate gyrus of the hippocampus. Compelling evidence suggests that NSCs of the subventricular zone could be the cell type of origin of glioblastoma, the most devastating brain tumor. Studies in glioblastoma patients revealed that NSCs of the tumor-free subventricular zone, harbor cancer-driver mutations that were found in the tumor cells but were not present in normal cortical tissue. Endogenous mutagenesis can also take place in hippocampal NSCs. However, to date, no conclusive studies have linked hippocampal mutations with glioblastoma development. In addition, glioblastoma cells often invade or are closely located to the subventricular zone, whereas they do not tend to infiltrate into the hippocampus. In this review we will analyze possible causes by which subventricular zone NSCs might be more susceptible to malignant transformation than their hippocampal counterparts. Cellular and molecular differences between the two neurogenic niches, as well as genotypic and phenotypic characteristics of their respective NSCs will be discussed regarding why the cell type originating glioblastoma brain tumors has been linked mainly to subventricular zone, but not to hippocampal NSCs.
Collapse
|
137
|
Coronas V, Terrié E, Déliot N, Arnault P, Constantin B. Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Front Cell Neurosci 2020; 14:600018. [PMID: 33281564 PMCID: PMC7691577 DOI: 10.3389/fncel.2020.600018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
Collapse
Affiliation(s)
- Valérie Coronas
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Elodie Terrié
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Nadine Déliot
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Patricia Arnault
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Bruno Constantin
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| |
Collapse
|
138
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
139
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
140
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
141
|
Mistry AM, Mummareddy N, CreveCoeur TS, Lillard JC, Vaughn BN, Gallant JN, Hale AT, Griffin N, Wellons JC, Limbrick DD, Klimo P, Naftel RP. Association between supratentorial pediatric high-grade gliomas involved with the subventricular zone and decreased survival: a multi-institutional retrospective study. J Neurosurg Pediatr 2020; 26:288-294. [PMID: 32442975 DOI: 10.3171/2020.3.peds19593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The subventricular zone (SVZ), housed in the lateral walls of the lateral ventricles, is the largest neurogenic niche in the brain. In adults, high-grade gliomas in contact or involved with the SVZ are associated with decreased survival. Whether this association holds true in the pediatric population remains unexplored. To address this gap in knowledge, the authors conducted this retrospective study in a pediatric population with high-grade gliomas treated at three comprehensive centers in the United States. METHODS The authors retrospectively identified 63 patients, age ≤ 21 years, with supratentorial WHO grade III-IV gliomas treated at three academic centers. Basic demographic and clinical data regarding presenting signs and symptoms and common treatment variables were obtained. Preoperative MRI studies were evaluated to assess SVZ contact by tumor and to quantify tumor volume. RESULTS Sixty-three patients, including 34 males (54%), had a median age of 12.3 years (IQR 6.50-16.2) and a median tumor volume of 39.4 ml (IQR 19.4-65.8). Tumors contacting the SVZ (SVZ+) were noted in 34 patients (54%) and overall were larger than those not in contact with the SVZ (SVZ-; 51.1 vs 27.3, p = 0.002). The SVZ+ tumors were also associated with decreased survival. However, age, tumor volume, tumor grade, and treatment with chemotherapy and/or radiation were not associated with survival in the 63 patients. In the univariable analysis, near-total resection, gross-total resection, and seizure presentation were associated with increased survival (HR = 0.23, 95% CI 0.06-0.88, p = 0.03; HR = 0.26, 95% CI 0.09-0.74, p = 0.01; and HR = 0.46, 95% CI 0.22-0.97, p = 0.04, respectively). In a multivariable stepwise Cox regression analysis, only SVZ+ tumors remained significantly associated with decreased survival (HR = 1.94, 95% CI 1.03-3.64, p = 0.04). CONCLUSIONS High-grade glioma contact with the SVZ neural stem cell niche was associated with a significant decrease in survival in the pediatric population, as it is in the adult population. This result suggests that tumor contact with the SVZ is a general negative prognosticator in high-grade glioma independent of age group and invites biological investigations to understand the SVZ's role in glioma pathobiology.
Collapse
Affiliation(s)
| | | | | | - Jock C Lillard
- 4Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis
| | - Brandy N Vaughn
- 4Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis
| | - Jean-Nicolas Gallant
- 5Medical Scientist Training Program, School of Medicine, Vanderbilt University, Nashville
| | - Andrew T Hale
- 5Medical Scientist Training Program, School of Medicine, Vanderbilt University, Nashville
| | - Natalie Griffin
- 3School of Medicine, Washington University, St. Louis, Missouri
| | - John C Wellons
- 1Department of Neurological Surgery, Vanderbilt University Medical Center
- 6Vanderbilt Children's Hospital, Nashville, Tennessee; and
| | - David D Limbrick
- 7Department of Neurosurgery, Washington University, St. Louis, Missouri
| | - Paul Klimo
- 4Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis
| | - Robert P Naftel
- 1Department of Neurological Surgery, Vanderbilt University Medical Center
- 6Vanderbilt Children's Hospital, Nashville, Tennessee; and
| |
Collapse
|
142
|
Bernstock JD, Mooney JH, Ilyas A, Chagoya G, Estevez-Ordonez D, Ibrahim A, Nakano I. Molecular and cellular intratumoral heterogeneity in primary glioblastoma: clinical and translational implications. J Neurosurg 2020; 133:655-663. [PMID: 31443071 DOI: 10.3171/2019.5.jns19364] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor in adults, is associated with significant morbidity and mortality despite maximal safe resection followed by chemo- and radiotherapy. GBMs contain self-renewing, tumorigenic glioma stem cells that contribute to tumor initiation, heterogeneity, therapeutic resistance, and recurrence. Intratumoral heterogeneity (ITH) of GBMs is also a major contributing factor to poor clinical outcomes associated with these high-grade glial tumors. Herein, the authors summarize recent discoveries and advances in the molecular and phenotypic characterization of GBMs with particular focus on ITH. In so doing, they attempt to highlight recent advances in molecular signatures/properties and metabolic alterations in an effort to clarify translational implications that may ultimately improve clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ichiro Nakano
- 1Department of Neurosurgery
- 3Comprehensive Cancer Center, University of Alabama at Birmingham, Alabama
| |
Collapse
|
143
|
Vancamp P, Butruille L, Demeneix BA, Remaud S. Thyroid Hormone and Neural Stem Cells: Repair Potential Following Brain and Spinal Cord Injury. Front Neurosci 2020; 14:875. [PMID: 32982671 PMCID: PMC7479247 DOI: 10.3389/fnins.2020.00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer’s disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| |
Collapse
|
144
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
145
|
Comas S, Luguera E, Molero J, Balaña C, Estival A, Castañer S, Carrato C, Hostalot C, Teixidor P, Villà S. Influence of glioblastoma contact with the subventricular zone on survival and recurrence patterns. Clin Transl Oncol 2020; 23:554-564. [PMID: 32728970 DOI: 10.1007/s12094-020-02448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is growing evidence that the subventricular zone (SVZ) may be involved in both the initiation and progression of glioblastoma (GB). We aimed to assess tumor proximity to the SVZ as a potential prognostic factor in GB. METHOD Retrospective study of 133 patients diagnosed with primary GB who underwent surgery followed by temozolomide-based chemoradiation between 2010 and 2016. All lesions were classified according to their anatomic relation with the SVZ. We determined the effect of tumor contact with the SVZ on progression-free survival (PFS), overall survival (OS), type, and patterns of recurrence. RESULTS At a median follow-up of 18.6 months (95% CI 15.9-21.2), PFS and OS were 7.5 (95% CI 6.7-8.3) and 13.9 (95% CI 10.9-16.9) months, respectively. On the univariate analyses, initial contact with the SVZ was a factor for poor prognosis for both PFS (6.1 vs. 8.7 months; p = 0.006) and OS (10.6 vs. 17.9 months; p = 0.037). On the multivariate analysis, tumor contact with the SVZ remained statistically significant for PFS, but not OS. Patients with SVZ-contacting tumors presented a higher rate of aggressive clinical progression (30.9% vs. 11.3%; p = 0.007) and contralateral relapse patterns (23.4% vs. 9.1%; p = 0.048). CONCLUSIONS Our results suggest that glioblastoma contact with the SVZ appears to be an independent prognostic factor for poor PFS. The presence of an SVZ-contacting tumor was associated with more aggressive recurrences and a higher rate of contralateral relapses. These findings suggest that this variable may be a new prognostic factor in glioblastoma.
Collapse
Affiliation(s)
- S Comas
- Radiation Oncology, Institut Català D'Oncologia, c/ del Canyet SN, 08916, Badalona, Catalonia, Spain
| | - E Luguera
- Physics, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - J Molero
- Physics, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - C Balaña
- Medical Oncology, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - A Estival
- Medical Oncology, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - S Castañer
- Neuroradiology, Institut de Diagnòstic Per La Imatge, Badalona, Catalonia, Spain
| | - C Carrato
- Pathology. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - C Hostalot
- Neurosurgery. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - P Teixidor
- Neurosurgery. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - S Villà
- Radiation Oncology, Institut Català D'Oncologia, c/ del Canyet SN, 08916, Badalona, Catalonia, Spain.
- Universitat Autònoma de Barcelona, Badalona, Catalonia, Spain.
| |
Collapse
|
146
|
Liu Q, Jiao Y, Yang W, Gao B, Hsu DK, Nolta J, Russell M, Lyeth B, Zanto TP, Zhao M. Intracranial alternating current stimulation facilitates neurogenesis in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2020; 12:89. [PMID: 32703308 PMCID: PMC7376967 DOI: 10.1186/s13195-020-00656-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neurogenesis is significantly impaired in the brains of both human patients and experimental animal models of Alzheimer's disease (AD). Although deep brain stimulation promotes neurogenesis, it is an invasive technique that may damage neural circuitry along the path of the electrode. To circumvent this problem, we assessed whether intracranial electrical stimulation to the brain affects neurogenesis in a mouse model of Alzheimer's disease (5xFAD). METHODS AND RESULTS We used Ki67, Nestin, and doublecortin (DCX) as markers and determined that neurogenesis in both the subventricular zone (SVZ) and hippocampus were significantly reduced in the brains of 4-month-old 5xFAD mice. Guided by a finite element method (FEM) computer simulation to approximately estimate current and electric field in the mouse brain, electrodes were positioned on the skull that were likely to deliver stimulation to the SVZ and hippocampus. After a 4-week program of 40-Hz intracranial alternating current stimulation (iACS), neurogenesis indicated by expression of Ki67, Nestin, and DCX in both the SVZ and hippocampus were significantly increased compared to 5xFAD mice who received sham stimulation. The magnitude of neurogenesis was close to the wild-type (WT) age-matched unmanipulated controls. CONCLUSION Our results suggest that iACS is a promising, less invasive technique capable of effectively stimulating the SVZ and hippocampus regions in the mouse brain. Importantly, iACS can significantly boost neurogenesis in the brain and offers a potential treatment for AD.
Collapse
Affiliation(s)
- Qian Liu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Yihang Jiao
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Beiyao Gao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Present location: Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200041, P. R. China
| | - Daniel K Hsu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, Institute for Regenerative Cures, Department of Internal Medicine, University of California at Davis, Sacramento, 95817, CA, USA
| | - Michael Russell
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco - Mission Bay, Sandler Neuroscience Center MC 0444, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA.
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA.
- Department of Ophthalmology and Vision Science, University of California at Davis, Sacramento, CA, 95616, USA.
| |
Collapse
|
147
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
148
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
149
|
Purvis EM, O'Donnell JC, Chen HI, Cullen DK. Tissue Engineering and Biomaterial Strategies to Elicit Endogenous Neuronal Replacement in the Brain. Front Neurol 2020; 11:344. [PMID: 32411087 PMCID: PMC7199479 DOI: 10.3389/fneur.2020.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the postnatal mammalian brain is known to occur in the dentate gyrus of the hippocampus and the subventricular zone. These neurogenic niches serve as endogenous sources of neural precursor cells that could potentially replace neurons that have been lost or damaged throughout the brain. As an example, manipulation of the subventricular zone to augment neurogenesis has become a popular strategy for attempting to replace neurons that have been lost due to acute brain injury or neurodegenerative disease. In this review article, we describe current experimental strategies to enhance the regenerative potential of endogenous neural precursor cell sources by enhancing cell proliferation in neurogenic regions and/or redirecting migration, including pharmacological, biomaterial, and tissue engineering strategies. In particular, we discuss a novel replacement strategy based on exogenously biofabricated "living scaffolds" that could enhance and redirect endogenous neuroblast migration from the subventricular zone to specified regions throughout the brain. This approach utilizes the first implantable, biomimetic tissue-engineered rostral migratory stream, thereby leveraging the brain's natural mechanism for sustained neuronal replacement by replicating the structure and function of the native rostral migratory stream. Across all these strategies, we discuss several challenges that need to be overcome to successfully harness endogenous neural precursor cells to promote nervous system repair and functional restoration. With further development, the diverse and innovative tissue engineering and biomaterial strategies explored in this review have the potential to facilitate functional neuronal replacement to mitigate neurological and psychiatric symptoms caused by injury, developmental disorders, or neurodegenerative disease.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
150
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|