101
|
T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications. Proc Natl Acad Sci U S A 2011; 108:11912-7. [PMID: 21730189 DOI: 10.1073/pnas.1017402108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heterochromatin barrier must be overcome to generate induced pluripotent stem cells and cell fusion-mediated reprogrammed hybrids. Here, we show that the absence of T-cell factor 3 (Tcf3), a repressor of β-catenin target genes, strikingly and rapidly enhances the efficiency of neural precursor cell (NPC) reprogramming. Remarkably, Tcf3(-/-) ES cells showed a genome-wide increase in AcH3 and decrease in H3K9me3 and can reprogram NPCs after fusion greatly. In addition, during reprogramming of NPCs into induced pluripotent stem cells, the silencing of Tcf3 increased AcH3 and decreased the number of H3K9me3-positive heterochromatin foci early and long before reactivation of the endogenous stem cell genes. In conclusion, our data suggest that Tcf3 functions as a repressor of the reprogramming potential of somatic cells.
Collapse
|
102
|
Neural stem cells achieve and maintain pluripotency without feeder cells. PLoS One 2011; 6:e21367. [PMID: 21738644 PMCID: PMC3123318 DOI: 10.1371/journal.pone.0021367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/31/2011] [Indexed: 12/31/2022] Open
Abstract
Background Differentiated cells can be reprogrammed into pluripotency by transduction of four defined transcription factors. Induced pluripotent stem cells (iPS cells) are expected to be useful for regenerative medicine as well as basic research. Recently, the report showed that mouse embryonic fibroblasts (MEF) cells are not essential for reprogramming. However, in using fibroblasts as donor cells for reprogramming, individual fibroblasts that had failed to reprogram could function as feeder cells. Methodology/Principal Finding Here, we show that adult mouse neural stem cells (NSCs), which are not functional feeder cells, can be reprogrammed into iPS cells using defined four factors (Oct4, Sox2, Klf4, and c-Myc) under feeder-free conditions. The iPS cells, generated from NSCs expressing the Oct4-GFP reporter gene, could proliferate for more than two months (passage 20). Generated and maintained without feeder cells, these iPS cells expressed pluripotency markers (Oct4 and Nanog), the promoter regions of Oct4 and Nanog were hypomethylated, could differentiated into to all three germ layers in vitro, and formed a germline chimera. These data indicate that NSCs can achieve and maintain pluripotency under feeder-free conditions. Conclusion/Significance This study suggested that factors secreted by feeder cells are not essential in the initial/early stages of reprogramming and for pluripotency maintenance. This technology might be useful for a human system, as a feeder-free reprogramming system may help generate iPS cells of a clinical grade for tissue or organ regeneration.
Collapse
|
103
|
Jost KL, Haase S, Smeets D, Schrode N, Schmiedel JM, Bertulat B, Herzel H, Cremer M, Cardoso MC. 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res 2011; 39:e113. [PMID: 21700670 PMCID: PMC3177216 DOI: 10.1093/nar/gkr486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nuclear organization of chromatin is an important level of genome regulation with positional changes of genes occurring during reprogramming. Inherent variability of biological specimens, wide variety of sample preparation and imaging conditions, though pose significant challenges to data analysis and comparison. Here, we describe the development of a computational image analysis toolbox overcoming biological variability hurdles by a novel single cell randomizing normalization. We performed a comparative analysis of the relationship between spatial positioning of pluripotency genes with their genomic activity and determined the degree of similarity between fibroblasts, induced pluripotent stem cells and embryonic stem cells. Our analysis revealed a preferred positioning of actively transcribed Sox2, Oct4 and Nanog away from the nuclear periphery, but not from pericentric heterochromatin. Moreover, in the silent state, we found no common nuclear localization for any of the genes. Our results suggest that the surrounding gene density hinders relocation from an internal nuclear position. Altogether, our data do not support the hypothesis that the nuclear periphery acts as a general transcriptional silencer, rather suggesting that internal nuclear localization is compatible with expression in pluripotent cells but not sufficient for expression in mouse embryonic fibroblasts. Thus, our computational approach enables comparative analysis of topological relationships in spite of stark morphological variability typical of biological data sets.
Collapse
Affiliation(s)
- K Laurence Jost
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Sánchez-Sánchez AV, Camp E, Mullor JL. Fishing pluripotency mechanisms in vivo. Int J Biol Sci 2011; 7:410-7. [PMID: 21547058 PMCID: PMC3088283 DOI: 10.7150/ijbs.7.410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/01/2011] [Indexed: 01/09/2023] Open
Abstract
To understand the molecular mechanisms that regulate the biology of embryonic stem cells (ESCs) it is necessary to study how they behave in vivo in their natural environment. It is particularly important to study the roles and interactions of the different proteins involved in pluripotency and to use this knowledge for therapeutic purposes. The recent description of key pluripotency factors like Oct4 and Nanog in non-mammalian species has introduced other animal models, such as chicken, Xenopus, zebrafish and medaka, to the study of pluripotency in vivo. These animal models complement the mouse model and have provided new insights into the evolution of Oct4 and Nanog and their different functions during embryonic development. Furthermore, other pluripotency factors previously identified in teleost fish such as Klf4, STAT3, Sox2, telomerase and Tcf3 can now be studied in the context of a functional pluripotency network. The many experimental advantages of fish will fuel rapid analysis of the roles of pluripotency factors in fish embryonic development and the identification of new molecules and mechanisms governing pluripotency.
Collapse
|
105
|
Lluis F, Pedone E, Pepe S, Cosma MP. The Wnt/β-catenin signaling pathway tips the balance between apoptosis and reprograming of cell fusion hybrids. Stem Cells 2011; 28:1940-9. [PMID: 20827748 PMCID: PMC3003905 DOI: 10.1002/stem.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell-cell fusion contributes to cell differentiation and developmental processes. We have previously showed that activation of Wnt/β-catenin enhances somatic cell reprograming after polyethylene glycol (PEG)-mediated fusion. Here, we show that neural stem cells and ESCs can fuse spontaneously in cocultures, although with very low efficiency (about 2%), as the hybrids undergo apoptosis. In contrast, when Wnt/β-catenin signaling is activated in ESCs and leads to accumulation of low amounts of β-catenin in the nucleus, activated ESCs can reprogram somatic cells with very high efficiency after spontaneous fusion. Furthermore, we also show that different levels of β-catenin accumulation in the ESC nuclei can modulate cell proliferation, although in our experimental setting, cell proliferation does not modulate the reprograming efficiency per se. Overall, the present study provides evidence that spontaneous fusion occurs, while the survival of the reprogramed clones is strictly dependent on induction of a Wnt-mediated reprograming pathway. STEM CELLS 2010;28:1940–1949
Collapse
Affiliation(s)
- Frederic Lluis
- Telethon Institute of Genetics and Medicine CNR, Naples, Italy
| | | | | | | |
Collapse
|
106
|
Ho R, Chronis C, Plath K. Mechanistic insights into reprogramming to induced pluripotency. J Cell Physiol 2011; 226:868-78. [PMID: 20945378 DOI: 10.1002/jcp.22450] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem (iPS) cells can be generated from various embryonic and adult cell types upon expression of a set of few transcription factors, most commonly consisting of Oct4, Sox2, cMyc, and Klf4, following a strategy originally published by Takahashi and Yamanaka (Takahashi and Yamanaka, 2006, Cell 126: 663-676). Since iPS cells are molecularly and functionally similar to embryonic stem (ES) cells, they provide a source of patient-specific pluripotent cells for regenerative medicine and disease modeling, and therefore have generated enormous scientific and public interest. The generation of iPS cells also presents a powerful tool for dissecting mechanisms that stabilize the differentiated state and are required for the establishment of pluripotency. In this review, we discuss our current view of the molecular mechanisms underlying transcription factor-mediated reprogramming to induced pluripotency.
Collapse
Affiliation(s)
- Ritchie Ho
- Department of Biological Chemistry, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90024, USA
| | | | | |
Collapse
|
107
|
Guo J, Tecirlioglu RT, Nguyen L, Koh K, Jenkin G, Trounson A. Reprogramming factors involved in hybrids and cybrids of human embryonic stem cells fused with hepatocytes. Cell Reprogram 2011; 12:529-41. [PMID: 20936904 DOI: 10.1089/cell.2009.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Embryonic stem cells (ESCs) have the potential to reprogram somatic cells into ESC-like cells through cell fusion. In the present study, the potential of human (h)ESC cytoplasts and karyoplasts to reprogram human hepatocytes was evaluated. Green fluorescent protein (GFP) transfected hESCs (ENVY cells) were fused with SNARF-1 (CellTracker)-labeled human hepatocytes using polyethylene glycol (PEG) and fluorescence-activated cell sorting (FACS) to produce hESC-hepatocyte hybrids. Immunocytochemical analysis of ESC markers showed that the hybrids expressed OCT4, TRA-1-60, TRA-1-81, SSEA-4, and GCTM-2. However, SSEA-1, which is typically low or absent on hESCs, was detected on hESC–hepatocyte hybrids. Moreover, reverse transcriptase polymerase chain reaction (RT-PCR) showed that alpha-fetoprotein, which is highly expressed in hepatocytes, was erased in the hybrids. These results indicated that hESCs have the potential to reprogram hepatocyte phenotype to a relatively undifferentiated state, but such hybrid cells are not identical to hESCs. Although hESC–hepatocyte hybrids were aneuploid, they were able to differentiate into embryoid bodies and some types of somatic cells. Furthermore, cybrids of enucleated hESCs and hepatocytes were produced by cell fusion, but the cybrids were unable to self-renew in the same way as hESCs. Presumably, the reprogramming factors are associated with the karyoplast and not the cytoplast of hESCs.
Collapse
Affiliation(s)
- Jitong Guo
- Monash University, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
108
|
Yan X, Yu S, Lei A, Hua J, Chen F, Li L, Xie X, Yang X, Geng W, Dou Z. The four reprogramming factors and embryonic development in mice. Cell Reprogram 2011; 12:565-70. [PMID: 20936906 DOI: 10.1089/cell.2010.0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transcription factors (Oct4, Sox2, c-Myc, and Klf4) play an important role in the generation of induced pluripotent stem cells. These factors are expressed in metaphase II oocytes and embryonic stem cells (ESCs). The mechanisms responsible for the reprogramming of ooplasm during nuclear transfer are expected to be associated with the four factors. Here, we show that different paternal genetic backgrounds are able to influence the in vitro development of parthenogenetic and cloned embryos. Using real- time polymerase chain reaction (PCR) we found that the expression level of Oct4 in oocytes was less than that of ESCs, whereas oocytes from KM x C3H females showed the highest expression level of Sox2 than the other strains tested or in G1 ESCs. c-Myc mRNA levels in oocytes from KM mice were greater than those found in ESCs or oocytes of KM x C3H mice. These data demonstrate that the expression of the four transcription factors was different among the oocytes, which may be a contributing factor for the different efficiencies of parthenogenesis and the development of cloned embryos in vitro.
Collapse
Affiliation(s)
- Xingrong Yan
- Northwest University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Hasegawa K, Zhang P, Wei Z, Pomeroy JE, Lu W, Pera MF. Comparison of reprogramming efficiency between transduction of reprogramming factors, cell-cell fusion, and cytoplast fusion. Stem Cells 2011; 28:1338-48. [PMID: 20572011 DOI: 10.1002/stem.466] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reprogramming human somatic cells into pluripotent cells opens up new possibilities for transplantation therapy, the study of disease, and drug screening. In addition to somatic cell nuclear transfer, several approaches to reprogramming human cells have been reported: transduction of defined transcription factors to generate induced pluripotent stem cell (iPSC), human embryonic stem cell (hESC)-somatic cell fusion, and hESC cytoplast-somatic cell fusion or exposure to extracts of hESC. Here, we optimized techniques for hESC-human fibroblast fusion and enucleation and cytoplast fusion, and then compared the reprogramming efficiency between iPSC generation, cell-fusion and cytoplast-fusion. When compared with iPSC, hESC-fusion provided much faster and efficient reprogramming of somatic cells. The reprogramming required more than 4 weeks and the efficiency was less than 0.001% in iPSC generation, and it was less than 10 days and more than 0.005% in hESC-fusion. In addition, fusion yielded almost no partially reprogrammed cell colonies. However, the fused cells were tetraploid or aneuploid. hESC cytoplast fusion could initiate reprogramming but was never able to complete reprogramming. These data indicate that in cell fusion, as in nuclear transfer, reprogramming through direct introduction of a somatic nucleus into the environment of a pluripotent cell provides relatively efficient reprogramming. The findings also suggest that the nucleus of the host pluripotent cell may contain components that accelerate the reprogramming process.
Collapse
Affiliation(s)
- Kouichi Hasegawa
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
110
|
Sanges D, Lluis F, Cosma MP. Cell-fusion-mediated reprogramming: pluripotency or transdifferentiation? Implications for regenerative medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:137-59. [PMID: 21432018 DOI: 10.1007/978-94-007-0763-4_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-cell fusion is a natural process that occurs not only during development, but as has emerged over the last few years, also with an important role in tissue regeneration. Interestingly, in-vitro studies have revealed that after fusion of two different cell types, the developmental potential of these cells can change. This suggests that the mechanisms by which cells differentiate during development to acquire their identities is not irreversible, as was considered until a few years ago. To date, it is well established that the fate of a cell can be changed by a process known as reprogramming. This mainly occurs in two different ways: the differentiated state of a cell can be reversed back into a pluripotent state (pluripotent reprogramming), or it can be switched directly to a different differentiated state (lineage reprogramming). In both cases, these possibilities of obtaining sources of autologous somatic cells to maintain, replace or rescue different tissues has provided new and fundamental insights in the stem-cell-therapy field. Most interestingly, the concept that cell reprogramming can also occur in vivo by spontaneous cell fusion events is also emerging, which suggests that this mechanism can be implicated not only in cellular plasticity, but also in tissue regeneration. In this chapter, we will summarize the present knowledge of the molecular mechanisms that mediate the restoration of pluripotency in vitro through cell fusion, as well as the studies carried out over the last 3 decades on lineage reprogramming, both in vitro and in vivo. How the outcome of these studies relate to regenerative medicine applications will also be discussed.
Collapse
Affiliation(s)
- Daniela Sanges
- Center for Genomic Regulation (CRG), 08003 Barcelona, Spain.
| | | | | |
Collapse
|
111
|
Li Y, Zhao H, Lan F, Lee A, Chen L, Lin C, Yao Y, Li L. Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG. Cell Reprogram 2010; 12:237-47. [PMID: 20698766 DOI: 10.1089/cell.2009.0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have been generated from human somatic cells by ectopic expression of defined transcription factors. Application of this approach in human cells may have enormous potential to generate patient-specific pluripotent stem cells. However, traditional methods of reprogramming in human somatic cells involve the use of oncogenes c-MYC and KLF4, which are not applicable to clinical translation. In the present study, we investigated whether human fetal gut mesentery-derived cells (hGMDCs) could be successfully reprogrammed into induced pluripotent stem (iPS) cells by OCT4, SOX2, and NANOG alone. We used lentiviruses to express OCT4, SOX2, NANOG, in hGMDCs, then generated iPS cells that were identified by morphology, presence of pluripotency markers, global gene expression profile, DNA methylation status, capacity to form embryoid bodies (EBs), and terotoma formation. iPS cells resulting from hGMDCs were similar to human embryonic stem (ES) cells in morphology, proliferation, surface markers, gene expression, and epigenetic status of pluripotent cell-specific genes. Furthermore, these cells were able to differentiate into cell types of all three germ layers both in vitro and in vivo, as shown by EB and teratoma formation assays. DNA fingerprinting showed that the human iPS cells were derived from the donor cells, and are not a result of contamination. Our results provide proof that hGMDCs can be reprogrammed into pluripotent cells by ectopic expression of three factors (OCT4, SOX2, and NANOG) without the use of oncogenes c-MYC and KLF4.
Collapse
Affiliation(s)
- Yang Li
- Peking University Stem Cell Research Center, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Drummond RJ, Kunath T, Mee PJ, Ross JA. Induced pluripotent stem cell technology and stem cell therapy for diabetes. Exp Ther Med 2010; 2:3-7. [PMID: 22977463 DOI: 10.3892/etm.2010.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/10/2010] [Indexed: 12/12/2022] Open
Abstract
Although diabetes can be managed clinically with the use of insulin injections, it remains an incurable and inconvenient disorder. In the long-term, it is associated with a number of clinical complications, such as cardiovascular disease, resulting in a desire for the development of new methodologies to replace defective cells and provide a lasting normality without the need for drug treatment. Stem cells, including induced pluripotent stem cells, offer the possibility of generating cells suitable for transplantation due to their capacity to differentiate into all tissue lineages. However, many issues must be addressed before this type of treatment becomes a reality, including the need for a greater understanding of the underlying biology involved in the onset of diabetes.
Collapse
Affiliation(s)
- Robert J Drummond
- Tissue Injury and Repair Group, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland EH16 4SB
| | | | | | | |
Collapse
|
113
|
Miyanari Y, Torres-Padilla ME. Epigenetic regulation of reprogramming factors towards pluripotency in mouse preimplantation development. Curr Opin Endocrinol Diabetes Obes 2010; 17:500-6. [PMID: 20962633 DOI: 10.1097/med.0b013e3283405325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pluripotency is the ability of a cell to give rise to all the tissues of the adult body. During development, both genetic and epigenetic mechanisms are proposed to be involved in the establishment of the pluripotent state in the cells of the epiblast. Here, we review recent findings on the biological function and epigenetic regulation of reprogramming factors with a particular focus on the early mouse embryo. RECENT FINDINGS A number of functional studies have identified a group of transcription factors required for reprogramming during mouse preimplantation development. Among these transcription factors, Oct4, Sox2, and Nanog are also crucial for establishment and/or maintenance of pluripotency in vivo. Genome-wide studies with ES cells have highlighted the colocalization of these factors onto ES cell chromatin and the existence of a transcriptional network that might direct pluripotency. Furthermore, recent studies on transcription factor-mediated induced reprogramming to induced pluripotent stem cells have revealed roles of these transcription factors on reprogramming. SUMMARY Oct4, Sox2, and Nanog seem to work at different times of the reprogramming process in vivo. Elucidating the regulatory mechanisms of these factors provides not only insights into the reprogramming mechanisms but also in the regulation of mouse preimplantation development.
Collapse
Affiliation(s)
- Yusuke Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Illkirch Cedex, France
| | | |
Collapse
|
114
|
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24:2239-63. [PMID: 20952534 DOI: 10.1101/gad.1963910] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Howard Hughes Medical Institute, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
115
|
Pasque V, Miyamoto K, Gurdon JB. Efficiencies and mechanisms of nuclear reprogramming. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 75:189-200. [PMID: 21047900 PMCID: PMC3833051 DOI: 10.1101/sqb.2010.75.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The differentiated state of somatic cells is highly stable, but it can be experimentally reversed. The resulting cells can then be redirected into many different pathways. Nuclear reprogramming has been achieved by nuclear transfer to eggs, cell fusion, and overexpression of transcription factors. The mechanisms of nuclear reprogramming are not understood, but some insight into them is provided by comparing the efficiencies of different reprogramming strategies. Here, we compare these efficiencies by describing the frequency and rapidity with which reprogramming is induced and by the proportion of cells and level of expression in which reprogramming is achieved. We comment on the mechanisms that lead to successful somatic-cell reprogramming and on those that resist in helping to maintain the differentiated state of somatic cells.
Collapse
Affiliation(s)
- V Pasque
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | |
Collapse
|
116
|
Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, Chatfield J, Chen YH, Sottile V, Voss SR, Alberio R, Johnson AD. Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development 2010; 137:2973-80. [PMID: 20736286 DOI: 10.1242/dev.049262] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals.
Collapse
Affiliation(s)
- James E Dixon
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Following Shinya Yamanaka's first report describing the reprogramming of fibroblasts into stem cells over three years ago, some sceptics initially drew analogies between this new field of research and the quasi-mystical practice of 'alchemy'. Unlike the alchemist, however, stem cell researchers have rigorously tested and repeated experiments, proving their very own brand of cellular 'alchemy' to be a reality, with potentially massive implications for the study of human biology and clinical medicine. These investigations have resulted in an explosion of related publications and initiated the field of stem cell research known as 'induced pluripotency'. In this review, we give an account of the historical development, current technologies and potential clinical applications of induced pluripotency and conclude with a perspective on the possible future directions for this dynamic field.
Collapse
|
118
|
Liu D, Wang F, Zou Z, Dong S, Shi C, Wang J, Ran X, Su Y. Long-term repopulation effects of donor BMDCs on intestinal epithelium. Dig Dis Sci 2010; 55:2182-93. [PMID: 19856101 DOI: 10.1007/s10620-009-0991-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 09/14/2009] [Indexed: 12/09/2022]
Abstract
BACKGROUND Bone marrow-derived cells (BMDCs) have the ability to differentiate into intestinal epithelial cells after transplantation and participate in the regeneration process of damaged epithelium. AIMS To investigate whether BMDCs could differentiate into intestinal epithelium long term in chimeric mice after transplantation and without special treatment. METHODS Forty irradiated C57BL/6 mice were used. Thirty of them (group A) received transplantation of BMDCs from GFP transgenic mice, and ten (group B) received PBS. The chimeric percentage at the 14th month was examined by flow cytometry. Engraftment of BMDCs was detected by immunohistochemistry in intestinal epithelium. Immunofluorescence observation was used to detect coexpression of PCK, CD45 and Chromogranin A with GFP. BMDCs in the epithelium were observed by an immune electron microscope. The percent of GFP(+) epithelial cells was also determined by flow cytometry. RESULTS Mice in group A had a survival rate of 93.3% 1 week after transplantation. BMDCs could engraft into recipients' intestinal epithelium. These cells expressed epithelial cell marker PCK, but could not express CD45. Some of them differentiated into enteroendocrine cells expressing Chromogranin A. GFP(+) villous epithelial cells ranged from 9.41 to 16.07% in different subgroups of group A. BMDCs in epithelium developed the characteristics of enterocytes and goblet cells. GFP(+)/PCK(+) epithelial cells at the 6th month made up a proportion of 16.11% among all the isolated epithelial cells. CONCLUSIONS Long term, BMDCs could repopulate recipient's intestinal epithelium even without any special treatment, which suggests a novel insight into the maintenance of the intestinal epithelial constitution.
Collapse
Affiliation(s)
- Dengqun Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Shapingba, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010. [PMID: 20535199 DOI: 10.1038/nature09229.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stable states of differentiated cells are now known to be controlled by dynamic mechanisms that can easily be perturbed. An adult cell can therefore be reprogrammed, altering its pattern of gene expression, and hence its fate, to that typical of another cell type. This has been shown by three distinct experimental approaches to nuclear reprogramming: nuclear transfer, cell fusion and transcription-factor transduction. Using these approaches, nuclei from 'terminally differentiated' somatic cells can be induced to express genes that are typical of embryonic stem cells, which can differentiate to form all of the cell types in the body. This remarkable discovery of cellular plasticity has important medical applications.
Collapse
Affiliation(s)
- Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
120
|
Abstract
The stable states of differentiated cells are now known to be controlled by dynamic mechanisms that can easily be perturbed. An adult cell can therefore be reprogrammed, altering its pattern of gene expression, and hence its fate, to that typical of another cell type. This has been shown by three distinct experimental approaches to nuclear reprogramming: nuclear transfer, cell fusion and transcription-factor transduction. Using these approaches, nuclei from 'terminally differentiated' somatic cells can be induced to express genes that are typical of embryonic stem cells, which can differentiate to form all of the cell types in the body. This remarkable discovery of cellular plasticity has important medical applications.
Collapse
|
121
|
NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 2010; 29:2659-74. [PMID: 20581802 DOI: 10.1038/emboj.2010.137] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/02/2010] [Indexed: 01/03/2023] Open
Abstract
A cohort of genes associated with embryonic stem (ES) cell behaviour, including NANOG, are expressed in a number of human cancers. They form an ES-like signature we first described in glioblastoma multiforme (GBM), a highly invasive and incurable brain tumour. We have also shown that HEDGEHOG-GLI (HH-GLI) signalling is required for GBM growth, stem cell expansion and the expression of this (ES)-like stemness signature. Here, we address the function of NANOG in human GBMs and its relationship with HH-GLI activity. We find that NANOG modulates gliomasphere clonogenicity, CD133(+) stem cell cell behavior and proliferation, and is regulated by HH-GLI signalling. However, GLI1 also requires NANOG activity forming a positive loop, which is negatively controlled by p53 and vice versa. NANOG is essential for GBM tumourigenicity in orthotopic xenografts and it is epistatic to HH-GLI activity. Our data establish NANOG as a novel HH-GLI mediator essential for GBMs. We propose that this function is conserved and that tumour growth and stem cell behaviour rely on the status of a functional GLI1-NANOG-p53 network.
Collapse
|
122
|
Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage. Cell Mol Biol Lett 2010; 15:451-72. [PMID: 20563703 PMCID: PMC6275737 DOI: 10.2478/s11658-010-0018-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/26/2010] [Indexed: 02/07/2023] Open
Abstract
Hybrid cells derived from stem cells play an important role in organogenesis, tissue regeneration and cancer formation. However, the fate of hybrid cells and their range of function are poorly understood. Fusing stem cells and somatic cells induces somatic cell reprogramming, and the resulting hybrid cells are embryonic stem cell-like cells. Therefore, we hypothesize that fusion-induced hybrid cells may behave like ES cells in certain microenvironments. In this study, human hepatic cells were induced to apoptosis with H(2)O(2), and then co-cultured with hybrid cells that had been derived from mouse ES cells and human hepatic cells using a transwell. After co-culturing, the degree of apoptosis was evaluated using Annexin-V/PI double-staining analysis, flow cytometry and Western-blot. We observed that H(2)O(2)-induced cell apoptosis was inhibited by co-culture. In addition, the activity of injury-related enzymes (GSH-Px, LDH and SOD) and the level of albumin release in the co-culture system trended toward the level of normal undamaged hepatic cells. The stably increased levels of secretion of ALB in the co-culture system also confirmed that co-culture with hybrid cells helped in recovery from injury. The fate of the hybrid cells was studied by analyzing their gene expression and protein expression profiles. The results of RT-PCR indicated that during co-culturing, like ES cells, hybrid cells differentiated into hepatic lineage cells. Hybrid cells transcripted genes from both parental cell genomes. Via immunocytochemical analysis, hepatic directional differentiation of the hybrid cells was also confirmed. After injecting the hybrid cells into the mouse liver, the GFP-labeled transplanted cells were distributed in the hepatic lobules and engrafted into the liver structure. This research expands the knowledge of fusion-related events and the possible function of hybrid cells. Moreover, it could indicate a new route of differentiation from pluripotent cells to tissue-specific cells via conditional co-culture.
Collapse
|
123
|
Kuijk EW, de Gier J, Lopes SMCDS, Chambers I, van Pelt AMM, Colenbrander B, Roelen BAJ. A distinct expression pattern in mammalian testes indicates a conserved role for NANOG in spermatogenesis. PLoS One 2010; 5:e10987. [PMID: 20539761 PMCID: PMC2881870 DOI: 10.1371/journal.pone.0010987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 05/14/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND NANOG is a key player in pluripotency and its expression is restricted to pluripotent cells of the inner cell mass, the epiblast and to primordial germ cells. Spermatogenesis is closely associated with pluripotency, because through this process highly specialized sperm cells are produced that contribute to the formation of totipotent zygotes. Nevertheless, it is unknown if NANOG plays a role in this process. METHODOLOGY/PRINCIPAL FINDINGS In the current study, NANOG expression was examined in testes of various mammals, including mouse and human. Nanog mRNA and NANOG protein were detected by RT-PCR, immunohistochemistry, and western blotting. Furthermore, eGFP expression was detected in the testis of a transgenic Nanog eGFP-reporter mouse. Surprisingly, although NANOG expression has previously been associated with undifferentiated cells with stem cell potential, expression in the testis was observed in pachytene spermatocytes and in the first steps of haploid germ cell maturation (spermiogenesis). Weak expression in type A spermatogonia was also observed. CONCLUSIONS The findings of the current study strongly suggest a conserved role for NANOG in meiotic and post-meiotic stages of male germ cell development.
Collapse
Affiliation(s)
- Ewart W Kuijk
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
124
|
Hall J, Guo G, Wray J, Eyres I, Nichols J, Grotewold L, Morfopoulou S, Humphreys P, Mansfield W, Walker R, Tomlinson S, Smith A. Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 2010; 5:597-609. [PMID: 19951688 DOI: 10.1016/j.stem.2009.11.003] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/16/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Embryonic stem cell (ESC) pluripotency is dependent on an intrinsic gene regulatory network centered on Oct4. Propagation of the pluripotent state is stimulated by the cytokine leukemia inhibitory factor (LIF) acting through the transcriptional regulator Stat3. Here, we show that this extrinsic stimulus converges with the intrinsic circuitry in Krüppel-factor activation. Oct4 primarily induces Klf2 while LIF/Stat3 selectively enhances Klf4 expression. Overexpression of either factor reduces LIF dependence, but with quantitative and qualitative differences. Unlike Klf4, Klf2 increases ESC clonogenicity, maintains undifferentiated ESCs in the genetic absence of Stat3, and confers resistance to BMP-induced differentiation. ESCs expanded with Klf2 remain capable of contributing to adult chimeras. Postimplantation-embryo-derived EpiSCs lack both Klf2 and Klf4 and expression of either can reinstate naive pluripotency. These findings indicate that Oct4 and Stat3 intersect in directing expression of Klf transcriptional regulators with overlapping properties that additively reinforce ground-state ESC pluripotency, identity, and self-renewal.
Collapse
Affiliation(s)
- John Hall
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010; 463:1042-7. [PMID: 20027182 DOI: 10.1038/nature08752] [Citation(s) in RCA: 518] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 12/14/2009] [Indexed: 12/12/2022]
Abstract
Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (<0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in reprogramming, we generated interspecies heterokaryons (fused mouse embryonic stem (ES) cells and human fibroblasts) that induce reprogramming synchronously, frequently and fast. Here we show that reprogramming towards pluripotency in single heterokaryons is initiated without cell division or DNA replication, rapidly (1 day) and efficiently (70%). Short interfering RNA (siRNA)-mediated knockdown showed that activation-induced cytidine deaminase (AID, also known as AICDA) is required for promoter demethylation and induction of OCT4 (also known as POU5F1) and NANOG gene expression. AID protein bound silent methylated OCT4 and NANOG promoters in fibroblasts, but not active demethylated promoters in ES cells. These data provide new evidence that mammalian AID is required for active DNA demethylation and initiation of nuclear reprogramming towards pluripotency in human somatic cells.
Collapse
|
126
|
Yao JY, Zhang L, Zhang X, He ZY, Ma Y, Hui LJ, Wang X, Hu YP. H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. J Biol Chem 2010; 285:18828-37. [PMID: 20382980 DOI: 10.1074/jbc.m109.077974] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable epigenetic silencing of p16(INK4a) is a common event in hepatocellular carcinoma (HCC) cells, which is associated with abnormal cell proliferation and liberation from cell cycle arrest. Understanding the early epigenetic events in silencing p16(INK4a) expression may illuminate a prognostic strategy to block HCC development. Toward this end, we created a reprogram cell model by the fusion mouse HCC cells with mouse embryonic stem cells, in which the ES-Hepa hybrids forfeited HCC cell characteristics along with reactivation of the silenced p16(INK4a). HCC characteristics, in terms of gene expression pattern and tumorigenic potential, was restored upon induced differentiation of these reprogrammed ES-Hepa hybrids. The histone methylation pattern relative to p16(INK4a) silencing during differentiation of the ES-Hepa hybrids was analyzed. H3K27 trimethylation at the p16(INK4a) promoter region, occurring in the early onset of p16(INK4a) silencing, was followed by H3K9 dimethylation at later stages. During the induced differentiation of the ES-Hepa hybrids, H3K4 di- and trimethylations were maintained at high levels during the silencing of p16(INK4a), strongly suggesting that H3K4 methylation events did not cause the silencing of p16(INK4a). Our results suggested that the enrichment of H3K27 trimethylation, independent of H3K9 dimethylation, trimethylation, and DNA methylation, was an early event in the silencing of p16(INK4a) during the tumor development. This unique chromatin pattern may be a heritable marker of epigenetic regulation for p16(INK4a) silencing during the developmental process of hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Jia-Yi Yao
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E). Biochem Biophys Res Commun 2010; 394:1053-7. [DOI: 10.1016/j.bbrc.2010.03.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 11/23/2022]
|
128
|
|
129
|
Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells. PLoS One 2010; 5:e9838. [PMID: 20352099 PMCID: PMC2844422 DOI: 10.1371/journal.pone.0009838] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/03/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the usefulness of rats as an experimental system, an efficient method for generating rat induced pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease. Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2, Klf4, c-Myc, and Nanog) genes. METHODOLOGY AND PRINCIPAL FINDINGS iPS cells were generated from both NP and REF using only three (Oct3/4, Sox2, and Klf4) genes without c-Myc. Two factors were found to be critical for efficient derivation and maintenance of rat iPS cells: the use of rat instead of mouse feeders, and the use of small molecules specifically inhibiting mitogen-activated protein kinase and glycogen synthase kinase 3 pathways. In contrast, introduction of embryonic stem cell (ESC) extracts induced partial reprogramming, but failed to generate iPS cells. However, when combined with retroviral transduction, this method generated iPS cells with significantly higher efficiency. Morphology, gene expression, and epigenetic status confirmed that these rat iPS cells exhibited ESC-like properties, including the ability to differentiate into all three germ layers both in vitro and in teratomas. In particular, we found that these rat iPS cells could differentiate to midbrain-like dopamine neurons with a high efficiency. CONCLUSIONS/SIGNIFICANCE Given the usefulness of rats as an experimental system, our optimized method would be useful for generating rat iPS cells from diverse tissues and provide researchers with a powerful tool for studying human physiology and disease.
Collapse
|
130
|
Lluis F, Cosma MP. Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J Cell Physiol 2010; 223:6-13. [PMID: 20049847 DOI: 10.1002/jcp.22003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spontaneous cell fusion between two cells of different lineages will originate new hybrid cells that have different features from the original parent cells. It has been shown that injury to a tissue can enhance spontaneous cell-cell fusion events. If one of the parent cells of a cell-cell fusion is highly plastic, such as a stem cell, and the other is a somatic cell, their fusion can be followed by reprogramming events that can generate new hybrid pluripotent cells. These, in turn, have the potential to differentiate and regenerate the damaged tissue. However, if this process is deregulated, this would provide a mechanism for cancer development.
Collapse
Affiliation(s)
- Frederic Lluis
- Telethon Institute of Genetics and Medicine and Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | |
Collapse
|
131
|
Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, Yamaki M, Dimos JT, Chen AE, Melton DA, McMahon AP, Eggan K. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 2010; 24:312-26. [PMID: 20123909 DOI: 10.1101/gad.1833510] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In embryonic stem (ES) cells, a well-characterized transcriptional network promotes pluripotency and represses gene expression required for differentiation. In comparison, the transcriptional networks that promote differentiation of ES cells and the blastocyst inner cell mass are poorly understood. Here, we show that Sox17 is a transcriptional regulator of differentiation in these pluripotent cells. ES cells deficient in Sox17 fail to differentiate into extraembryonic cell types and maintain expression of pluripotency-associated transcription factors, including Oct4, Nanog, and Sox2. In contrast, forced expression of Sox17 down-regulates ES cell-associated gene expression and directly activates genes functioning in differentiation toward an extraembryonic endoderm cell fate. We show these effects of Sox17 on ES cell gene expression are mediated at least in part through a competition between Sox17 and Nanog for common DNA-binding sites. By elaborating the function of Sox17, our results provide insight into how the transcriptional network promoting ES cell self-renewal is interrupted, allowing cellular differentiation.
Collapse
Affiliation(s)
- Kathy K Niakan
- Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Affiliation(s)
- Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
133
|
Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, Lim SL, Cao S, Tay J, Orlov YL, Lufkin T, Ng HH, Tam WL, Lim B. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 2010; 463:1096-100. [PMID: 20139965 PMCID: PMC2901797 DOI: 10.1038/nature08735] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 12/09/2009] [Indexed: 12/31/2022]
Abstract
Induced pluripotent stem (iPS) cells can be obtained by the introduction of defined factors into somatic cells. The combination of Oct4 (also known as Pou5f1), Sox2 and Klf4 (which we term OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts. These cells are thought to resemble embryonic stem cells (ESCs) on the basis of global gene expression analyses; however, few studies have tested the ability and efficiency of iPS cells to contribute to chimaerism, colonization of germ tissues, and most importantly, germ-line transmission and live birth from iPS cells produced by tetraploid complementation. Using genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, here we show that the transcription factor Tbx3 significantly improves the quality of iPS cells. iPS cells generated with OSK and Tbx3 (OSKT) are superior in both germ-cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide chromatin immunoprecipitation sequencing analysis of Tbx3-binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. This study underscores the intrinsic qualitative differences between iPS cells generated by different methods, and highlights the need to rigorously characterize iPS cells beyond in vitro studies.
Collapse
Affiliation(s)
- Jianyong Han
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 138672, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Nowak-Imialek M, Kues WA, Rudolph C, Schlegelberger B, Taylor U, Carnwath JW, Niemann H. Preferential Loss of Porcine Chromosomes in Reprogrammed Interspecies Cell Hybrids. Cell Reprogram 2010; 12:55-65. [DOI: 10.1089/cell.2009.0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Cornelia Rudolph
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ulrike Taylor
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Joseph W. Carnwath
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institut of Farm Animal Genetics, Friedrich-Loeffler-Institute, Department of Biotechnology, Mariensee, 31535 Neustadt, Germany
| |
Collapse
|
135
|
Abstract
Genomic reprogramming can be accomplished by five different types of methods: nuclear transfer, cell fusion, in vitro culture, introduction of egg extract, and transduction of transcription factors. We have shown that fusion-induced reprogramming is an efficient method for reprogramming differentiated somatic cells to a pluripotential state (pluripotential reprogramming)--Oct4 gene reactivation occurs within 1-2 days postfusion of somatic cells with pluripotent stem cells. Reactivation of Oct4 can be monitored by detection of the GFP signal from the Oct4-GFP transgene of somatic cells. In the current report, we fused double transgenic (OG2/ROSA26) somatic cells with pluripotent embryonic stem (ES) cells, and demonstrated the presence of the somatic cell genome in all GFP-positive ES-like colony-forming cells, confirming their identity as the cell fusion hybrids.
Collapse
Affiliation(s)
- Jeong Tae Do
- CHA Stem Cell Institute & CHA Biotech, Pochon CHA University, Seoul, Korea
| | | |
Collapse
|
136
|
Yamaguchi S, Kurimoto K, Yabuta Y, Sasaki H, Nakatsuji N, Saitou M, Tada T. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development 2009; 136:4011-20. [PMID: 19906868 DOI: 10.1242/dev.041160] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pluripotency factor Nanog is expressed in peri-implantation embryos and primordial germ cells (PGCs). Nanog-deficient mouse embryos die soon after implantation. To explore the function of Nanog in germ cells, Nanog RNA was conditionally knocked down in vivo by shRNA. Nanog shRNA transgenic (NRi-Tg) mice were generated through the formation of germline chimeras with NRi-Tg embryonic stem cells. In E12.5 Cre-induced ER-Cre/NRi-Tg and TNAP-Cre/NRi-Tg double-transgenic embryos, the number of alkaline phosphatase-positive and SSEA1-positive PGCs decreased significantly. In the E9.5 and E10.5 migrating Nanog-knockdown PGCs, TUNEL-positive apoptotic cell death became prominent in vivo and in vitro, despite Oct4 expression. Single-cell microarray analysis of E10.5 Nanog-knockdown PGCs revealed significant up- and downregulation of a substantial number of genes, including Tial1, Id1 and Suz12. These data suggest that Nanog plays a key role in the proliferation and survival of migrating PGCs as a safeguard of the PGC-specific molecular network.
Collapse
Affiliation(s)
- Shinpei Yamaguchi
- Stem Cell Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
137
|
Camp E, Sánchez-Sánchez AV, García-España A, Desalle R, Odqvist L, Enrique O'Connor J, Mullor JL. Nanog regulates proliferation during early fish development. Stem Cells 2009; 27:2081-91. [PMID: 19544407 DOI: 10.1002/stem.133] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanog is involved in controlling pluripotency and differentiation of stem cells in vitro. However, its function in vivo has been studied only in mouse embryos and various reports suggest that Nanog may not be required for the regulation of differentiation. To better understand endogenous Nanog function, more animal models should be introduced to complement the murine model. Here, we have identified the homolog of the mammalian Nanog gene in teleost fish and describe the endogenous expression of Ol-Nanog mRNA and protein during medaka (Oryzias latipes) embryonic development and in the adult gonads. Using medaka fish as a vertebrate model to study Nanog function, we demonstrate that Ol-Nanog is necessary for S-phase transition and proliferation in the developing embryo. Moreover, inhibition or overexpression of Ol-Nanog does not affect gene expression of various pluripotency and differentiation markers, suggesting that this transcription factor may not play a direct role in embryonic germ layer differentiation. STEM CELLS 2009;27:2081-2091.
Collapse
Affiliation(s)
- Esther Camp
- Department of Regenerative Medicine, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
138
|
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18:1093-108. [PMID: 19480567 DOI: 10.1089/scd.2009.0113] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology, Graduate Programs in Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Montanucci P, Basta G, Calafiore R. In Vitro–Cultured Human Islet Cell Monolayers: Stemness Markers and Insulin Recovery upon Streptozotocin Exposure. Tissue Eng Part A 2009; 15:3931-42. [DOI: 10.1089/ten.tea.2009.0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Pia Montanucci
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Basta
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Section of Internal Medicine and Endocrine and Metabolic Sciences (Di.M.I.), Department of Internal Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
140
|
Savarese F, Dávila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, Takahashi K, Jenuwein T, Kohwi-Shigematsu T, Fisher AG, Grosschedl R. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev 2009; 23:2625-38. [PMID: 19933152 DOI: 10.1101/gad.1815709] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.
Collapse
Affiliation(s)
- Fabio Savarese
- Max Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009; 462:595-601. [PMID: 19898493 PMCID: PMC2789972 DOI: 10.1038/nature08592] [Citation(s) in RCA: 743] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/21/2009] [Indexed: 12/20/2022]
Abstract
Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming by these transcription factors is a continuous stochastic process where almost all mouse donor cells eventually give rise to iPS cells on continued growth and transcription factor expression. Additional inhibition of the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPS cell formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell-division-rate-independent manner. Quantitative analyses define distinct cell-division-rate-dependent and -independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.
Collapse
|
142
|
Sumer H, Jones KL, Liu J, Rollo BN, van Boxtel AL, Pralong D, Verma PJ. Transcriptional Changes in Somatic Cells Recovered From Embryonic Stem–Somatic Heterokaryons. Stem Cells Dev 2009; 18:1361-8. [DOI: 10.1089/scd.2008.0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huseyin Sumer
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Karen L. Jones
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jun Liu
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Benjamin N. Rollo
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Antonius L. van Boxtel
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Current affiliation: Institute for Environmental Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniele Pralong
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Paul J. Verma
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
143
|
Ajjappala BS, Kim MS, Kim EY, Kim JH, Kang IC, Baek KH. Protein chip analysis of pluripotency-associated proteins in NIH3T3 fibroblast. Proteomics 2009; 9:3968-78. [PMID: 19701907 DOI: 10.1002/pmic.200800611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Specific transcription factors regulate the totipotent and pluripotent capability of embryonic stem cells. Amongst these regulatory transcription factors in embryonic stem cells, Oct4 and Nanog are master factors that also have unique characteristic ability of cell-specific pluripotency and self-renewal. The expression of Nanog in fibroblasts confirms increased cell proliferation and transformation of foci-forming phenotype indicative of its oncogenic potential. The expression of Oct4, interestingly, leads to transformation of non-tumorgenic mouse into tumorigenic mouse. Our current investigation ascertains that the resultant increase in DNA synthesis and cell proliferation is the consequence of transforming the phenotype into foci formation. We used a manually curetted ProteoChip to carry out the signaling protein microarray analysis, which revealed up-regulated expression of various proteins including FAK1, MEK1 and Raf1. Some of the proteins explain the mechanism by which Oct4 and Nanog transform the phenotype. In NIH3T3 cells expressed with mouse Oct4 (mOct4), mouse Nanog (mNanog) separately as well as together, the specific knockdown of mFAK1 inhibited morphological transformation of the cells, and their invasion activity. The mFAK1 overexpression leads to morphological transformation as shown with mOct4 and mNanog. Additionally, we showed that the ERK1/2 pathway is involved in the up-regulation of c-myc and cyclin D1 expression mediated by mFAK1. Our results signify that the combinatorial signaling protein-array using biomolecular approach may possibly provide us with a new tool to understand cellular homeostasis.
Collapse
Affiliation(s)
- Brijesh S Ajjappala
- Department of Biomedical Sciences, CHA Stem Cell Institute, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
144
|
Do JT, Han DW, Gentile L, Sobek-Klocke I, Wutz A, Schöler HR. Reprogramming of Xist against the pluripotent state in fusion hybrids. J Cell Sci 2009; 122:4122-9. [PMID: 19843582 DOI: 10.1242/jcs.056119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion of somatic cells with pluripotent cells results in the generation of pluripotent hybrid cells. Because the ;memory' of somatic cells seems to be erased during fusion-induced reprogramming, genetic reprogramming is thought to be a largely unidirectional process. Here we show that fusion-induced reprogramming, which brings about the formation of pluripotent hybrids, does not always follow a unidirectional route. Xist is a unique gene in that it is reprogrammed to the state of somatic cells in fusion-induced pluripotent hybrids. In hybrids formed from the cell fusion of embryonal carcinoma cells (ECCs) with male neural stem cells (mNSCs), the Xist gene was found to be reprogrammed to the somatic cell state, whereas the pluripotency-related and tissue-specific marker genes were reprogrammed to the pluripotent cell state. Specifically, Xist is not expressed in hybrids, because the ;memory' of the somatic cell has been retained (i.e. mNSCs do not exhibit Xist expression) and that of the pluripotent cell erased (i.e. inactivation of the partially active Xist gene of ECCs, complete methylation of the Xist region). The latter phenomenon is induced by male, but not by female, NSCs.
Collapse
Affiliation(s)
- Jeong Tae Do
- CHA Stem Cell Institute, CHA University, Gangnam-gu, Seoul 135-081, Korea.
| | | | | | | | | | | |
Collapse
|
145
|
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 2009; 5:491-503. [PMID: 19818703 DOI: 10.1016/j.stem.2009.09.012] [Citation(s) in RCA: 599] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/02/2009] [Accepted: 09/23/2009] [Indexed: 02/07/2023]
Abstract
The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog.
Collapse
Affiliation(s)
- Justin K Ichida
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS One 2009; 4:e7118. [PMID: 19774082 PMCID: PMC2744017 DOI: 10.1371/journal.pone.0007118] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/21/2009] [Indexed: 11/19/2022] Open
Abstract
Background The derivation of induced pluripotent stem cells (iPSCs) provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. Methodology/Principal Findings Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3). Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. Conclusions/Significance To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms.
Collapse
|
147
|
Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A. Nanog is the gateway to the pluripotent ground state. Cell 2009; 138:722-37. [PMID: 19703398 PMCID: PMC3437554 DOI: 10.1016/j.cell.2009.07.039] [Citation(s) in RCA: 778] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/10/2009] [Accepted: 07/23/2009] [Indexed: 01/04/2023]
Abstract
Pluripotency is generated naturally during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Pluripotency can be recreated by somatic cell reprogramming. Here we present evidence that the homeodomain protein Nanog mediates acquisition of both embryonic and induced pluripotency. Production of pluripotent hybrids by cell fusion is promoted by and dependent on Nanog. In transcription factor-induced molecular reprogramming, Nanog is initially dispensable but becomes essential for dedifferentiated intermediates to transit to ground state pluripotency. In the embryo, Nanog specifically demarcates the nascent epiblast, coincident with the domain of X chromosome reprogramming. Without Nanog, pluripotency does not develop, and the inner cell mass is trapped in a pre-pluripotent, indeterminate state that is ultimately nonviable. These findings suggest that Nanog choreographs synthesis of the naive epiblast ground state in the embryo and that this function is recapitulated in the culmination of somatic cell reprogramming.
Collapse
Affiliation(s)
- Jose Silva
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Corresponding author
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Thorold W. Theunissen
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ge Guo
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Anouk L. van Oosten
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ornella Barrandon
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jason Wray
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Shinya Yamanaka
- Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JQ, UK
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Corresponding author
| |
Collapse
|
148
|
The N-terminal domain is a transcriptional activation domain required for Nanog to maintain ES cell self-renewal. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
149
|
Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming. Cell Mol Life Sci 2009; 66:3403-20. [PMID: 19662495 PMCID: PMC2759443 DOI: 10.1007/s00018-009-0095-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/01/2009] [Accepted: 07/06/2009] [Indexed: 01/06/2023]
Abstract
Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency--a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs.
Collapse
|
150
|
Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells. Cell Tissue Res 2009; 337:439-48. [PMID: 19609564 DOI: 10.1007/s00441-009-0835-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/22/2009] [Indexed: 12/14/2022]
Abstract
Expression of the parental Oct4 and Nanog alleles and DNA methylation of their promoters were studied in a set of Mus musculus embryonic stem (ES) cell/M. caroli splenocyte hybrid cells containing a variable ratio of parental chromosomes 6 and 17. The transcripts of the reactivated splenocyte Oct4 and Nanog genes were revealed in all hybrid cell clones positive for M. caroli chromosomes 6 and 17. We found that 11 CpG sites in the Oct4 promoter were heavily methylated in M. caroli splenocytes (>80%), whereas M. musculus ES cells were essentially unmethylated (<1%). Analysis of the methylation status of the Oct4 promoter in seven hybrid cell clones showed that the splenocyte-derived promoter sequence lost DNA methylation so that its methylation level was comparable with that of the ES cells. Additionally, no preferential de novo methylation was seen in the Oct4 promoters of M. musculus and M. caroli in teratomas developed from two independent hybrid clones. The upstream region of Nanog was heavily methylated in mouse embryonic fibroblasts (66%) and less methylated in M. caroli splenocytes (24%). The Nanog promoter region was completely unmethylated in M. musculus ES cells. We found that both parental alleles of the Nanog gene promoter were essentially unmethylated in five examined hybrid clones. Thus, we have demonstrated that (1) the Oct4 and Nanog genes of splenocytes are activated, and their promoters undergo demethylation in ES cell hybrids; (2) these events are independent of the number and ratio of parental chromosomes carrying these genes.
Collapse
|