101
|
Shi Q, Chu Q, Zeng Y, Yuan X, Wang J, Zhang Y, Xue C, Li L. Non-coding RNA methylation modifications in hepatocellular carcinoma: interactions and potential implications. Cell Commun Signal 2023; 21:359. [PMID: 38111040 PMCID: PMC10726651 DOI: 10.1186/s12964-023-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 12/20/2023] Open
Abstract
RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
102
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
103
|
Zhang S, Wang R, Zhu X, Zhang L, Liu X, Sun L. Characteristics and expression of lncRNA and transposable elements in Drosophila aneuploidy. iScience 2023; 26:108494. [PMID: 38125016 PMCID: PMC10730892 DOI: 10.1016/j.isci.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Aneuploidy can globally affect the expression of the whole genome, which is detrimental to organisms. Dosage-sensitive regulators usually have multiple intermolecular interactions, and changes in their stoichiometry are responsible for the dysregulation of the regulatory network. Currently, studies on noncoding genes in aneuploidy are relatively rare. We studied the characteristics and expression profiles of long noncoding RNAs (lncRNAs) and transposable elements (TEs) in aneuploid Drosophila. It is found that lncRNAs and TEs are affected by genomic imbalance and appear to be more sensitive to an inverse dosage effect than mRNAs. Several dosage-sensitive lncRNAs and TEs were detected for their expression patterns during embryogenesis, and their biological functions in the ovary and testes were investigated using tissue-specific RNAi. This study advances our understanding of the noncoding sequences in imbalanced genomes and provides a novel perspective for the study of aneuploidy-related human diseases such as cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilin Zhu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
104
|
Vlassis A, Jensen TL, Mohr M, Jedrzejczyk DJ, Meng X, Kovacs G, Morera-Gómez M, Barghetti A, Muyo Abad S, Baumgartner RF, Natarajan KN, Nielsen LK, Warnecke T, Gill RT. CRISPR-Cas12a-integrated transgenes in genomic safe harbors retain high expression in human hematopoietic iPSC-derived lineages and primary cells. iScience 2023; 26:108287. [PMID: 38034357 PMCID: PMC10682145 DOI: 10.1016/j.isci.2023.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Discovery of genomic safe harbor sites (SHSs) is fundamental for multiple transgene integrations, such as reporter genes, chimeric antigen receptors (CARs), and safety switches, which are required for safe cell products for regenerative cell therapies and immunotherapies. Here we identified and characterized potential SHS in human cells. Using the CRISPR-MAD7 system, we integrated transgenes at these sites in induced pluripotent stem cells (iPSCs), primary T and natural killer (NK) cells, and Jurkat cell line, and demonstrated efficient and stable expression at these loci. Subsequently, we validated the differentiation potential of engineered iPSC toward CD34+ hematopoietic stem and progenitor cells (HSPCs), lymphoid progenitor cells (LPCs), and NK cells and showed that transgene expression was perpetuated in these lineages. Finally, we demonstrated that engineered iPSC-derived NK cells retained expression of a non-virally integrated anti-CD19 CAR, suggesting that several of the investigated SHSs can be used to engineer cells for adoptive immunotherapies.
Collapse
Affiliation(s)
- Arsenios Vlassis
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Tanja L. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Marina Mohr
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Dominika J. Jedrzejczyk
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Xiangyou Meng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Gergo Kovacs
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Martí Morera-Gómez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Andrea Barghetti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Roland F. Baumgartner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Kedar N. Natarajan
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Lars K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tanya Warnecke
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| | - Ryan T. Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO 80027, USA
| |
Collapse
|
105
|
Li X, Liu Q, Liu J. Long Non-Coding RNAs: Discoveries, Mechanisms, and Research Strategies in Seeds. Genes (Basel) 2023; 14:2214. [PMID: 38137035 PMCID: PMC10742540 DOI: 10.3390/genes14122214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Seeds provide nutrients for the embryo and allow for dormancy in stressed environments to better adapt the plant to its environment. In addition, seeds are an essential source of food for human survival and are the basis for the formation of food production and quality. Therefore, the research on the genetic mechanism of seed development and germination will provide a theoretical basis and technical support for the improvement of crop yield and quality. Recent studies have shown that long non-coding RNAs (lncRNAs) occupy a pivotal position in seed development and germination. In this review, we describe the key processes in seed biology and examine discoveries and insights made in seed lncRNA, with emphasis on lncRNAs that regulate seed biology through multiple mechanisms. Given that thousands of lncRNAs are present in the seed transcriptome, characterization has lagged far behind identification. We provide an overview of research strategies and approaches including some exciting new techniques that may uncover the function of lncRNAs in seed. Finally, we discuss the challenges facing the field and the opening questions. All in all, we hope to provide a clear perspective on discoveries of seed lncRNA by linking discoveries, mechanisms, and technologies.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.L.); (Q.L.)
| |
Collapse
|
106
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
107
|
Zeng M, Wu Y, Li Y, Yin R, Lu C, Duan J, Li M. LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism. Bioinformatics 2023; 39:btad752. [PMID: 38109668 PMCID: PMC10749772 DOI: 10.1093/bioinformatics/btad752] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023] Open
Abstract
MOTIVATION There is mounting evidence that the subcellular localization of lncRNAs can provide valuable insights into their biological functions. In the real world of transcriptomes, lncRNAs are usually localized in multiple subcellular localizations. Furthermore, lncRNAs have specific localization patterns for different subcellular localizations. Although several computational methods have been developed to predict the subcellular localization of lncRNAs, few of them are designed for lncRNAs that have multiple subcellular localizations, and none of them take motif specificity into consideration. RESULTS In this study, we proposed a novel deep learning model, called LncLocFormer, which uses only lncRNA sequences to predict multi-label lncRNA subcellular localization. LncLocFormer utilizes eight Transformer blocks to model long-range dependencies within the lncRNA sequence and shares information across the lncRNA sequence. To exploit the relationship between different subcellular localizations and find distinct localization patterns for different subcellular localizations, LncLocFormer employs a localization-specific attention mechanism. The results demonstrate that LncLocFormer outperforms existing state-of-the-art predictors on the hold-out test set. Furthermore, we conducted a motif analysis and found LncLocFormer can capture known motifs. Ablation studies confirmed the contribution of the localization-specific attention mechanism in improving the prediction performance. AVAILABILITY AND IMPLEMENTATION The LncLocFormer web server is available at http://csuligroup.com:9000/LncLocFormer. The source code can be obtained from https://github.com/CSUBioGroup/LncLocFormer.
Collapse
Affiliation(s)
- Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yiming Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL 32603, United States
| | - Chengqian Lu
- School of Computer Science, Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junwen Duan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
108
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
109
|
Hecker D, Lauber M, Behjati Ardakani F, Ashrafiyan S, Manz Q, Kersting J, Hoffmann M, Schulz MH, List M. Computational tools for inferring transcription factor activity. Proteomics 2023; 23:e2200462. [PMID: 37706624 DOI: 10.1002/pmic.202200462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.
Collapse
Affiliation(s)
- Dennis Hecker
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Michael Lauber
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Fatemeh Behjati Ardakani
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Shamim Ashrafiyan
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Quirin Manz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- GeneSurge GmbH, München, Germany
| | - Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcel H Schulz
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
110
|
Woolley SA, Salavati M, Clark EL. Recent advances in the genomic resources for sheep. Mamm Genome 2023; 34:545-558. [PMID: 37752302 PMCID: PMC10627984 DOI: 10.1007/s00335-023-10018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Sheep (Ovis aries) provide a vital source of protein and fibre to human populations. In coming decades, as the pressures associated with rapidly changing climates increase, breeding sheep sustainably as well as producing enough protein to feed a growing human population will pose a considerable challenge for sheep production across the globe. High quality reference genomes and other genomic resources can help to meet these challenges by: (1) informing breeding programmes by adding a priori information about the genome, (2) providing tools such as pangenomes for characterising and conserving global genetic diversity, and (3) improving our understanding of fundamental biology using the power of genomic information to link cell, tissue and whole animal scale knowledge. In this review we describe recent advances in the genomic resources available for sheep, discuss how these might help to meet future challenges for sheep production, and provide some insight into what the future might hold.
Collapse
Affiliation(s)
- Shernae A Woolley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Scotland's Rural College, Parkgate, Barony Campus, Dumfries, DG1 3NE, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
111
|
Xu J, Hu M, Gao Y, Wang Y, Yuan X, Yang Y, Song W, Yin W, Gong P, Wei L, Zhang J. LncRNA MIR17HG Suppresses Breast Cancer Proliferation and Migration as ceRNA to Target FAM135A by Sponging miR-454-3p. Mol Biotechnol 2023; 65:2071-2085. [PMID: 36943627 PMCID: PMC10625951 DOI: 10.1007/s12033-023-00706-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women, and causes a large number of cancer-related deaths. The main cause of death of breast cancer patients is tumor recurrence and metastasis. Recent studies show that lncRNA (Long non-coding RNA) plays an important role in breast cancer. However, the overall biological activity and clinical consequences of the lncRNA MIR17HG in breast cancer remain unclear. Thus, we investigate how the MIR17HG/miR-454-3p network impacts breast cancer cell proliferation and migration. Given the TCGA and Oncomine databases, the researchers evaluated variations in MIR17HG expression for the survival rates of breast cancer patients. The influence of MIR17HG on cell proliferation, migration, cell cycle, and the mRNA expression level of miR-454-3p and FAM135A (family with sequence similarity 135 member A) is identified. Luciferase assay was used to detect the regulatory effect of miR-454-3p on the 3'UTR region of FAM135A, and rescue experiments demonstrated that MIR17HG can up-regulate FAM135A expression by competitively binding miR-454-3p. The effect of FAM135A on the cloning and invasion of MCF-7 cells was detected. MIR17HG expression is reduced in breast cancer tissues, and patients with greater levels of MIR17HG expression have a better prognosis. MIR17HG overexpression caused G2/M arrest in breast cancer cells according to a flow cytometry assay. FAM135A knockdown enhances breast cancer cell proliferation and clone creation, as well as two-dimensional and three-dimensional migratory capacities. Patients with high FAM135A expression in their breast cancer had a better prognosis. These novel findings indicate that MIR17HG may be a potential target for breast cancer. Our findings demonstrated that MIR17HG might suppress breast cancer cell proliferation and migration by sponge miR-454-3p through ceRNA(competing endogenous RNAs) mechanism, indicating that targeting MIR17HG may be a feasible therapeutic candidate for breast cancer.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Meishun Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yang Gao
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yishu Wang
- Department of Legal English and TOEIC, The University of Adelaide, North Terrace, 5005, Australia
| | - Xiaoning Yuan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yan Yang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wenjing Song
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Weinan Yin
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Pengju Gong
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
112
|
Yu L, Wei Y, Lu T, Li Z, Lai S, Yan Y, Chen C, Wen W. The SMYD3-dependent H3K4me3 status of IGF2 intensifies local Th2 differentiation in CRSwNP via positive feedback. Cell Commun Signal 2023; 21:345. [PMID: 38037054 PMCID: PMC10688075 DOI: 10.1186/s12964-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China
| | - Tong Lu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhengqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Shimin Lai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Yan Yan
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Changhui Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Otorhinolaryngology Institute of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
- Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
113
|
Li H, Rahman MA, Ruesch M, Eisele CD, Anderson EM, Wright PW, Cao J, Ratnayake S, Chen Q, Yan C, Meerzaman D, Abraham RS, Freud AG, Anderson SK. Abundant binary promoter switches in lineage-determining transcription factors indicate a digital component of cell fate determination. Cell Rep 2023; 42:113454. [PMID: 37976160 PMCID: PMC10842785 DOI: 10.1016/j.celrep.2023.113454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Ruesch
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennie Cao
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shashikala Ratnayake
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
114
|
Xu D, Tang L, Zhou J, Wang F, Cao H, Huang Y, Kapranov P. Evidence for widespread existence of functional novel and non-canonical human transcripts. BMC Biol 2023; 21:271. [PMID: 38001496 PMCID: PMC10675921 DOI: 10.1186/s12915-023-01753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Fraction of functional sequence in the human genome remains a key unresolved question in Biology and the subject of vigorous debate. While a plethora of studies have connected a significant fraction of human DNA to various biochemical processes, the classical definition of function requires evidence of effects on cellular or organismal fitness that such studies do not provide. Although multiple high-throughput reverse genetics screens have been developed to address this issue, they are limited to annotated genomic elements and suffer from non-specific effects, arguing for a strong need to develop additional functional genomics approaches. RESULTS In this work, we established a high-throughput lentivirus-based insertional mutagenesis strategy as a forward genetics screen tool in aneuploid cells. Application of this approach to human cell lines in multiple phenotypic screens suggested the presence of many yet uncharacterized functional elements in the human genome, represented at least in part by novel exons of known and novel genes. The novel transcripts containing these exons can be massively, up to thousands-fold, induced by specific stresses, and at least some can represent bi-cistronic protein-coding mRNAs. CONCLUSIONS Altogether, these results argue that many unannotated and non-canonical human transcripts, including those that appear as aberrant splice products, have biological relevance under specific biological conditions.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Junjun Zhou
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
115
|
Liu Y, Zhang J, Cao F, Dong X, Li J, Cao Y, Li Z, Guo Y, Yan J, Liu Y, Zhao Q. N6-methyladenosine-mediated overexpression of long noncoding RNA ADAMTS9-AS2 triggers neuroblastoma differentiation via regulating LIN28B/let-7/MYCN signaling. JCI Insight 2023; 8:e165703. [PMID: 37991019 PMCID: PMC10721320 DOI: 10.1172/jci.insight.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroblastomas have shed light on the differentiation disorder that is associated with spontaneous regression or differentiation in the same tumor at the same time. Long noncoding RNAs (lncRNAs) actively participate in a broad spectrum of biological processes. However, the detailed molecular mechanisms underlying lncRNA regulation of differentiation in neuroblastomas remain largely unknown. Here, we sequenced clinical samples of ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. We compared transcription profiles of neuroblastoma cells, ganglion cells, and intermediate state cells; verified the profiles in a retinoic acid-induced cell differentiation model and clinical samples; and screened out the lncRNA ADAMTS9 antisense RNA 2 (ADAMTS9-AS2), which contributed to neuroblastoma differentiation. ADAMTS9-AS2 upregulation in neuroblastoma cell lines inhibited proliferation and metastatic potential. Additional mechanistic studies illustrated that the interactions between ADAMTS9-AS2 and LIN28B inhibited the association between LIN28B and primary let-7 (pri-let-7) miRNA, then released pri-let-7 into cytoplasm to form mature let-7, resulting in the inhibition of oncogene MYCN activity that subsequently affected cancer stemness and differentiation. Furthermore, we showed that the observed differential expression of ADAMTS9-AS2 in neuroblastoma cells was due to N6-methyladenosine methylation. Finally, ADAMTS9-AS2 upregulation inhibited proliferation and cancer stem-like capabilities in vivo. Taken together, these results show that ADAMTS9-AS2 loss leads to malignant neuroblastoma by increasing metastasis and causing dysfunctional differentiation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanglin Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Guo
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, and
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
116
|
Abraham LN, Croll D. Genome-wide expression QTL mapping reveals the highly dynamic regulatory landscape of a major wheat pathogen. BMC Biol 2023; 21:263. [PMID: 37981685 PMCID: PMC10658818 DOI: 10.1186/s12915-023-01763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly understood. RESULTS We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and downstream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with comparatively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring genes with implications for the trait architecture. CONCLUSIONS Overall, our study provides extensive evidence that single populations segregate large-scale regulatory variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- Present address: Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
117
|
Hazra R, Utama R, Naik P, Dobin A, Spector DL. Identification of glioblastoma stem cell-associated lncRNAs using single-cell RNA sequencing datasets. Stem Cell Reports 2023; 18:2056-2070. [PMID: 37922916 PMCID: PMC10679778 DOI: 10.1016/j.stemcr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, heterogeneous brain tumor in which glioblastoma stem cells (GSCs) are known culprits of therapy resistance. Long non-coding RNAs (lncRNAs) have been shown to play a critical role in both cancer and normal biology. A few studies have suggested that aberrant expression of lncRNAs is associated with GSCs. However, a comprehensive single-cell analysis of the GSC-associated lncRNA transcriptome has not been carried out. Here, we analyzed recently published single-cell RNA sequencing datasets of adult GBM tumors, GBM organoids, GSC-enriched GBM tumors, and developing human brain samples to identify lncRNAs highly expressed in GSCs. We further revealed that the GSC-specific lncRNAs GIHCG and LINC01563 promote proliferation, migration, and stemness in the GSC population. Together, this study identified a panel of uncharacterized GSC-enriched lncRNAs and set the stage for future in-depth studies to examine their role in GBM pathology and their potential as biomarkers and/or therapeutic targets in GBM.
Collapse
Affiliation(s)
- Rasmani Hazra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Payal Naik
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
118
|
Hossain MM, Roat R, Christopherson J, Free C, Ansarullah, James B, Guo Z. Exploring lncRNAs associated with human pancreatic islet cell death induced by transfer of adoptive lymphocytes in a humanized mouse model. Front Endocrinol (Lausanne) 2023; 14:1244688. [PMID: 38027148 PMCID: PMC10646418 DOI: 10.3389/fendo.2023.1244688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Long noncoding RNA (lncRNA)-mediated posttranscriptional and epigenetic landscapes of gene regulation are associated with numerous human diseases. However, the regulatory mechanisms governing human β-cell function and survival remain unknown. Owing to technical and ethical constraints, studying the direct role of lncRNAs in β-cell function and survival in humans in vivo is difficult. Therefore, we utilized humanized mice with human islets to investigate lncRNA expression using whole transcriptome shotgun sequencing. Our study aimed to characterize lncRNAs that may be crucial for human islet cell function and survival. Methods Human β-cell death was induced in humanized mice engrafted with functional human islets. Using these humanized mice harboring human islets with induced β-cell death, we investigated lncRNA expression through whole transcriptome shotgun sequencing. Additionally, we systematically identified, characterized, and explored the regulatory functions of lncRNAs that are potentially important for human pancreatic islet cell function and survival. Results Human islet cell death was induced in humanized mice engrafted with functional human islets. RNA sequencing analysis of isolated human islets, islet grafts from humanized mice with and without induced cell death, revealed aberrant expression of a distinct set of lncRNAs that are associated with the deregulated mRNAs important for cellular processes and molecular pathways related to β-cell function and survival. A total of 10 lncRNA isoforms (SCYL1-1:22, POLG2-1:1, CTRB1-1:1, SRPK1-1:1, GTF3C5-1:1, PPY-1:1, CTRB1-1:5, CPA5-1:1, BCAR1-2:1, and CTRB1-1:4) were identified as highly enriched and specific to human islets. These lncRNAs were deregulated in human islets from donors with different BMIs and with type 2 diabetes (T2D), as well as in cultured human islets with glucose stimulation and induced cell death induced by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the medium used to culture islets with cytokines. Conclusion Islet-enriched and specific human lncRNAs are deregulated in human islet grafts and cultured human islets with induced cell death. These lncRNAs may be crucial for human β-cell function and survival and could have an impact on identifying biomarkers for β-cell loss and discovering novel therapeutic targets to enhance β-cell function and survival.
Collapse
Affiliation(s)
- Md Munir Hossain
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Regan Roat
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Jenica Christopherson
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Colette Free
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Ansarullah
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Brian James
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
- Discovery Genomics, Inc., Irvine, CA, United States
| | - Zhiguang Guo
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| |
Collapse
|
119
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
120
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
121
|
Al-Toubat M, Serrano S, Elshafei A, Koul K, Feibus AH, Balaji KC. Metastatic prostate cancer is associated with distinct higher frequency of genetic mutations at diagnosis. Urol Oncol 2023; 41:455.e7-455.e15. [PMID: 37838503 DOI: 10.1016/j.urolonc.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION AND OBJECTIVES We explored characteristic genetic mutations associated with metastatic prostate cancer (PCa) by comparing next generation sequencing (NGS) data between men with or without metastatic disease at diagnosis. METHODS We queried the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry for men diagnosed with PCa. Patients were categorized into with (M1) or without metastatic disease (M0) groups. The difference in the frequency of genetic mutations between the two groups and the prognostic significance of the mutations were analyzed using SPSS V28. We included frequency rate of > 5% and P values < 0.05 were considered statistically significant to maintain over 95% true positive detection rate. RESULTS Of a total of 10,580 patients with diagnosis of PCa in the dataset, we selected a study cohort of 1268 patients without missing data; 700 (55.2%) had nonmetastatic PCa, 421 (33.2%) and 147 (11.6%) patients had metastatic castration sensitive and resistant PCa respectively. The median age at diagnosis and serum prostate specific antigen (PSA) level for the entire cohort was 62.8 years (IQR 56.3-68.4) and 8.0 ng/ml (IQR 4.9-20.9) respectively. A vast majority of the cohort were of Caucasian ancestry (89.1%). Of a total of 561 genes sequenced, there were mutations in 79 genes (14.1%). The mutation frequency was significantly higher in M1PCa compared to M0PCa, 35.7% and 23.3%, respectively (P = <0.001). The median tumor mutational burden was also significantly higher in the samples from M1PCa (2.59 mut/MB) compared to M0PCa (1.96 mut/MB) (P < 0.001). Compared to M0PCa patients, M1PCa patients demonstrated significantly higher rate of genetic mutations; TP53 (38.73% vs. 17.71% P < 0.001), PTEN (25.70% vs. 11.71% P < 0.001), AR (17.25% vs. 1.43% P < 0.001), APC (11.8% vs. 4.43% P < 0.001), TMPRSS2 (31.5% vs. 11.14% P < 0.001), ERG (23.59% vs. 13.13% P < 0.001), FOXA1 (17.43% vs. 6.33% P < 0.001), MYC (8.45% vs. 2.29% P < 0.001), RB1 (10.39% vs. 2.43% P < 0.001) and CDK12 (8.45% vs. 1.31% P < 0.001). Of the various cellular signaling pathways, the androgen receptor signaling pathway was most often impacted. In the cohort with M1 disease, compared to men without genetic mutations the men with genetic mutations demonstrated worse survival (P = <0.001, log rank test). Compared to castration sensitive M1 patients, AR (57% vs. 4% P < 0.001), TP53 (50.7% vs. 34% P < 0.001), PTEN (35.2% vs. 22.1% P < 0.001), RB1(23.9% vs. 4.75% P < 0.001) were significantly more frequently mutated in castration resistant M1 patients. In contrast, mutations of SPOP (13.3% vs. 7.9% P < 0.001), FOXA1 (17.6% vs. 5.3% P < 0.001) and CDK12 (12% vs. 6.45% P < 0.001) were significantly more frequently found in castration sensitive M1 patients compared to castration resistant patients. CONCLUSION Patients with M1PCa demonstrated characteristic genetic mutations compared to M0PCa, which most often influenced androgen receptor signaling and is associated with worse survival. In addition, we identified distinct genetic mutations between castration sensitive and resistant M1PCa. These findings may be used to further our understanding and management of men with PCa.
Collapse
Affiliation(s)
- Mohammed Al-Toubat
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL
| | - Samuel Serrano
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL
| | - Ahmed Elshafei
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL
| | - Kashyap Koul
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL
| | - Allison H Feibus
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL
| | - K C Balaji
- Department of Urology, University of Florida College of Medicine, Jacksonville, FL.
| |
Collapse
|
122
|
Vera-Chang MN, Danforth JM, Stuart M, Goodarzi AA, Brand M, Richardson RB. Profound DNA methylomic differences between single- and multi-fraction alpha irradiations of lung fibroblasts. Clin Epigenetics 2023; 15:174. [PMID: 37891670 PMCID: PMC10612361 DOI: 10.1186/s13148-023-01564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Alpha (α)-radiation is a ubiquitous environmental agent with epigenotoxic effects. Human exposure to α-radiation at potentially harmful levels can occur repetitively over the long term via inhalation of naturally occurring radon gas that accumulates in enclosed spaces, or as a result of a single exposure from a nuclear accident. Alterations in epigenetic DNA methylation (DNAm) have been implicated in normal aging and cancer pathogenesis. Nevertheless, the effects of aberrations in the methylome of human lung cells following exposure to single or multiple α-irradiation events on these processes remain unexplored. RESULTS We performed genome-wide DNAm profiling of human embryonic lung fibroblasts from control and irradiated cells using americium-241 α-sources. Cells were α-irradiated in quadruplicates to seven doses using two exposure regimens, a single-fraction (SF) where the total dose was given at once, and a multi-fraction (MF) method, where the total dose was equally distributed over 14 consecutive days. Our results revealed that SF irradiations were prone to a decrease in DNAm levels, while MF irradiations mostly increased DNAm. The analysis also showed that the gene body (i.e., exons and introns) was the region most altered by both the SF hypomethylation and the MF hypermethylation. Additionally, the MF irradiations induced the highest number of differentially methylated regions in genes associated with DNAm biomarkers of aging, carcinogenesis, and cardiovascular disease. The DNAm profile of the oncogenes and tumor suppressor genes suggests that the fibroblasts manifested a defensive response to the MF α-irradiation. Key DNAm events of ionizing radiation exposure, including changes in methylation levels in mitochondria dysfunction-related genes, were mainly identified in the MF groups. However, these alterations were under-represented, indicating that the mitochondria undergo adaptive mechanisms, aside from DNAm, in response to radiation-induced oxidative stress. CONCLUSIONS We identified a contrasting methylomic profile in the lung fibroblasts α-irradiated to SF compared with MF exposures. These findings demonstrate that the methylome response of the lung cells to α-radiation is highly dependent on both the total dose and the exposure regimen. They also provide novel insights into potential biomarkers of α-radiation, which may contribute to the development of innovative approaches to detect, prevent, and treat α-particle-related diseases.
Collapse
Affiliation(s)
- Marilyn N Vera-Chang
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - John M Danforth
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marilyne Stuart
- Environment and Waste Technologies Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Aaron A Goodarzi
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Marjorie Brand
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada.
- McGill Medical Physics Unit, Cedars Cancer Centre-Glen Site, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
123
|
Chujan S, Nakareangrit W, Suriyo T, Satayavivad J. Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients. Bioinform Biol Insights 2023; 17:11779322231206684. [PMID: 37881207 PMCID: PMC10594973 DOI: 10.1177/11779322231206684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | | | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
124
|
Chan KH, Wang Y, Zheng BX, Long W, Feng X, Wong WL. RNA-Selective Small-Molecule Ligands: Recent Advances in Live-Cell Imaging and Drug Discovery. ChemMedChem 2023; 18:e202300271. [PMID: 37649155 DOI: 10.1002/cmdc.202300271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.
Collapse
Affiliation(s)
- Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Yakun Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
125
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
126
|
Chen Z, Xu Z, Wang Q, Wang L, Zhang H, Wang W, Zhao H, Guo Y, Cui J. Exosome-delivered circRNA circSYT15 contributes to cisplatin resistance in cervical cancer cells through the miR-503-5p/RSF1 axis. Cell Cycle 2023; 22:2211-2228. [PMID: 37974391 PMCID: PMC10730224 DOI: 10.1080/15384101.2023.2281768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
The development of chemotherapy resistance is a major obstacle for cervical cancer (CC) patients. Exosome-mediated transfer of circular RNAs (circRNAs) was found to have relevance to the CC. This study is designed to explore the role and mechanism of exosomal circRNA synaptotagmin 15 (circSYT15) on cisplatin (DDP) resistance in CC. Cell proliferation ability and apoptosis rate were detected by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), colony formation, and flow cytometry assays. CircSYT15, microRNA-503-5p (miR-503-5p), Remodeling spacing factor 1 (RSF1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Exosomes were analyzed by a transmission electron microscope and nanoparticle tracking analysis. CD63, CD81, TSC101, Bcl-2, Bax, C-caspase 3, and RSF1 protein levels were examined by western blot assay. The binding between miR-503-5p and circSYT15 or RSF1 was predicted by circBank or Starbase and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP). The biological role of exosomal circSYT15 in DDP resistance of CC in vivo. CircSYT15 was upregulated in the DDP-resistant CC cells and exosomes isolated from DDP-resistant CC cells. CircSYT15 knockdown repressed the proliferation and drug resistance of CC and induced apoptosis in CC cells. Exosomes shuttled circSYT15 act as a sponge to affect RSF1 expression, thereby promoting proliferation and drug resistance and repressing apoptosis of sensitive CC cells. Exosomal circSYT15 boost DDP resistance of cervical cancer in vivo. Exosome-mediated transfer of circSYT15 enhanced DDP resistance in CC partly by targeting the miR-503-5p/RSF1 axis, providing a foundation for future clinical applications of CC drug resistance.
Collapse
Affiliation(s)
- Zhilong Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zhen Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Lu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Wuliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Hu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yilin Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
127
|
Gelbard MK, Munger K. Human papillomaviruses: Knowns, mysteries, and unchartered territories. J Med Virol 2023; 95:e29191. [PMID: 37861365 PMCID: PMC10608791 DOI: 10.1002/jmv.29191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
There has been an explosion in the number of papillomaviruses that have been identified and fully sequenced. Yet only a minute fraction of these has been studied in any detail. Most of our molecular research efforts have focused on the E6 and E7 proteins of "high-risk," cancer-associated human papillomaviruses (HPVs). Interactions of the high-risk HPV E6 and E7 proteins with their respective cellular targets, the p53 and the retinoblastoma tumor suppressors, have been investigated in minute detail. Some have thus questioned if research on papillomaviruses remains an exciting and worthwhile area of investigation. However, fundamentally new insights on the biological activities and cellular targets of the high-risk HPV E6 and E7 proteins have been discovered and previously unstudied HPVs have been newly associated with human diseases. HPV infections continue to be an important cause of human morbidity and mortality and since there are no antivirals to combat HPV infections, research on HPVs should remain attractive to new investigators and biomedical funding agencies, alike.
Collapse
Affiliation(s)
- Maya K. Gelbard
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Karl Munger
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
128
|
Kansara S, Singh A, Badal AK, Rani R, Baligar P, Garg M, Pandey AK. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer. Semin Cancer Biol 2023; 95:1-12. [PMID: 37364663 DOI: 10.1016/j.semcancer.2023.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Altered energy metabolism is one of the hallmarks of tumorigenesis and essential for fulfilling the high demand for metabolic energy in a tumor through accelerating glycolysis and reprogramming the glycolysis metabolism through the Warburg effect. The dysregulated glucose metabolic pathways are coordinated not only by proteins coding genes but also by non-coding RNAs (ncRNAs) during the initiation and cancer progression. The ncRNAs are responsible for regulating numerous cellular processes under developmental and pathological conditions. Recent studies have shown that various ncRNAs such as microRNAs, circular RNAs, and long noncoding RNAs are extensively involved in rewriting glucose metabolism in human cancers. In this review, we demonstrated the role of ncRNAs in the progression of breast cancer with a focus on outlining the aberrant expression of glucose metabolic pathways. Moreover, we have discussed the existing and probable future applications of ncRNAs to regulate energy pathways along with their importance in the prognosis, diagnosis, and future therapeutics for human breast carcinoma.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Agrata Singh
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Abhishesh Kumar Badal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Reshma Rani
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India; National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
129
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing using click-chemistry unveils coordinated transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558015. [PMID: 37745427 PMCID: PMC10516050 DOI: 10.1101/2023.09.15.558015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1-5. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations6-9. However, fundamental questions in the temporal regulation of transcription and enhancer-gene synchrony remain unanswered primarily due to the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq - a novel single-cell nascent RNA sequencing assay using click-chemistry - and unveil the coordinated transcription throughout the genome. scGRO-seq demonstrates the episodic nature of transcription, and estimates burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells. It reveals the co-transcription of functionally related genes and leverages the replication-dependent non-polyadenylated histone genes transcription to elucidate cell-cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq identifies networks of enhancers and genes and indicates that the bursting of transcription at super-enhancers precedes the burst from associated genes. By imparting insights into the dynamic nature of transcription and the origin and propagation of transcription signals, scGRO-seq demonstrates its unique ability to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B. Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathaniel D. Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sean K. Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Department of Biology, Stanford University, Stanford, CA 94305
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208
| | - Sarah E. Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Exact Sciences Corporation, Madison, WI 53719
| | - Phillip A. Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Lead Contact
| |
Collapse
|
130
|
Messingschlager M, Bartel-Steinbach M, Mackowiak SD, Denkena J, Bieg M, Klös M, Seegebarth A, Straff W, Süring K, Ishaque N, Eils R, Lehmann I, Lermen D, Trump S. Genome-wide DNA methylation sequencing identifies epigenetic perturbations in the upper airways under long-term exposure to moderate levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2023; 233:116413. [PMID: 37343754 DOI: 10.1016/j.envres.2023.116413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.
Collapse
Affiliation(s)
- Marey Messingschlager
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; Freie Universität Berlin, Institute for Biology, Königin-Luise-Strasse 12-16, 14195, Berlin, Germany
| | - Martina Bartel-Steinbach
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sebastian D Mackowiak
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Johanna Denkena
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Bieg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Klös
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Anke Seegebarth
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| | - Wolfgang Straff
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Katrin Süring
- Environmental Medicine and Health Effects Assessment, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany; Health Data Science Unit, Heidelberg University Hospital and BioQuant, University of Heidelberg, Germany; Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Irina Lehmann
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany; German Center for Lung Research (DZL), Germany.
| | - Dominik Lermen
- Fraunhofer Institute for Biomedical Engineering IBMT, Josef-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Saskia Trump
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Digital Health, Molecular Epidemiology Unit, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
131
|
Parraga-Leo A, Sebastian-Leon P, Devesa-Peiro A, Marti-Garcia D, Pellicer N, Remohi J, Dominguez F, Diaz-Gimeno P. Deciphering a shared transcriptomic regulation and the relative contribution of each regulator type through endometrial gene expression signatures. Reprod Biol Endocrinol 2023; 21:84. [PMID: 37700285 PMCID: PMC10496172 DOI: 10.1186/s12958-023-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGORUND While various endometrial biomarkers have been characterized at the transcriptomic and functional level, there is generally a poor overlap among studies, making it unclear to what extent their upstream regulators (e.g., ovarian hormones, transcription factors (TFs) and microRNAs (miRNAs)) realistically contribute to menstrual cycle progression and function. Unmasking the intricacies of the molecular interactions in the endometrium from a novel systemic point of view will help gain a more accurate perspective of endometrial regulation and a better explanation the molecular etiology of endometrial-factor infertility. METHODS An in-silico analysis was carried out to identify which regulators consistently target the gene biomarkers proposed in studies related to endometrial progression and implantation failure (19 gene lists/signatures were included). The roles of these regulators, and of genes related to progesterone and estrogens, were then analysed in transcriptomic datasets compiled from samples collected throughout the menstrual cycle (n = 129), and the expression of selected TFs were prospectively validated in an independent cohort of healthy participants (n = 19). RESULTS A total of 3,608 distinct genes from the 19 gene lists were associated with endometrial progression and implantation failure. The lists' regulation was significantly favoured by TFs (89% (17/19) of gene lists) and progesterone (47% (8 /19) of gene lists), rather than miRNAs (5% (1/19) of gene lists) or estrogen (0% (0/19) of gene lists), respectively (FDR < 0.05). Exceptionally, two gene lists that were previously associated with implantation failure and unexplained infertility were less hormone-dependent, but primarily regulated by estrogen. Although endometrial progression genes were mainly targeted by hormones rather than non-hormonal contributors (odds ratio = 91.94, FDR < 0.05), we identified 311 TFs and 595 miRNAs not previously associated with ovarian hormones. We highlight CTCF, GATA6, hsa-miR-15a-5p, hsa-miR-218-5p, hsa-miR-107, hsa-miR-103a-3p, and hsa-miR-128-3p, as overlapping novel master regulators of endometrial function. The gene expression changes of selected regulators throughout the menstrual cycle (FDR < 0.05), dually validated in-silico and through endometrial biopsies, corroborated their potential regulatory roles in the endometrium. CONCLUSIONS This study revealed novel hormonal and non-hormonal regulators and their relative contributions to endometrial progression and pathology, providing new leads for the potential causes of endometrial-factor infertility.
Collapse
Affiliation(s)
- Antonio Parraga-Leo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
| | - Almudena Devesa-Peiro
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Diana Marti-Garcia
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
| | - Nuria Pellicer
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de La Policia Local 3, 46015, Valencia, Spain
| | - Jose Remohi
- Department of Pediatrics, Obstetrics and Gynaecology, Universidad de Valencia, Av. Blasco Ibáñez 15, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Plaza de La Policia Local 3, 46015, Valencia, Spain
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026, Valencia, Valencia, Spain.
| |
Collapse
|
132
|
Taylor J, Weiss SM, Marshall PJ. Genes, genomes, and developmental process. Behav Brain Sci 2023; 46:e204. [PMID: 37694896 DOI: 10.1017/s0140525x22002199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The view advanced by Madole & Harden falls back on the dogma of a gene as a DNA sequence that codes for a fixed product with an invariant function regardless of temporal and spatial contexts. This outdated perspective entrenches the metaphor of genes as static units of information and glosses over developmental complexities.
Collapse
Affiliation(s)
| | - Staci Meredith Weiss
- Perinatal Imaging Partnership, Rosie Maternity Hospital, Cambridge, UK https://www.repro.cam.ac.uk/staff/dr-staci-meredith-weiss
- Department of Psychology, University of Cambridge, UK
| | - Peter J Marshall
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA https://sites.temple.edu/peterjmarshall/
| |
Collapse
|
133
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
134
|
Otlu B, Díaz-Gay M, Vermes I, Bergstrom EN, Zhivagui M, Barnes M, Alexandrov LB. Topography of mutational signatures in human cancer. Cell Rep 2023; 42:112930. [PMID: 37540596 PMCID: PMC10507738 DOI: 10.1016/j.celrep.2023.112930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
The somatic mutations found in a cancer genome are imprinted by different mutational processes. Each process exhibits a characteristic mutational signature, which can be affected by the genome architecture. However, the interplay between mutational signatures and topographical genomic features has not been extensively explored. Here, we integrate mutations from 5,120 whole-genome-sequenced tumors from 40 cancer types with 516 topographical features from ENCODE to evaluate the effect of nucleosome occupancy, histone modifications, CTCF binding, replication timing, and transcription/replication strand asymmetries on the cancer-specific accumulation of mutations from distinct mutagenic processes. Most mutational signatures are affected by topographical features, with signatures of related etiologies being similarly affected. Certain signatures exhibit periodic behaviors or cancer-type-specific enrichments/depletions near topographical features, revealing further information about the processes that imprinted them. Our findings, disseminated via the COSMIC (Catalog of Somatic Mutations in Cancer) signatures database, provide a comprehensive online resource for exploring the interactions between mutational signatures and topographical features across human cancer.
Collapse
Affiliation(s)
- Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA; Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara 06800, Turkey
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ian Vermes
- COSMIC, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Maria Zhivagui
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
135
|
Liu X, Mi S, Li W, Zhang J, Augustino SMA, Zhang Z, Zhang R, Xiao W, Yu Y. Molecular regulatory mechanism of key LncRNAs in subclinical mastitic cows with folic acid supplementation. BMC Genomics 2023; 24:464. [PMID: 37592228 PMCID: PMC10436419 DOI: 10.1186/s12864-023-09466-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/20/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Folic acid is a water-soluble B vitamin (B9), which is closely related to the body's immune and other metabolic pathways. The folic acid synthesized by rumen microbes has been unable to meet the needs of high-yielding dairy cows. The incidence rate of subclinical mastitis in dairy herds worldwide ranged between 25%~65% with no obvious symptoms, but it significantly causes a decrease in lactation and milk quality. Therefore, this study aims at exploring the effects of folic acid supplementation on the expression profile of lncRNAs, exploring the molecular mechanism by which lncRNAs regulate immunity in subclinical mastitic dairy cows. RESULTS The analysis identified a total of 4384 lncRNA transcripts. Subsequently, differentially expressed lncRNAs in the comparison of two groups (SF vs. SC, HF vs. HC) were identified to be 84 and 55 respectively. Furthermore, the weighted gene co-expression network analysis (WGCNA) and the KEGG enrichment analysis result showed that folic acid supplementation affects inflammation and immune response-related pathways. The two groups have few pathways in common. One important lncRNA MSTRG.11108.1 and its target genes (ICAM1, CCL3, CCL4, etc.) were involved in immune-related pathways. Finally, through integrated analysis of lncRNAs with GWAS data and animal QTL database, we found that differential lncRNA and its target genes could be significantly enriched in SNPs and QTLs related to somatic cell count (SCC) and mastitis, such as MSTRG.11108.1 and its target gene ICAM1, CXCL3, GRO1. CONCLUSIONS For subclinical mastitic cows, folic acid supplementation can significantly affect the expression of immune-related pathway genes such as ICAM1 by regulating lncRNAs MSTRG.11108.1, thereby affecting related immune phenotypes. Our findings laid a ground foundation for theoretical and practical application for feeding folic acid supplementation in subclinical mastitic cows.
Collapse
Affiliation(s)
- Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Serafino M A Augustino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- School of Natural Resources and Environmental Studies, University of Juba, P. O. Box 82, Juba, South Sudan
| | - Zhichao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Xiao
- Beijing Animal Husbandry Station, Beijing, 100029, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
136
|
Barbirou M, Miller AA, Mezlini A, Bouhaouala-Zahar B, Tonellato PJ. Variant Characterization of a Representative Large Pedigree Suggests "Variant Risk Clusters" Convey Varying Predisposition of Risk to Lynch Syndrome. Cancers (Basel) 2023; 15:4074. [PMID: 37627102 PMCID: PMC10452890 DOI: 10.3390/cancers15164074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, worldwide incidences of young adult aggressive colorectal cancer (CRC) have rapidly increased. Of these incidences diagnosed as familial Lynch syndrome (LS) CRC, outcomes are extremely poor. In this study, we seek novel familial germline variants from a large pedigree Tunisian family with 12 LS-affected individuals to identify putative germline variants associated with varying risk of LS. Whole-genome sequencing analysis was performed to identify known and novel germline variants shared between affected and non-affected pedigree members. SNPs, indels, and structural variants (SVs) were computationally identified, and their oncological influence was predicted using the Genetic Association of Complex Diseases and Disorders, OncoKB, and My Cancer Genome databases. Of 94 germline familial variants identified with predicted functional impact, 37 SNPs/indels were detected in 28 genes, 2 of which (MLH1 and PRH1-TAS2R14) have known association with CRC and 4 others (PPP1R13B, LAMA5, FTO, and NLRP14) have known association with non-CRC cancers. In addition, 48 of 57 identified SVs overlap with 43 genes. Three of these genes (RELN, IRS2, and FOXP1) have a known association with non-CRC digestive cancers and one (RRAS2) has a known association with non-CRC cancer. Our study identified 83 novel, predicted functionally impactful germline variants grouped in three "variant risk clusters" shared in three familiarly associated LS groups (high, intermediate and low risk). This variant characterization study demonstrates that large pedigree investigations provide important evidence supporting the hypothesis that different "variant risk clusters" can convey different mechanisms of risk and oncogenesis of LS-CRC even within the same pedigree.
Collapse
Affiliation(s)
- Mouadh Barbirou
- Circulating Tumor Cell Core Laboratory, Population Science Division, Medical Oncology Department, Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Center for Biomedical Informatics, Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MI 65211, USA;
- Medical School, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Amanda A. Miller
- Circulating Tumor Cell Core Laboratory, Population Science Division, Medical Oncology Department, Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Center for Biomedical Informatics, Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MI 65211, USA;
| | - Amel Mezlini
- Medical Oncology Division, Salah Azeiz Oncology Institute, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Balkiss Bouhaouala-Zahar
- Medical School, University of Tunis El Manar, Tunis 1068, Tunisia;
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Peter J. Tonellato
- Center for Biomedical Informatics, Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MI 65211, USA;
| |
Collapse
|
137
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
138
|
Murphy D, Salataj E, Di Giammartino DC, Rodriguez-Hernaez J, Kloetgen A, Garg V, Char E, Uyehara CM, Ee LS, Lee U, Stadtfeld M, Hadjantonakis AK, Tsirigos A, Polyzos A, Apostolou E. Systematic mapping and modeling of 3D enhancer-promoter interactions in early mouse embryonic lineages reveal regulatory principles that determine the levels and cell-type specificity of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549714. [PMID: 37577543 PMCID: PMC10422694 DOI: 10.1101/2023.07.19.549714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.
Collapse
Affiliation(s)
- Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Eralda Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Dafne Campigli Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- 3D Chromatin Conformation and RNA genomics laboratory, Instituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), Genova, Italy (current affiliation)
| | - Javier Rodriguez-Hernaez
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Erin Char
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, 10065, New York, USA
| | - Christopher M. Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ly-sha Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA
- Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
139
|
Zhang JH, Chen JH, Guo B, Fang Y, Xu ZY, Zhan L, Cao YX. Recent Insights into Noncoding RNAs in Primary Ovarian Insufficiency: Focus on Mechanisms and Treatments. J Clin Endocrinol Metab 2023; 108:1898-1908. [PMID: 36735959 DOI: 10.1210/clinem/dgad070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a heterogeneous disease with an unknown underlying trigger or root cause. Recently many studies evaluated noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNA (lncRNAs), circular RNAs (circRNAs), and small interfering RNAs (siRNAs) for their associations with POI. EVIDENCE ACQUISITION In this review, we outline the biogenesis of various ncRNAs relevant to POI and summarize the evidence for their roles in the regulation of disease occurrence and progression. Articles from 2003 to 2022 were selected for relevance, validity, and quality from results obtained in PubMed and Google Scholar using the following search terms: noncoding RNAs; primary ovarian insufficiency; premature ovarian failure; noncoding RNAs and primary ovarian insufficiency/premature ovarian failure; miRNAs and primary ovarian insufficiency/premature ovarian failure; lncRNAs and primary ovarian insufficiency/premature ovarian failure; siRNAs and primary ovarian insufficiency/premature ovarian failure; circRNAs and primary ovarian insufficiency/premature ovarian failure; pathophysiology; and potential treatment. All articles were independently screened for eligibility by the authors. EVIDENCE SYNTHESIS This review summarizes the biological functions and synthesis of miRNAs, lncRNAs, siRNAs, and circRNAs in POI and discusses the findings of clinical and in vitro and in vivo studies. Although there is variability in the findings of individual studies, overall the available literature justifies the conclusion that dysregulated ncRNAs play significant roles in POI. CONCLUSION The potential of ncRNAs in the treatment of POI requires further investigation, as ncRNAs derived from mesenchymal stem cell-secreted exosomes play pivotal roles and have considerable therapeutic potential in a multitude of diseases.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| | - Jia-Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zu-Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| |
Collapse
|
140
|
González-Recio O, López-Catalina A, Peiró-Pastor R, Nieto-Valle A, Castro M, Fernández A. Evaluating the potential of (epi)genotype-by-low pass nanopore sequencing in dairy cattle: a study on direct genomic value and methylation analysis. J Anim Sci Biotechnol 2023; 14:98. [PMID: 37434255 PMCID: PMC10337168 DOI: 10.1186/s40104-023-00896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Genotype-by-sequencing has been proposed as an alternative to SNP genotyping arrays in genomic selection to obtain a high density of markers along the genome. It requires a low sequencing depth to be cost effective, which may increase the error at the genotype assigment. Third generation nanopore sequencing technology offers low cost sequencing and the possibility to detect genome methylation, which provides added value to genotype-by-sequencing. The aim of this study was to evaluate the performance of genotype-by-low pass nanopore sequencing for estimating the direct genomic value in dairy cattle, and the possibility to obtain methylation marks simultaneously. RESULTS Latest nanopore chemistry (LSK14 and Q20) achieved a modal base calling accuracy of 99.55%, whereas previous kit (LSK109) achieved slightly lower accuracy (99.1%). The direct genomic value accuracy from genotype-by-low pass sequencing ranged between 0.79 and 0.99, depending on the trait (milk, fat or protein yield), with a sequencing depth as low as 2 × and using the latest chemistry (LSK114). Lower sequencing depth led to biased estimates, yet with high rank correlations. The LSK109 and Q20 achieved lower accuracies (0.57-0.93). More than one million high reliable methylated sites were obtained, even at low sequencing depth, located mainly in distal intergenic (87%) and promoter (5%) regions. CONCLUSIONS This study showed that the latest nanopore technology in useful in a LowPass sequencing framework to estimate direct genomic values with high reliability. It may provide advantages in populations with no available SNP chip, or when a large density of markers with a wide range of allele frequencies is needed. In addition, low pass sequencing provided nucleotide methylation status of > 1 million nucleotides at ≥ 10 × , which is an added value for epigenetic studies.
Collapse
Affiliation(s)
- Oscar González-Recio
- Dpt. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña Km 7.5, 28040, Madrid, Spain.
| | | | - Ramón Peiró-Pastor
- Dpt. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña Km 7.5, 28040, Madrid, Spain
| | - Alicia Nieto-Valle
- ETSIAAB, Universidad Politécnica de Madrid. Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Monica Castro
- Dpt. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña Km 7.5, 28040, Madrid, Spain
| | - Almudena Fernández
- Dpt. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
141
|
Son KH, Aldonza MBD, Nam AR, Lee KH, Lee JW, Shin KJ, Kang K, Cho JY. Integrative mapping of the dog epigenome: Reference annotation for comparative intertissue and cross-species studies. SCIENCE ADVANCES 2023; 9:eade3399. [PMID: 37406108 DOI: 10.1126/sciadv.ade3399] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Dogs have become a valuable model in exploring multifaceted diseases and biology relevant to human health. Despite large-scale dog genome projects producing high-quality draft references, a comprehensive annotation of functional elements is still lacking. We addressed this through integrative next-generation sequencing of transcriptomes paired with five histone marks and DNA methylome profiling across 11 tissue types, deciphering the dog's epigenetic code by defining distinct chromatin states, super-enhancer, and methylome landscapes, and thus showed that these regions are associated with a wide range of biological functions and cell/tissue identity. In addition, we confirmed that the phenotype-associated variants are enriched in tissue-specific regulatory regions and, therefore, the tissue of origin of the variants can be traced. Ultimately, we delineated conserved and dynamic epigenomic changes at the tissue- and species-specific resolutions. Our study provides an epigenomic blueprint of the dog that can be used for comparative biology and medical research.
Collapse
Affiliation(s)
- Keun Hong Son
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Mark Borris D Aldonza
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Jeong-Woon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Kyung-Ju Shin
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Comparative Medicine and Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
142
|
Chu X, Wang Z, Wang W, Liu W, Cao Y, Feng L. Roles of hypoxic environment and M2 macrophage-derived extracellular vesicles on the progression of non-small cell lung cancer. BMC Pulm Med 2023; 23:239. [PMID: 37400770 DOI: 10.1186/s12890-023-02468-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/04/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Hypoxia contributes to the development of invasive and metastatic cancer cells, and is detrimental to cancer treatment. This study aimed to explore the molecular mechanisms by which hypoxic microenvironments affect hypoxic non-small cell lung cancer (NSCLC) development and the effects of M2 macrophage-derived extracellular vesicles (EVs) on NSCLC cells. METHODS A549 cells were cultured in an anoxic incubator for 48 h to construct hypoxic A549 cells, and then normal and hypoxic A549 cells were harvested for RNA sequencing. Next, THP-1 cells were used to induce M2 macrophages, and EVs were isolated from THP-1 cells and M2 macrophages. Cell counting kit-8 and transwell assays were used to determine the viability and migration of hypoxic A549 cells, respectively. RESULTS After sequencing, 2426 DElncRNAs and 501 DEmiRNAs were identified in normal A549 cells and hypoxic A549 cells. These DElncRNAs and DEmiRNAs were significantly enriched in "Wnt signaling pathway," "Hippo signaling pathway," "Rap1 signaling pathway," "calcium signaling pathway," "mTOR signaling pathway," and "TNF signaling pathway." Subsequently, ceRNA networks consisting of 4 lncRNA NDRG1 transcripts, 16 miRNAs and 221 target mRNAs were built, and the genes in the ceRNA networks were significantly associated with "Hippo signaling pathway" and "HIF-1 signaling pathway." EVs were successfully extracted from THP-1 cells and M2 macrophages, and M2 macrophage-derived EVs significantly enhanced the viability and migration of hypoxic A549 cells. Finally, M2 macrophage-derived EVs further upregulated the expression of NDRG1-009, NDRG1-006, VEGFA, and EGLN3, while downregulating miR-34c-5p, miR-346, and miR-205-5p in hypoxic A549 cells. CONCLUSIONS M2 macrophage-derived EVs may worsen the progression of NSCLC in a hypoxic microenvironment by regulating the NDRG1-009-miR-34c-5p-VEGFA, NDRG1-006-miR-346-EGLN3, NDRG1-009-miR-205-5p-VEGFA, and Hippo/HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Xiao Chu
- Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Weiqing Wang
- Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Wenjing Liu
- Department of Thoracic Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yunyun Cao
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Surgical Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, NO.106, Ruili Road, Minhang District, Shanghai, 200240, China.
| | - Liang Feng
- Department of Surgical Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, NO.106, Ruili Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
143
|
Liu D, Lu X, Huang W, Zhuang W. Long non-coding RNAs in non-small cell lung cancer: implications for EGFR-TKI resistance. Front Genet 2023; 14:1222059. [PMID: 37456663 PMCID: PMC10349551 DOI: 10.3389/fgene.2023.1222059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of malignant tumors as well as the leading cause of cancer-related deaths in the world. The application of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has dramatically improved the prognosis of NSCLC patients who harbor EGFR mutations. However, despite an excellent initial response, NSCLC inevitably becomes resistant to EGFR-TKIs, leading to irreversible disease progression. Hence, it is of great significance to shed light on the molecular mechanisms underlying the EGFR-TKI resistance in NSCLC. Long non-coding RNAs (lncRNAs) are critical gene modulators that are able to act as oncogenes or tumor suppressors that modulate tumorigenesis, invasion, and metastasis. Recently, extensive evidence demonstrates that lncRNAs also have a significant function in modulating EGFR-TKI resistance in NSCLC. In this review, we present a comprehensive summary of the lncRNAs involved in EGFR-TKI resistance in NSCLC and focus on their detailed mechanisms of action, including activation of alternative bypass signaling pathways, phenotypic transformation, intercellular communication in the tumor microenvironment, competing endogenous RNAs (ceRNAs) networks, and epigenetic modifications. In addition, we briefly discuss the limitations and the clinical implications of current lncRNAs research in this field.
Collapse
Affiliation(s)
- Detian Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
144
|
Chavez JS, Rabe JL, Niño KE, Wells HH, Gessner RL, Mills TS, Hernandez G, Pietras EM. PU.1 is required to restrain myelopoiesis during chronic inflammatory stress. Front Cell Dev Biol 2023; 11:1204160. [PMID: 37497478 PMCID: PMC10368259 DOI: 10.3389/fcell.2023.1204160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic inflammation is a common feature of aging and numerous diseases such as diabetes, obesity, and autoimmune syndromes and has been linked to the development of hematological malignancy. Blood-forming hematopoietic stem cells (HSC) can contribute to these diseases via the production of tissue-damaging myeloid cells and/or the acquisition of mutations in epigenetic and transcriptional regulators that initiate evolution toward leukemogenesis. We previously showed that the myeloid "master regulator" transcription factor PU.1 is robustly induced in HSC by pro-inflammatory cytokines such as interleukin (IL)-1β and limits their proliferative activity. Here, we used a PU.1-deficient mouse model to investigate the broader role of PU.1 in regulating hematopoietic activity in response to chronic inflammatory challenges. We found that PU.1 is critical in restraining inflammatory myelopoiesis via suppression of cell cycle and self-renewal gene programs in myeloid-biased multipotent progenitor (MPP) cells. Our data show that while PU.1 functions as a key driver of myeloid differentiation, it plays an equally critical role in tailoring hematopoietic responses to inflammatory stimuli while limiting expansion and self-renewal gene expression in MPPs. These data identify PU.1 as a key regulator of "emergency" myelopoiesis relevant to inflammatory disease and leukemogenesis.
Collapse
Affiliation(s)
- James S. Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer L. Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katia E. Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harrison H. Wells
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel L. Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Taylor S. Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
145
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
146
|
Ali R, Laskar SA, Khan NJ, Wahab S, Khalid M. Non-coding RNA's prevalence as biomarkers for prognostic, diagnostic, and clinical utility in breast cancer. Funct Integr Genomics 2023; 23:195. [PMID: 37270446 DOI: 10.1007/s10142-023-01123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Noncoding RNAs (ncRNAs), which make up a significant portion of the mammalian transcriptome and plays crucial regulatory roles in expression of genes and other biological processes, have recently been found. The most extensively researched of the sncRNAs, microRNAs (miRNAs), have been characterized in terms of their synthesis, roles, and significance in the tumor development. Its crucial function in the stem cell regulation, another class of sncRNAs known as aspirRNAs, has attracted attention in cancer research. The investigations have shown that long non-coding RNAs have a crucial role in controlling developmental stages, such as mammary gland development. Additionally, it has been discovered that lncRNA dysregulation precedes the development of several malignancies, including breast cancer. The functions of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the onset and development of the breast cancer are described in this study. Additionally, future perspectives of various ncRNA-based diagnostic, prognostic, and therapeutic approaches also discussed.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Sorforaj A Laskar
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India.
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
147
|
Yang X, Tian X, Zhao P, Wang Z, Sun X. Paclitaxel inhibits hepatocellular carcinoma tumorigenesis by regulating the circ_0005785/miR-640/GSK3β. Cell Biol Int 2023. [PMID: 37269228 DOI: 10.1002/cbin.11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/05/2023]
Abstract
Paclitaxel (PTX) is an effective chemotherapeutic agent for cancer patients. It has been reported that circular RNA (circRNA) circ_0005785is involved in the progression of hepatocellular carcinoma (HCC). The purpose of this study is to explore the role and mechanism of circ_0005785 in the PTX resistance of HCC. Cell viability, proliferation, invasion, migration, apoptosis, and angiogenesis were detected using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, transwell, wound-healing, flow cytometry, and tube formation assay. Circ_0005785, microRNA-640 (miR-640), and Glycogen synthase kinase-3 beta (GSK3β) levels were detected using real-time quantitative polymerase chain reaction. Protein levels of Proliferating cell nuclear antigen (PCNA), Bcl-2, and GSK3β were measured using western blot assay. After being predicted using Circular RNA interactome or TargetScan, binding between miR-640 and circ_0005785 or GSK3β was verified using dual-luciferase reporter and RNA Immunoprecipitation assay. PTX treatment could repress HCC cell viability, decrease circ_0005785 and GSK3β expression, and increase the miR-640 level in HCC cell lines. Furthermore, circ_0005785 and GSK3β were increased, and miR-640 was decreased in HCC tissues and cell lines. Moreover, circ_0005785 knockdown hindered proliferation, migration, invasion, angiogenesis, and boosted apoptosis in PTX-treated HCC cells in vitro. In addition, circ_0005785 silencing improved the PTX sensitivity of HCC in vivo. Mechanistically, circ_0005785 acted as a sponge of miR-640 to regulate GSK3β expression. PTX restrained HCC tumorigenesis partly via regulating the circ_0005785/miR-640/GSK3β axis, hinting at a promising therapeutic target for the HCC treatment.
Collapse
Affiliation(s)
- Xianwu Yang
- Department of Gastroenterology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaojuan Tian
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen, China
| | - Pengcheng Zhao
- Department of Gastroenterology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Zheng Wang
- Hepatobiliary Surgery, Huai'an Second People's Hospital/Huai'an Hospital, Xuzhou Medical University, Jiangsu, China
| | - Xuedong Sun
- Department of Gastroenterology, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
148
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
149
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
150
|
Palos K, Yu L, Railey CE, Nelson Dittrich AC, Nelson ADL. Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. THE PLANT CELL 2023; 35:1762-1786. [PMID: 36738093 PMCID: PMC10226578 DOI: 10.1093/plcell/koad027] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Li’ang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Caylyn E Railey
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Graduate Field, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|