101
|
Gilman TL, Dutta S, Adkins JM, Cecil CA, Jasnow AM. Basolateral amygdala Thy1-expressing neurons facilitate the inhibition of contextual fear during consolidation, reconsolidation, and extinction. Neurobiol Learn Mem 2018; 155:498-507. [PMID: 30287384 DOI: 10.1016/j.nlm.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
Disrupted fear inhibition is a characteristic of many anxiety disorders. Investigations into the neural mechanisms responsible for inhibiting fear will improve understanding of the essential circuits involved, and facilitate development of treatments that promote their activity. Within the basolateral amygdala (BLA), Thy1-expressing neuron activity has been characterized by us and others as promoting fear inhibition to discrete fear cues by influencing consolidation of cued fear learning or cued fear extinction. Here, we evaluated how activating BLA Thy1-expressing neurons using DREADDs affected the consolidation, expression, reconsolidation, and extinction of contextual fear. Using an inhibitory avoidance paradigm, our present findings indicate a similar involvement of BLA Thy1-expressing neuron activity in the consolidation and extinction, but not expression, of fear. Importantly, our data also provide the first evidence for involvement of these neurons in inhibiting fear reconsolidation. Therefore, these data enhance our understanding of the roles that Thy1-expressing neurons within the BLA play in inhibiting fear when examining avoidance, in addition to the already established role in Pavlovian fear paradigms. Future investigations should further explore the circuits responsible for these contextual effects modulated by BLA Thy1 neuron activation, and could promulgate development of therapies targeting these neurons and their downstream effectors.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Sohini Dutta
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Cassandra A Cecil
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
102
|
Fang Q, Li Z, Huang GD, Zhang HH, Chen YY, Zhang LB, Ding ZB, Shi J, Lu L, Yang JL. Traumatic Stress Produces Distinct Activations of GABAergic and Glutamatergic Neurons in Amygdala. Front Neurosci 2018; 12:387. [PMID: 30186100 PMCID: PMC6110940 DOI: 10.3389/fnins.2018.00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder characterized by intrusive recollections of a severe traumatic event and hyperarousal following exposure to the event. Human and animal studies have shown that the change of amygdala activity after traumatic stress may contribute to occurrences of some symptoms or behaviors of the patients or animals with PTSD. However, it is still unknown how the neuronal activation of different sub-regions in amygdala changes during the development of PTSD. In the present study, we used single prolonged stress (SPS) procedure to obtain the animal model of PTSD, and found that 1 day after SPS, there were normal anxiety behavior and extinction of fear memory in rats which were accompanied by a reduced proportion of activated glutamatergic neurons and increased proportion of activated GABAergic neurons in basolateral amygdala (BLA). About 10 days after SPS, we observed enhanced anxiety and impaired extinction of fear memory with increased activated both glutamatergic and GABAergic neurons in BLA and increased activated GABAergic neurons in central amygdala (CeA). These results indicate that during early and late phase after traumatic stress, distinct patterns of activation of glutamatergic neurons and GABAergic neurons are displayed in amygdala, which may be implicated in the development of PTSD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Psychiatric Department, Tianjin Anding Hospital, Tianjin, China
| | - Zhe Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Cangzhou Medical College, Cangzhou, China
| | - Geng-Di Huang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Li-Bo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
103
|
Dulka BN, Bress KS, Grizzell JA, Cooper MA. Social Dominance Modulates Stress-induced Neural Activity in Medial Prefrontal Cortex Projections to the Basolateral Amygdala. Neuroscience 2018; 388:274-283. [PMID: 30075245 DOI: 10.1016/j.neuroscience.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022]
Abstract
Stress is a contributing factor in the etiology of several mood and anxiety disorders, and social defeat models are used to investigate the biological basis of stress-related psychopathologies. Male Syrian hamsters are highly aggressive and territorial, but after social defeat they exhibit a conditioned defeat (CD) response which is characterized by increased submissive behavior and a failure to defend their home territory against a smaller, non-aggressive intruder. Hamsters with dominant social status show increased c-Fos expression in the infralimbic (IL) cortex following social defeat and display a reduced CD response at testing compared to subordinates and controls. In this study, we tested the prediction that dominants would show increased defeat-induced neural activity in IL, but not prelimbic (PL) or ventral hippocampus (vHPC), neurons that send efferent projections to the basolateral amygdala (BLA) compared to subordinates. We performed dual immunohistochemistry for c-Fos and cholera toxin B (CTB) and found that dominants display a significantly greater proportion of double-labeled c-Fos + CTB cells in both the IL and PL. Furthermore, dominants display more c-Fos-positive cells in both the IL and PL, but not vHPC, compared to subordinates. These findings suggest that dominant hamsters selectively activate IL and PL, but not vHPC, projections to the amygdala during social defeat, which may be responsible for their reduced CD response. This project extends our understanding of the neural circuits underlying resistance to social stress, which is an important step toward delineating a circuit-based approach for the prevention and treatment of stress-related psychopathologies.
Collapse
Affiliation(s)
- Brooke N Dulka
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States.
| | - Kimberly S Bress
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - J Alex Grizzell
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| | - Matthew A Cooper
- Department of Psychology, NeuroNET Research Center, University of Tennessee, United States
| |
Collapse
|
104
|
Wang Y, Zhu Y, Chen P, Yan F, Chen S, Li G, Hu X, Wang L, Yang Z. Neuroticism is associated with altered resting-state functional connectivity of amygdala following acute stress exposure. Behav Brain Res 2018; 347:272-280. [DOI: 10.1016/j.bbr.2018.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
|
105
|
Staib JM, Della Valle R, Knox DK. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory. Neurobiol Learn Mem 2018; 152:71-79. [PMID: 29783059 DOI: 10.1016/j.nlm.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory.
Collapse
Affiliation(s)
- Jennifer M Staib
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Rebecca Della Valle
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Dayan K Knox
- University of Delaware, Department of Psychological and Brain Sciences, United States.
| |
Collapse
|
106
|
Krabbe S, Gründemann J, Lüthi A. Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biol Psychiatry 2018; 83:800-809. [PMID: 29174478 DOI: 10.1016/j.biopsych.2017.10.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Associative memory formation is essential for an animal's survival by ensuring adaptive behavioral responses in an ever-changing environment. This is particularly important under conditions of immediate threats such as in fear learning. One of the key brain regions involved in associative fear learning is the amygdala. The basolateral amygdala is the main entry site for sensory information to the amygdala complex, and local plasticity in excitatory basolateral amygdala principal neurons is considered to be crucial for learning of conditioned fear responses. However, activity and plasticity of excitatory circuits are tightly controlled by local inhibitory interneurons in a spatially and temporally defined manner. In this review, we provide an updated view on how distinct interneuron subtypes in the basolateral amygdala contribute to the acquisition and extinction of conditioned fear memories.
Collapse
Affiliation(s)
- Sabine Krabbe
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Gründemann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
107
|
Modulation of Neuronal Activity on Intercalated Neurons of Amygdala Might Underlie Anxiolytic Activity of a Standardized Extract of Centella asiatica ECa233. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3853147. [PMID: 29849706 PMCID: PMC5941724 DOI: 10.1155/2018/3853147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/07/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
GABAergic intercalated neurons of amygdala (ITCs) have recently been shown to be important in the suppression of fear-like behavior. Effects of ECa233 (a standardized extract of Centella asiatica), previously demonstrated anxiolytic activity, were then investigated on ITCs. Cluster of GABAergic neurons expressing fluorescence of GFP was identified in GAD67-GFP knock-in mice. We found that neurons of medial paracapsular ITC were GABAergic neurons exhibiting certain intrinsic electrophysiological properties similar to those demonstrated by ITC neurons at the same location in C57BL/6J mice. Therefore, we conducted experiments in both C57BL/6J mice and GAD67-GFP knock-in mice. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the external capsule during the whole cell patch-clamp recordings from ITC neurons in brain slices. ECa233 was found to increase the EPSC peak amplitude in the ITC neurons by about 120%. The EPSCs in ITC neurons were completely abolished by the application of an AMPA receptor antagonist. Morphological assessment of the ITC neurons with biocytin demonstrated that most axons of the recorded neurons innervated the central nucleus of the amygdala (CeA). Therefore, it is highly likely that anxiolytic activity of ECa233 was mediated by increasing activation, via AMPA receptors, of excitatory synaptic input to the GABAergic ITC leading to depression of CeA neurons.
Collapse
|
108
|
|
109
|
Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev 2018; 41:173-184. [PMID: 29628334 DOI: 10.1016/j.smrv.2018.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
Research suggests sleep plays a role in the consolidation of recently acquired memories for long-term storage. rapid eye movement (REM) sleep has been shown to play a complex role in emotional-memory processing, and may be involved in subsequent waking-day emotional reactivity and amygdala responsivity. Interaction of the hippocampus and basolateral amygdala with the medial-prefrontal cortex is associated with sleep-dependent learning and emotional memory processing. REM is also implicated in post-traumatic stress disorder (PTSD), which is characterized by sleep disturbance, heightened reactivity to fearful stimuli, and nightmares. Many suffers of PTSD also exhibit dampened medial-prefrontal cortex activity. However, the effects of PTSD-related brain changes on REM-dependent consolidation or the notion of 'over-consolidation' (strengthening of memory traces to such a degree that they become resistant to extinction) have been minimally explored. Here, we posit that (in addition to sleep architecture changes) the memory functions of REM must also be altered in PTSD. We propose a model of REM-dependent consolidation of learned fear in PTSD and examine how PTSD-related brain changes might interact with fear learning. We argue that reduced efficacy of inhibitory medial-prefrontal pathways may lead to maladaptive processing of traumatic memories in the early stages of consolidation after trauma.
Collapse
Affiliation(s)
- Anthony L A Murkar
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| |
Collapse
|
110
|
Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 2018; 8:60. [PMID: 29507292 PMCID: PMC5838104 DOI: 10.1038/s41398-018-0106-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 11/15/2022] Open
Abstract
Fear extinction involves the formation of a new memory trace that attenuates fear responses to a conditioned aversive memory, and extinction impairments are implicated in trauma- and stress-related disorders. Previous studies in rodents have found that the infralimbic prefrontal cortex (IL) and its glutamatergic projections to the basolateral amygdala (BLA) and basomedial amygdala (BMA) instruct the formation of fear extinction memories. However, it is unclear whether these pathways are exclusively involved in extinction, or whether other major targets of the IL, such as the nucleus accumbens (NAc) also play a role. To address this outstanding issue, the current study employed a combination of electrophysiological and chemogenetic approaches in mice to interrogate the role of IL-BLA and IL-NAc pathways in extinction. Specifically, we used patch-clamp electrophysiology coupled with retrograde tracing to examine changes in neuronal activity of the IL and prelimbic cortex (PL) projections to both the BLA and NAc following fear extinction. We found that extinction produced a significant increase in the intrinsic excitability of IL-BLA projection neurons, while extinction appeared to reverse fear-induced changes in IL-NAc projection neurons. To establish a causal counterpart to these observations, we then used a pathway-specific Designer Receptors Exclusively Activated by Designer Drugs (DREADD) strategy to selectively inhibit PFC-BLA projection neurons during extinction acquisition. Using this approach, we found that DREADD-mediated inhibition of PFC-BLA neurons during extinction acquisition impaired subsequent extinction retrieval. Taken together, our findings provide further evidence for a critical contribution of the IL-BLA neural circuit to fear extinction.
Collapse
|
111
|
Zussy C, Gómez-Santacana X, Rovira X, De Bundel D, Ferrazzo S, Bosch D, Asede D, Malhaire F, Acher F, Giraldo J, Valjent E, Ehrlich I, Ferraguti F, Pin JP, Llebaria A, Goudet C. Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry 2018; 23:509-520. [PMID: 27994221 DOI: 10.1038/mp.2016.223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022]
Abstract
Contrary to acute pain, chronic pain does not serve as a warning signal and must be considered as a disease per se. This pathology presents a sensory and psychological dimension at the origin of affective and cognitive disorders. Being largely refractory to current pharmacotherapies, identification of endogenous systems involved in persistent and chronic pain is crucial. The amygdala is a key brain region linking pain sensation with negative emotions. Here, we show that activation of a specific intrinsic neuromodulatory system within the amygdala associated with type 4 metabotropic glutamate receptors (mGlu4) abolishes sensory and affective symptoms of persistent pain such as hypersensitivity to pain, anxiety- and depression-related behaviors, and fear extinction impairment. Interestingly, neuroanatomical and synaptic analysis of the amygdala circuitry suggests that the effects of mGlu4 activation occur outside the central nucleus via modulation of multisensory thalamic inputs to lateral amygdala principal neurons and dorso-medial intercalated cells. Furthermore, we developed optogluram, a small diffusible photoswitchable positive allosteric modulator of mGlu4. This ligand allows the control of endogenous mGlu4 activity with light. Using this photopharmacological approach, we rapidly and reversibly inhibited behavioral symptoms associated with persistent pain through optical control of optogluram in the amygdala of freely behaving animals. Altogether, our data identify amygdala mGlu4 signaling as a mechanism that bypasses central sensitization processes to dynamically modulate persistent pain symptoms. Our findings help to define novel and more precise therapeutic interventions for chronic pain, and exemplify the potential of optopharmacology to study the dynamic activity of endogenous neuromodulatory mechanisms in vivo.
Collapse
Affiliation(s)
- C Zussy
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - X Gómez-Santacana
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.,Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - X Rovira
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - D De Bundel
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - S Ferrazzo
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - D Bosch
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - D Asede
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - F Malhaire
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - F Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain
| | - E Valjent
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - I Ehrlich
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - F Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - J-P Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - A Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - C Goudet
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| |
Collapse
|
112
|
Lavano A, Guzzi G, Della Torre A, Lavano SM, Tiriolo R, Volpentesta G. DBS in Treatment of Post-Traumatic Stress Disorder. Brain Sci 2018; 8:brainsci8010018. [PMID: 29361705 PMCID: PMC5789349 DOI: 10.3390/brainsci8010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition for which pharmacological therapy is not always solvable. Various treatments have been suggested and deep brain stimulation (DBS) is currently under investigation for patients affected by PTSD. We review the neurocircuitry and up-to-date clinical concepts which are behind the use of DBS in posttraumatic stress disorder (PTSD). The role of DBS in treatment-refractory PTSD patients has been investigated relying on both preclinical and clinical studies. DBS for PTSD is in its preliminary phases and likely to provide hope for patients with medical refractory PTSD following the results of randomized controlled studies.
Collapse
Affiliation(s)
- Angelo Lavano
- Unit of Functional and Stereotactic Neurosurgery/Operative Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Giusy Guzzi
- Unit of Functional and Stereotactic Neurosurgery/Operative Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Attilio Della Torre
- Unit of Functional and Stereotactic Neurosurgery/Operative Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Serena Marianna Lavano
- Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Raffaele Tiriolo
- Unit of Functional and Stereotactic Neurosurgery/Operative Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Giorgio Volpentesta
- Unit of Functional and Stereotactic Neurosurgery/Operative Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| |
Collapse
|
113
|
Abstract
The activity of neural circuits that underpin particular behaviours are one of the most interesting questions in neurobiology today. This understanding will not only lead to a detailed understanding of learning and memory formation, but also provides a platform for the development of novel therapeutic approaches to a range of neurological disorders that afflict humans. Among the different behavioural paradigms, Pavlovian fear conditioning and its extinction are two of the most extensively used to study acquisition, consolidation and retrieval of fear-related memories. The amygdala, medial prefrontal cortex (mPFC) and hippocampus are three regions with extensive bidirectional connections, and play key roles in fear processing. In this chapter, we summarise our current understanding of the structure and physiological role of these three regions in fear learning and extinction.
Collapse
Affiliation(s)
- Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
114
|
Knox D, Stanfield BR, Staib JM, David NP, DePietro T, Chamness M, Schneider EK, Keller SM, Lawless C. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress. Behav Brain Res 2017; 341:189-197. [PMID: 29292158 DOI: 10.1016/j.bbr.2017.12.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/15/2023]
Abstract
Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, United States
| | - Jennifer M Staib
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, DE 19716, United States
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Elizabeth K Schneider
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Caroline Lawless
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
115
|
Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes. J Neurosci 2017; 38:1160-1177. [PMID: 29255003 DOI: 10.1523/jneurosci.1412-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/10/2017] [Accepted: 12/10/2017] [Indexed: 01/17/2023] Open
Abstract
The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8. Tshz1 mutant ITCs show increased cell death at postnatal time points, leading to a dramatic reduction by 3 weeks of age. In line with this, Foxp2-null mutants also show a loss of ITCs at postnatal time points, suggesting that Foxp2 may function downstream of Tshz1 in the maintenance of ITCs. Behavioral analysis of male Tshz1 cKOs revealed defects in fear extinction as well as an increase in floating during the forced swim test, indicative of a depression-like phenotype. Moreover, Tshz1 cKOs display significantly impaired social interaction (i.e., increased passivity) regardless of partner genetics. Together, these results suggest that Tshz1 plays a critical role in the development of ITCs and that fear, depression-like and social behavioral deficits arise in their absence.SIGNIFICANCE STATEMENT We show here that the zinc finger transcription factor Tshz1 is expressed during development of the intercalated cells (ITCs) within the mouse amygdala. These neurons have previously been shown to play a crucial role in fear extinction. Tshz1 mouse mutants exhibit severely reduced numbers of ITCs as a result of abnormal migration, differentiation, and survival of these neurons. Furthermore, the loss of ITCs in mouse Tshz1 mutants correlates well with defects in fear extinction as well as the appearance of depression-like and abnormal social interaction behaviors reminiscent of depressive disorders observed in human patients with distal 18q deletions, including the Tshz1 locus.
Collapse
|
116
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
117
|
Interplay of prefrontal cortex and amygdala during extinction of drug seeking. Brain Struct Funct 2017; 223:1071-1089. [PMID: 29081007 PMCID: PMC5869906 DOI: 10.1007/s00429-017-1533-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
Extinction of Pavlovian conditioning is a complex process that involves brain regions such as the medial prefrontal cortex (mPFC), the amygdala and the locus coeruleus. In particular, noradrenaline (NA) coming from the locus coeruleus has been recently shown to play a different role in two subregions of the mPFC, the prelimbic (PL) and the infralimbic (IL) regions. How these regions interact in conditioning and subsequent extinction is an open issue. We studied these processes using two approaches: computational modelling and NA manipulation in a conditioned place preference paradigm (CPP) in mice. In the computational model, NA in PL and IL causes inputs arriving to these regions to be amplified, thus allowing them to modulate learning processes in amygdala. The model reproduces results from studies involving depletion of NA from PL, IL, or both in CPP. In addition, we simulated new experiments of NA manipulations in mPFC, making predictions on the possible results. We searched the parameters of the model and tested the robustness of the predictions by performing a sensitivity analysis. We also present an empirical experiment where, in accord with the model, a double depletion of NA from both PL and IL in CPP with amphetamine impairs extinction. Overall the proposed model, supported by anatomical, physiological, and behavioural data, explains the differential role of NA in PL and IL and opens up the possibility to understand extinction mechanisms more in depth and hence to aid the development of treatments for disorders such as addiction.
Collapse
|
118
|
Temme SJ, Murphy GG. The L-type voltage-gated calcium channel Ca V1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala. ACTA ACUST UNITED AC 2017; 24:580-588. [PMID: 29038219 PMCID: PMC5647931 DOI: 10.1101/lm.045773.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
L-type voltage-gated calcium channels (LVGCCs) have been implicated in both the formation and the reduction of fear through Pavlovian fear conditioning and extinction. Despite the implication of LVGCCs in fear learning and extinction, studies of the individual LVGCC subtypes, CaV1.2 and CaV1.3, using transgenic mice have failed to find a role of either subtype in fear extinction. This discontinuity between the pharmacological studies of LVGCCs and the studies investigating individual subtype contributions could be due to the limited neuronal deletion pattern of the CaV1.2 conditional knockout mice previously studied to excitatory neurons in the forebrain. To investigate the effects of deletion of CaV1.2 in all neuronal populations, we generated CaV1.2 conditional knockout mice using the synapsin1 promoter to drive Cre recombinase expression. Pan-neuronal deletion of CaV1.2 did not alter basal anxiety or fear learning. However, pan-neuronal deletion of CaV1.2 resulted in a significant deficit in extinction of contextual fear, implicating LVGCCs, specifically CaV1.2, in extinction learning. Further exploration on the effects of deletion of CaV1.2 on inhibitory and excitatory input onto the principle neurons of the lateral amygdala revealed a significant shift in inhibitory/excitatory balance. Together these data illustrate an important role of CaV1.2 in fear extinction and the synaptic regulation of activity within the amygdala.
Collapse
Affiliation(s)
- Stephanie J Temme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Geoffrey G Murphy
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
119
|
Davis P, Zaki Y, Maguire J, Reijmers LG. Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci 2017; 20:1624-1633. [PMID: 28967909 PMCID: PMC5940487 DOI: 10.1038/nn.4651] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a novel combination of chemogenetics, activity-based neuronal-ensemble labeling, and in vivo electrophysiology, we found that fear extinction learning confers parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) with a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6–12 Hz oscillation and a fear-associated 3–6 Hz oscillation within the BLA. Loss of this competition increases a 3–6 Hz oscillatory signature, with BLA→mPFC directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV-interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.
Collapse
Affiliation(s)
- Patrick Davis
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Yosif Zaki
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Leon G Reijmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
120
|
Siddiqui SA, Singh S, Ranjan V, Ugale R, Saha S, Prakash A. Enhanced Histone Acetylation in the Infralimbic Prefrontal Cortex is Associated with Fear Extinction. Cell Mol Neurobiol 2017; 37:1287-1301. [PMID: 28097489 DOI: 10.1007/s10571-017-0464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
The molecular processes that establish fear memory are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can manifest in humans as a range of fear-related anxiety disorders like post-traumatic stress disorders (PTSD). In the present study, immunohistochemistry for acetyl H3, H4, c-fos, CBP (CREB-binding protein) in the infralimbic prefrontal cortex (IL-PFC) and prelimbic prefrontal cortex (PL-PFC) of mPFC (medial prefrontal cortex) and basal amygdala (BA), lateral amygdala (LA), centrolateral amygdala (CeL), centromedial amygdala (CeM) of the amygdala was performed to link region-specific histone acetylation to fear and extinction learning. It was found that the PL-PFC and IL-PFC along with the sub-regions of the amygdala responded differentially to the fear learning and extinction. Following fear learning, c-fos and CBP expression and acetylation of H3 and H4 increased in the BA, LA, CeM, and CeL and the PL-PFC but not in the IL-PFC as compared to the naive control. Similarly, following extinction learning, c-fos and CBP expression increased in BA, LA, CeL, and IL-PFC but not in PL-PFC and CeM as compared to the naive control and conditioned group. However, the acetylation of H3 increased in both IL and PL as opposed to H4 which increased only in the IL-PFC following extinction learning. Overall, region-specific activation in amygdala and PFC following fear and extinction learning as evident by the c-fos activation paralleled the H3/H4 acetylation in these regions. These results suggest that the differential histone acetylation in the PFC and amygdala subnuclei following fear learning and extinction may be associated with the region-specific changes in the neuronal activation pattern resulting in more fear/less fear.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Vandana Ranjan
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, RTM Nagpur University, Nagpur, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
121
|
Holmes NM, Crane JW, Tang M, Fam J, Westbrook RF, Delaney AJ. α 2-adrenoceptor-mediated inhibition in the central amygdala blocks fear-conditioning. Sci Rep 2017; 7:11712. [PMID: 28916748 PMCID: PMC5601913 DOI: 10.1038/s41598-017-12115-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022] Open
Abstract
The central amygdala is critical for the acquisition and expression of fear memories. This region receives a dense innervation from brainstem noradrenergic cell groups and has a high level of α2-adrenoceptor expression. Using whole-cell electrophysiological recordings from rat brain slices, we characterise the role of pre-synaptic α2-adrenoceptor in modulating discrete inhibitory and excitatory connections within both the lateral and medial division of the central amygdala. The selective α2-adrenoceptor agonist clonidine blocked the excitatory input from the pontine parabrachial neurons onto neurons of the lateral central amygdala. In addition, clonidine blocked inhibitory connections from the medial paracapsular intercalated cell mass onto both lateral and medial central amygdala neurons. To examine the behavioural consequence of α2-adrenoceptor-mediated inhibition of these inputs, we infused clonidine into the central amygdala prior to contextual fear-conditioning. In contrast to vehicle-infused rats, clonidine-infused animals displayed reduced levels of freezing 24 hours after training, despite showing no difference in freezing during the training session. These results reveal a role for α2-adrenoceptors within the central amygdala in the modulation of synaptic transmission and the formation of fear-memories. In addition, they provide further evidence for a role of the central amygdala in fear-memory formation.
Collapse
Affiliation(s)
- N M Holmes
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J W Crane
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia
| | - M Tang
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Fam
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - R F Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A J Delaney
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
122
|
Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017; 178:93-102. [PMID: 27746261 PMCID: PMC5391308 DOI: 10.1016/j.physbeh.2016.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat.
Collapse
Affiliation(s)
- Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA.
| |
Collapse
|
123
|
Strobel C, Sullivan RKP, Stratton P, Sah P. Calcium signalling in medial intercalated cell dendrites and spines. J Physiol 2017; 595:5653-5669. [PMID: 28594440 DOI: 10.1113/jp274261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Dendritic and spine calcium imaging in combination with electrophysiology in acute slices revealed that in medial intercalated cells of the amygdala: Action potentials back-propagate into the dendritic tree, but due to the presence of voltage-dependent potassium channels, probably Kv4.2 channels, attenuate over distance. A mixed population of AMPA receptors with rectifying and linear I-V relations are present at individual spines of a single neuron. Decay kinetics and pharmacology suggest tri-heteromeric NMDA receptors at basolateral-intercalated cell synapses. NMDA receptors are the main contributors to spine calcium entry in response to synaptic stimulation. Calcium signals in response to low- and high-frequency stimulation, and in combination with spontaneous action potentials are locally restricted to the vicinity of active spines. Together, these data show that calcium signalling in these GABAergic neurons is tightly controlled and acts as a local signal. ABSTRACT The amygdala plays a central role in fear conditioning and extinction. The medial intercalated (mITC) neurons are GABAergic cell clusters interspaced between the basolateral (BLA) and central amygdala (CeA). These neurons are thought to play a key role in fear and extinction, controlling the output of the CeA by feed-forward inhibition. BLA to mITC cell inputs are thought to undergo synaptic plasticity, a mechanism underlying learning, which is mediated by NMDA receptor-dependent mechanisms that require changes in cytosolic calcium. Here, we studied the electrical and calcium signalling properties of mITC neurons in GAD67-eGFP mice using whole-cell patch clamp recordings and two-photon calcium imaging. We show that action potentials back-propagate (bAP) into dendrites, and evoke calcium transients in both the shaft and the dendritic spine. However, bAP-mediated calcium rises in the dendrites attenuate with distance due to shunting by voltage-gated potassium channels. Glutamatergic inputs make dual component synapses on spines. At these synapses, postsynaptic AMPA receptors can have linear or rectifying I-V relationships, indicating that some synapses express GluA2-lacking AMPA receptors. Synaptic NMDA receptors had intermediate decay kinetics, and were only partly blocked by GuN2B selective blockers, indicating these receptors are GluN1/GluN2A/GluN2B trimers. Low- or high-frequency synaptic stimulation raised spine calcium, mediated by calcium influx via NMDA receptors, was locally restricted and did not invade neighbouring spines. Our results show that in mITC neurons, postsynaptic calcium is tightly controlled, and acts as a local signal.
Collapse
Affiliation(s)
- Cornelia Strobel
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Peter Stratton
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
124
|
Freezing response-independent facilitation of fear extinction memory in the prefrontal cortex. Sci Rep 2017; 7:5363. [PMID: 28706238 PMCID: PMC5509670 DOI: 10.1038/s41598-017-04335-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
The infralimbic cortex (IL) is known to facilitate the formation of extinction memory through reciprocal interactions with the amygdala, which produces fear responses such as freezing. Thus, whether presynaptic input from the amygdala and post-synaptic output of IL neurons are functionally dissociated in extinction memory formation remains unclear. Here, we demonstrated that photostimulation of IL inputs from BLA did not change freezing responses to conditioned stimuli (CS) during training, but did facilitate extinction memory, measured as a reduction in freezing responses to the CS 1 day later. On the other hand, photostimulation of somata of IL neurons induced an immediate reduction in freezing to CS, but this did not affect extinction memory tested the next day. These results provide in vivo evidence for IL-dependent facilitation of extinction memory without post-synaptic modulation of freezing circuits.
Collapse
|
125
|
An B, Kim J, Park K, Lee S, Song S, Choi S. Amount of fear extinction changes its underlying mechanisms. eLife 2017; 6. [PMID: 28671550 PMCID: PMC5495569 DOI: 10.7554/elife.25224] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.
Collapse
Affiliation(s)
- Bobae An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,Department of Neurobiology, Duke University, Durham, United States
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kyungjoon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sukwon Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Korea
| | - Sukwoon Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
126
|
Liu ZP, He QH, Pan HQ, Xu XB, Chen WB, He Y, Zhou J, Zhang WH, Zhang JY, Ying XP, Han RW, Li BM, Gao TM, Pan BX. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice. Biol Psychiatry 2017; 81:990-1002. [PMID: 27591789 DOI: 10.1016/j.biopsych.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABAAR) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABAAR to amygdala inhibition and fear. METHODS By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABAAR (GABAA(δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABAA(δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS In sharp contrast to the established role of synaptic GABAAR in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABAA(δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABAA(δ)R. The disinhibition arose from IN-specific expression of GABAA(δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABAA(δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABAA(δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. CONCLUSIONS Our findings suggest that GABAA(δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABAA(δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion.
Collapse
Affiliation(s)
- Zhi-Peng Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Qing-Hai He
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Xiao-Bin Xu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Wen-Bing Chen
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Ye He
- Medical Experiment Center, Nanchang University, Nanchang
| | - Jin Zhou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Jun-Yu Zhang
- Department of Biotechnology, School of Life Sciences, Nanchang University, Nanchang
| | - Xiao-Ping Ying
- Department of Neurology, the 2nd Affiliated Hospital, , Nanchang University, Nanchang
| | - Ren-Wen Han
- Institute of Translational Medicine, Nanchang University, Nanchang
| | - Bao-Ming Li
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang; Department of Neurology, the 2nd Affiliated Hospital, , Nanchang University, Nanchang; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Jiangxi, China.
| |
Collapse
|
127
|
Abivardi A, Bach DR. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum Brain Mapp 2017; 38:3927-3940. [PMID: 28512761 PMCID: PMC5729634 DOI: 10.1002/hbm.23639] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 01/22/2023] Open
Abstract
Structural alterations in long‐range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non‐systematic. Harnessing diffusion‐weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1‐weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non‐human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white‐matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non‐human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927–3940, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aslan Abivardi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, 8057, Switzerland.,Wellcome Trust Centre for Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1N 3BG, United Kingdom
| |
Collapse
|
128
|
Spencer AE, Marin MF, Milad MR, Spencer TJ, Bogucki OE, Pope AL, Plasencia N, Hughes B, Pace-Schott EF, Fitzgerald M, Uchida M, Biederman J. Abnormal fear circuitry in Attention Deficit Hyperactivity Disorder: A controlled magnetic resonance imaging study. Psychiatry Res Neuroimaging 2017; 262:55-62. [PMID: 28235692 DOI: 10.1016/j.pscychresns.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
We examined whether non-traumatized subjects with Attention Deficit Hyperactivity Disorder (ADHD) have dysfunctional activation in brain structures mediating fear extinction, possibly explaining the statistical association between ADHD and other disorders characterized by aberrant fear processing such as PTSD. Medication naïve, non-traumatized young adult subjects with (N=27) and without (N=20) ADHD underwent a 2-day fear conditioning and extinction protocol in a 3T functional magnetic resonance imaging (fMRI) scanner. Skin conductance response (SCR) was recorded as a measure of conditioned response. Compared to healthy controls, ADHD subjects had significantly greater insular cortex activation during early extinction, lesser dorsal anterior cingulate cortex (dACC) activation during late extinction, lesser ventromedial prefrontal cortex (vmPFC) activation during late extinction learning and extinction recall, and greater hippocampal activation during extinction recall. Hippocampal and vmPFC deficits were similar to those documented in PTSD subjects compared to traumatized controls without PTSD. Non-traumatized, medication naive adults with ADHD had abnormalities in fear circuits during extinction learning and extinction recall, and some findings were consistent with those previously documented in subjects with PTSD compared to traumatized controls without PTSD. These findings could explain the significant association between ADHD and PTSD as well as impaired emotion regulation in ADHD.
Collapse
Affiliation(s)
- Andrea E Spencer
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Marie-France Marin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammed R Milad
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Thomas J Spencer
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Olivia E Bogucki
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda L Pope
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Natalie Plasencia
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Brittany Hughes
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maura Fitzgerald
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mai Uchida
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph Biederman
- Pediatric Psychopharmacology and Adult ADHD Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
129
|
Levar N, van Leeuwen JMC, Puts NAJ, Denys D, van Wingen GA. GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans. Front Hum Neurosci 2017; 11:202. [PMID: 28496404 PMCID: PMC5406467 DOI: 10.3389/fnhum.2017.00202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/07/2017] [Indexed: 12/03/2022] Open
Abstract
Relapse of fear after successful treatment is a common phenomenon in patients with anxiety disorders. Animal research suggests that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a key role in the maintenance of extinguished fear. Here, we combined magnetic resonance spectroscopy and functional magnetic resonance imaging to investigate the role of GABA in fear recovery in 70 healthy male participants. We associated baseline GABA levels in the dorsal anterior cingulate cortex (dACC) to indices of fear recovery as defined by changes in skin conductance responses (SCRs), blood oxygen level dependent responses, and functional connectivity from fear extinction to fear retrieval. The results showed that high GABA levels were associated with increased SCRs, enhanced activation of the right amygdala, and reduced amygdala-ventromedial prefrontal cortex connectivity during fear recovery. Follow-up analyses exclusively for the extinction phase showed that high GABA levels were associated with reduced amygdala activation and enhanced amygdala-ventromedial prefrontal cortex connectivity, despite the absence of correlations between GABA and physiological responses. Follow-up analyses for the retrieval phase did not show any significant associations with GABA. Together, the association between GABA and increases in SCRs from extinction to retrieval, without associations during both phases separately, suggests that dACC GABA primarily inhibits the consolidation of fear extinction. In addition, the opposite effects of GABA on amygdala activity and connectivity during fear extinction compared to fear recovery suggest that dACC GABA may initially facilitate extinction learning.
Collapse
Affiliation(s)
- Nina Levar
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| | - Judith M C van Leeuwen
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Department of Psychiatry, University Medical Center UtrechtUtrecht, Netherlands
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins UniversityBaltimore, MD, USA.,FM Kirby Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Academic Medical CenterAmsterdam, Netherlands.,Brain Imaging Center, Academic Medical CenterAmsterdam, Netherlands.,Amsterdam Brain and Cognition, University of AmsterdamAmsterdam, Netherlands.,Spinoza Center for NeuroimagingAmsterdam, Netherlands
| |
Collapse
|
130
|
Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions. J Neurosci 2017; 37:5051-5064. [PMID: 28411274 DOI: 10.1523/jneurosci.3940-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/16/2023] Open
Abstract
The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive-emotional functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei, poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.SIGNIFICANCE STATEMENT The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder.
Collapse
|
131
|
Calakos KC, Blackman D, Schulz AM, Bauer EP. Distribution of type I corticotropin-releasing factor (CRF1) receptors on GABAergic neurons within the basolateral amygdala. Synapse 2017; 71:10.1002/syn.21953. [PMID: 27997737 PMCID: PMC7876706 DOI: 10.1002/syn.21953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) plays a critical role in mediating anxiety-like responses to stressors, and dysfunction of the CRF system has been linked to the etiology of several psychiatric disorders. Extra-hypothalamic CRF can also modulate learning and memory formation, including amygdala-dependent learning. The basolateral nucleus of the amygdala (BLA) contains dense concentrations of CRF receptors, yet the distribution of these receptors on specific neuronal subtypes within the BLA has not been characterized. Here, we quantified the expression of CRF receptors on three nonoverlapping classes of GABAergic interneurons: those containing the calcium-binding protein parvalbumin (PV), and those expressing the neuropeptides somatostatin (SOM) or cholecystokinin (CCK). While the majority of PV+ neurons and roughly half of CCK+ neurons expressed CRF receptors, they were expressed to a much lesser extent on SOM+ interneurons. Knowledge of the distribution of CRF receptors within the BLA can provide insight into how manipulations of the CRF system modulate fear and anxiety-like behaviors.
Collapse
Affiliation(s)
- Katina C Calakos
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Dakota Blackman
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Alexandra M Schulz
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| | - Elizabeth P Bauer
- Barnard College Columbia University, 3009 Broadway, New York, New York, 10027
| |
Collapse
|
132
|
Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat Commun 2017; 8:14611. [PMID: 28327612 PMCID: PMC5364458 DOI: 10.1038/ncomms14611] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/14/2017] [Indexed: 01/12/2023] Open
Abstract
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. The endogenous opioid system regulates fear and anxiety, but the underlying cellular mechanism is unclear. Winters et al. shows that in the intercalated cells (ITC) of the amygdala, endogenous opioids suppress glutamatergic inputs via the δ-opioid receptor presynaptically, and reduce the excitability of ITCs via the μ-opioid receptor postsynaptically.
Collapse
|
133
|
Miranda A, Taca A. Neuromodulation with percutaneous electrical nerve field stimulation is associated with reduction in signs and symptoms of opioid withdrawal: a multisite, retrospective assessment. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:56-63. [PMID: 28301217 DOI: 10.1080/00952990.2017.1295459] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Finding an effective, non-pharmacological approach to treat opioid withdrawal could remove some of the barriers associated with pharmacotherapy. The BRIDGE® is a noninvasive, percutaneous electrical nerve field stimulator developed to target pain. OBJECTIVES This pilot study aimed to determine (1) the effects of the BRIDGE on withdrawal scores during the induction phase of opioid withdrawal therapy, (2) the percentage of subjects who successfully transitioned to medication assisted therapy (MAT). METHODS Adult patients treated with the BRIDGE during medically supervised withdrawal were included in this open label, uncontrolled, and retrospective study. The clinical opioid withdrawal scale (COWS) scores were prospectively recorded at different intervals (20, 30, and 60 min) and analyzed retrospectively. A subset of patients had scores recorded 5-days post-BRIDGE. Those who returned to the clinic and received their first dose of maintenance medication were considered to be successfully transitioned. RESULTS In this cohort (n=73), 65% were male. The mean COWS score prior to BRIDGE placement was 20.1 (±6.1). Twenty minutes after BRIDGE placement, the mean score was reduced to 7.5 (±5.9) (62.7% reduction, p<0.001). The scores further decreased after 30 minutes 4.0 (±4.4) and 60 minutes 3.1 (±3.4) (84.6% reduction, p<0.001). No rescue medications were administered during this period. The mean withdrawal score on day 5 was 0.6 (97.1% reduction, p<0.001) (n=33). Overall, 64/73 patients (88.8%) successfully transitioned to MAT. CONCLUSIONS Neurostimulation with the BRIDGE is associated with a reduction in opioid withdrawal scores. This effect persisted during the induction period and allowed for effective transition to MAT.
Collapse
Affiliation(s)
- Adrian Miranda
- a Department of Pediatrics, Division of Gastroenterology and Hepatology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Arturo Taca
- b St. Louis University School of Medicine , St. Louis , MO , USA.,c INSynergy Treatment Program , St. Louis , MO , USA
| |
Collapse
|
134
|
Lichtenberg NT, Wassum KM. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations. Eur J Neurosci 2017; 45:381-387. [PMID: 27862489 PMCID: PMC5293612 DOI: 10.1111/ejn.13477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023]
Abstract
Environmental reward-predictive stimuli can retrieve from memory a specific reward expectation that allows them to motivate action and guide choice. This process requires the basolateral amygdala (BLA), but little is known about the signaling systems necessary within this structure. Here we examined the role of the neuromodulatory opioid receptor system in the BLA in such cue-directed action using the outcome-specific Pavlovian-to-instrumental transfer (PIT) test in rats. Inactivation of BLA mu-, but not delta-opioid receptors was found to dose-dependently attenuate the ability of a reward-predictive cue to selectively invigorate the performance of actions directed at the same unique predicted reward (i.e. to express outcome-specific PIT). BLA mu-opioid receptor inactivation did not affect the ability of a reward itself to similarly motivate action (outcome-specific reinstatement), suggesting a more selective role for the BLA mu-opioid receptor in the motivating influence of currently unobservable rewarding events. These data reveal a new role for BLA mu-opioid receptor activation in the cued recall of precise reward memories and the use of this information to motivate specific action plans.
Collapse
Affiliation(s)
- Nina T Lichtenberg
- Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095, USA
| | - Kate M Wassum
- Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
135
|
Reznikov R, Hamani C. Posttraumatic Stress Disorder: Perspectives for the Use of Deep Brain Stimulation. Neuromodulation 2016; 20:7-14. [PMID: 27992092 DOI: 10.1111/ner.12551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Deep Brain Stimulation (DBS) has been either approved or is currently under investigation for a number of psychiatric disorders. MATERIALS AND METHODS We review clinical and preclinical concepts as well as the neurocircuitry that may be of relevance for the implementation of DBS in posttraumatic stress disorder (PTSD). RESULTS PTSD is a chronic and debilitating illness associated with dysfunction in well-established neural circuits, including the amygdala and prefrontal cortex. Although most patients often improve with medications and/or psychotherapy, approximately 20-30% are considered to be refractory to conventional treatments. In other psychiatric disorders, DBS has been investigated in treatment-refractory patients. To date, preclinical work suggests that stimulation at high frequency delivered at particular timeframes to different targets, including the amygdala, ventral striatum, hippocampus, and prefrontal cortex may improve fear extinction and anxiety-like behavior in rodents. In the only clinical report published so far, a patient implanted with electrodes in the amygdala has shown striking improvements in PTSD symptoms. CONCLUSIONS Neuroimaging, preclinical, and preliminary clinical data suggest that the use of DBS for the treatment of PTSD may be practical but the field requires further investigation.
Collapse
Affiliation(s)
- Roman Reznikov
- Behavioural Neurobiology Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
136
|
Knox D, Stanfield BR, Staib JM, David NP, Keller SM, DePietro T. Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits. ACTA ACUST UNITED AC 2016; 23:689-698. [PMID: 27918273 PMCID: PMC5110987 DOI: 10.1101/lm.043141.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/10/2016] [Indexed: 01/20/2023]
Abstract
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Jennifer M Staib
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, Delaware 19716, USA
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
137
|
McCullough KM, Morrison FG, Ressler KJ. Bridging the Gap: Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiol Learn Mem 2016; 135:27-39. [PMID: 27470092 PMCID: PMC5123437 DOI: 10.1016/j.nlm.2016.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders.
Collapse
Affiliation(s)
- K M McCullough
- Department of Psychiatry and Behavioral Sciences and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Graduate Program in Neuroscience, Emory University, Atlanta, Georgia; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States.
| | - F G Morrison
- Department of Psychiatry and Behavioral Sciences and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Graduate Program in Neuroscience, Emory University, Atlanta, Georgia; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - K J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
138
|
Social buffering ameliorates conditioned fear responses in the presence of an auditory conditioned stimulus. Physiol Behav 2016; 168:34-40. [PMID: 27806255 DOI: 10.1016/j.physbeh.2016.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Social buffering is a phenomenon in which stress in an animal is ameliorated when the subject is accompanied by a conspecific animal(s) during exposure to distressing stimuli. Previous studies of social buffering of conditioned fear responses in rats have typically used a 3-s auditory conditioned stimulus (CS) as a stressor, observing stress responses during a specified experimental period. Because a 3-s CS is extremely short compared with a typical experimental period, freezing has thus been observed primarily in the absence of the CS. Therefore, it has been unclear whether social buffering ameliorates conditioned fear responses in the presence of the CS. To clarify this issue, the current study assessed the effects of social buffering on conditioned fear responses in the presence of a 20-s CS. We measured the percentage of time spent freezing during the 20-s period following the onset of the CS. When conditioned subjects were exposed to the 20-s CS alone, they exhibited a high percentage of freezing in the presence of the CS. The presence of another non-conditioned rat completely blocked this response. The same result was observed when freezing was observed primarily in the absence of the 3-s CS. In addition, we confirmed that the presence of an associate ameliorated conditioned fear responses induced by a 20-s CS or 3-s CS when the duration and frequency of fear responses was measured. These findings indicate that social buffering ameliorates conditioned fear responses in the presence of an auditory CS.
Collapse
|
139
|
Dincheva I, Lynch NB, Lee FS. The Role of BDNF in the Development of Fear Learning. Depress Anxiety 2016; 33:907-916. [PMID: 27699937 PMCID: PMC5089164 DOI: 10.1002/da.22497] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders.
Collapse
Affiliation(s)
- Iva Dincheva
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York.
| | - Niccola B. Lynch
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York, New York
| |
Collapse
|
140
|
Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear. J Neurosci 2016; 36:10151-62. [PMID: 27683910 DOI: 10.1523/jneurosci.0845-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.
Collapse
|
141
|
Li Y, Nakae K, Ishii S, Naoki H. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model. PLoS Comput Biol 2016; 12:e1005099. [PMID: 27617747 PMCID: PMC5019407 DOI: 10.1371/journal.pcbi.1005099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/11/2016] [Indexed: 11/29/2022] Open
Abstract
Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. Animals live in environments that contain uncertainty. To adapt to uncertain situations, they flexibly learn to associate environmental cues with rewards and punishments. Understanding how the brain processes uncertainty has remained an important issue in neuroscience. To address this question, we focused on neural processing in the amygdala and mPFC during fear conditioning and extinction. We developed a neural circuit model that incorporates distinct neural populations in the amygdala and mPFC. Our model first successfully reproduced uncertainty-dependent resistance to the extinction of fear memory. An extension of the model provided a possible explanation for observations made during optogenetic manipulation of the ventral mPFC. Finally, we proposed a procedure to accelerate the efficacy of subsequent extinction based on our model.
Collapse
Affiliation(s)
- Yuzhe Li
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ken Nakae
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Shin Ishii
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Honda Naoki
- Imaging Platform of Spatio-temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
142
|
Schneider BL, Ghoddoussi F, Charlton JL, Kohler RJ, Galloway MP, Perrine SA, Conti AC. Increased Cortical Gamma-Aminobutyric Acid Precedes Incomplete Extinction of Conditioned Fear and Increased Hippocampal Excitatory Tone in a Mouse Model of Mild Traumatic Brain Injury. J Neurotrauma 2016; 33:1614-24. [DOI: 10.1089/neu.2015.4190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandy L. Schneider
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan
- Magnetic Resonance Core (MRC), Wayne State University School of Medicine, Detroit, Michigan
| | - Jennifer L. Charlton
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert J. Kohler
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Matthew P. Galloway
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Alana C. Conti
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
143
|
Kutlu MG, Tumolo JM, Holliday E, Garrett B, Gould TJ. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala. ACTA ACUST UNITED AC 2016; 23:405-14. [PMID: 27421892 PMCID: PMC4947235 DOI: 10.1101/lm.042655.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022]
Abstract
Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala.
Collapse
Affiliation(s)
- Munir G Kutlu
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jessica M Tumolo
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Erica Holliday
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Brendan Garrett
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
144
|
Knox D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 2016; 133:39-52. [PMID: 27264248 DOI: 10.1016/j.nlm.2016.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
Abstract
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
145
|
Zikopoulos B, John YJ, García-Cabezas MÁ, Bunce JG, Barbas H. The intercalated nuclear complex of the primate amygdala. Neuroscience 2016; 330:267-90. [PMID: 27256508 DOI: 10.1016/j.neuroscience.2016.05.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States; Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States.
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | | | - Jamie G Bunce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States; Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
146
|
|
147
|
Schönherr S, Seewald A, Kasugai Y, Bosch D, Ehrlich I, Ferraguti F. Combined Optogenetic and Freeze-fracture Replica Immunolabeling to Examine Input-specific Arrangement of Glutamate Receptors in the Mouse Amygdala. J Vis Exp 2016. [PMID: 27167567 PMCID: PMC4941933 DOI: 10.3791/53853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Freeze-fracture electron microscopy has been a major technique in ultrastructural research for over 40 years. However, the lack of effective means to study the molecular composition of membranes produced a significant decline in its use. Recently, there has been a major revival in freeze-fracture electron microscopy thanks to the development of effective ways to reveal integral membrane proteins by immunogold labeling. One of these methods is known as detergent-solubilized Freeze-fracture Replica Immunolabeling (FRIL). The combination of the FRIL technique with optogenetics allows a correlated analysis of the structural and functional properties of central synapses. Using this approach it is possible to identify and characterize both pre- and postsynaptic neurons by their respective expression of a tagged channelrhodopsin and specific molecular markers. The distinctive appearance of the postsynaptic membrane specialization of glutamatergic synapses further allows, upon labeling of ionotropic glutamate receptors, to quantify and analyze the intrasynaptic distribution of these receptors. Here, we give a step-by-step description of the procedures required to prepare paired replicas and how to immunolabel them. We will also discuss the caveats and limitations of the FRIL technique, in particular those associated with potential sampling biases. The high reproducibility and versatility of the FRIL technique, when combined with optogenetics, offers a very powerful approach for the characterization of different aspects of synaptic transmission at identified neuronal microcircuits in the brain. Here, we provide an example how this approach was used to gain insights into structure-function relationships of excitatory synapses at neurons of the intercalated cell masses of the mouse amygdala. In particular, we have investigated the expression of ionotropic glutamate receptors at identified inputs originated from the thalamic posterior intralaminar and medial geniculate nuclei. These synapses were shown to relay sensory information relevant for fear learning and to undergo plastic changes upon fear conditioning.
Collapse
Affiliation(s)
| | - Anna Seewald
- Department of Pharmacology, Medical University of Innsbruck
| | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck
| | - Daniel Bosch
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tübingen
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tübingen
| | | |
Collapse
|
148
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
149
|
Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eNeuro 2016; 3:eN-NWR-0002-16. [PMID: 27022632 PMCID: PMC4804386 DOI: 10.1523/eneuro.0002-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.
Collapse
|
150
|
Laricchiuta D, Saba L, De Bartolo P, Caioli S, Zona C, Petrosini L. Maintenance of aversive memories shown by fear extinction-impaired phenotypes is associated with increased activity in the amygdaloid-prefrontal circuit. Sci Rep 2016; 6:21205. [PMID: 26875790 PMCID: PMC4753413 DOI: 10.1038/srep21205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/19/2016] [Indexed: 11/08/2022] Open
Abstract
Although aversive memory has been mainly addressed by analysing the changes occurring in average populations, the study of neuronal mechanisms of outliers allows understanding the involvement of individual differences in fear conditioning and extinction. We recently developed an innovative experimental model of individual differences in approach and avoidance behaviors, classifying the mice as Approaching, Balancing or Avoiding animals according to their responses to conflicting stimuli. The approach and avoidance behaviors appear to be the primary reactions to rewarding and threatening stimuli and may represent predictors of vulnerability (or resilience) to fear. We submitted the three mice phenotypes to Contextual Fear Conditioning. In comparison to Balancing animals, Approaching and Avoiding mice exhibited no middle- or long-term fear extinction. The two non-extinguishing phenotypes exhibited potentiated glutamatergic neurotransmission (spontaneous excitatory postsynaptic currents/spinogenesis) of pyramidal neurons of medial prefrontal cortex and basolateral amygdala. Basing on the a priori individuation of outliers, we demonstrated that the maintenance of aversive memories is linked to increased spinogenesis and excitatory signaling in the amygdala-prefrontal cortex fear matrix.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Luana Saba
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Sociological and Psychopedagogical Studies, University Guglielmo Marconi of Rome, Rome, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Zona
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Neuroscience, University of Rome “Tor Vergata”, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| |
Collapse
|