101
|
Strub T, Martel A, Nahon-Esteve S, Baillif S, Ballotti R, Bertolotto C. Translation of single-cell transcriptomic analysis of uveal melanomas to clinical oncology. Prog Retin Eye Res 2021; 85:100968. [PMID: 33852963 DOI: 10.1016/j.preteyeres.2021.100968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is an aggressive and deadly neoplasm. In recent decades, great efforts have been made to obtain a more comprehensive understanding of genetics, genomics and molecular changes in UM, enabling the identification of key cellular processes and signalling pathways. Still, there is no effective treatment for the metastatic disease. Intratumoural heterogeneity (ITH) is thought to be one of the leading determinants of metastasis, therapeutic resistance and recurrence. Crucially, tumours are complex ecosystems, where cancer cells, and diverse cell types from their microenvironment engage in dynamic spatiotemporal crosstalk that allows cancer progression, adaptation and evolution. This highlights the urgent need to gain insight into ITH in UM and its intersection with the microenvironment to overcome treatment failure. Here we provide an overview of the studies and technologies to study ITH in human UMs and tumour micro-environmental composition. We discuss how to incorporate ITH into clinical consideration for the purpose of advocating for new clinical management. We focus on the application of single-cell transcriptomic analysis and propose that understanding the driving forces and functional consequences of the observed tumour heterogeneity holds promise for changing the treatment paradigm of metastatic UMs, surmounting resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Thomas Strub
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Arnaud Martel
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Sacha Nahon-Esteve
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Stéphanie Baillif
- University Côte d'Azur, France; Centre Hospitalier Universitaire de Nice, Department of Ophthalmology, Nice, France
| | - Robert Ballotti
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- University Côte d'Azur, France; Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020 and Equipe Labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
102
|
Ulanja MB, Beutler BD, Antwi-Amoabeng D, Cohen PR, Moody AE, Rahman GA, Djankpa FT, Gullapalli N, Boampong-Konam K, Macaire JK, Bowman AT, Baral S, Bowles DW. Second primary malignancies in patients with melanoma in situ: Insights from the surveillance, epidemiology, and end results program. Cancer Epidemiol 2021; 72:101932. [PMID: 33773145 DOI: 10.1016/j.canep.2021.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Melanoma in situ (MIS) is among the most frequently diagnosed cancers in the United States. Emerging data suggest that MIS is associated with an increased risk of developing a second primary malignancy (SPM). OBJECTIVES To determine trends in MIS-associated SPMs and identify MIS-specific features that increase SPM risk. METHODS In this retrospective population-based study, we identified 90,075 patients who were diagnosed with MIS between 1973 and 2015 from the Surveillance, Epidemiology, and End Results database. The risk of developing an SPM among these individuals was compared to individuals without a diagnosis of MIS. The risk of developing an SPM among patients with a diagnosis of MIS was also increased over time. RESULTS Patients with a diagnosis of MIS had an increased relative risk (RR) of developing an SPM as compared to the general population with an identical age, sex, race, and follow-up period. The RR of a metachronous malignancy in MIS patients also increased over time, as follows: 1.16 (95 % CI: 1.07-1.26), 1.19 (95 % CI: 1.14-1.23), 1.30 (95 % CI: 1.27-1.33), and 1.52 (95 % CI: 1.49-1.56) in 1973-1982, 1983-1992, 1993-2002, and 2003-2015, respectively (P < 0.05). In addition, there was a direct correlation between the number of MIS lesions and SPM risk; ≥1, ≥2, and ≥3 tumors portended a 1.5-2, 2-3, and 4-5-fold increased risk of developing an SPM, respectively. CONCLUSIONS MIS is associated with an increased risk of developing an SPM and therefore individuals with a history of MIS may benefit from close medical surveillance.
Collapse
Affiliation(s)
- Mark B Ulanja
- University of Nevada, Reno School of Medicine, Department of Internal Medicine, Reno, NV, USA
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Department of Radiology, Los Angeles, CA, USA.
| | - Daniel Antwi-Amoabeng
- University of Nevada, Reno School of Medicine, Department of Internal Medicine, Reno, NV, USA
| | - Philip R Cohen
- Touro University California College of Osteopathic Medicine, Department of Dermatology, Vallejo, CA, USA; San Diego Family Dermatology, National City, CA, USA
| | - Alastair E Moody
- University of Utah School of Medicine, Department of Anesthesiology, Salt Lake City, UT, USA
| | - Ganiyu A Rahman
- Department of Surgery, University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana
| | - Francis T Djankpa
- Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Nageshwara Gullapalli
- University of Nevada, Reno School of Medicine, Department of Internal Medicine, Reno, NV, USA
| | | | - Jessica K Macaire
- Department of Surgery, University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana
| | | | - Stefan Baral
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel W Bowles
- University of Colorado School of Medicine, Department of Medical Oncology, Aurora, CO, USA; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
103
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
104
|
SnapshotDx Quiz: March 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
105
|
Lang M, Vocke CD, Ricketts CJ, Metwalli AR, Ball MW, Schmidt LS, Linehan WM. Clinical and Molecular Characterization of Microphthalmia-associated Transcription Factor (MITF)-related Renal Cell Carcinoma. Urology 2021; 149:89-97. [PMID: 33242557 PMCID: PMC8728951 DOI: 10.1016/j.urology.2020.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To characterize the clinical presentation, genomic alterations, pathologic phenotype and clinical management of microphthalmia-associated transcription factor (MITF) familial renal cell carcinoma (RCC), caused by a member of the TFE3, TFEB, and MITF family of transcription factor genes. METHODS The clinical presentation, family history, tumor histopathology, and surgical management were evaluated and reported herein. DNA sequencing was performed on blood DNA, tumor DNA and DNA extracted from adjacent normal kidney tissue. Copy number and gene expression analyses on tumor and normal tissues were performed by Real-Time Polymerase chain reaction. TCGA gene expression data were used for comparative analysis. Protein expression and subcellular localization were evaluated by immunohistochemistry. RESULTS Germline genomic analysis identified the MITF p.E318K variant in a patient with bilateral, multifocal type 1 papillary RCC and a family history of RCC. All tumors displayed the MITF variant and were characterized by amplification of chromosomes 7 and 17, hallmarks of type 1 papillary RCC. We demonstrated that MITF p.E318K variant results in altered transcriptional activity and that downstream targets of MiT family members, such as GPNMB, are dysregulated in the tumors. CONCLUSION Association of the pathogenic MITF variant with bilateral and multifocal type 1 papillary RCC in this family supports its role as a risk allele for the development of RCC and emphasizes the importance of screening for MITF variants irrelevant of the RCC histologic subtype. This study identifies potential biomarkers for the disease, such as GPNMB expression, that may facilitate the development of targeted therapies for patients affected with MITF-associated RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William M Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
106
|
Abou Alaiwi S, Nassar AH, Adib E, Groha SM, Akl EW, McGregor BA, Esplin ED, Yang S, Hatchell K, Fusaro V, Nielsen S, Kwiatkowski DJ, Sonpavde GP, Pomerantz M, Garber JE, Freedman ML, Rana HQ, Gusev A, Choueiri TK. Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep 2021; 34:108926. [PMID: 33789101 DOI: 10.1016/j.celrep.2021.108926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/27/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prior studies of the renal cell carcinoma (RCC) germline landscape investigated predominantly patients of European ancestry. We examine the frequency of germline pathogenic and likely pathogenic (P/LP) variants in 1,829 patients with RCC from various ancestries. Overall, P/LP variants are found in 17% of patients, among whom 10.3% harbor one or more clinically actionable variants with potential preventive or therapeutic utility. Patients of African ancestry with RCC harbor significantly more P/LP variants in FH compared to patients of non-African ancestry with RCC and African controls from the Genome Aggregation Database (gnomAD). Patients of non-African ancestry have significantly more P/LP variants in CHEK2 compared to patients of African ancestry with RCC and non-Finnish Europeans controls. Non-Africans with RCC have more actionable variants compared to Africans with RCC. This work helps understand the underlying biological differences in RCC between Africans and non-Africans and paves the way to more comprehensive genomic characterization of underrepresented populations.
Collapse
Affiliation(s)
- Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elio Adib
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan M Groha
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elie W Akl
- Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bradley A McGregor
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Shan Yang
- Invitae Corporation, San Francisco, CA, USA
| | | | | | | | - David J Kwiatkowski
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guru P Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark Pomerantz
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Division of Population Sciences, Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Huma Q Rana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Division of Population Sciences, Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Gusev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
107
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
108
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
109
|
Lambertini M, Mussi M, Dika E. Nodular melanoma in an MITF p.E318K carrier patient: The Wolf in Little Red Riding Hood. Australas J Dermatol 2021; 62:e146-e148. [PMID: 32895944 DOI: 10.1111/ajd.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Martina Lambertini
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Martina Mussi
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emi Dika
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
110
|
|
111
|
Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur RMJ, Travnickova J, Eichhoff OM, Cerny P, Möller K, Sigurbjörnsdóttir S, Kirty K, Einarsdottir BÓ, Cheng PF, Levesque M, Cornell RA, Patton EE, Larue L, de Tayrac M, Magnúsdóttir E, Ögmundsdóttir MH, Steingrimsson E. MITF reprograms the extracellular matrix and focal adhesion in melanoma. eLife 2021; 10:e63093. [PMID: 33438577 PMCID: PMC7857731 DOI: 10.7554/elife.63093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is a critical regulator of melanocyte development and differentiation. It also plays an important role in melanoma where it has been described as a molecular rheostat that, depending on activity levels, allows reversible switching between different cellular states. Here, we show that MITF directly represses the expression of genes associated with the extracellular matrix (ECM) and focal adhesion pathways in human melanoma cells as well as of regulators of epithelial-to-mesenchymal transition (EMT) such as CDH2, thus affecting cell morphology and cell-matrix interactions. Importantly, we show that these effects of MITF are reversible, as expected from the rheostat model. The number of focal adhesion points increased upon MITF knockdown, a feature observed in drug-resistant melanomas. Cells lacking MITF are similar to the cells of minimal residual disease observed in both human and zebrafish melanomas. Our results suggest that MITF plays a critical role as a repressor of gene expression and is actively involved in shaping the microenvironment of melanoma cells in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Colin Kenny
- Department of Anatomy and Cell biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Ilse Gerritsen
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Romain Maurice Jacques Lasseur
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Jana Travnickova
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Ossia M Eichhoff
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Philipp Cerny
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Katrin Möller
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Sara Sigurbjörnsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Kritika Kirty
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Berglind Ósk Einarsdottir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Phil F Cheng
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Robert A Cornell
- Department of Anatomy and Cell biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Lionel Larue
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre UniversitaireOrsayFrance
| | - Marie de Tayrac
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
- Univ Rennes1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)RennesFrance
| | - Erna Magnúsdóttir
- Department of Anatomy, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Margrét Helga Ögmundsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| |
Collapse
|
112
|
Kitami K, Yoshihara M, Koya Y, Sugiyama M, Iyoshi S, Uno K, Mogi K, Tano S, Fujimoto H, Nawa A, Kikkawa F, Kajiyama H. Microphthalmia-Associated Transcription Factor-Dependent Melanoma Cell Adhesion Molecule Activation Promotes Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2020; 21:E9776. [PMID: 33371469 PMCID: PMC7767511 DOI: 10.3390/ijms21249776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of death due to its high metastasis rate to the peritoneum. Recurrent peritoneal tumors also develop despite the use of conventional platinum-based chemotherapies. Therefore, it is still important to explore the factors associated with peritoneal metastasis, as these predict the prognosis of patients with OvCa. In this study, we investigated the function of microphthalmia-associated transcription factor (MITF), which contributes to the development of melanoma, in epithelial ovarian cancer (OvCa). High MITF expression was significantly associated with a poor prognosis in OvCa. Notably, MITF contributed to the motility and invasion of OvCa cells, and specifically with their peri-mesothelial migration. In addition, MITF-positive cells expressed the melanoma cell adhesion molecule (MCAM/CD146), which was initially identified as a marker of melanoma progression and metastasis, and MCAM expression was regulated by MITF. MCAM was also identified as a significant prognostic factor for poor progression-free survival in patients with OvCa. Collectively, our results suggest that MITF is a novel therapeutic target that potentially promotes peritoneal metastasis of OvCa.
Collapse
Affiliation(s)
- Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
- Faculty of Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| |
Collapse
|
113
|
A Single Center Retrospective Review of Patients from Central Italy Tested for Melanoma Predisposition Genes. Int J Mol Sci 2020; 21:ijms21249432. [PMID: 33322357 PMCID: PMC7763813 DOI: 10.3390/ijms21249432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. CMM pathogenesis involves genetic and environmental factors. Recent studies have led to the identification of new genes involved in CMM susceptibility: beyond CDKN2A and CDK4, BAP1, POT1, and MITF were recently identified as potential high-risk melanoma susceptibility genes. This study is aimed to evaluate the genetic predisposition to CMM in patients from central Italy. From 1998 to 2017, genetic testing was performed in 888 cases with multiple primary melanoma and/or familial melanoma. Genetic analyses included the sequencing CDKN2A, CDK4, BAP1, POT1, and MITF in 202 cases, and of only CDKN2A and CDK4 codon 24 in 686 patients. By the evaluation of the personal and familial history, patients were divided in two clinical categories: “low significance” and “high significance” cases. 128 patients (72% belonging to the “high significance” category, 28% belonging to the “low significance” category) were found to carry a DNA change defined as pathogenic, likely pathogenic, variant of unknown significance (VUS)-favoring pathogenic or VUS. It is important to verify the genetic predisposition in CMM patients for an early diagnosis of further melanomas and/or other tumors associated with the characterized genotype.
Collapse
|
114
|
Koeller DR, Schwartz A, Manning DK, Dong F, Lindeman NI, Garber JE, Ghazani AA. Novel Pathogenic Germline Variant of the Adenomatous Polyposis Coli (APC) Gene, p.S2627Gfs*12 Identified in a Mild Phenotype of APC-Associated Polyposis: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927293. [PMID: 33303731 PMCID: PMC7737709 DOI: 10.12659/ajcr.927293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patient: Male, 80-year-old Final Diagnosis: Attenuated APC-associated polyposis Symptoms: Colon polyps • renal carcinoma Medication: — Clinical Procedure: — Specialty: Genetics
Collapse
Affiliation(s)
- Diane R Koeller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Schwartz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arezou A Ghazani
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
115
|
Darp R, Ceol C. Making a melanoma: Molecular and cellular changes underlying melanoma initiation. Pigment Cell Melanoma Res 2020; 34:280-287. [PMID: 33283422 DOI: 10.1111/pcmr.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
Melanoma arises from the melanocyte lineage and is the most aggressive and lethal form of skin cancer. There are several genetic, genomic, and cellular changes associated with melanoma initiation. Here, we discuss these alterations and the melanoma cells of origin in which they are proposed to promote melanomagenesis.
Collapse
Affiliation(s)
- Revati Darp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Craig Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
116
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
117
|
SnapshotDx Quiz: November 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
119
|
Guhan SM, Artomov M, McCormick S, Njauw CN, Stratigos AJ, Shannon K, Ellisen LW, Tsao H. Cancer risks associated with the germline MITF(E318K) variant. Sci Rep 2020; 10:17051. [PMID: 33051548 PMCID: PMC7555480 DOI: 10.1038/s41598-020-74237-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The MITF(E318K) variant confers moderate risk for cutaneous melanoma. While there are small studies suggesting that this risk is associated with other malignancies (e.g. renal cell carcinoma), little is known about the role of this variant in specifying risk for other cancers. In this study, we perform a systematic review and meta-analysis of the published data as a backdrop to a whole-exome sequence(WES)-based characterization of MITF(E318K) risk for various cancers in sporadic samples from the TCGA and several genetically-enriched patient cohorts. We found minimal evidence of MITF(E318K)'s contribution to non-melanoma cancer risk among individuals with low inherited risks of melanoma (OR 1.168; 95% CI 0.78-1.74; p = 0.454), suggesting that earlier reports of an association between this variant and other malignancies may be related to shared environmental or polygenic risk factors rather than MITF(E318K). Interestingly, an association was observed with uterine carcinosarcoma, (OR 9.24; 95% CI 2.08-37.17; p = 0.024), which was not previously described. While more research needs to be completed, this study will help update cancer screening recommendations for patients with the MITF(E318K) variant.
Collapse
Affiliation(s)
- Samantha M Guhan
- Wellman Center for Photomedicine at Massachusetts General Hospital, Edwards 211, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mykyta Artomov
- MGH Analytic and Translational Genetics Unit, MGH and Broad Institute, Boston, MA, USA
| | | | - Ching -Ni Njauw
- Wellman Center for Photomedicine at Massachusetts General Hospital, Edwards 211, 50 Blossom Street, Boston, MA, 02114, USA
| | - Alexander J Stratigos
- First Department of Dermatology-Venereology, Faculty of Medicine, 'A. Sygros' Hospital for Cutaneous and Venereal Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Kristen Shannon
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine at Massachusetts General Hospital, Edwards 211, 50 Blossom Street, Boston, MA, 02114, USA.
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
120
|
Law MH, Aoude LG, Duffy DL, Long GV, Johansson PA, Pritchard AL, Khosrotehrani K, Mann GJ, Montgomery GW, Iles MM, Cust AE, Palmer JM, Shannon KF, Spillane AJ, Stretch JR, Thompson JF, Saw RPM, Scolyer RA, Martin NG, Hayward NK, MacGregor S. Multiplex melanoma families are enriched for polygenic risk. Hum Mol Genet 2020; 29:2976-2985. [PMID: 32716505 PMCID: PMC7566496 DOI: 10.1093/hmg/ddaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023] Open
Abstract
Cancers, including cutaneous melanoma, can cluster in families. In addition to environmental etiological factors such as ultraviolet radiation, cutaneous melanoma has a strong genetic component. Genetic risks for cutaneous melanoma range from rare, high-penetrance mutations to common, low-penetrance variants. Known high-penetrance mutations account for only about half of all densely affected cutaneous melanoma families, and the causes of familial clustering in the remainder are unknown. We hypothesize that some clustering is due to the cumulative effect of a large number of variants of individually small effect. Common, low-penetrance genetic risk variants can be combined into polygenic risk scores. We used a polygenic risk score for cutaneous melanoma to compare families without known high-penetrance mutations with unrelated melanoma cases and melanoma-free controls. Family members had significantly higher mean polygenic load for cutaneous melanoma than unrelated cases or melanoma-free healthy controls (Bonferroni-corrected t-test P = 1.5 × 10-5 and 6.3 × 10-45, respectively). Whole genome sequencing of germline DNA from 51 members of 21 families with low polygenic risk for melanoma identified a CDKN2A p.G101W mutation in a single family but no other candidate high-penetrance melanoma susceptibility genes. This work provides further evidence that melanoma, like many other common complex disorders, can arise from the joint action of multiple predisposing factors, including rare high-penetrance mutations, as well as via a combination of large numbers of alleles of small effect.
Collapse
Affiliation(s)
- Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Lauren G Aoude
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Surgical Oncology Group, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - David L Duffy
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Medical Oncology, Mater Hospital, North Sydney, NSW 2060, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Peter A Johansson
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Antonia L Pritchard
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Genetics and Immunology, University of the Highlands and Islands, Inverness IV2 5NA, UK
| | - Kiarash Khosrotehrani
- Experimental Dermatology Group, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Grant W Montgomery
- Molecular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark M Iles
- Leeds Institute for Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane M Palmer
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW 2050, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
121
|
Mahogunin Ring Finger 1 Is Required for Genomic Stability and Modulates the Malignant Phenotype of Melanoma Cells. Cancers (Basel) 2020; 12:cancers12102840. [PMID: 33019669 PMCID: PMC7599452 DOI: 10.3390/cancers12102840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Melanoma, the most aggressive skin cancer, accounts for the majority of deaths due to this disease. Therefore, identification of genes/proteins involved in melanoma genesis and/or progression is urgent. Mutations abrogating expression of Mahogunin Ring Finger 1 (MGRN1) in mice cause complex phenotypes with hyperpigmentation, and known MGRN1 interactors are important regulators of cell shape and movement. This suggests that MGRN1 may modulate the malignant phenotype of melanoma cells. Analysis of MGRN1-KO mouse melanocytes and melanoma cells showed that lack of MGRN1 leads to cell cycle defects and to a more differentiated, less aggressive phenotype, with increased adhesion to various matrices, decreased motility and high genomic instability. The higher aggressivity of MGRN1-expressing melanoma cells was confirmed in an in vivo mouse melanoma model and is consistent with higher survival of human melanoma patients expressing low levels of MGRN1. Therefore, MGRN1 appears an important determinant of the malignant phenotype of melanoma. Abstract The mouse mahoganoid mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared Mgrn1-knockout melanocytes with genetically matched controls and melan-md1 (mahoganoid) melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells. Lack of MGRN1 expression decreased the ability of melanocytes to cope with DNA breaks generated by oxidizing agents or hydroxyurea-induced replicative stress, suggesting a contribution of genomic instability to the mahoganoid phenotype. MGRN1 knockout in B16-F10 melanoma cells also augmented pigmentation, increased cell adhesion to collagen, impaired 2D and 3D motility and caused genomic instability. Tumors formed by Mgrn1-KO B16-F10 cells had lower mitotic indices, fewer Ki67-positive cells and showed a trend towards smaller size. In short-term lung colonization assays Mgrn1-KO cells showed impaired colonization potential. Moreover, lower expression of MGRN1 is significantly associated with better survival of human melanoma patients. Therefore, MGRN1 might be an important phenotypic determinant of melanoma cells.
Collapse
|
122
|
Wu G, Xu Y, Ruan N, Li J, Lv Q, Zhang Q, Chen Y, Wang Q, Xia Q, Li Q. Genetic alteration and clinical significance of SUMOylation regulators in multiple cancer types. J Cancer 2020; 11:6823-6833. [PMID: 33123273 PMCID: PMC7592005 DOI: 10.7150/jca.49042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to investigate the genetic variation, gene expression differences, and clinical significance of SUMOylation regulators in pan-cancers. Based on previous studies, we gained a better understanding of the biological process of SUMOylation and the status of current research. In the present study, we employed a wide range of bioinformatics methods. We used genetic variation and mRNA expression data in the Cancer Genome Atlas (TCGA) to construct a panoramic view of the single nucleotide variants, copy number variants, and gene expression changes in SUMOylation regulators in various tumors. Subsequently, we used the String website and the Cytoscape tool to construct the PPI network between these regulators. We used the GSCALite website to determine the relationship between these regulators and cancer pathways and drug sensitivity. We constructed images of co-expression between these regulators using the R programming language. Using clinical data from TCGA, we performed hazard ratio analysis for these regulators in pan-cancer. Most importantly, we used these regulators to successfully establish risk signatures related to patient prognosis in multiple tumors. Finally, in KIRC, we conducted gene-set enrichment analysis (GSEA) of the five molecules in its risk signatures. We found that these five molecules are involved in multiple cancer pathways. In short, we have comprehensively interpreted the detailed biological process of SUMOylation at the genetic level for the first time, successfully constructed multiple risk signatures, and conducted GSEA in KIRC. We believe that these findings provide credible and valuable information that is relevant for future clinical diagnoses and scientific research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| |
Collapse
|
123
|
Smith PS, West H, Whitworth J, Castle B, Sansbury FH, Warren AY, Woodward ER, Tischkowitz M, Maher ER. Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosomes Cancer 2020; 60:5-16. [PMID: 32830346 DOI: 10.1002/gcc.22893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/08/2022] Open
Abstract
Inherited renal cell carcinoma (RCC) is associated with multiple familial cancer syndromes but most individuals with features of non-syndromic inherited RCC do not harbor variants in the most commonly tested renal cancer predisposition genes (CPGs). We investigated whether undiagnosed cases might harbor mutations in CPGs that are not routinely tested for by testing 118 individuals with features suggestive of inherited RCC (family history of RCC, two or more primary RCC aged <60 years, or early onset RCC ≤46 years) for the presence of pathogenic variants in a large panel of CPGs. All individuals had been prescreened for pathogenic variants in the major RCC genes. We detected pathogenic or likely pathogenic (P/LP) variants of potential clinical relevance in 16.1% (19/118) of individuals, including P/LP variants in BRIP1 (n = 4), CHEK2 (n = 3), MITF (n = 1), and BRCA1 (n = 1). Though the power to detect rare variants was limited by sample size the frequency of truncating variants in BRIP1, 4/118, was significantly higher than in controls (P = 5.92E-03). These findings suggest that the application of genetic testing for larger inherited cancer gene panels in patients with indicators of a potential inherited RCC can increase the diagnostic yield for P/LP variants. However, the clinical utility of such a diagnostic strategy requires validation and further evaluation and in particular, confirmation of rarer RCC genotype-phenotype associations is required.
Collapse
Affiliation(s)
- Philip S Smith
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Hannah West
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - James Whitworth
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Bruce Castle
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital (Heavitree), Exeter, UK University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Francis H Sansbury
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital (Heavitree), Exeter, UK University of Exeter Medical School, University of Exeter, Exeter, UK.,All Wales Medical Genomics Service, Cardiff and Vale University Health Board, Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University NHS Foundation Trust and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, and Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health Innovation Manchester, Manchester, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
124
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
125
|
Ballesteros-Álvarez J, Dilshat R, Fock V, Möller K, Karl L, Larue L, Ögmundsdóttir MH, Steingrímsson E. MITF and TFEB cross-regulation in melanoma cells. PLoS One 2020; 15:e0238546. [PMID: 32881934 PMCID: PMC7470386 DOI: 10.1371/journal.pone.0238546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other's mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.
Collapse
Affiliation(s)
- Josué Ballesteros-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Katrín Möller
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ludwig Karl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | | | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
126
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
127
|
Testa U, Pelosi E, Castelli G. Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E44. [PMID: 32751108 PMCID: PMC7459851 DOI: 10.3390/medicines7080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Renal cell cancer (RCC) involves three most recurrent sporadic types: clear-cell RCC (70-75%, CCRCC), papillary RCCC (10-15%, PRCC), and chromophobe RCC (5%, CHRCC). Hereditary cases account for about 5% of all cases of RCC and are caused by germline pathogenic variants. Herein, we review how a better understanding of the molecular biology of RCCs has driven the inception of new diagnostic and therapeutic approaches. Genomic research has identified relevant genetic alterations associated with each RCC subtype. Molecular studies have clearly shown that CCRCC is universally initiated by Von Hippel Lindau (VHL) gene dysregulation, followed by different types of additional genetic events involving epigenetic regulatory genes, dictating disease progression, aggressiveness, and differential response to treatments. The understanding of the molecular mechanisms that underlie the development and progression of RCC has considerably expanded treatment options; genomic data might guide treatment options by enabling patients to be matched with therapeutics that specifically target the genetic alterations present in their tumors. These new targeted treatments have led to a moderate improvement of the survival of metastatic RCC patients. Ongoing studies based on the combination of immunotherapeutic agents (immune check inhibitors) with VEGF inhibitors are expected to further improve the survival of these patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy; (E.P.); (G.C.)
| | | | | |
Collapse
|
128
|
Louphrasitthiphol P, Siddaway R, Loffreda A, Pogenberg V, Friedrichsen H, Schepsky A, Zeng Z, Lu M, Strub T, Freter R, Lisle R, Suer E, Thomas B, Schuster-Böckler B, Filippakopoulos P, Middleton M, Lu X, Patton EE, Davidson I, Lambert JP, Wilmanns M, Steingrímsson E, Mazza D, Goding CR. Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Mol Cell 2020; 79:472-487.e10. [PMID: 32531202 PMCID: PMC7427332 DOI: 10.1016/j.molcel.2020.05.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022]
Abstract
It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability. Reducing transcription factor DNA-binding affinity increases activity in vivo Acetylation is triggered by MAPK signaling Acetylation leads to genome-wide transcription factor redistribution Acetylation of MITF drives tumorigenesis and melanocyte development
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alessia Loffreda
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans Friedrichsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alexander Schepsky
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Zhiqiang Zeng
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Thomas Strub
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn Pathology School, Oxford University, Oxford OX1 3RE, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Big Data Institute, University of Oxford, Headington, Oxford OX3 7LF, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Mark Middleton
- Oxford NIHR Biomedical Research Centre, Department of Oncology, Churchill Hospital, Oxford OX3 7LE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irwin Davidson
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec G1V 4G2, QC, Canada
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Davide Mazza
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy.
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
129
|
Walker SM, Gautam R, Turkbey B, Malayeri A, Choyke PL. Update on Hereditary Renal Cancer and Imaging Implications. Radiol Clin North Am 2020; 58:951-963. [PMID: 32792126 DOI: 10.1016/j.rcl.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Up to 8% of renal cancers are thought to have a hereditary component. Several hereditary renal cancer syndromes have been identified over the last few decades. It is important for the radiologist to be aware of findings associated with hereditary renal cancer syndromes to detect tumors early, enroll patients in appropriate surveillance programs, and improve outcomes for the patient and affected family members. This review discusses from a radiologist's perspective well-known hereditary renal cancer syndromes and emerging genetic mutations associated with renal cancer that are less well characterized, focusing on imaging features and known associations.
Collapse
Affiliation(s)
- Stephanie M Walker
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Rabindra Gautam
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
130
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
131
|
Liebig JK, Kuphal S, Bosserhoff AK. HuRdling Senescence: HuR Breaks BRAF-Induced Senescence in Melanocytes and Supports Melanoma Growth. Cancers (Basel) 2020; 12:cancers12051299. [PMID: 32455577 PMCID: PMC7281285 DOI: 10.3390/cancers12051299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/17/2023] Open
Abstract
In addition to genetic changes, post-transcriptional events strongly contribute to the progression of malignant tumors. The RNA-binding protein HuR (ELAVL1) is able to bind and stabilize a large group of target mRNAs, which contain AU-rich elements (ARE) in their 3′-untranslated region. We found HuR to be upregulated in malignant melanoma in vitro and in vivo, significantly correlating with progression in vivo. Additionally, we could show that miR-194-5p can regulate HuR expression level. HuR knockdown in melanoma cells led to the suppression of proliferation and the induction of cellular senescence. Interestingly, HuR overexpression was sufficient to inhibit senescence in BRAFV600E-expressing melanocytes and to force their growth. Here, MITF (Microphthalmia-associated transcription factor), a key player in suppressing senescence and an ARE containing transcript, is positively regulated by HuR. Our results show for the first time that the overexpression of HuR is an important part of the regulatory pathway in the development of malignant melanoma and functions as a switch to overcome oncogene-induced senescence and to support melanoma formation. These newly defined alterations may provide possibilities for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Janika K. Liebig
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Silke Kuphal
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24191
| |
Collapse
|
132
|
Yang K, Oak AS, Slominski RM, Brożyna AA, Slominski AT. Current Molecular Markers of Melanoma and Treatment Targets. Int J Mol Sci 2020; 21:ijms21103535. [PMID: 32429485 PMCID: PMC7278971 DOI: 10.3390/ijms21103535] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Melanoma is a deadly skin cancer that becomes especially difficult to treat after it metastasizes. Timely identification of melanoma is critical for effective therapy, but histopathologic diagnosis can frequently pose a significant challenge to this goal. Therefore, auxiliary diagnostic tools are imperative to facilitating prompt recognition of malignant lesions. Melanoma develops as result of a number of genetic mutations, with UV radiation often acting as a mutagenic risk factor. Novel methods of genetic testing have improved detection of these molecular alterations, which subsequently revealed important information for diagnosis and prognosis. Rapid detection of genetic alterations is also significant for choosing appropriate treatment and developing targeted therapies for melanoma. This review will delve into the understanding of various mutations and the implications they may pose for clinical decision making.
Collapse
Affiliation(s)
- Kevin Yang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
| | - Allen S.W. Oak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
| | - Radomir M. Slominski
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.Y.); (A.S.O.)
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
133
|
Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol 2020; 47:606-616. [PMID: 32249949 DOI: 10.1111/cup.13689] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Nearly 15% of melanomas occur in patients with a family history and a subset of these patients have a germline mutation in a melanoma predisposing gene. CDKN2A mutations are responsible for the majority of hereditary melanoma, but many other susceptibility genes have been discovered in recent years, including CDK4, TERT, ACD, TERF2IP, POT1, MITF, MC1R, and BAP1. Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in PTEN, BRCA2, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid cytology of melanocytic tumors may suggest an underlying BAP1 mutation. Herein, we review the clinical and histopathologic characteristics of melanocytic tumors associated with these germline mutations and discuss the role of genetic counseling.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Nicole Mans
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Jeanna Welborn
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
134
|
Han S, Chen J, Hua J, Hu X, Jian S, Zheng G, Wang J, Li H, Yang J, Hejtmancik JF, Qu J, Ma X, Hou L. MITF protects against oxidative damage-induced retinal degeneration by regulating the NRF2 pathway in the retinal pigment epithelium. Redox Biol 2020; 34:101537. [PMID: 32361183 PMCID: PMC7191850 DOI: 10.1016/j.redox.2020.101537] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative damage is one of the major contributors to retinal degenerative diseases such as age-related macular degeneration (AMD), while RPE mediated antioxidant defense plays an important role in preventing retinopathies. However, the regulatory mechanisms of antioxidant signaling in RPE cells are poorly understood. Here we show that transcription factor MITF regulates the antioxidant response in RPE cells, protecting the neural retina from oxidative damage. In the oxidative stress-induced retinal degeneration mouse model, retinal degeneration in Mitf+/- mice is significantly aggravated compared to WT mice. In contrast, overexpression of Mitf in Dct-Mitf transgenic mice and AAV mediated overexpression in RPE cells protect the neural retina against oxidative damage. Mechanistically, MITF both directly regulates the transcription of NRF2, a master regulator of antioxidant signaling, and promotes its nuclear translocation. Furthermore, specific overexpression of NRF2 in Mitf+/- RPE cells activates antioxidant signaling and partially protects the retina from oxidative damage. Taken together, our findings demonstrate the regulation of NRF2 by MITF in RPE cells and provide new insights into potential therapeutic approaches for prevention of oxidative damage diseases. MITF haploinsufficiency exacerbates oxidative stress-induced retinal degeneration. Specific overexpression of MITF in RPE cells protects retinas from oxidative damage in vivo. MITF directly regulates the transcription and nuclear translocation of NRF2. Partial rescue of retinal oxidative damage in Mitf ±mice by gene transfer mediated RPE cell specific expression of NRF2.
Collapse
Affiliation(s)
- Shuxian Han
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - Jianjun Chen
- Birth defect group, Translation Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
| | - Jiajia Hua
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; Department of Ophthalmology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
| | - Xiaojuan Hu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Shuhui Jian
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Guoxiao Zheng
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - Jinglei Yang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jia Qu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China.
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| |
Collapse
|
135
|
Landi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, et alLandi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, Schulze HJ, Simms LA, Smithers M, Song F, Swerdlow AJ, van der Stoep N, Kukutsch NA, Visconti A, Wallace L, Ward SV, Wheeler L, Sturm RA, Hutchinson A, Jones K, Malasky M, Vogt A, Zhou W, Pooley KA, Elder DE, Han J, Hicks B, Hayward NK, Kanetsky PA, Brummett C, Montgomery GW, Olsen CM, Hayward C, Dunning AM, Martin NG, Evangelou E, Mann GJ, Long G, Pharoah PDP, Easton DF, Barrett JH, Cust AE, Abecasis G, Duffy DL, Whiteman DC, Gogas H, De Nicolo A, Tucker MA, Newton-Bishop JA, Peris K, Chanock SJ, Demenais F, Brown KM, Puig S, Nagore E, Shi J, Iles MM, Law MH. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet 2020; 52:494-504. [PMID: 32341527 PMCID: PMC7255059 DOI: 10.1038/s41588-020-0611-8] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.
Collapse
Affiliation(s)
- Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Stratigos
- Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Myriam Brossard
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Concetta Fargnoli
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Adam J Trower
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Andreas Hadjisavvas
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Stefanaki
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Richard Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Rose Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Katerina P Kypreou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Lorenza Pastorino
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Pellegrini
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Cattaneo
- Pathology Unit, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Arantxa Rodriguez
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Maria A Loizidou
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Laura Del Regno
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mario Mandala
- Department of Oncology, Giovanni XXIII Hospital, Bergamo, Italy
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Per A Andresen
- Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France
| | - Esther Azizi
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Peter Soyer
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Lisa M Bowdler
- Sample Processing, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wei V Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eitan Friedman
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Simi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pilar Galan
- Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France
| | - Zaida Garcia-Casado
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Elizabeth M Gillanders
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adele Green
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- CRUK Manchester Institute, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jessica Harris
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Per Helsing
- Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anjali Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marko Hočevar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Julie Lang
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - G Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jan Lubiński
- International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rona M Mackie
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
- Department of Public Health, University of Glasgow, Glasgow, UK
| | - Maryrose Malt
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Kerrie McAloney
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamida Mohamdi
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rachel E Neale
- Cancer Aetiology & Prevention, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Håkan Olsson
- Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Joan Anton Puig-Butille
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona,CIBERER, Barcelona, Spain
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Graham L Radford-Smith
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia
| | | | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Casey Rowe
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marianna Sanna
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Hans-Joachim Schulze
- Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin, University of Münster, Münster, Germany
| | - Lisa A Simms
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Fengju Song
- Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicole A Kukutsch
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrie Wheeler
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chad Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, Sydney, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, Australia
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | | | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Epidemiology and Prevention Research, Sydney School of Public Health, Sydney, Australia
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - David L Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital Greece, National and Kapodistrian University of Athens, Athens, Greece
| | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florence Demenais
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK.
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
136
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
137
|
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol 2020; 140:2466-2477. [PMID: 32360601 DOI: 10.1016/j.jid.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples. In patients, RNF4 protein and mRNA levels correlate with poor prognosis and with resistance to MAPK inhibitors. Remarkably, RNF4 tumorigenic properties, including therapy resistance, require the translation initiation factor initiation elongation factor alpha (eIF2α). RNF4 binds, ubiquitinates, and stabilizes the phosphorylated eIF2α (p-eIF2α) but not activating transcription factor 4 or C/EBP homologous protein that mediates the eIF2α-dependent integrated stress response. In accordance, p-eIF2α levels were significantly elevated in high-RNF4 patient-derived melanomas. Thus, RNF4 and p-eIF2α establish a positive feed-forward loop connecting oncogenic translation and ubiquitin-dependent protein stabilization in melanoma.
Collapse
Affiliation(s)
- Emily Avitan-Hersh
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Avital Oknin Vaisman
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yamen Abu Ahmad
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Rambam Health Care Campus, Haifa, Israel
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA; Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Saeed Sheikh Khalil
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Feiler
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Harriet Kluger
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chaim Kahana
- Deprtament of Molecular Genetics Weizmann Institute of Science, Rehovot, Israel
| | - Kevin Brown
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Maryland, USA
| | - Ze'ev A Ronai
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
138
|
Pastorino L, Andreotti V, Dalmasso B, Vanni I, Ciccarese G, Mandalà M, Spadola G, Pizzichetta MA, Ponti G, Tibiletti MG, Sala E, Genuardi M, Chiurazzi P, Maccanti G, Manoukian S, Sestini S, Danesi R, Zampiga V, La Starza R, Stanganelli I, Ballestrero A, Mastracci L, Grillo F, Sciallero S, Cecchi F, Tanda ET, Spagnolo F, Queirolo P, Italian Melanoma Intergroup (IMI), Goldstein AM, Bruno W, Ghiorzo P. Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers (Basel) 2020; 12:1007. [PMID: 32325837 PMCID: PMC7226507 DOI: 10.3390/cancers12041007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The contribution of recently established or candidate susceptibility genes to melanoma missing heritability has yet to be determined. Multigene panel testing could increase diagnostic yield and better define the role of candidate genes. We characterized 273 CDKN2A/ARF and CDK4-negative probands through a custom-designed targeted gene panel that included CDKN2A/ARF, CDK4, ACD, BAP1, MITF, POT1, TERF2IP, ATM, and PALB2. Co-segregation, loss of heterozygosity (LOH)/protein expression analysis, and splicing characterization were performed to improve variant classification. We identified 16 (5.9%) pathogenic and likely pathogenic variants in established high/medium penetrance cutaneous melanoma susceptibility genes (BAP1, POT1, ACD, MITF, and TERF2IP), including two novel variants in BAP1 and 4 in POT1. We also found four deleterious and five likely deleterious variants in ATM (3.3%). Thus, including potentially deleterious variants in ATM increased the diagnostic yield to about 9%. Inclusion of rare variants of uncertain significance would increase the overall detection yield to 14%. At least 10% of melanoma missing heritability may be explained through panel testing in our population. To our knowledge, this is the highest frequency of putative ATM deleterious variants reported in melanoma families, suggesting a possible role in melanoma susceptibility, which needs further investigation.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Virginia Andreotti
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Giulia Ciccarese
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Giuseppe Spadola
- Divisione di Chirurgia del Melanoma, IRCCS Fondazione Istituto Nazionale per lo studio e la cura dei tumori, 20133 Milano, Italy;
| | - Maria Antonietta Pizzichetta
- Dermatologic Clinic, University of Trieste, 34127 Trieste, Italy;
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giovanni Ponti
- Department of Diagnostic and clinical medicine and public health, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | | | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy;
| | - Serena Sestini
- Plastic & Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit Tuscan Tumour Institute (ITT), Santa Maria Annunziata Hospital, 50012 Firenze, Italy;
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, CREO, University of Perugia, 06156 Perugia, Italy;
| | - Ignazio Stanganelli
- Skin Cancer Unit, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Internal Medicine, Università degli Studi di Genova, 16132 Genova, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, 16132 Genova, Italy;
| | - Federica Cecchi
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Enrica Teresa Tanda
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Francesco Spagnolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Paola Queirolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | | | - Alisa M. Goldstein
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA;
| | - William Bruno
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| |
Collapse
|
139
|
Bellini L, Strub T, Habel N, Pandiani C, Marchetti S, Martel A, Baillif S, Bailly-Maitre B, Gual P, Ballotti R, Bertolotto C. Endoplasmic reticulum stress mediates resistance to BCL-2 inhibitor in uveal melanoma cells. Cell Death Discov 2020; 6:22. [PMID: 32337074 PMCID: PMC7165182 DOI: 10.1038/s41420-020-0259-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
To address unmet clinical need for uveal melanomas, we assessed the effects of BH3-mimetic molecules, the ABT family, known to exert pro-apoptotic activities in cancer cells. Our results uncovered that ABT-263 (Navitoclax), a potent and orally bioavailable BCL-2 family inhibitor, induced antiproliferative effects in metastatic human uveal melanoma cells through cell cycle arrest at the G0/G1 phase, loss of mitochondrial membrane potential, and subsequently apoptotic cell death monitored by caspase activation and poly-ADP ribose polymerase cleavage. ABT-263-mediated reduction in tumor growth was also observed in vivo. We observed in some cells that ABT-263 treatment mounted a pro-survival response through activation of the ER stress signaling pathway. Blocking the PERK signaling pathway increased the pro-apoptotic ABT-263 effect. We thus uncovered a resistance mechanism in uveal melanoma cells mediated by activation of endoplasmic reticulum stress pathway. Therefore, our study identifies ABT-263 as a valid therapeutic option for patients suffering from uveal melanoma.
Collapse
Affiliation(s)
- Lara Bellini
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Thomas Strub
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Nadia Habel
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Charlotte Pandiani
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Sandrine Marchetti
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Metabolism, cancer and immune response, team 3, Nice, France
| | - Arnaud Martel
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
- CHU NICE, Département d’Ophtalmologie, Nice, France
| | - Stéphanie Baillif
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
- CHU NICE, Département d’Ophtalmologie, Nice, France
| | - Béatrice Bailly-Maitre
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Chronic liver diseases associated with obesity and alcohol, team8, Nice, France
| | - Philippe Gual
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Chronic liver diseases associated with obesity and alcohol, team8, Nice, France
| | - Robert Ballotti
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| | - Corine Bertolotto
- Université Nice Côte d’Azur, Inserm, C3M Nice, France
- INSERM, U1065, Biology and pathologies of melanocytes, team 1. Equipe labellisée Ligue 2020, Nice, France
| |
Collapse
|
140
|
Campos C, Fragoso S, Luís R, Pinto F, Brito C, Esteves S, Pataco M, Santos S, Machado P, Vicente JB, Costa Rosa J, Cavaco BM, Moura C, Pojo M. High-Throughput Sequencing Identifies 3 Novel Susceptibility Genes for Hereditary Melanoma. Genes (Basel) 2020; 11:genes11040403. [PMID: 32276436 PMCID: PMC7230562 DOI: 10.3390/genes11040403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers due to its high invasiveness. Germline mutations in high-risk melanoma susceptibility genes have been associated with development hereditary melanoma; however, most genetic culprits remain elusive. To unravel novel susceptibility genes for hereditary melanoma, we performed whole exome sequencing (WES) on eight patients with multiple primary melanomas, high number of nevi, and negative for high and intermediate-risk germline mutations. Thirteen new potentially pathogenic variants were identified after bioinformatics analysis and validation. CDH23, ARHGEF40, and BRD9 were identified as the most promising susceptibility genes in hereditary melanoma. In silico analysis of CDH23 and ARHGEF40 variants provided clues for altered protein structure and function associated with the identified mutations. Then, we also evaluated the clinical value of CDH23, ARHGEF40, and BRD9 expression in sporadic melanoma by using the TCGA dataset (n = 461). No differences were observed in BRD9 expression between melanoma and normal skin samples, nor with melanoma stage, whereas ARHGEF40 was found overexpressed, and CDH23 was downregulated and its loss was associated with worse survival. Altogether, these results reveal three novel genes with clinical relevance in hereditary and sporadic melanoma.
Collapse
Affiliation(s)
- Catarina Campos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sofia Fragoso
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Susana Esteves
- Unidade de Investigação Clínica (UIC) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Margarida Pataco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sidónia Santos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Patrícia Machado
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Joaninha Costa Rosa
- Serviço de Anatomia Patológica do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Cecília Moura
- Clínica de Risco Familiar do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Serviço de Dermatologia do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-722-9800 (ext. 1794)
| |
Collapse
|
141
|
Dika E, Patrizi A, Rossi C, Turchetti D, Miccoli S, Ferracin M, Veronesi G, Scarfì F, Lambertini M. Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. Ital J Dermatol Venerol 2020; 156:599-605. [PMID: 32221274 DOI: 10.23736/s2784-8671.20.06496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incidence of cutaneous melanoma (cM) has increased in the last decades. Germline mutations in the high-penetrance melanoma susceptibility gene CDKN2A (Cyclin-dependent kinase inhibitor 2A) are associated with a younger age at diagnosis and an increased risk to develop pancreatic cancer. METHODS We retrospectively analyzed the data of patients with prior diagnosis of cM referring to our service from January 2005 to May 2017. The aim was to investigate the rate of multiple cMs (MPM), assessing their clinical/pathological features. Moreover, the genetic tests of patients who had undergone CDKN2A/CDKN2B, CDK4 and MITF screening were evaluated. RESULTS One hundred fifteen patients (9.26%) were diagnosed with MPMs: 70 males (60.87%) and 45 women (39.13%). 75 patients (43 males and 32 females) underwent genetic screening for germline mutations. The screening revealed that 4/75 patients (5.33%) were carriers of the non-synonymous missense variation c.442G>A (p.Ala148Thr) in CDKN2A exon 2 in heterozygosis, 3 of whom had at least one in-situ melanoma. In 1 patient (1.33%) we detected the variation c.249C>A, p.His83Gln in CDKN2A exon 2 in heterozygosis and in 1 patient (1.33%) the mutation c.952G>A (p.Glu318Lys) in MITF gene was found. CONCLUSIONS This study confirms the need for a full body skin examination and a prolonged surveillance in patients affected by cM, as MPMs were detected in up to 10% of total cases in our series and synchronous lesions in 1/5. Moreover, it reflects the great variability of cM high-susceptibility genes mutational status within the Italian territory. Patients carrying c.952G>A (p.Glu318Lys) MITF mutation have a higher risk to develop a nodular cM.
Collapse
Affiliation(s)
- Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Annalisa Patrizi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Cesare Rossi
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Daniela Turchetti
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Sara Miccoli
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giulia Veronesi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Federica Scarfì
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Martina Lambertini
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy - .,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| |
Collapse
|
142
|
Verkarre V, Morini A, Denize T, Ferlicot S, Richard S. [Hereditary kidney cancers: The pathologist's view in 2020]. Ann Pathol 2020; 40:148-167. [PMID: 32197858 DOI: 10.1016/j.annpat.2020.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Hereditary predispositions to adult kidney tumors involve around 5% of tumors and include a dozen of autosomal dominant syndromes. The most frequent tumors encountered in these setting are clear cell renal cell carcinomas, papillary renal cell carcinomas, chromophobe renal cell carcinomas and angiomyolipomas. Their detection is essential in order to adapt individual care and perform genetic screening of at-risk relatives, especially in the national french network PREDIR, labeled by the National Cancer Institute and dedicated to hereditary predispositions to kidney tumors. Targeted genetic analysis, which was guided in particular by the renal tumor subtype, has recently evolved into genetic analysis using panels of genes. Pathologist contribution's remains however central in the diagnosis of hereditary forms since we currently have immunohistochemical biomarkers that allow us to diagnose two specifically hereditary entities: hereditary leiomyomatosis and renal cell carcinoma associated-renal cell carcinoma, associated with a loss of fumarate hydratase and succinate dehydrogenase-deficient renal cell carcinoma associated with a loss of succinate deshydrogenase B expression. These diagnoses must however be confirmed by the identification of pathogenic germline variation in the corresponding genes. Improvement of kidney tumors characterization has also lead to identify new subtypes, expanding the algorithm of renal tumors associated with hereditary setting. Here we aim to review all subtypes of adult renal tumors encountered in predisposition syndromes.
Collapse
Affiliation(s)
- Virginie Verkarre
- Service d'anatomie pathologique, université de Paris, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris-Centre, 20, rue Leblanc, 75015 Paris, France; Inserm U970, équipe labellisée par la Ligue contre le cancer, PARCC, université de Paris, Paris, France; Réseau national de référence pour cancers rares de l'adulte PREDIR (« Maladie de von Hippel-Lindau et prédispositions héréditaires au cancer rénal ») labellisée par l'Institut national du cancer, université Paris Saclay, Assistance publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| | - Aurélien Morini
- Service d'anatomie pathologique, université de Paris, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris-Centre, 20, rue Leblanc, 75015 Paris, France
| | - Thomas Denize
- Service d'anatomie pathologique, université de Paris, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris-Centre, 20, rue Leblanc, 75015 Paris, France
| | - Sophie Ferlicot
- Réseau national de référence pour cancers rares de l'adulte PREDIR (« Maladie de von Hippel-Lindau et prédispositions héréditaires au cancer rénal ») labellisée par l'Institut national du cancer, université Paris Saclay, Assistance publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Service d'anatomie pathologique des hôpitaux universitaires Paris Sud, université Paris Saclay, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Génétique oncologique EPHE, PSL Université, UMR 9019 CNRS, université Paris-Saclay, institut Gustave-Roussy, Villejuif, France
| | - Stéphane Richard
- Réseau national de référence pour cancers rares de l'adulte PREDIR (« Maladie de von Hippel-Lindau et prédispositions héréditaires au cancer rénal ») labellisée par l'Institut national du cancer, université Paris Saclay, Assistance publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Génétique oncologique EPHE, PSL Université, UMR 9019 CNRS, université Paris-Saclay, institut Gustave-Roussy, Villejuif, France
| |
Collapse
|
143
|
Abstract
PURPOSE OF REVIEW To describe current paradigms for genetic testing, screening, and treatment of patients with inherited kidney cancer syndromes. RECENT FINDINGS We describe various new aspects of hereditary kidney cancer. Recent data now support that hereditary kidney cancer may account for 5-8% of kidney cancers diagnosed. Methods of testing have evolved including the introduction of multigene next-generation sequencing panels. We continue to learn more about the natural history and management of classic hereditary cancer syndromes. New emerging conditions with lower kidney cancer penetrance have been recognized adding the growing list of syndromes associated with kidney cancer development. The surgical management strategies of enucleation remain however systemic therapy options are being explored both for localized and advanced settings. SUMMARY Genetic predisposition to kidney cancer is likely more common than once thought. Knowledge of clinical manifestation and genetic testing strategies are needed to properly identify and treat patient and their families.
Collapse
|
144
|
Flesher JL, Paterson-Coleman EK, Vasudeva P, Ruiz-Vega R, Marshall M, Pearlman E, MacGregor GR, Neumann J, Ganesan AK. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020; 33:279-292. [PMID: 31562697 PMCID: PMC7822220 DOI: 10.1111/pcmr.12828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.
Collapse
Affiliation(s)
- Jessica L. Flesher
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
| | | | - Priya Vasudeva
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Rolando Ruiz-Vega
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Jonathan Neumann
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Anand K. Ganesan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Dermatology, University of California, Irvine, CA, USA
| |
Collapse
|
145
|
Singh K, Baird M, Fischer R, Chaitankar V, Seifuddin F, Chen YC, Tunc I, Waterman CM, Pirooznia M. Misregulation of ELK1, AP1, and E12 Transcription Factor Networks Is Associated with Melanoma Progression. Cancers (Basel) 2020; 12:E458. [PMID: 32079144 PMCID: PMC7072154 DOI: 10.3390/cancers12020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
Melanoma is among the most malignant cutaneous cancers and when metastasized results in dramatically high mortality. Despite advances in high-throughput gene expression profiling in cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq, chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer progression. Specifically, we have performed a consensus network analysis of RNA-seq data from clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information on co-expression networks revealed several coordinately up or down-regulated subnetworks that may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27 acetylation information and highly expressed genes identified from the single-cell RNA data from melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression. From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma progression. Additionally, the sumoylation-associated interactome is upregulated in invasive melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as targets for drug intervention in melanoma.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Michelle Baird
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Robert Fischer
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Vijender Chaitankar
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.B.); (R.F.); (C.M.W.)
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.S.); (V.C.); (F.S.); (Y.-C.C.); (I.T.)
| |
Collapse
|
146
|
Ciccarese G, Dalmasso B, Bruno W, Queirolo P, Pastorino L, Andreotti V, Spagnolo F, Tanda E, Ponti G, Massone C, Drago F, Parodi A, Ghigliotti G, Pizzichetta MA, Ghiorzo P. Clinical, pathological and dermoscopic phenotype of MITF p.E318K carrier cutaneous melanoma patients. J Transl Med 2020; 18:78. [PMID: 32054529 PMCID: PMC7017513 DOI: 10.1186/s12967-020-02253-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The p.E318K variant of the Melanocyte Inducing Transcription Factor (MITF) has been implicated in genetic predisposition to melanoma as an intermediate penetrance allele. However, the impact of this variant on clinico-phenotypic, as well as on dermoscopic patterns features of affected patients is not entirely defined. The purpose of our study was to assess the association between the p.E318K germline variant and clinic-phenotypical features of MITF+ compared to non-carriers (MITF-), including dermoscopic findings of melanomas and dysplastic nevi. METHODS we retrospectively analyzed a consecutive series of 1386 patients recruited between 2000 and 2017 who underwent genetic testing for CDKN2A, CDK4, MC1R and MITF germline variants in our laboratory for diagnostic/research purposes. The patients were probands of melanoma-prone families and apparently sporadic single or multiple primary melanoma patients. For all, we collected clinical, pathological information and dermoscopic images of the histopathologically diagnosed melanomas and dysplastic nevi, when available. RESULTS After excluding patients positive for CDKN2A/CDK4 pathogenic variants and those affected by non-cutaneous melanomas, our study cohort comprised 984 cutaneous melanoma patients, 22 MITF+ and 962 MITF-. MITF+ were more likely to develop dysplastic nevi and multiple primary melanomas. Nodular melanoma was more common in MITF+ patients (32% compared to 19% in MITF-). MITF+ patients showed more frequently dysplastic nevi and melanomas with uncommon dermoscopic patterns (unspecific), as opposed to MITF- patients, whose most prevalent pattern was the multicomponent. CONCLUSIONS MITF+ patients tend to develop melanomas and dysplastic nevi with histopathological features, frequency and dermoscopic patterns often different from those prevalent in MITF- patients. Our results emphasize the importance of melanoma prevention programs for MITF+ patients, including dermatologic surveillance with digital follow-up.
Collapse
Affiliation(s)
- Giulia Ciccarese
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Bruna Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - William Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
| | - Paola Queirolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, Genoa, Italy
| | - Lorenza Pastorino
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Virginia Andreotti
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Francesco Spagnolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, Genoa, Italy
| | - Enrica Tanda
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, Genoa, Italy
| | - Giovanni Ponti
- Department of Diagnostic and Clinical Medicine and Public Health, Division of Clinical Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Francesco Drago
- Department of Health Sciences (Di.S.Sal.), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Section of Dermatology, Genoa, Italy
| | - Aurora Parodi
- Department of Health Sciences (Di.S.Sal.), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Section of Dermatology, Genoa, Italy
| | - Giovanni Ghigliotti
- IRCCS Ospedale Policlinico San Martino, Section of Dermatology, Genoa, Italy
| | - Maria Antonietta Pizzichetta
- Dermatology Clinic - National Cancer Institute, Medical Oncology and Preventive Oncology Aviano, University of Trieste, Aviano, Italy
| | - Paola Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| |
Collapse
|
147
|
Nassar AH, Abou Alaiwi S, AlDubayan SH, Moore N, Mouw KW, Kwiatkowski DJ, Choueiri TK, Curran C, Berchuck JE, Harshman LC, Nuzzo PV, Chanza NM, Van Allen E, Esplin ED, Yang S, Callis T, Garber JE, Rana HQ, Sonpavde G. Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma. Genet Med 2019; 22:709-718. [PMID: 31844177 PMCID: PMC7118025 DOI: 10.1038/s41436-019-0720-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To date, there has not been a large, systematic evaluation of the prevalence of germline risk variants in urothelial carcinoma (UC). Methods We evaluated the frequency of germline pathogenic and likely pathogenic variants in 1038 patients with high-risk UC who underwent targeted clinical germline testing. Case–control enrichment analysis was performed to screen for pathogenic variant enrichment in 17 DNA repair genes in 1038 UC patients relative to cancer-free individuals. Results Among 1038 patients with UC, the cumulative frequency of patients with pathogenic variants was 24%; 18.6% of patients harbored ≥1 actionable germline variant with preventive or therapeutic utility. MSH2 (34/969, 3.5%) and BRCA1/2 (38/867, 4.4%) germline variants had the highest frequency. Germline variants in DNA damage repair genes accounted for 78% of pathogenic germline variants. Compared to the cancer-free cohort, UC patients had significant variant enrichment in MSH2 (odds ratio [OR]: 15.4, 95% confidence interval [CI]: 7.1–32.7, p < 0.0001), MLH1 (OR: 15.9, 95% CI: 4.4–67.7, p < 0.0001), BRCA2 (OR: 5.7, 95% CI: 3.2–9.6, p < 0.0001), and ATM (OR: 3.8, 95% CI: 1.8–8.3, p = 0.02). Conclusion In this study, 24% of UC patients harbored pathogenic germline variants and 18.6% had clinically actionable variants. MLH1 and MSH2 were validated as UC risk genes while ATM and BRCA2 were highlighted as potential UC predisposition genes. This work emphasizes the utility of germline testing in selected high-risk UC cohorts.
Collapse
Affiliation(s)
- Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David J Kwiatkowski
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine and Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine Curran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob E Berchuck
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pier V Nuzzo
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eliezer Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Shan Yang
- InVitae Corporation, San Francisco, CA, USA
| | | | - Judy E Garber
- Division of Population Sciences, Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huma Q Rana
- Division of Population Sciences, Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
148
|
Lang X, Pan J, Yang C, Chen P, Shi C, Hong Y, Wang J, Xiao S. A renal cell carcinoma withEWSR1‐TFE3fusion gene. Genes Chromosomes Cancer 2019; 59:325-329. [PMID: 31774608 DOI: 10.1002/gcc.22830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Jian Pan
- Children's Hospital of Soochow University Suzhou China
| | | | - Ping Chen
- Suzhou Sano Precision Medicine Ltd Suzhou China
| | | | - Yang Hong
- Suzhou Sano Precision Medicine Ltd Suzhou China
| | - Jian Wang
- Children's Hospital of Soochow University Suzhou China
| | - Sheng Xiao
- Department of PathologyBrigham and Women's Hospital, Harvard Medical School Boston Massachusetts
| |
Collapse
|
149
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
150
|
Christodoulou E, van Doorn R, Visser M, Teunisse A, Versluis M, van der Velden P, Hayward NK, Jochemsen A, Gruis N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J Med Genet 2019; 57:203-210. [PMID: 31704778 DOI: 10.1136/jmedgenet-2019-106134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in CDKN2A and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma. METHODS In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant. RESULTS Application of WES identified a rare, nonsense variant in the NEK11 gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the NEK11 p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation. CONCLUSION The NEK11 p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support NEK11 as a melanoma susceptibility gene.
Collapse
Affiliation(s)
- Eirini Christodoulou
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Remco van Doorn
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mijke Visser
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Amina Teunisse
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mieke Versluis
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Pieter van der Velden
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nicholas K Hayward
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aart Jochemsen
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nelleke Gruis
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|