101
|
|
102
|
Photo-responsive azobenzene-based surfactants as fast-phototuning foam switch synthesized via thiol-ene click chemistry. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
103
|
Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles. MICROMACHINES 2020; 12:mi12010029. [PMID: 33383964 PMCID: PMC7824708 DOI: 10.3390/mi12010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/02/2022]
Abstract
Janus droplets can function as excellent templates for fabricating physically and chemically anisotropic particles. Here, we report new surfactant-laden Janus droplets with curvature controllability and enhanced stability against coalescence, suitable for fabricating shape-anisotropic polymer microparticles. Using a microfluidic flow-focusing device on a glass chip, nanoliter-sized biphasic droplets, comprising an acrylate monomer segment and a silicone-oil (SO) segment containing a surfactant, were produced in a co-flowing aqueous polyvinyl alcohol (PVA) solution. At equilibrium, the droplets formed a Janus geometry based on the minimization of interfacial energy, and each of the two Janus segments were uniform in size with coefficient-of-variation values below 3%. By varying the concentration of the surfactant in the SO phase, the curvature of the interface between the two lobes could be shifted among concave, planar, and convex shapes. In addition, the Janus droplets exhibited significantly improved stability against coalescence compared with previously reported Janus droplets carrying no surfactant that coalesced rapidly. Finally, via off-chip photopolymerization, concave-convex, planar-convex, and biconvex lens-shaped particles were fabricated.
Collapse
|
104
|
Sawada T, Oyama R, Tanaka M, Serizawa T. Discovery of Surfactant-Like Peptides from a Phage-Displayed Peptide Library. Viruses 2020; 12:E1442. [PMID: 33333956 PMCID: PMC7765448 DOI: 10.3390/v12121442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022] Open
Abstract
Peptides with specific affinities for various materials have been identified in the past three decades and utilized in materials science and engineering. A peptide's capability to specifically interact with materials is not naturally derived but screened from a biologically constructed peptide library displayed on phages or cells. To date, due to limitations in the screening procedure, the function of screened peptides has been primarily limited to the affinity for target materials. Herein, we demonstrated the screening of surfactant-like peptides from a phage-displayed peptide library. A screened phage clone displaying a peptide showed high activity for accumulating at emulsion surfaces with certain assembled structures, resulting in stable emulsions. The surface tension for the solution of the chemically synthesized peptide decreased with increasing peptide concentration, demonstrating certain surface activity, which corresponded to the ability to decrease the surface tension of liquids (e.g., water), owing to the accumulation of molecules at the air-liquid or liquid-liquid interface. Peptides with a randomized sequence did not lower the surface tension, indicating the essential role of amino acid sequences in surface activity. Our strategy for identifying novel functional peptides from a phage-displayed peptide library can be used to expand the applicability of peptidyl materials and biosurfactants.
Collapse
Affiliation(s)
- Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (R.O.); (M.T.)
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Rina Oyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (R.O.); (M.T.)
| | - Michihiro Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (R.O.); (M.T.)
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (R.O.); (M.T.)
| |
Collapse
|
105
|
Djalali S, Frank BD, Zeininger L. Responsive drop method: quantitative in situ determination of surfactant effectiveness using reconfigurable Janus emulsions. SOFT MATTER 2020; 16:10419-10424. [PMID: 33155583 DOI: 10.1039/d0sm01724h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterization of surfactant effectiveness and thus an evaluation of their performance in a wide range of emulsion technologies requires a precise determination of key parameters including their critical micelle concentrations as well as their ability to lower the surface tension at interfaces. In this study, we describe a new approach to quantify marginal variations in interfacial tension of surfactant stabilized fluid interfaces. The method is based on a unique chemical-morphological coupling inside bi-phasic oil-in-water Janus emulsions that undergo dynamic morphological transitions in response to changes in the surfactant type, concentration, ratio, and configuration. Variations in Janus droplet morphologies are readily monitored in situ using a simple side-view imaging setup, resulting in a fast, convenient, cost-effective, time-, and sample-saving technique for the characterization of classical surfactant systems. In addition, the reported method facilitates monitoring of triggered changes in surfactant effectiveness, e.g. invoked by external triggers, and thus proves particularly useful for the in situ analysis of stimuli-responsive surfactants and emulsions.
Collapse
Affiliation(s)
- Saveh Djalali
- Department of Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
106
|
Frank BD, Antonietti M, Zeininger L. Structurally Anisotropic Janus Particles with Tunable Amphiphilicity via Polymerization of Dynamic Complex Emulsions. Macromolecules 2020; 54:981-987. [PMID: 33518808 PMCID: PMC7842141 DOI: 10.1021/acs.macromol.0c02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Indexed: 12/20/2022]
Abstract
![]()
A facile
one-step approach for the synthesis of physically and
chemically anisotropic polymer particles with tunable size, shape,
composition, wettability, and functionality is reported. Specifically,
dynamically reconfigurable oil-in-water Janus emulsions containing
photocurable hydrocarbon or fluorocarbon acrylate monomers as one
of the droplet phases are used as structural templates to polymerize
them into precision Janus particles with highly uniform anomalous
morphologies including (hemi-) spheres, lenses, and bowls. During
polymerization, each interface is exposed to a different chemical
environment, yielding particles with an intrinsic Janus character
that can be amplified via side-selective postfunctionalization. The
fabrication method allows to start with various common emulsification
techniques, thus generating particles in the range of 200 nm –150
μm, also at a technical scale. The anisotropic shape combined
with the asymmetric wettability profile of the produced particles
promotes their directed self-assembly into colloidal clusters as well
as their directional alignment at fluid interfaces. We foresee the
application of such Janus particles in technical emulsions or oil
recovery, for the manufacturing of programmed self-assembled architectures,
and for the engineering of microstructured interfaces.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
107
|
Behrens SH. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
108
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
109
|
Jin H, Ge L, Li X, Guo R. Destabilization mechanism of (W 1+W 2)/O reverse Janus emulsions. J Colloid Interface Sci 2020; 585:205-216. [PMID: 33285459 DOI: 10.1016/j.jcis.2020.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Reverse Janus emulsion, with droplets composed by "two rooms" of water phases, is a novel multiple emulsion attributed to excellent integration capability and biocompatibility. However, significant instability compared with normal Janus emulsions renders the stability issue of great importance. Moreover, the ultra-low aqueous-aqueous inner interfacial tension, the anisotropic nature of the droplets with distinct lobe composition, and the random orientation in the continuous phase endow the complicated and various demulsification mechanisms. EXPERIMENTS Reverse Janus emulsion of (W1+W2)/O, employing typical salt-alcohol aqueous two-phase system (ATPS) as inner phases, is prepared in batch scale by conventional one-step vortex mixing. The demulsification process is detected by multiple light scattering technique, which provides real-time, in-situ, and quantitative information of emulsion evolution. Moreover, the fusion pattern of the anisotropic droplets is illustrated by the combination with light microscopy and size distribution measurement. FINDINGS Coalescence and sedimentation are found to be two main demulsification processes. Two salt "body" lobes of the "snowman" shaped Janus droplets combine first resulting in an intermediate Cerberus topology with two alcohol "heads" on one salt "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. Ultimately, the Gibbs free energy leads to a final state with three separated liquids. In addition, the variation in lobe viscosity, density, and properties of interfacial film greatly affect the demulsification rate and fusion pattern. A critical alcohol/surfactant mass ratio of 2 is found, beyond which a completely different fusion pattern occurs. Two alcohol "body" lobes combine first resulting in an intermediate Cerberus topology with two salt "heads" on one alcohol "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. The findings are instructive in the stability of aqueous based multiple emulsions with advanced morphologies and meanwhile, promote the future application of this novel emulsion in food science, pharmacy, and biomimetic compartmentalization.
Collapse
Affiliation(s)
- Haimei Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| |
Collapse
|
110
|
Mao S, Chakraverti-Wuerthwein MS, Gaudio H, Košmrlj A. Designing the Morphology of Separated Phases in Multicomponent Liquid Mixtures. PHYSICAL REVIEW LETTERS 2020; 125:218003. [PMID: 33275007 DOI: 10.1103/physrevlett.125.218003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Phase separation of multicomponent liquid mixtures plays an integral part in many processes ranging from industry to cellular biology. In many cases the morphology of coexisting phases is crucially linked to the function of the separated mixture, yet it is unclear what determines the morphology when multiple phases are present. We developed a graph theory approach to predict the topology of coexisting phases from a given set of surface energies, enumerate all topologically distinct morphologies, and reverse engineer conditions for surface energies that produce the target morphology.
Collapse
Affiliation(s)
- Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Hunter Gaudio
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
111
|
Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
112
|
Zhang M, Zhang H, He M, Wang L, Yang H, Song Y. Controlled diffusion of nanoparticles by viscosity gradient for photonic crystal with dual photonic band gaps. NANOTECHNOLOGY 2020; 31:435604. [PMID: 32659753 DOI: 10.1088/1361-6528/aba57c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coalescence of droplets containing nanoparticles has been paid much attention regarding fabrication of functional photonic crystal (PC) patterns. However, most studies focus on the coalescence of droplets containing the same nanoparticles. Currently, an active challenge comes from the coalescence of droplets containing different nanoparticles due to the spontaneous mutual diffusion of different nanoparticles between coalescing miscible droplets driven by the released Gibbs free energy. Such diffusion breaks the self-assembly of nanoparticles into promising PCs with dual photonic band gaps (PBGs). In this work, a viscosity gradient was induced in coalescing droplets containing different nanoparticles to control the diffusion of nanoparticles and impede the diffusion across the coalescing interface. Nanoparticles diffused along the viscosity gradient to droplet surfaces and self-assembled into a period structure which enhanced the interaction of nanoparticles and contributed to impeding the random diffusion between droplets. At the same time, the high viscosity at the coalescing interface slowed down the horizontal movement of nanoparticles further and consequently the diffusion of nanoparticles across the interface was impeded. By use of such controlled diffusion of nanoparticles in the viscosity gradient, PCs with PBGs were achieved. These results demonstrate the controlled diffusion of nanoparticles during the coalescence of miscible droplets to facilely fabricate PCs with PBGs in the absence of an existing external field.
Collapse
Affiliation(s)
- Min Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266000, People's Republic of China. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
113
|
Kim Y, Ding H, Zheng Y. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. NANO LETTERS 2020; 20:7020-7027. [PMID: 32667815 PMCID: PMC7572762 DOI: 10.1021/acs.nanolett.0c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular binding in surface-based biosensing is inherently governed by diffusional transport of molecules in solution to surface-immobilized counterparts. Optothermally generated surface microbubbles can quickly accumulate solutes at the bubble-liquid-substrate interface due to high-velocity fluid flows. Despite its potential as a concentrator, however, the incorporation of bubbles into protein-based sensing is limited by high temperatures. Here, we report a biphasic liquid system, capable of generating microbubbles at a low optical power/temperature by formulating PFP as a volatile, water-immiscible component in the aqueous host. We further exploited zwitterionic surface modification to prevent unwanted printing during bubble generation. In a single protein-protein interaction model, surface binding of dispersed proteins to capture proteins was enhanced by 1 order of magnitude within 1 min by bubbles, compared to that from static incubation for 30 min. Our proof-of-concept study exploiting fluid formulation and optothermal add-on paves an effective way toward improving the performances of sensors and spectroscopies.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
114
|
Zia A, Pentzer E, Thickett S, Kempe K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38845-38861. [PMID: 32805925 DOI: 10.1021/acsami.0c07993] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emulsions are mixtures of two immiscible liquids in which droplets of one are dispersed in a continuous phase of the other. The most common emulsions are oil-water systems, which have found widespread use across a number of industries, for example, in the cosmetic and food industries, and are also of advanced scientific interest. In addition, the past decade has seen a significant increase in both the design and application of nonaqueous emulsions. This has been primarily driven by developments in understanding the mechanism of effective stabilization of oil-in-oil (o/o) systems, either using block copolymers (BCPs) or solid (Pickering) particles with appropriate surface functionality. These systems, as highlighted in this review, have enabled emergent applications in areas such as pharmaceutical delivery, energy storage, and materials design (e.g., polymerization, monolith, and porous polymer synthesis). These o/o emulsions complement traditional emulsions that utilize an aqueous phase and allow the use of materials incompatible with water. We assess recent advances in the preparation and stabilization of o/o emulsions, focusing on the identity of the stabilizer (BCP or particle), the interplay between stabilizer and oils, and highlighting applications and opportunities associated with o/o emulsions.
Collapse
Affiliation(s)
- Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77807, United States
| | - Stuart Thickett
- School of Natural Sciences (Chemistry), The University of Tasmania, Hobart, Tasmania 7001 Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
115
|
Zentner C, Concellón A, Swager TM. Controlled Movement of Complex Double Emulsions via Interfacially Confined Magnetic Nanoparticles. ACS CENTRAL SCIENCE 2020; 6:1460-1466. [PMID: 32875087 PMCID: PMC7453569 DOI: 10.1021/acscentsci.0c00686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 05/03/2023]
Abstract
Controlled, dynamic movement of materials through noncontacting forces provides interesting opportunities in systems design. Confinement of magnetic nanoparticles to the interfaces of double emulsions introduces exceptional control of double emulsion movement. We report the selective magnetic functionalization of emulsions by the in situ selective reactions of amine-functionalized magnetic nanoparticles and oil-soluble aldehydes at only one of the double emulsion's interfaces. We demonstrate morphology-dependent macroscopic ferromagnetic behavior of emulsions induced by the interfacial confinement of the magnetic nanoparticles. The attraction and repulsion of the emulsions to applied magnetic fields results in controlled orientation changes and rotational movement. Furthermore, incorporation of liquid crystals into the double emulsions adds additional templating capabilities for precision assembly of magnetic nanoparticles, both along the interface and at point defects. Applying a magnetic field to liquid crystal complex emulsions can produce movement as well as reorganization of the director field in the droplets. The combination of interfacial chemistry and precise assembly of magnetic particles creates new systems with potentially useful field-responsive properties.
Collapse
|
116
|
Savagatrup S, Ma D, Zhong H, Harvey KS, Kimerling LC, Agarwal AM, Swager TM. Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators. ACS Sens 2020; 5:1996-2002. [PMID: 32441524 DOI: 10.1021/acssensors.0c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reversible morphological transformations in response to a change in the chemical environment (e.g., exposure to targeted analytes). This chemical-morphological coupling drastically modifies the effective refractive index, allowing the complex emulsions to act as a chemical transducer and signal amplifier. We detect this large change in the refractive index by tracking the shift of the enveloped resonant spectrum of a silicon nitride (Si3N4) racetrack resonator-based sensor, which correlates well with a change in the morphology of the complex droplets. This combination of soft materials (dynamic complex emulsions) and hard materials (on-chip resonators) provides a unique platform for liquid-phase, real-time, and continuous detection of chemicals and biomolecules for miniaturized and remote, environmental, medical, and wearable sensing applications.
Collapse
Affiliation(s)
- Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Danhao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Huikai Zhong
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kent S. Harvey
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lionel C. Kimerling
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anuradha M. Agarwal
- Materials Research Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
117
|
One-step microdevices for synthesizing morphology-controlled ultraviolet-curable polysiloxane shell particles. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00106-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Zhang F, Jiang L, Zeng C, Wang C, Wang J, Ke X, Zhang L. Complex emulsions for shape control based on mass transfer and phase separation. SOFT MATTER 2020; 16:5981-5989. [PMID: 32543634 DOI: 10.1039/d0sm00862a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Complex emulsions are used to fabricate new morphologies of multiple Janus droplets, evolving from non-engulfing to complete engulfing core/shell configuration. The produced droplets contain an aqueous phase of dextran (DEX) solution and an oil phase, which is mixed with ethoxylated trimethylolpropane triacrylate (ETPTA) and poly(ethylene glycol) diacrylate (PEGDA). The PEGDA in the oil phase is transferred into the aqueous phase to form complex morphologies due to the phase separation of PEGDA and DEX. The effects are investigated including the ratio of oil to aqueous phase, the content of initial PEGDA, DEX and surfactants, and the type of surfactants. DEX/PEGDA-ETPTA core/shell-single phase Janus droplets are formed with an increasing engulfed oil droplet into the aqueous droplet while the ratio of oil to aqueous phase increases or the initial PEGDA content increases. The high DEX content leads to the DEX-PEGDA-ETPTA doublet Janus. The use of surfactants polyglycerol polyricinoleate (PGPR) and Span 80 results in the formation of DEX/PEGDA/ETPTA single core/double shell and DEX/PEGDA-ETPTA core/shell-single phase Janus droplets, respectively. These complex emulsions are utilized to fabricate solid particles of complex shapes. This method contributes to new material design underpinned by mass transfer and phase separation, which can be extended to other complex emulsion systems.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing 211816, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
119
|
Park S, Lee SS, Kim SH. Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002166. [PMID: 32519408 DOI: 10.1002/adma.202002166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Cholesteric liquid crystals (CLCs), also known as chiral nematic LCs, show a photonic stopband, which is promising for various optical applications. In particular, CLCs confined in microcompartments are useful for sensing, lasing, and optical barcoding at the microscale. The integration of distinct CLCs into single microstructures can provide advanced functionality. In this work, CLC multishells with multiple stopbands are created by liquid-liquid phase separation (LLPS) in a simple yet highly controlled manner. A homogeneous ternary mixture of LC, hydrophilic liquid, and co-solvent is microfluidically emulsified to form uniform oil-in-water drops, which undergo LLPS to form onion-like drops composed of alternating CLC-rich and CLC-depleted layers. The multiplicity is controlled from one to five by adjusting the initial composition of the ternary mixture, which dictates the number of consecutive steps of LLPS. Interestingly, the concentration of the chiral dopant becomes reduced from the outermost to the innermost CLC drop due to uneven partitioning during LLPS, which results in multiple stopbands. Therefore, the photonic multishells show multiple structural colors. In addition, dye-doped multishells provide band-edge lasing at two different wavelengths. This new class of photonic multishells will provide new opportunities for advanced optical applications.
Collapse
Affiliation(s)
- Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sang Seok Lee
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, KIST, Wanju-gun, Jeollabuk-do, 55324, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
120
|
Cheon SI, Batista Capaverde Silva L, Ditzler R, Zarzar LD. Particle Stabilization of Oil-Fluorocarbon Interfaces and Effects on Multiphase Oil-in-Water Complex Emulsion Morphology and Reconfigurability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7083-7090. [PMID: 31991080 DOI: 10.1021/acs.langmuir.9b03830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stabilization of oil-oil interfaces is important for nonaqueous emulsions as well as for multiphase oil-in-water emulsions, with relevance to a variety of fields ranging from emulsion polymerization to sensors and optics. Here, we focus on examining the ability of functionalized silica particles to stabilize interfaces between fluorinated oils and other immiscible oils (such as hydrocarbons and silicones) in nonaqueous emulsions and also on the particles' ability to affect the morphology and reconfigurability of complex, biphasic oil-in-water emulsions. We compare the effectiveness of fluorophilic, lipophilic, and bifunctional fluorophilic-lipophilic coated nanoparticles to stabilize these oil-oil interfaces. Sequential bulk emulsification steps by vortex mixing, or emulsification by microfluidics, can be used to create complex droplets in which particles stabilize the oil-oil interfaces and surfactants stabilize the oil-water interfaces. We examine the influence of particles adsorbed at the internal oil-oil interface in complex droplets to hinder the reconfiguration of these complex emulsions upon addition of aqueous surfactants, creating "metastable" droplets that resist changes in morphology. Such metastable droplets can be triggered to reconfigure when heated above their upper critical solution temperature. Thus, not only do these bifunctional silica particles enable the stabilization of a broad array of oil-fluorocarbon nonaqueous emulsions, but the ability to address the oil-oil interface within complex O/O/W droplets expands the diversity of oil chemical choices available and the accessibility of droplet morphologies and sensitivity.
Collapse
Affiliation(s)
- Seong Ik Cheon
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leonardo Batista Capaverde Silva
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rachael Ditzler
- Department of Chemistry, Seton Hill University, Greensburg, Pennsylvania 15601, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
121
|
Li J, Savagatrup S, Nelson Z, Yoshinaga K, Swager TM. Fluorescent Janus emulsions for biosensing of Listeria monocytogenes. Proc Natl Acad Sci U S A 2020; 117:11923-11930. [PMID: 32414933 PMCID: PMC7275673 DOI: 10.1073/pnas.2002623117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we report a sensing method for Listeria monocytogenes based on the agglutination of all-liquid Janus emulsions. This two-dye assay enables the rapid detection of trace Listeria in less than 2 h via an emissive signal produced in response to Listeria binding. The biorecognition interface between the Janus emulsions is assembled by attaching antibodies to a functional surfactant polymer with a tetrazine/transcyclooctene click reaction. The strong binding between Listeria and the Listeria antibody located at the hydrocarbon surface of the emulsions results in the tilting of the Janus structure from its equilibrium position to produce emission that would ordinarily be obscured by a blocking dye. This method provides rapid and inexpensive Listeria detection with high sensitivity (<100 CFU/mL in 2 h) that can be paired with many antibody or related recognition elements to create a new class of biosensors.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Suchol Savagatrup
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zachary Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
122
|
Lim YGJ, Low HYJ, Loo SCJ. Synthesis of Polymeric Janus Superstructures via a Facile Synthesis Method. Macromol Rapid Commun 2020; 41:e2000140. [PMID: 32449578 DOI: 10.1002/marc.202000140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Polymeric Janus particles can be exploited for a myriad of applications. Through the understanding of interfacial tensions, theragnostic agents such as drugs or nanomaterials can be successfully encapsulated into Janus particles without losing their anisotropic structure. In this work, it is reported that how Janus superstructures, as a further extension of the Janus morphology, can be obtained by blending other synthesis parameters into the solvent emulsion process, while adhering to the requirements of the Harkin's spreading coefficient (HSC) theory. Designing such unique structures for drug delivery can provide a broader range of possibilities and applications beyond conventional Janus particles.
Collapse
Affiliation(s)
- Yi Guang Jerome Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ying Jessalyn Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
123
|
Chen H, Zhao R, Hu J, Wei Z, McClements DJ, Liu S, Li B, Li Y. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5412-5425. [PMID: 32320613 DOI: 10.1021/acs.jafc.9b08301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a polysaccharide widely used as a structuring agent in foods and other materials because of its positive charge (amino groups). At present, however, it is difficult to form and stabilize emulsions using chitosan due to its high hydrophilicity. In this study, oil-in-water emulsions were prepared using a one-pot green-chemistry method. The chitosan and aldehyde molecules were in situ interfacially conjugated during homogenization, which promoted the adsorption of chitosan onto the oil droplet surfaces where they created a protective coating. The universality of this method was verified by using chitosan with different molecular weights and four kinds of natural aldehydes [cinnamaldehyde (CA), citral (CT), citronella (CN), and vanillin (VL)]. Chitosan with higher molecular weight facilitated the formation of emulsions. By harnessing the dynamic covalent nature of imine bonds, chitosan emulsions with an imine link display dynamic behavior with acid-catalyzed hydrolysis. The aldehyde structure could control the pH point of trigger for breakdown of emulsions, which was 1.0, 3.0, 4.0, and 4.0 for CA emulsion, CT emulsion, CN emulsion, and VL emulsion, respectively. At pH 6.5, aldehyde helped to decrease the interfacial tension of chitosan to about 10 mN/m, while this value would increase if the pH decreased by adding acid during the measurement. Chemical kinetics studies indicated that the hydrophobicity and conjugation effect of the aldehyde together determined the trigger points and properties of the emulsion. Finally, we used the optimized emulsions to encapsulate and control the release of curcumin. The gastric release behavior of the curcumin depended on aldehyde structure: VL > CN > CT ≈ CA. Hence, a tailor-made trigger release emulsion system can be achieved by rational selection and design of aldehyde structure to control hydrophobicity and conjugation effect of aldehydes.
Collapse
Affiliation(s)
- Huanle Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
124
|
Pavlovic M, Antonietti M, Schmidt BVKJ, Zeininger L. Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. J Colloid Interface Sci 2020; 575:88-95. [PMID: 32361049 DOI: 10.1016/j.jcis.2020.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Complex aqueous emulsions represent a promising material platform for the encapsulation of cells, pharmaceuticals, or nutrients, for the fabrication of structured particles, as well as for mimicking the barrier-free compartmentalization of biomolecules found in living cells. Herein, we report a novel, simple, and scalable method of creating multicomponent aqueous droplets with highly uniform internal droplet morphologies that can be controllably altered after emulsification by making use of a thermal phase separation approach. Specifically, temperature-induced phase separation inside as-formed emulsion droplets comprising aqueous mixtures of two or more hydrophilic polymers allows for the generation of Janus and Cerberus emulsion droplets with adjustable internal morphologies that are solely controlled by a balance of interfacial tensions. We demonstrate our approach by applying both, microfluidic and scalable batch production, and present a detailed model study with predictive capabilities that enables fine-tuning and dynamically altering the droplet morphology as a function of types, molecular weights, and hydrophilicities of the polymers as well as the surfactant hydrophilic-lipophilic balance. The ability to rationally design complex aqueous emulsion droplets with previously unattainable dynamic control over their morphologies after emulsification entails the potential to design new responsive soft materials with implications for a variety of applications beyond encapsulation, including the design of complex adaptive and self-regulating materials, e.g. for chemical and biological sensing applications.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
125
|
Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell 2020; 181:306-324.e28. [PMID: 32302570 PMCID: PMC7816278 DOI: 10.1016/j.cell.2020.03.050] [Citation(s) in RCA: 479] [Impact Index Per Article: 119.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S W Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Victoria Drake
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Joshua A Riback
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jorine M Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Allana Iwanicki
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alicia Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Gena Whitney
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton, NJ 08544, USA.
| |
Collapse
|
126
|
Shakya G, Hoff SE, Wang S, Heinz H, Ding X, Borden MA. Vaporizable endoskeletal droplets via tunable interfacial melting transitions. SCIENCE ADVANCES 2020; 6:eaaz7188. [PMID: 32284985 PMCID: PMC7124936 DOI: 10.1126/sciadv.aaz7188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 05/08/2023]
Abstract
Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low-boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C5F12) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions.
Collapse
Affiliation(s)
- Gazendra Shakya
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Samuel E. Hoff
- Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO 80309, USA
| | - Shiyi Wang
- Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO 80309, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, 596 UCB, Boulder, CO 80309, USA
- Materials Science and Engineering Program, 027 UCB, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
- Materials Science and Engineering Program, 027 UCB, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
127
|
Abedi S, Chen CC, Vanapalli SA. Collective nucleation dynamics in two-dimensional emulsions with hexagonal packing. Phys Rev E 2020; 101:030602. [PMID: 32289965 DOI: 10.1103/physreve.101.030602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
We report a mechanism for nucleation in a monolayer of hexagonally packed monodisperse droplet arrays. Upon cooling, we observe solidified droplets to nucleate their supercooled neighbors giving rise to an autocatalyticlike mechanism for accelerated crystallization. This collective mode of nucleation depends on the strength and nature of droplet contacts. Intriguingly, the statistical distribution of the solidified droplet clusters is found to be independent of emulsion characteristics except surfactant. In contrast to classical nucleation theory, our work highlights the need to consider collective effects of nucleation in supercooled concentrated emulsions where droplet crowding is inevitable.
Collapse
Affiliation(s)
- Samira Abedi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| | - Chau-Chyun Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA
| |
Collapse
|
128
|
Xi Y, Liu B, Jiang H, Yin S, Ngai T, Yang X. Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions. Chem Sci 2020; 11:3797-3803. [PMID: 34122848 PMCID: PMC8152521 DOI: 10.1039/c9sc05050g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
pH-responsive emulsions are one of the simplest and most readily implementable stimuli-responsive systems. However, their practical uses have been greatly hindered by cyclability. Here, we report a robust pH-responsive emulsion prepared by utilizing pure sodium caseinate (NaCas) as the sole emulsifier. We demonstrate that the emulsification/demulsification of the obtained NaCas-stabilized emulsion can be triggered by simply changing the pH value over 100 cycles, which has never been observed in any protein-stabilized emulsion system. The NaCas-stabilized emulsion maintains its pH-responsive properties even in a saturated salt solution (NaCl ∼ 6.1 M) or seawater. We illustrate how NaCas functions in pH-responsive emulsions and show that when conventional nanoparticles such as zein protein or bare SiO2 particles were coated with a layer of NaCas, the resulting formulated emulsions could be switched on and off over 10 cycles. The unique properties of NaCas thus enable the engineering of conventional Pickering emulsions to pH-responsive Pickering emulsions. Finally, we have integrated catalytically active gold (Au) nanoclusters (NCs) into the NaCas protein and then utilized them to produce emulsions. Remarkably, these NaCas-Au NCs assembled at the oil-water interface exhibited excellent catalytic activity and cyclability, not only in aqueous solution, but also in complicated seawater environments.
Collapse
Affiliation(s)
- Yongkang Xi
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Bo Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China
| | - Hang Jiang
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Shouwei Yin
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China .,Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Xiaoquan Yang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology Guangzhou 510640 P. R. China .,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 PR China
| |
Collapse
|
129
|
Honnigfort C, Campbell RA, Droste J, Gutfreund P, Hansen MR, Ravoo BJ, Braunschweig B. Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 2020; 11:2085-2092. [PMID: 32190275 PMCID: PMC7059314 DOI: 10.1039/c9sc05490a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Interfaces that can change their chemistry on demand have huge potential for applications and are prerequisites for responsive or adaptive materials. We report on the performance of a newly designed n-butyl-arylazopyrazole butyl sulfonate (butyl-AAP-C4S) surfactant that can change its structure at the air-water interface by E/Z photo-isomerization in an unprecedented way. Large and reversible changes in surface tension (Δγ = 27 mN m-1) and surface excess (ΔΓ > 2.9 μmol m-2) demonstrate superior performance of the butyl-AAP-C4S amphiphile to that of existing ionic surfactants. Neutron reflectometry and vibrational sum-frequency generation spectroscopy reveal that these large changes are caused by an unexpected monolayer-to-bilayer transition. This exceptional behavior is further shown to have dramatic consequences at larger length scales as highlighted by applications like the light-triggered collapse of aqueous foam which is tuned from high (>1 h) to low (<10 min) stabilities and light-actuated particle motion via Marangoni flows.
Collapse
Affiliation(s)
- Christian Honnigfort
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| | - Richard A Campbell
- Division of Pharmacy & Optometry , School of Health Sciences , University of Manchester , Oxford Road , Manchester M13 9PT , UK
| | - Jörn Droste
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
| | - Philipp Gutfreund
- Institut Laue-Langevin (ILL) , 71 Avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Michael Ryan Hansen
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
| | - Bart Jan Ravoo
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
- Organic Chemistry Institute , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| |
Collapse
|
130
|
Geng Y, Ling S, Huang J, Xu J. Multiphase Microfluidics: Fundamentals, Fabrication, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906357. [PMID: 31913575 DOI: 10.1002/smll.201906357] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Multiphase microfluidics enables an alternative approach with many possibilities in studying, analyzing, and manufacturing functional materials due to its numerous benefits over macroscale methods, such as its ultimate controllability, stability, heat and mass transfer capacity, etc. In addition to its immense potential in biomedical applications, multiphase microfluidics also offers new opportunities in various industrial practices including extraction, catalysis loading, and fabrication of ultralight materials. Herein, aiming to give preliminary guidance for researchers from different backgrounds, a comprehensive overview of the formation mechanism, fabrication methods, and emerging applications of multiphase microfluidics using different systems is provided. Finally, major challenges facing the field are illustrated while discussing potential prospects for future work.
Collapse
Affiliation(s)
- Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - SiDa Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinpei Huang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
131
|
Balaj RV, Cho SW, Singh P, Zarzar LD. Polyelectrolyte hydrogel capsules as stabilizers for reconfigurable complex emulsions. Polym Chem 2020. [DOI: 10.1039/c9py00956f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyelectrolyte capsules stabilize biphasic oil droplets while preserving droplet reconfigurability in the presence of surfactants.
Collapse
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
| | - Seung Wook Cho
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Prachi Singh
- Department of Materials Science and Engineering
- The Pennsylvania State University
- University Park
- USA 16802
| | - Lauren D. Zarzar
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA 16802
- Department of Materials Science and Engineering
| |
Collapse
|
132
|
Chaussavoine I, Beauvois A, Mateo T, Vasireddi R, Douri N, Priam J, Liatimi Y, Lefrançois S, Tabuteau H, Davranche M, Vantelon D, Bizien T, Chavas LMG, Lassalle-Kaiser B. The microfluidic laboratory at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:230-237. [PMID: 31868757 DOI: 10.1107/s1600577519015042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.
Collapse
Affiliation(s)
| | | | - Tiphaine Mateo
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Nadine Douri
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Jordan Priam
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Youssef Liatimi
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | - Hervé Tabuteau
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | | | - Thomas Bizien
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
133
|
Raju RR, Liebig F, Klemke B, Koetz J. Ultralight magnetic aerogels from Janus emulsions. RSC Adv 2020; 10:7492-7499. [PMID: 35492159 PMCID: PMC9049865 DOI: 10.1039/c9ra10247g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC).![]()
Collapse
Affiliation(s)
| | - Ferenc Liebig
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Joachim Koetz
- Institute of Chemistry
- University of Potsdam
- 14476 Potsdam
- Germany
| |
Collapse
|
134
|
Wang X, Zhou Y, Palacio-Betancur V, Kim YK, Delalande L, Tsuei M, Yang Y, de Pablo JJ, Abbott NL. Reconfigurable Multicompartment Emulsion Drops Formed by Nematic Liquid Crystals and Immiscible Perfluorocarbon Oils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16312-16323. [PMID: 31652070 DOI: 10.1021/acs.langmuir.9b02864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Liquid crystalline (LC) oils offer the basis of stimuli-responsive LC-in-water emulsions. Although past studies have explored the properties of single-phase LC emulsions, few studies have focused on complex multicompartment emulsions containing co-existing isotropic and LC domains. In this paper, we report a study of multiphase emulsions using LCs and immiscible perfluoroalkanes dispersed in water or glycerol (the latter continuous phase is used to enable characterization). We found that the nematogen 4'-pentyl-4-biphenylcarbonitrile (5CB) anchors homeotropically (perpendicularly) and weakly at liquid perfluorononane (F9) interfaces, consistent with the smectic layering of 5CB molecules. The proposed role of smectic layering is supported by experiments performed with 4-(trans-4-pentylcyclohexyl)benzonitrile, a nematogen that possesses a cyclohexyl group that frustrates the smectic packing and leads to tilted orientations at the F9 interface. By employing perfluorocarbon and hydrocarbon surfactants in combination with multiphase 5CB and F9 emulsion droplets dispersed in a continuous water or glycerol phase, we observe a range of emulsion droplet morphologies to form, including core-shell and Janus structures, with internal organizations that reflect an interplay of interfacial (anchoring energies; F9 and glycerol) and elastic energies within the confines of the geometry of the emulsion droplet. By comparing experimental observations to simulations of the LC-perfluorocarbon droplets based on a Landau-de Gennes model of the free energy, we place bounds on the orientation-dependent interfacial energies that underlie the internal ordering of these complex emulsions. Additionally, by forming core-shells emulsion droplets from 5CB (shell) and perfluoroheptane (cores), we demonstrate how a liquid-to-vapor phase transition in the perfluorocarbon core can be used to actuate the droplet and rapidly thin the nematic shell. Overall, the results reported in this paper demonstrate that multiphase LC emulsions formed from mixtures of perfluoroalkanes and LCs provide new opportunities to engineer hierarchical and stimuli-responsive emulsion systems.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Ye Zhou
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Viviana Palacio-Betancur
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang , Gyengbuk 37673 , Korea
| | - Lily Delalande
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| | - Yu Yang
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Center for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14850 , United States
| |
Collapse
|
135
|
Ku KH, Li J, Yoshinaga K, Swager TM. Dynamically Reconfigurable, Multifunctional Emulsions with Controllable Structure and Movement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905569. [PMID: 31639256 DOI: 10.1002/adma.201905569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Indexed: 05/20/2023]
Abstract
Dynamically reconfigurable oil-in-water (o/w) Pickering emulsions are developed, wherein the assembly of particles (i.e., platinum-on-carbon and iron-on-carbon particles) can be actively controlled by adjusting interfacial tensions. A balanced adsorption of particles and surfactants at the o/w interface allows for the creation of inhomogeneity of the particle distribution on the emulsion surface. Complex Pickering emulsions with highly controllable and reconfigurable morphologies are produced in a single step by exploiting the temperature-sensitive miscibility of hydrocarbon and fluorocarbon liquids. Dynamic adsorption/desorption of (polymer) surfactants afford both shape and configuration transitions of multiple Pickering emulsions and encapsulated core/shell structured can be transformed into a Janus configuration. Finally, to demonstrate the intrinsic catalytic or magnetic properties of the particles provided by carbon bound Pt and Fe nanoparticles, two different systems are investigated. Specifically, the creation of a bimetallic microcapsule with controlled payload release and precise modulation of translational and rotational motions of magnetic emulsions are demonstrated, suggesting potential applications for sensing and smart payload delivery.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jie Li
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Kosuke Yoshinaga
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| |
Collapse
|
136
|
De Angelis P, Cardellini A, Asinari P. Exploring the Free Energy Landscape To Predict the Surfactant Adsorption Isotherm at the Nanoparticle-Water Interface. ACS CENTRAL SCIENCE 2019; 5:1804-1812. [PMID: 31807682 PMCID: PMC6891862 DOI: 10.1021/acscentsci.9b00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/08/2023]
Abstract
The long-lasting stability of nanoparticle (NP) suspensions in aqueous solution is one of the main challenges in colloidal science. The addition of surfactants is generally adopted to increase the free energy barrier between NPs and hence to ensure a more stable condition avoiding the NP sedimentation. However, a tailored prediction of surfactant concentration enabling a good dispersion of NPs is still an ambitious objective. Here, we demonstrate the efficiency of coupling steered molecular dynamics (SMD) with the Langmuir theory of adsorption in the low surfactant concentration regime, to predict the adsorption isotherm of sodium-dodecyl-sulfate (SDS) on bare α-alumina NPs suspended in aqueous solution. The resulting adsorption free energy landscapes (FELs) are also investigated by tuning the percentage of SDS molecules coating the target bare NP. Our findings shed light on the competing role of enthalpic and entropic interaction contributions. On one hand, the adsorption is highly promoted by the tail-NP and tail-tail nonbonded interaction adhesion; on the other hand, our results unveil the entropic nature of water and surfactant steric effects occurring at the NP surface and preventing the adsorption. Finally, a thorough analysis on the steering works emphasizes the role of the NP curvature in the FEL of adsorption. In particular, we show that, moving from a solid infinite flat surface to a nanoscale particle, a deviation from a Markovian dynamics of adsorption occurs in close proximity to a curved solid-liquid interface. Here, both the NP curvature effect and nanoscale morphology promote a modification of the thermodynamics state of adsorption with a consequent splitting of the free energy profiles and the identification of specific sites of adsorption. The modeling framework suggested in this Article provides physical insights in the surfactant adsorption onto spherical NPs and suggests some guidelines to rationally design stable NP suspensions in aqueous solutions.
Collapse
|
137
|
Strom AR, Brangwynne CP. The liquid nucleome - phase transitions in the nucleus at a glance. J Cell Sci 2019; 132:132/22/jcs235093. [PMID: 31754043 DOI: 10.1242/jcs.235093] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells organize membrane-less internal compartments through a process called liquid-liquid phase separation (LLPS) to create chemically distinct compartments, referred to as condensates, which emerge from interactions among biological macromolecules. These condensates include various cytoplasmic structures such as P-granules and stress granules. However, an even wider array of condensates subcompartmentalize the cell nucleus, forming liquid-like structures that range from nucleoli and Cajal bodies to nuclear speckles and gems. Phase separation provides a biophysical assembly mechanism underlying this non-covalent form of fluid compartmentalization and functionalization. In this Cell Science at a Glance article and the accompanying poster, we term these phase-separated liquids that organize the nucleus the liquid nucleome; we discuss examples of biological phase transitions in the nucleus, how the cell utilizes biophysical aspects of phase separation to form and regulate condensates, and suggest interpretations for the role of phase separation in nuclear organization and function.
Collapse
Affiliation(s)
- Amy R Strom
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
138
|
Hu Y, Pérez-Mercader J. Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41640-41648. [PMID: 31595738 DOI: 10.1021/acsami.9b13699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcapsules with two distinct layers of shells were fabricated using an approach combining microfluidics and photopolymerization. Unlike conventional microcapsules with a single shell, a fluorinated oil layer was introduced between the lumen and the outer polymer shell. The fluorinated oil layer significantly suppresses the leakage of the encapsulated ingredients in the lumen and consequently gives the microcapsules remarkable slow release capability for hydrophilic small molecule-based payloads, such as Rhodamine 6G. The release period of Rhodamine 6G can be up to 4 months when using a photocurable resin as the shell material, and the release of Rhodamine 6G can be regulated via the osmolality of the incubation solution for porous hydrogel microcapsules. Even under maximum hypotonic conditions, the release period of Rhodamine 6G in the hydrogel microcapsules is at least 10 days. The slow release capability can be significantly enhanced (6 weeks or longer) by increasing the thicknesses of the hydrogel shell and fluorinated oil layer.
Collapse
Affiliation(s)
- Yuandu Hu
- Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Santa Fe Institute , Santa Fe , New Mexico 87501 , United States
| |
Collapse
|
139
|
Zentner CA, Anson F, Thayumanavan S, Swager TM. Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. J Am Chem Soc 2019; 141:18048-18055. [PMID: 31674769 DOI: 10.1021/jacs.9b06852] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interfacial chemistry provides an opportunity to control dynamic materials. By harnessing the dynamic covalent nature of imine bonds, emulsions are generated in situ, predictably manipulated, and ultimately destroyed along liquid-liquid and emulsion-solid interfaces through simple perturbation of the imine equilibria. We report the rapid production of surfactants and double emulsions through spontaneous in situ imine formation at the liquid-liquid interface of oil/water. Complex double emulsions with imine surfactants are stable to neutral and basic conditions and display dynamic behavior with acid-catalyzed hydrolysis and imine exchange. We demonstrate the potential of in situ imine surfactant formation to generate complex surfactants with biomolecules (i.e., antibodies) for biosensing applications. Furthermore, imine formation at the emulsion-solid interface offers a triggered payload release mechanism. Our results illustrate how simple, dynamic interfacial imine formation can translate changes in bonding to macroscopic outputs.
Collapse
Affiliation(s)
- Cassandra A Zentner
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Francesca Anson
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - S Thayumanavan
- Department of Chemistry , University of Massachusetts - Amherst , Amherst , Massachusetts 01003 , United States
| | - Timothy M Swager
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
140
|
Concellón A, Zentner CA, Swager TM. Dynamic Complex Liquid Crystal Emulsions. J Am Chem Soc 2019; 141:18246-18255. [DOI: 10.1021/jacs.9b09216] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Cassandra A. Zentner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
141
|
Hokmabad BV, Baldwin KA, Krüger C, Bahr C, Maass CC. Topological Stabilization and Dynamics of Self-Propelling Nematic Shells. PHYSICAL REVIEW LETTERS 2019; 123:178003. [PMID: 31702275 DOI: 10.1103/physrevlett.123.178003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Liquid shells (e.g., double emulsions, vesicles, etc.) are susceptible to interfacial instability and rupturing when driven out of mechanical equilibrium. This poses a significant challenge for the design of liquid-shell-based micromachines, where the goal is to maintain stability and dynamical control in combination with motility. Here, we present our solution to this problem with controllable self-propelling liquid shells, which we have stabilized using the soft topological constraints imposed by a nematogen oil. We demonstrate, through experiments and simulations, that anisotropic elasticity can counterbalance the destabilizing effect of viscous drag induced by shell motility and inhibit rupturing. We analyze their propulsion dynamics and identify a peculiar meandering behavior driven by a combination of topological and chemical spontaneously broken symmetries. Based on our understanding of these symmetry breaking mechanisms, we provide routes to control shell motion via topology, chemical signaling, and hydrodynamic interactions.
Collapse
Affiliation(s)
- Babak Vajdi Hokmabad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg August Universität, 37077 Göttingen, Germany
| | - Kyle A Baldwin
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- SOFT Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Carsten Krüger
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Christian Bahr
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Corinna C Maass
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
142
|
Temperature and composition induced morphology transition of Cerberus emulsion droplets. J Colloid Interface Sci 2019; 554:210-219. [PMID: 31301521 DOI: 10.1016/j.jcis.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Various advanced geometries are endowed by the unique structure of "three rooms" of immiscible oils composing the Cerberus droplets. Adjustable interfacial properties and tunable volume ratio in the four-liquid system render it possible to realize the controlled morphology transition by the variation of temperature and emulsion composition. EXPERIMENTS Cerberus emulsions are prepared in batch scale by traditional one-step vortex mixing, employing the oil combinations of methacryloxypropyl dimethyl silicone (DMS)/2-(perfluorooctyl) ethyl methacrylate (PFOEMA)/vegetable oil (VO). Emulsifier of pluoronic F127, a temperature sensitive surfactant is applied. Stereoscopic topological phase diagram as functions of temperature and composition are plotted. Numerical calculations on the droplet morphology including interface curvature, contact angle, and volume fraction of each domain are performed. FINDINGS Four primary regions with specific morphologies, i.e. "VO > DMS < PFOEMA", "VO > DMS > PFOEMA", "VO < DMS > PFOEMA", and finally "VO < DMS < PFOEMA" are obtained. Extended volume ratio range of three lobes, from about 0.03 to 23.3, is achieved and precisely controlled based on the three-phase diagram. What is more, the structural features are found to be thermodynamically determined by the minimization of interfacial energy, though the emulsion is prepared kinetically by vortex mixing. The findings are attractive in the fields of materials synthesis and microreactors.
Collapse
|
143
|
Liu T, Lei Q, Dong J, Li X, Lu Y, Zhou T. Light-responsive vesicles based on azobenzene containing imidazolium surfactants and sodium oleate. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04557-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
144
|
Lian X, Wang Z, Liao H, Li R, Tao X, Wang Y. Natural Rice Starch Granules for Green Cleaning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13157-13164. [PMID: 31522498 DOI: 10.1021/acs.langmuir.9b02515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detergents are steadily becoming one of the necessities in our daily life. However, synthetic detergents are threatening the global environment and human health, as most of them are derived from petrochemicals. Inspired by one of the ancient Asian traditions that the rice-washing water served as a natural detergent for bathing and washing, this work provides insights into the mechanism of the detergent effect of rice-washing water. It is proposed that starch granules existing in the rice-washing water are interfacially active, which can facilitate the formation of O/W Pickering emulsions. This principle is successfully extended to rice flour that is made by mechanical media milling in a large scale. Pickering emulsions loading different organic solvents as dispersed phase can be stabilized by these food-grade granules without adding other chemical additives. Practical trails of removing pesticide residues and meat cleaning confirm the possibilities to render these natural rice starch granules as sustainable detergents for food cleaning with high safety assurance.
Collapse
Affiliation(s)
- Xiaodong Lian
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Zhen Wang
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Hongguang Liao
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Ruiting Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Xinglei Tao
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| | - Yapei Wang
- Department of Chemistry , Renmin University of China , Beijing 100872 , P. R. China
| |
Collapse
|
145
|
Barres AR, Molugu SK, Stewart PL, Mecozzi S. Droplet Core Intermolecular Interactions and Block Copolymer Composition Heavily Influence Oil-In-Water Nanoemulsion Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12765-12772. [PMID: 31532686 PMCID: PMC7454039 DOI: 10.1021/acs.langmuir.9b01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colloidal oil-in-water nanoemulsions are gaining increasing interest as a nanoparticle delivery system because of their large oil droplet core that can carry a large payload. In order to formulate these particles with long-term stability, an appropriate oil media and block copolymer pair must be selected. The interaction between the nanoemulsion core and the polymer shell is critical to forming stable nanoparticles. Herein, we probed how interactions between various polymers with hydrocarbon and perfluorocarbon oil media influenced nanoemulsion formation, stability, and size. Through a series of nanoemulsions with unique polymer/oil media combinations, we examined the effects of oil core hydrophobicity, fluorophilicity, surface charge, and volume as well as the effects of polymer tail composition. Surprisingly, we found that nanoemulsions formulated with pure perfluorocarbon oil cores versus perfluoro poly(ether) oil cores exhibited very different characteristics. We also found that both hydrocarbon and fluorocarbon polymer tails interacted favorably with perfluoro poly(ethers) as well as hydrocarbon oil cores forming stable nanoemulsions. We believe these results are focused on the unique properties of perfluorocarbons especially their rigidity, low polarizability, and near-zero surface charge. Interestingly, we saw that perfluoro poly(ethers) deviated from these expected properties resulting in an increased versatility when formulating nanoemulsions with perfluoro poly(ether) oil cores compared to pure perfluorocarbon oil cores. Nanoemulsion size, stability, growth rate, and life time were explored to probe these factors. Experimental and computational data are presented as a rationale.
Collapse
Affiliation(s)
- Alexa R. Barres
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave Madison WI 53706, USA
| | - Sudheer K. Molugu
- School of Medicine, Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Ave Cleveland OH 44106, USA
| | - Phoebe L. Stewart
- School of Medicine, Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Ave Cleveland OH 44106, USA
| | - Sandro Mecozzi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave Madison WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave Madison WI 53705, USA
| |
Collapse
|
146
|
Huang Y, Yin S, Chong WH, Wong TN, Ooi KT. Precise morphology control and fast merging of a complex multi-emulsion system: the effects of AC electric fields. SOFT MATTER 2019; 15:5614-5625. [PMID: 31166359 DOI: 10.1039/c9sm00430k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We showed that an AC electric field can be effectively used to control the full morphology of a multi-emulsion system (oil/water/oil, O/W/O and water/oil/water, W/O/W); specifically, the size of outer droplets and the number of inner droplets (from 5 to 0) could be controlled. In our system, such control was achieved by adopting non-contact type of electrodes together with double-flow-focusing geometry to apply an AC electric field during the formation of complex droplets. As such, the AC electric field could be used without contamination. In addition to morphology control, we also achieved both one-step and two-step merging of the core droplets in the W/O/W droplet system within 100 milliseconds, which is by far the fastest merging in double emulsion droplets ever reported. To the best of our knowledge, this paper is the first article to report the control of core droplets in an O/W/O system by matching the frequency of the AC electric field with that of the core production rate. In this article, we adopted the electric capillary number CaE to analyze the effectiveness of the AC electric field applied at a high frequency, which offers a guideline for practical applications. Furthermore, the merging phenomena among various droplet systems discovered could add extra dimensions for the manipulation of double emulsions. Our findings reveal new physical insights that bring about a better understanding of the interfacial phenomena and electrohydrodynamics of droplets, which is of great importance for practical applications involving the complex interactions of multiple droplets.
Collapse
Affiliation(s)
- Yi Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Shuai Yin
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Wen Han Chong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Teck Neng Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| | - Kim Tiow Ooi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang, Avenue, 639798, Singapore.
| |
Collapse
|
147
|
Nie J, Wang Z, Ren Z, Li S, Chen X, Lin Wang Z. Power generation from the interaction of a liquid droplet and a liquid membrane. Nat Commun 2019; 10:2264. [PMID: 31118419 PMCID: PMC6531479 DOI: 10.1038/s41467-019-10232-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 11/30/2022] Open
Abstract
Triboelectric nanogenerators are an energy harvesting technology that relies on the coupling effects of contact electrification and electrostatic induction between two solids or a liquid and a solid. Here, we present a triboelectric nanogenerator that can work based on the interaction between two pure liquids. A liquid-liquid triboelectric nanogenerator is achieved by passing a liquid droplet through a freely suspended liquid membrane. We investigate two kinds of liquid membranes: a grounded membrane and a pre-charged membrane. The falling of a droplet (about 40 μL) can generate a peak power of 137.4 nW by passing through a pre-charged membrane. Moreover, this membrane electrode can also remove and collect electrostatic charges from solid objects, indicating a permeable sensor or charge filter for electronic applications. The liquid-liquid triboelectric nanogenerator can harvest mechanical energy without changing the object motion and it can work for many targets, including raindrops, irrigation currents, microfluidics, and tiny particles.
Collapse
Affiliation(s)
- Jinhui Nie
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ziming Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zewei Ren
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083, Beijing, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
148
|
Zeininger L, Nagelberg S, Harvey KS, Savagatrup S, Herbert MB, Yoshinaga K, Capobianco JA, Kolle M, Swager TM. Rapid Detection of Salmonella enterica via Directional Emission from Carbohydrate-Functionalized Dynamic Double Emulsions. ACS CENTRAL SCIENCE 2019; 5:789-795. [PMID: 31139715 PMCID: PMC6535765 DOI: 10.1021/acscentsci.9b00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 05/08/2023]
Abstract
Reliable early-stage detection of foodborne pathogens is a global public health challenge that requires new and improved sensing strategies. Here, we demonstrate that dynamically reconfigurable fluorescent double emulsions can function as highly responsive optical sensors for the rapid detection of carbohydrates fructose, glucose, mannose, and mannan, which are involved in many biological and pathogenic phenomena. The proposed detection strategy relies on reversible reactions between boronic acid surfactants and carbohydrates at the hydrocarbon/water interface leading to a dynamic reconfiguration of the droplet morphology, which alters the angular distribution of the droplet's fluorescent light emission. We exploit this unique chemical-morphological-optical coupling to detect Salmonella enterica, a type of bacteria with a well-known binding affinity for mannose. We further demonstrate an oriented immobilization of antibodies at the droplet interface to permit higher selectivity. Our demonstrations yield a new, inexpensive, robust, and generalizable sensing strategy that can help to facilitate the early detection of foodborne pathogens.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Sara Nagelberg
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Kent S. Harvey
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Suchol Savagatrup
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Myles B. Herbert
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Kosuke Yoshinaga
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Joseph A. Capobianco
- Agricultural
Research Service, United States Department
of Agriculture, Wyndmoor, Pennsylvania, United States
| | - Mathias Kolle
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Timothy M. Swager
- Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
149
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
150
|
Jeon I, Peeks MD, Savagatrup S, Zeininger L, Chang S, Thomas G, Wang W, Swager TM. Janus Graphene: Scalable Self-Assembly and Solution-Phase Orthogonal Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900438. [PMID: 30968473 DOI: 10.1002/adma.201900438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Orthogonal functionalization of 2D materials by selective assembly at interfaces provides opportunities to create new materials with transformative properties. Challenges remain in realizing controllable, scalable surface-selective, and orthogonal functionalization. Herein, dynamic covalent assembly is reported that directs the functionalization of graphene surfaces at liquid-liquid interfaces. This process allows facile addition and segregation of chemical functionalities to impart Janus characteristics to graphenes. Specifically, dynamic covalent functionalization is accomplished via Meisenheimer complexes produced by reactions of primary amines with pendant dinitroaromatics attached to graphenes. Janus graphenes are demonstrated to be powerful surfactants that organize at water/organic, water/fluorocarbon, and organic/fluorocarbon liquid interfaces. This approach provides general access to the creation of diverse surfactant materials and promising building blocks for 2D materials.
Collapse
Affiliation(s)
- Intak Jeon
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin D Peeks
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suchol Savagatrup
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lukas Zeininger
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sehoon Chang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Gawain Thomas
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Wei Wang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|