101
|
Day T, Kennedy DA, Read AF, McAdams D. The economics of managing evolution. PLoS Biol 2021; 19:e3001409. [PMID: 34784349 PMCID: PMC8594813 DOI: 10.1371/journal.pbio.3001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are altering biological systems at unprecedented rates, and these alterations often have longer-term evolutionary impacts. Most obvious is the spread of resistance to pesticides and antibiotics. There are a wide variety of management strategies available to slow this evolution, and there are many reasons for using them. In this paper, we focus on the economic aspects of evolution management and ask: When is it economically beneficial for an individual decision-maker to invest in evolution management? We derive a simple dimensionless inequality showing that it is cost-effective to manage evolution when the percentage increase in the effective life span of the biological resource that management generates is larger than the percentage increase in annual profit that could be obtained by not managing evolution. We show how this inequality can be used to determine optimal investment choices for single decision-makers, to determine Nash equilibrium investment choices for multiple interacting decision-makers, and to examine how these equilibrium choices respond to regulatory interventions aimed at stimulating investment in evolution management. Our results are illustrated with examples involving Bacillus thuringiensis (Bt) crops and antibiotic use in fish farming.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Queen’s University, Kingston, Canada
- * E-mail:
| | - David A. Kennedy
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Entomology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - David McAdams
- Fuqua School of Business, Duke University, Durham, North Carolina, United States of America
- Department of Economics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
102
|
Dorman SJ, Kudenov MW, Lytle AJ, Griffith EH, Huseth AS. Computer vision for detecting field-evolved lepidopteran resistance to Bt maize. PEST MANAGEMENT SCIENCE 2021; 77:5236-5245. [PMID: 34310008 DOI: 10.1002/ps.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resistance evolution of lepidopteran pests to Bacillus thuringiensis (Bt) toxins produced in maize and cotton is a significant issue worldwide. Effective toxin stewardship requires reliable detection of field-evolved resistance to enable the implementation of mitigation strategies. Currently, visual estimates of maize injury are used to document changing susceptibility. In this study, we evaluated an existing maize injury monitoring protocol used to estimate Bt resistance levels in Helicoverpa zea (Lepidoptera: Noctuidae). RESULTS We detected high interobserver variability across multiple injury metrics, suggesting that the precision and accuracy of maize injury detection could be improved. To do this, we developed a computer vision-based algorithm to measure H. zea injury. Algorithm estimates were more accurate and precise than a sample of human observers. Moreover, observer estimates tended to overpredict H. zea injury, which may increase the false-positive rate, leading to prophylactic insecticide application and unnecessary regulatory action. CONCLUSIONS Automated detection and tracking of lepidopteran resistance evolution to Bt toxins are critical for genetically engineered crop stewardship to prevent the use of additional insecticides to combat resistant pests. Advantages of this computerized screening are: (i) standardized Bt injury metrics in space and time, (ii) preservation of digital data for cross-referencing when thresholds are reached, and (iii) the ability to increase sample sizes significantly. This technological solution represents a significant step toward improving confidence in resistance monitoring efforts among researchers, regulators and the agricultural biotechnology industry.
Collapse
Affiliation(s)
- Seth J Dorman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Michael W Kudenov
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Amanda J Lytle
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Anders S Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
103
|
Knight KM, Head GP, Rogers DJ. Successful development and implementation of a practical proactive resistance management plan for Bt cotton in Australia. PEST MANAGEMENT SCIENCE 2021; 77:4262-4273. [PMID: 34041838 DOI: 10.1002/ps.6490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
This article describes the design and > 20 years of effective implementation of a proactive resistance-management plan for transgenic Bacillus thuringiensis (Bt) cotton that targets Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia, considering pest biology and ecology, insights from resistance-evolution modelling, and the importance of the human component to effective implementation. This is placed in the context of processes associated with adaptive resource management. Bt cotton has provided Australian cotton growers with technology to manage Helicoverpa species that previously challenged the industry's viability, while at the same time resulting in no detectable changes in the resistance allele frequency in field populations of either Helicoverpa species in eastern Australia. This is the most long-lived and successful global example of a proactive resistance management plan for an insect pest. Six key learnings important to the successful development and implementation of a proactive transgenic-crop resistance management plan are: the programme has to have a strong science base; there has to be broad stakeholder support at all levels; there has to be a strong implementation programme; the plan needs to be supported by auditing and enforced remediation of deviations from the mandated resistance management plan; A programme of rigorous and on-going resistance allele monitoring; an attitude of continuous improvement for all aspects of the resistance management plan. The lessons learnt from the deployment of Bt cotton in Australia are relevant globally and provide important guidelines for the deployment of transgenic crops for insect control wherever they are grown. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - D John Rogers
- Research Connections and Consulting, St Lucia, Australia
| |
Collapse
|
104
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
105
|
Schnaars-Uvino K, Baker MB. High-level field-evolved resistance to spinosad in Colorado potato beetle, Leptinotarsa decemlineata, in organically managed fields. PEST MANAGEMENT SCIENCE 2021; 77:4393-4399. [PMID: 33973695 DOI: 10.1002/ps.6473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Organic pest management eschews synthetic pesticides and insecticide resistance is rarely studied in organically managed systems. Spinosad is a biologically based insecticide used widely by both organic and conventional growers. Colorado potato beetle, Leptinotarsa decemlineata, is infamous for its ability to evolve resistance to insecticides. Spinosad resistance was surveyed in conventionally managed fields in eastern New York in 2006. In response to grower reports of spinosad failure on two organic farms in 2009, resistance to spinosad was assayed in both conventionally and organically managed fields the following year, and growers were surveyed for their prior spinosad use. RESULTS In 2006, spinosad resistance measured as median lethal dose (LD50 ) varied 9.8-fold among the eight conventional fields sampled and a laboratory susceptible strain. In 2010, the resistance ratios of LD50 values relative to a laboratory susceptible strain ranged from 17.5 to 40.6 in conventionally managed fields, and from 128.7 to 5750.3 in organically managed fields, a dramatic increase from 2006 with higher resistance ratios in organically managed fields. Organic growers reported much heavier use of spinosad in the years prior to 2010. CONCLUSION This is the first report of high-level resistance to spinosad in Coleopterans. Selection strength due to number of years used and number of applications per season appear to have been the primary factors driving the evolution of resistance to spinosad, highlighting the need for resistance management in organic production, where fewer alternative active ingredients for resistance management are available. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kathleen Schnaars-Uvino
- Environmental Science, University of Jamestown, Jamestown, ND, USA
- Hudson Bay Project Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Ecology, Evolutionary Biology, and Behavior, The Graduate Center, CUNY, New York, NY, USA
| | - Mitchell B Baker
- Ecology, Evolutionary Biology, and Behavior, The Graduate Center, CUNY, New York, NY, USA
- Biology Department, Queens College of CUNY, Flushing, NY, USA
| |
Collapse
|
106
|
Critical domains in the specific binding of radiolabelled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells. Appl Environ Microbiol 2021; 87:e0178721. [PMID: 34586902 DOI: 10.1128/aem.01787-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.
Collapse
|
107
|
Moradi A, Austerlitz T, Dahlin P, Robert CA, Maurer C, Steinauer K, van Doan C, Himmighofen PA, Wieczorek K, Künzler M, Mauch F. Marasmius oreades agglutinin enhances resistance of Arabidopsis against plant-parasitic nematodes and a herbivorous insect. BMC PLANT BIOLOGY 2021; 21:402. [PMID: 34470613 PMCID: PMC8408931 DOI: 10.1186/s12870-021-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.
Collapse
Affiliation(s)
- Aboubakr Moradi
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Dahlin
- Agroscope, Research Division, Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Christelle Am Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, Bern, Switzerland
| | - Corina Maurer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Katja Steinauer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Cong van Doan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Felix Mauch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
108
|
Rimbaud L, Fabre F, Papaïx J, Moury B, Lannou C, Barrett LG, Thrall PH. Models of Plant Resistance Deployment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:125-152. [PMID: 33929880 DOI: 10.1146/annurev-phyto-020620-122134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.
Collapse
Affiliation(s)
- Loup Rimbaud
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France;
| | | | - Benoît Moury
- INRAE, Pathologie Végétale, 84140 Montfavet, France; ,
| | | | - Luke G Barrett
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| | - Peter H Thrall
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; ,
| |
Collapse
|
109
|
Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberón M, Bravo A, Wilson K, Wu K. Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. eLife 2021; 10:e66913. [PMID: 34263726 PMCID: PMC8324301 DOI: 10.7554/elife.66913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.
Collapse
Affiliation(s)
- Yutao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Wenjing Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural SciencesWuhanChina
| | - Xianming Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - He Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Weigang Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
110
|
Beckie HJ, Busi R, Lopez-Ruiz FJ, Umina PA. Herbicide resistance management strategies: how do they compare with those for insecticides, fungicides and antibiotics? PEST MANAGEMENT SCIENCE 2021; 77:3049-3056. [PMID: 33821561 DOI: 10.1002/ps.6395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Herbicides are the largest category of pesticides used in global agriculture, which is reflected in the rate of increase in the number of unique cases of herbicide-resistant weed biotypes since the late 1950s. Recommended herbicide resistance management strategies and tactics have evolved over the past 50 years through cumulative research and experience and have been regularly reviewed. Nevertheless, new perspectives may be gained by viewing current recommended strategies through the lens of insecticide, fungicide, and antibiotic resistance management. What commonalities exist and what is the basis for disparate strategies? Although pesticide and antibiotic mixtures (or combinations) are generally more effective than rotations (or alternations) in mitigating or managing resistance, the latter strategy is often employed because of greater ease of implementation and other reasons. We conclude that there are more common than different strategies for mitigating or managing pesticide and antibiotic resistance. Overall, a reduction in selection pressure for resistance evolution through diverse multi-tactic management programmes, and disruption or mitigation of the dispersal or transmission of problematic genotypes are needed to sustain the longevity of current and future mode-of-action products for crop and human health protection. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hugh J Beckie
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Paul A Umina
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Cesar Australia, Parkville, Australia
| |
Collapse
|
111
|
Zuim V, Marques VM, Godoi CTD, Gontijo LM, Haro MM, Guedes RNC. Does refuge spillover affect arthropod food webs associated with Bt maize? PEST MANAGEMENT SCIENCE 2021; 77:3088-3098. [PMID: 33798281 DOI: 10.1002/ps.6388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A high dose/refuge combination is the main tactic recommended for mitigating resistance selection of target herbivore species in crops expressing insecticidal proteins of the bacterium Bacillus thuringiensis (i.e. Bt proteins). The tactic consists of the simultaneous use of Bt crops expressing high levels of the Bt protein associated with neighboring areas of refuge of the same non-Bt crop species. Nonetheless, the approach faces controversy regarding its effectiveness and scale of adoption, at least in some regions. One concern focuses on its potential impact on the arthropod community, including its short-term and spatially dependent impact considering the likely biota spillover effect between Bt and non-Bt neighboring areas. Thus, the eventual spillover of Bt maize targeted and non-targeted arthropods was surveyed along transects extending from the refuge border to the center of the Bt maize area. RESULTS Arthropods were collected throughout the maize vegetative and reproductive stages. A total of 85 arthropod species were collected, but their richness and abundance did not vary with distance from the refuge. By contrast, cultivation season played a significant role in distinguishing the arthropod communities. Refuge distance from the sampling point within Bt-fields did not significantly affect the food web metrics, unlike season, which affected the number of nodes integrating each food web. Winter maize cultivation exhibited higher arthropod diversity and combined values of species numeric abundance and biomass at each trophic level. CONCLUSIONS No arthropod spillover was evident between the refuge edge and Bt maize, adding further controversy to the tactic currently subjected to lower usage in the region with a disputed cost-benefit relationship, because not even the target and its interdependent species were affected. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vitor Zuim
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vinicius M Marques
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, Brazil
| | - Carolina Tavares D Godoi
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, Brazil
| | - Lessando M Gontijo
- Departamento de Manejo e Conservação de Ecossistemas Naturais e Agrários, Universidade Federal de Viçosa - Campus Florestal, Florestal, Brazil
| | - Marcelo M Haro
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri), Estação Experimental de Itajaí, Itajaí, Brazil
| | | |
Collapse
|
112
|
Qin S, Zhang S, Sun X, Kong Y, Hou C, Li M. Transcriptome reveal the response to Cry1Ac toxin in susceptible Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21794. [PMID: 33948968 DOI: 10.1002/arch.21794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori as a representative in Lepidoptera is an important economic insect in agriculture production. Bacillus thuringiensis (Bt) is a bacterial pathogen in silkworm production. Understanding how silkworm respond to Bt-toxin can provide guidance to cultivate resistant silkworm strains. Cry1Ac is one type of Bt-toxin. In current research, Dazao, a susceptible B. mori strain to Bt-toxin, was treated by Cry1Ac toxin and compared its transcriptome with untreated samples. This analysis detected 1234 differentially expressed genes (DEGs). Gene Ontology, KEGG, and UniProt keyword enrichment analysis showed that DEGs include ATP-binding cassette (ABC) transporter, stress response, cuticle, and protein synthesis, and folding process. Five ABC genes were upregulated after Cry1Ac treatment including ABCA2, ABCA3, and ABCC4. They are also known as the transporters of Bt-toxin in lepidopteran insect. Expression of cuticle proteins was significantly increased at 6 h after Cry1Ac treatment. Sex-specific storage-proteins and heat shock protein were also upregulated in Cry1Ac treated samples. Our data provide an expression profile about the response of Cry1Ac toxin in susceptible B. mori strain.
Collapse
Affiliation(s)
- Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Shu Zhang
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yunhui Kong
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Chengxiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
113
|
Álvarez F, Messéan A, Streissl F. Assessment of the 2019 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2021; 19:e06683. [PMID: 34257731 PMCID: PMC8261683 DOI: 10.2903/j.efsa.2021.6683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Following a request from the European Commission, the EFSA assessed the 2019 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Like previous years, there was full compliance with refuge requirement in Portugal and partial compliance with refuge requirements by Spanish farmers growing MON 810 varieties. European and Mediterranean corn borer populations collected from north-eastern Spain during the 2019 maize growing season and tested for Cry1Ab susceptibility show no symptoms of resistance to maize MON 810. The assessment of farmer questionnaires and relevant scientific publications does not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Overall, EFSA concludes that the evidence reported in the 2019 PMEM report does not invalidate previous EFSA evaluations on the safety of maize MON 810. However, as in previous years, EFSA identifies shortcomings on resistance monitoring that need revision in future reports. In particular, the monitoring plan, as implemented in 2019, is not sufficiently sensitive to detect the recommended 3% resistance allele frequency. Consequently, EFSA strongly recommends the consent holder to achieve full compliance with refuge obligations in areas where adoption of maize MON 810 is high and increase the sensitivity of the monitoring plan by performing periodic F2 screens on corn borer populations from north-eastern Spain. EFSA recommends revising the farmer questionnaires when new characteristics of the receiving environment emerge which are relevant for the environmental risk assessment of MON 810 such as the emergence of teosinte. EFSA encourages the Competent authorities of concerned EU Member States, the consent holder and environmental networks to engage in a dialogue to develop a framework on how to best identify and report unexpected adverse effects from the cultivation of Bt maize varieties.
Collapse
|
114
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
115
|
Qin J, Ye F, Xu L, Zhou X, Crickmore N, Zhou X, Zhang Y, Guo Z. A cis-Acting Mutation in the PxABCG1 Promoter Is Associated with Cry1Ac Resistance in Plutella xylostella (L.). Int J Mol Sci 2021; 22:6106. [PMID: 34198929 PMCID: PMC8201282 DOI: 10.3390/ijms22116106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Jianying Qin
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Fan Ye
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Linzheng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK;
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (J.Q.); (X.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.Y.); (L.X.); (Y.Z.)
| |
Collapse
|
116
|
Garcia AG, Malaquias JB, Ferreira CP, Tomé MP, Weber ID, Godoy WAC. Ecological Modelling of Insect Movement in Cropping Systems. NEOTROPICAL ENTOMOLOGY 2021; 50:321-334. [PMID: 33900576 DOI: 10.1007/s13744-021-00869-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The spatio-temporal dynamics of insect pests in agricultural landscapes involves the potential of species to move, invade, colonise, and establish in different areas. This study revised the dispersal of the important crop pests Diabrotica speciosa Germar and Spodoptera frugiperda (J.E. Smith) by using computational modelling to represent the movement of these polyphagous pests in agricultural mosaics. The findings raise significant questions regarding the dispersal of pests through crops and refuge areas, indicating that understanding pest movement is essential for developing strategies to predict critical infestation levels to assist in pest-management decisions. In addition, our modelling approach can be adapted for other insect species and other cropping systems despite discussing two specific species in the current manuscript. We present an overview of studies, combining experimentation and ecological modelling, discussing the methods used and the importance of studying insect movement as well as the implications for agricultural landscapes in Brazil.
Collapse
Affiliation(s)
- Adriano Gomes Garcia
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | | | | | - Maysa Pereira Tomé
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | - Igor Daniel Weber
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil
| | - Wesley Augusto Conde Godoy
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
117
|
Esquivel CJ, Canas LA, Tilmon K, Michel AP. Evaluating the role of insecticidal seed treatment and refuge for managing soybean aphid virulence. PEST MANAGEMENT SCIENCE 2021; 77:2924-2932. [PMID: 33624388 DOI: 10.1002/ps.6328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Managing insect virulence can extend the durability of host-plant resistant crops. Genetically modified resistant crops continue to be successful because of insect-resistant management strategies that delay resistance such as multiple toxins and a susceptible refuge. These strategies may also be useful for host-plant resistant crops, but more research is needed on their applicability. We investigated the interaction between a susceptible refuge and an insecticidal seed treatment to manage virulence in the soybean aphid. We tested four scenarios of an insecticidal seed treatment (plus an untreated control) in a microcosm containing 25% aphid-susceptible (refuge) and 75% aphid-resistant soybeans. Independent cohorts of plants were infested every week with avirulent and virulent aphids at equal frequencies. We used a molecular marker to estimate the change in virulence frequency across different plant maturities (from 7 to 42 days after planting). RESULTS The presence of an insecticidal seed treatment on either the susceptible or resistant soybean decreased the overall population size of the soybean aphid. However, the insecticidal seed treatment impacted both virulent and avirulent aphids similarly, and only altered frequencies in favor of virulence when the sole susceptible plant (i.e., refuge) was treated. CONCLUSION Under our experimental conditions, the frequency of avirulent aphids persisted with the use of a refuge. Although an insecticidal seed treatment decreased the overall aphid population size, it did not appear to benefit virulence management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos J Esquivel
- Department of Entomology, CFAES Wooster Campus, The Ohio State University, Wooster, OH, USA
| | - Luis A Canas
- Department of Entomology, CFAES Wooster Campus, The Ohio State University, Wooster, OH, USA
| | - Kelley Tilmon
- Department of Entomology, CFAES Wooster Campus, The Ohio State University, Wooster, OH, USA
| | - Andy P Michel
- Department of Entomology, CFAES Wooster Campus, The Ohio State University, Wooster, OH, USA
- Center of Applied Plant Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
118
|
Viossat Y, Noble R. A theoretical analysis of tumour containment. Nat Ecol Evol 2021; 5:826-835. [PMID: 33846605 PMCID: PMC8967123 DOI: 10.1038/s41559-021-01428-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that a strategy aiming for containment, not elimination, can control tumour burden more effectively in vitro, in mouse models and in the clinic. These outcomes are consistent with the hypothesis that emergence of resistance to cancer therapy may be prevented or delayed by exploiting competitive ecological interactions between drug-sensitive and drug-resistant tumour cell subpopulations. However, although various mathematical and computational models have been proposed to explain the superiority of particular containment strategies, this evolutionary approach to cancer therapy lacks a rigorous theoretical foundation. Here we combine extensive mathematical analysis and numerical simulations to establish general conditions under which a containment strategy is expected to control tumour burden more effectively than applying the maximum tolerated dose. We show that containment may substantially outperform more aggressive treatment strategies even if resistance incurs no cellular fitness cost. We further provide formulas for predicting the clinical benefits attributable to containment strategies in a wide range of scenarios and compare the outcomes of theoretically optimal treatments with those of more practical protocols. Our results strengthen the rationale for clinical trials of evolutionarily informed cancer therapy, while also clarifying conditions under which containment might fail to outperform standard of care.
Collapse
Affiliation(s)
- Yannick Viossat
- Ceremade, Université Paris-Dauphine, Université Paris Sciences et Lettres, Paris, France.
| | - Robert Noble
- Department of Mathematics, City, University of London, London, UK
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
119
|
Arpaia S, Smagghe G, Sweet JB. Biosafety of bee pollinators in genetically modified agro-ecosystems: Current approach and further development in the EU. PEST MANAGEMENT SCIENCE 2021; 77:2659-2666. [PMID: 33470515 PMCID: PMC8247894 DOI: 10.1002/ps.6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 05/08/2023]
Abstract
Bee pollinators are an important guild delivering a fundamental input to European agriculture due to the ecological service they provide to crops in addition to the direct economic revenues from apiculture. Bee populations are declining in Europe as a result of the effects of several environmental stressors, both natural and of anthropic origin. Efforts are ongoing in the European Union (EU) to improve monitoring and management of pollinator populations to arrest further declines. Genetically modified (GM) crops are currently cultivated in a limited area in Europe, and an environmental risk assessment (ERA) is required prior to their authorization for cultivation. The possible impacts of GM crops on pollinators are deemed relevant for the ERA. Existing ecotoxicological studies indicate that traits currently expressed in insect-resistant GM plants are unlikely to represent a risk for pollinators. However, new mechanisms of insect resistance are being introduced into GM plants, including novel combinations of Cry toxins and double strand RNA (dsRNA), and an ERA is required to consider lethal and sublethal effects of these new products on nontarget species, including insect pollinators. The evaluation of indirect effects linked to the changes in management practices (e.g. for herbicide-tolerant GM crops) is an important component of EU regulations and a requirement for ERA. This paper reviews current approaches used to test the sensitivity of pollinators to GM plants and their products to determine whether sufficient data are being provided on novel GM plants to satisfy EU risk assessment requirements. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Salvatore Arpaia
- TERIN‐BBCENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRotondellaItaly
| | - Guy Smagghe
- Department of Plants and CropsGhent UniversityGhentBelgium
| | | |
Collapse
|
120
|
Ongaratto S, Baldin ELL, Hunt TE, Montezano DG, Robinson EA, dos Santos MC. Effects of intraguild interactions on Anticarsia gemmatalis and Chrysodeixis includens larval fitness and behavior in soybean. PEST MANAGEMENT SCIENCE 2021; 77:2939-2947. [PMID: 33619825 PMCID: PMC8251851 DOI: 10.1002/ps.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Crop pest management requires an understanding of the complex interactions among species that potentially impact crop yield. In soybean, the velvetbean caterpillar, Anticarsia gemmatalis (Hübner), and the soybean looper, Chrysodeixis includens (Walker), are described as key pests, sharing the same feeding guild. We assessed the intraguild interactions of these species under laboratory conditions. Fitness cost study was conducted to examine the influence of competition on insect development. A video tracking system was used to evaluate behavioral parameters during larval interactions in scenarios with and without food availability. RESULTS In the fitness cost assay, pupal weight was not significantly affected, regardless of sex. However, larval and pupal survival were influenced by the competition, especially in third versus fifth instar scenarios. We detected 40.00% cannibalism and 46.67% predation when A. gemmatalis and C. includens third instars competed with A. gemmatalis fifth instar, respectively. Distance moved, distance between larvae, body contact (food available) and frequency in food of C. includens larvae were negatively affected by interactions. Anticarsia gemmatalis larvae showed highly active behavior, moving twice or more the distance compared to C. includens larvae, and A. gemmatalis spent more time in body contact with food. CONCLUSION Our results suggest that A. gemmatalis has a competitive advantage over C. includens. This study provides important information regarding lepidopteran behavior in soybean. We recommended that additional studies are necessary to understand the effects of interactions, especially in field conditions. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sabrina Ongaratto
- Department of Crop Protection, School of AgricultureSão Paulo State UniversityBotucatuSão PauloBrazil
| | - Edson LL Baldin
- Department of Crop Protection, School of AgricultureSão Paulo State UniversityBotucatuSão PauloBrazil
| | - Thomas E Hunt
- Haskell Agricultural LaboratoryUniversity of Nebraska‐LincolnConcordNEUSA
| | | | - Emily A Robinson
- Department of StatisticsUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Maria C dos Santos
- Department of Crop Protection, School of AgricultureSão Paulo State UniversityBotucatuSão PauloBrazil
| |
Collapse
|
121
|
Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, Slotte T, Kolář F. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A 2021; 118:e2022713118. [PMID: 34001609 PMCID: PMC8166048 DOI: 10.1073/pnas.2022713118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parallel adaptation provides valuable insight into the predictability of evolutionary change through replicated natural experiments. A steadily increasing number of studies have demonstrated genomic parallelism, yet the magnitude of this parallelism varies depending on whether populations, species, or genera are compared. This led us to hypothesize that the magnitude of genomic parallelism scales with genetic divergence between lineages, but whether this is the case and the underlying evolutionary processes remain unknown. Here, we resequenced seven parallel lineages of two Arabidopsis species, which repeatedly adapted to challenging alpine environments. By combining genome-wide divergence scans with model-based approaches, we detected a suite of 151 genes that show parallel signatures of positive selection associated with alpine colonization, involved in response to cold, high radiation, short season, herbivores, and pathogens. We complemented these parallel candidates with published gene lists from five additional alpine Brassicaceae and tested our hypothesis on a broad scale spanning ∼0.02 to 18 My of divergence. Indeed, we found quantitatively variable genomic parallelism whose extent significantly decreased with increasing divergence between the compared lineages. We further modeled parallel evolution over the Arabidopsis candidate genes and showed that a decreasing probability of repeated selection on the same standing or introgressed alleles drives the observed pattern of divergence-dependent parallelism. We therefore conclude that genetic divergence between populations, species, and genera, affecting the pool of shared variants, is an important factor in the predictability of genome evolution.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jakub Vlček
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Sivan Yair
- Center for Population Biology, University of California, Davis, CA 95616
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| |
Collapse
|
122
|
Quan Y, Yang J, Wang Y, Hernández-Martínez P, Ferré J, He K. The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Mythimna separata (Walker) Is Not Related to Altered Binding to Midgut Receptors. Toxins (Basel) 2021; 13:toxins13050364. [PMID: 34065247 PMCID: PMC8190635 DOI: 10.3390/toxins13050364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa.
Collapse
Affiliation(s)
- Yudong Quan
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Jing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Patricia Hernández-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Juan Ferré
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
- Correspondence: (J.F.); (K.H.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
- Correspondence: (J.F.); (K.H.)
| |
Collapse
|
123
|
Pezenti LF, Sosa-Gómez DR, de Souza RF, Vilas-Boas LA, Gonçalves KB, da Silva CRM, Vilas-Bôas GT, Baranoski A, Mantovani MS, da Rosa R. Transcriptional profiling analysis of susceptible and resistant strains of Anticarsia gemmatalis and their response to Bacillus thuringiensis. Genomics 2021; 113:2264-2275. [PMID: 34022342 DOI: 10.1016/j.ygeno.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Anticarsia gemmatalis is one of the main defoliators of soybean in Brazil. Bacillus thuringiensis (Bt) transgenic crops are used for their management. In this paper we used RNA-seq to explore the response of A. gemmatalis to Bt HD73, as well as to detect transcriptional differences after Bt infection between resistant and susceptible strains. A total of 3853 and 6224 differentially expressed genes (DGEs) were identified in susceptible and resistant larvae after Bt exposure, respectively. We identified 2143 DEGs between susceptible and resistant larvae and 1991 between susceptible and resistant larvae Bt exposed. Immunity-related genes, Bt toxins receptors, proteases, genes involved in metabolic processes, transporters, cuticle proteins and mobile elements have been identified. qRT-PCR data demonstrated upregulation of five genes in susceptible strain after Bt exposure. These results provide insights to understand the molecular and cellular mechanisms of response to Bt that could be used in strategies to control agricultural pests.
Collapse
Affiliation(s)
- Larissa Forim Pezenti
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Daniel Ricardo Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária/Centro Nacional de Pesquisa de Soja (Embrapa Soja), Londrina, Paraná, Brazil.
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Laurival Antônio Vilas-Boas
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Genética e Taxonomia de Bactérias, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Kátia Brumatti Gonçalves
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Gislayne Trindade Vilas-Bôas
- Laboratório de Genética e Taxonomia de Bactérias, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Adrivanio Baranoski
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Renata da Rosa
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
124
|
Geographic Monitoring of Insecticide Resistance Mutations in Native and Invasive Populations of the Fall Armyworm. INSECTS 2021; 12:insects12050468. [PMID: 34070167 PMCID: PMC8158505 DOI: 10.3390/insects12050468] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary The moth fall armyworm (Spodoptera frugiperda) is a major agricultural pest insect damaging a wide range of crops, especially corn. Field evolved resistance against Bacillus thuringiensis (Bt) toxins and synthetic insecticides has been repeatedly reported. While the fall armyworm is native to the Americas, its biological invasion was first reported from West Africa in 2016. Since then, this pest has been detected across sub-Saharan and North Africa, Asia, and Oceania. Here, we examine the geographical distribution of mutations causing resistance against Bt or synthetic insecticides to test if the invasion was accompanied by the spread of resistance mutations using 177 individuals collected from 12 geographic populations including North and South America, West and East Africa, India, and China. We observed that Bt resistance mutations generated in Puerto Rico or Brazil were found only from their native populations, while invasive populations had higher copy numbers of cytochrome P450 genes and higher proportions of resistance mutations at AChE, which are known to cause resistance against synthetic insecticides. This result explains the susceptibility to Bt insecticides and the resistance against synthetic insecticides in invasive Chinese populations. This information will be helpful in investigating the cause and consequence associated with insecticide resistance. Abstract Field evolved resistance to insecticides is one of the main challenges in pest control. The fall armyworm (FAW) is a lepidopteran pest species causing severe crop losses, especially corn. While native to the Americas, the presence of FAW was confirmed in West Africa in 2016. Since then, the FAW has been detected in over 70 countries covering sub-Saharan Africa, the Middle East, North Africa, South Asia, Southeast Asia, and Oceania. In this study, we tested whether this invasion was accompanied by the spread of resistance mutations from native to invasive areas. We observed that mutations causing Bt resistance at ABCC2 genes were observed only in native populations where the mutations were initially reported. Invasive populations were found to have higher gene numbers of cytochrome P450 genes than native populations and a higher proportion of multiple resistance mutations at acetylcholinesterase genes, supporting strong selective pressure for resistance against synthetic insecticides. This result explains the susceptibility to Bt insecticides and resistance to various synthetic insecticides in Chinese populations. These results highlight the necessity of regular and standardized monitoring of insecticide resistance in invasive populations using both genomic approaches and bioassay experiments.
Collapse
|
125
|
Karthik K, Negi J, Rathinam M, Saini N, Sreevathsa R. Exploitation of Novel Bt ICPs for the Management of Helicoverpa armigera (Hübner) in Cotton ( Gossypium hirsutum L.): A Transgenic Approach. Front Microbiol 2021; 12:661212. [PMID: 33995323 PMCID: PMC8116509 DOI: 10.3389/fmicb.2021.661212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cotton is a commercial crop of global importance. The major threat challenging the productivity in cotton has been the lepidopteron insect pest Helicoverpa armigera or cotton bollworm which voraciously feeds on various plant parts. Biotechnological interventions to manage this herbivore have been a universally inevitable option. The advent of plant genetic engineering and exploitation of Bacillus thuringiensis (Bt) insecticidal crystal proteins (ICPs) marked the beginning of plant protection in cotton through transgenic technology. Despite phenomenal success and widespread acceptance, the fear of resistance development in insects has been a perennial concern. To address this issue, alternate strategies like introgression of a combination of cry protein genes and protein-engineered chimeric toxin genes came into practice. The utility of chimeric toxins produced by domain swapping, rearrangement of domains, and other strategies aid in toxins emerging with broad spectrum efficacy that facilitate the avoidance of resistance in insects toward cry toxins. The present study demonstrates the utility of two Bt ICPs, cry1AcF (produced by domain swapping) and cry2Aa (produced by codon modification) in transgenic cotton for the mitigation of H. armigera. Transgenics were developed in cotton cv. Pusa 8–6 by the exploitation of an apical meristem-targeted in planta transformation protocol. Stringent trait efficacy-based selective screening of T1 and T2 generation transgenic plants enabled the identification of plants resistant to H. armigera upon deliberate challenging. Evaluation of shortlisted events in T3 generation identified a total of nine superior transgenic events with both the genes (six with cry1AcF and three with cry2Aa). The transgenic plants depicted 80–100% larval mortality of H. armigera and 10–30% leaf damage. Molecular characterization of the shortlisted transgenics demonstrated stable integration, inheritance and expression of transgenes. The study is the first of its kind to utilise a non-tissue culture-based transformation strategy for the development of stable transgenics in cotton harbouring two novel genes, cry1AcF and cry2Aa for insect resistance. The identified transgenic events can be potential options toward the exploitation of unique cry genes for the management of the polyphagous insect pest H. armigera.
Collapse
Affiliation(s)
- Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Jyotsana Negi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
126
|
Deguenon JM, Dhammi A, Ponnusamy L, Travanty NV, Cave G, Lawrie R, Mott D, Reisig D, Kurtz R, Roe RM. Bacterial Microbiota of Field-Collected Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Bt and Non-Bt Cotton. Microorganisms 2021; 9:microorganisms9040878. [PMID: 33923893 PMCID: PMC8072973 DOI: 10.3390/microorganisms9040878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
The bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), is an important agricultural pest in U.S. cotton and is managed using transgenic hybrids that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). The reduced efficacy against H. zea caterpillars of Bt plants expressing Cry toxins is increasing in the field. In a first step towards understanding Bt cotton–bollworm–microbiota interactions, we investigated the internal bacterial microbiota of second–third stadium H. zea collected in the field from non-Bt versus Bt (WideStrike) cotton in close proximity (in North Carolina, USA). The bacterial populations were analyzed using culture-dependent and -independent molecular approaches. We found that WideStrike samples had a higher bacterial density and diversity per larva than insects collected from non-Bt cotton over two field seasons: 8.42 ± 0.23 and 5.36 ± 0.75 (log10 colony forming units per insect) for WideStrike compared to 6.82 ± 0.20 and 4.30 ± 0.56 for non-Bt cotton for seasons 1 and 2, respectively. Fifteen phyla, 103 families, and 229 genera were identified after performing Illumina sequencing of the 16S rRNA. At the family level, Enterobacteriaceae and Enterococcaceae were the most abundant taxa. The Enterococcaceae family was comprised mostly of Enterococcus species (E. casseliflavus and another Enterococcus sp.). Members of the Enterococcus genus can acidify their environment and can potentially reduce the alkaline activation of some Bt toxins. These findings argue for more research to better understand the role of cotton–bollworm–bacteria interactions and the impact on Bt toxin caterpillar susceptibility.
Collapse
Affiliation(s)
- Jean M. Deguenon
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Anirudh Dhammi
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
- Correspondence:
| | - Nicholas V. Travanty
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Grayson Cave
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Roger Lawrie
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dan Mott
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| | - Ryan Kurtz
- Cotton Incorporated, Cary, NC 27513, USA;
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, North Carolina State University, 3230 Ligon Street, Campus Box 7647, Raleigh, NC 27695-7647, USA; (J.M.D.); (A.D.); (N.V.T.); (G.C.); (R.L.); (D.M.); (D.R.); (R.M.R.)
| |
Collapse
|
127
|
Din SU, Azam S, Rao AQ, Shad M, Ahmed M, Gul A, Latif A, Ali MA, Husnain T, Shahid AA. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes. PLANT CELL REPORTS 2021; 40:707-721. [PMID: 33634360 DOI: 10.1007/s00299-021-02669-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Second generation Bt insecticidal toxin in comibination with Allium sativum leaf agglutinin gene has been successfully expressed in cotton to develop sustainable resistance against major chewing and sucking insects. The first evidence of using the Second-generation Bt gene in combination with Allium sativum plant lectin to develop sustainable resistance against chewing and sucking insects has been successfully addressed in the current study. Excessive use of Bt δ-endotoxins in the field is delimiting its insecticidal potential. Second-generation Bt Vip3Aa could be the possible alternative because it does not share midgut receptor sites with any known cry proteins. Insecticidal potential of plant lectins against whitefly remains to be evaluated. In this study, codon-optimized synthetic Bt Vip3Aa gene under CaMV35S promoter and Allium sativum leaf agglutinin gene under phloem-specific promoter were transformed in a local cotton variety. Initial screening of putative transgenic cotton plants was done through amplification, histochemical staining and immunostrip assay. The mRNA expression of Vip3Aa gene was increased to be ninefold in transgenic cotton line L6P3 than non-transgenic control while ASAL expression was found to be fivefold higher in transgenic line L34P2 as compared to non-transgenic control. The maximum Vip3Aa concentration was observed in transgenic line L6P3. Two copy numbers in homozygous form at chromosome number 9 and one copy number in hemizygous form at chromosome number 10 was observed in transgenic line L6P3 through fluorescent in situ hybridization. Significant variation was observed in transgenic cotton lines for morphological characteristics, whereas physiological parameters of plants and fiber characteristics (as assessed by scanning electron microscopic) remained comparable in transgenic and non-transgenic cotton lines. Leaf-detach bioassay showed that all the transgenic lines were significantly resistant to Helicoverpa armigera showing mortality rates between 78% and 100%. Similarly, up to 95% mortality of whiteflies was observed in transgenic cotton lines when compared with non-transgenic control lines.
Collapse
Affiliation(s)
- Salah Ud Din
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, 1 Km Defence Road, Lahore, 54500, Pakistan
| | - Saira Azam
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan.
| | - Mohsin Shad
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Mukhtar Ahmed
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ambreen Gul
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | | | - Tayyab Husnain
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| |
Collapse
|
128
|
Gilreath RT, Kerns DL, Huang F, Yang F. No positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for management of Vip3Aa resistance in Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2021; 77:1963-1970. [PMID: 33314557 DOI: 10.1002/ps.6224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyramided Bacillus thuringiensis (Bt) crops could delay insect resistance development by expressing multiple distinct Bt proteins to manage the same insect pest. The efficacy of pyramiding strategy for resistance management could be jeopardized by positive cross-resistance, which is defined as insects showing resistance to one Bt protein also exhibiting resistance to other Bt proteins. The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest and target of Vip3Aa. In this study, we evaluate the cross-resistance of Vip3Aa resistance in S. frugiperda to Bt cotton and corn plants, as well as purified Bt proteins. RESULTS Diet bioassay showed that Vip3Aa-resistant (RR), -heterozygous (RS), and -susceptible (SS) insects of S. frugiperda performed similarly against Cry2Ab2 purified protein. The data also indicated that genotypes RR and RS were more susceptible to Cry1F and Cry2Ae purified proteins relative to SS. The diet bioassays suggested that resistance to Vip3Aa does not confer any positive cross-resistance to Cry1F, Cry2Ae or Cry2Ab2 in S. frugiperda. The plant bioassay indicated that the S. frugiperda resistance to Vip3Aa conferred no cross-resistance to corn and no cross-crop resistance to cotton plants expressing Cry1 and/or Cry2 proteins. CONCLUSION These findings indicate that a lack of positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for managing S. frugiperda resistance to Vip3Aa protein. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ryan T Gilreath
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
129
|
Chauhan VK, Dhania NK, Lokya V, Bhuvanachandra B, Padmasree K, Dutta-Gupta A. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. J Biosci 2021. [DOI: 10.1007/s12038-021-00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
130
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
131
|
Guan F, Hou B, Dai X, Liu S, Liu J, Gu Y, Jin L, Yang Y, Fabrick JA, Wu Y. Multiple origins of a single point mutation in the cotton bollworm tetraspanin gene confers dominant resistance to Bt cotton. PEST MANAGEMENT SCIENCE 2021; 77:1169-1177. [PMID: 33236463 DOI: 10.1002/ps.6192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Transgenic crops producing insecticidal proteins derived from Bacillus thuringiensis (Bt) are used globally to kill key insect pests and provide numerous benefits, including improved pest management, increased profits, reduced insecticide use, and increased biological control. Unfortunately, such benefits are rapidly being lost by the evolution of Bt resistance by pests. RESULTS The main strategy to delay resistance relies on the use of non-Bt refuge plants to produce sufficient susceptible insects that mate with rare resistant insects emerging from Bt crops, essentially diluting and/or removing resistance alleles from pest populations. A key assumption for the success of this refuge strategy is that inheritance of resistance is recessive. In China, dominant resistance to Cry1Ac Bt cotton by the cotton bollworm Helicoverpa armigera is increasing and is associated with a mutation in the tetraspanin HaTSPAN1 gene, conferring more than 125-fold resistance. Here, we used amplicon sequencing to test the hypotheses that the HaTSPAN1 mutation either arose from a single event and spread or that the mutation evolved independently several times throughout northern China. From three laboratory strains and 28 field populations sampled from northern China, we identified six resistant and 50 susceptible haplotypes. Phylogenetic analysis indicates that the HaTSPAN1 mutation arose from at least four independent origins and spread to their current distributions. CONCLUSION The results provide valuable information about the evolutionary origins of dominant resistance to Cry1Ac Bt cotton in northern China and offer rationale for the rapid increase in field-evolved resistance in these areas, where the implementation of additional practical resistance management is needed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Guan
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bofeng Hou
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Dai
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sitong Liu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Juanjuan Liu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Gu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey A Fabrick
- USDA ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
132
|
Baranek J, Banaszak M, Kaznowski A, Lorent D. A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae. PEST MANAGEMENT SCIENCE 2021; 77:1401-1408. [PMID: 33099864 DOI: 10.1002/ps.6157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The host specificity of known Bacillus thuringiensis Cry and Vip pesticidal proteins still needs extensive investigation and the proteins currently used in crop protection are not effective against many pest species. Cydia pomonella (L.) is a widespread and economically important pest of apples, very difficult to control, since the larvae spend most of their life inside a fruit. Currently, large amounts of broad-spectrum, detrimental synthetic agents are used to combat this herbivore and therefore biopesticides with high activity against C. pomonella are very much needed. RESULTS The toxicity of B. thuringiensis Cry9Ea along with five distinct pesticidal proteins (Cry1Aa, Cry1Ca, Cry1Ia, Cry2Ab and Vip3Aa) has been determined towards the first-instar larvae of C. pomonella. Cry9Ea has much higher activity than the remaining tested proteins (30-1200-fold lower LC50 ) and possibly is the most potent B. thuringiensis pesticidal protein bioassayed against C. pomonella so far. In contrast, Cry9Ea is not toxic towards Spodoptera exigua (Hübn.), indicating a potentially narrow spectrum of activity. Both insect species show high variability in susceptibility to the remaining Cry/Vip proteins. CONCLUSIONS The obtained results extend the existing knowledge regarding B. thuringiensis pesticidal protein host range and indicate Cry9Ea as a promising candidate for successful biological control of C. pomonella. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jakub Baranek
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Magdalena Banaszak
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Dagny Lorent
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
133
|
Yang F, Santiago González JC, Sword GA, Kerns DL. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2021; 77:1530-1535. [PMID: 33201547 DOI: 10.1002/ps.6176] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Helicoverpa zea is a destructive pest and target of maize and cotton expressing Cry and Vip3Aa proteins in North America. The efficacy of Cry proteins against H. zea in the USA has been largely compromised by resistance. A rapid shift towards planting Bt cotton and maize producing Vip3Aa will accelerate evolution of resistance to Vip3Aa in H. zea. Research on the genetic basis of Vip3Aa resistance in H. zea is urgently needed, and can provide fundamental information for managing resistance in this pest. Here, we characterize the inheritance of Vip3Aa resistance in H. zea. RESULTS Susceptibility of a Vip3Aa-susceptible strain (SS), a resistant strain (RR), and progeny from different crosses against Vip3Aa39 was determined. RR was established from an F2 screening of a population from Texas sampled in 2019. RR had a resistance ratio of 45194.1-fold against Vip3Aa39 relative to SS. Maternal effects and sex linkage were absent in RR. The dominance D value, calculated based on median lethal concentration (LC50 ) values, was -1.0 and the effective dominance (DML ), calculated based on a given Vip3Aa39 concentration, was ≤0.0 at concentrations of 0.1-31.6 μg cm-2 . The test using a monogenic mode of inheritance showed that resistance to Vip3Aa in H. zea was largely due to a single gene. CONCLUSION Results of this study indicate that Vip3Aa resistance in H. zea is monogenic, autosomal, and recessive. This information is valuable for studying the mechanism of Vip3Aa resistance, monitoring of resistance development, and designing appropriate strategies for preventive management of Vip3Aa resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
134
|
Mohan C, Shibao PYT, de Paula FFP, Toyama D, Vieira MAS, Figueira A, Scotton D, Soares-Costa A, Henrique-Silva F. hRNAi-mediated knock-down of Sphenophorus levis V-ATPase E in transgenic sugarcane (Saccharum spp interspecific hybrid) affects the insect growth and survival. PLANT CELL REPORTS 2021; 40:507-516. [PMID: 33389048 DOI: 10.1007/s00299-020-02646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Transgenic sugarcane expressing V-ATPase subunit E dsRNA affects growth and survival of Sphenophorus levis. Plants being sessile organisms are constantly confronted with several biotic and abiotic stresses. Sugarcane (Saccharum spp) is a major tropical crop widely cultivated for its sugar and other by-products. In Brazil, sugarcane plantations account for significant production losses due to Sphenophorus levis (sugarcane weevil) infestations. With the existing control measures being less effective, there arises a necessity for advanced strategies. Our bioassay injection experiments with V-ATPase E dsRNA in S. levis larvae showed significant mortality and reduction in transcription levels. Furthermore, we down-regulated the V-ATPase E gene of S. levis in transgenic sugarcane using an RNAi approach. The resultant RNAi transgenic lines exhibited reduction in larval growth and survival, without compromising plant performance under controlled environment. Our results illustrate that RNAi-mediated down-regulation of key genes is a promising approach in imparting resistance to sugarcane weevil.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Danielle Scotton
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Andrea Soares-Costa
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
135
|
Shakeel M. Molecular identification, characterization, and expression analysis of a serine protease inhibitor gene from cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). BRAZ J BIOL 2021; 81:516-525. [PMID: 32876160 DOI: 10.1590/1519-6984.223579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Serine protease inhibitors (serpins), a superfamily of protease inhibitors, are known to be involved in several physiological processes, such as development, metamorphosis, and innate immunity. In our study, a full-length serpin cDNA, designated Haserpin1, was isolated from the cotton bollworm Helicoverpa armigera. The cDNA sequence of Haserpin1 is 1176 nt long, with an open reading frame encoding 391 amino acids; there is one exon and no intron. The predicted molecular weight of Haserpin1 is 43.53 kDa, with an isoelectric point of 4.98. InterProScan was employed for Haserpin1 functional characterization, which revealed that Haserpin1 contains highly conserved signature motifs, including a reactive center loop (RCL) with a hinge region (E341-N350), the serpin signature, (F367-F375) and a predicted P1-P1' cleavage site (L357-S358), which are useful for identifying serpins. Transcripts of Haserpin1 were constitutively expressed in the fat body, suggesting that it is the major site for serpin synthesis. During the developmental stages, a fluctuation in the expression level of Haserpin1 was observed, with low expression detected at the 5th-instar larval stage. In contrast, relatively high expression was detected at the prepupal stage, suggesting that Haserpin1 might play a critical role at the H. armigera wandering stage. Although the detailed function of this serpin (Haserpin1) needs to be elucidated, our study provides a perspective for the functional investigation of serine protease inhibitor genes.
Collapse
Affiliation(s)
- Muhammad Shakeel
- South China Agricultural University, College of Agriculture, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
136
|
Singh TVK, Kukanur VS, G B S. Frequency of resistance alleles to Cry1Ac toxin from cotton bollworm, Helicoverpa armigera (Hübner) collected from Bt-cotton growing areas of Telangana state of India. J Invertebr Pathol 2021; 183:107559. [PMID: 33617874 DOI: 10.1016/j.jip.2021.107559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Transgenic cotton expressing Bacillus thuringiensis (Bt) cry1Ac and cry2Ab toxin genes is widely cultivated to manage bollworm complex in India. Cotton bollworm Helicoverpa armigera (Hübner) is one of the most serious of this complex. It is likely to evolve resistance to Cry toxins in view of continual selection pressure due to extensive cultivation of Bt cotton. Monitoring susceptibility of cotton bollworm using conventional bioassays is reported to have shown its increasing tolerance to Cry1Ac over the years. We report using an F2 screen Cry1Ac resistance allele frequencies of 0.050 (95% CI 0.022-0.076) and 0.056 (95% CI 0.035-0.075) in the insect populations collected from pigeon pea grown alongside Bt cotton in the respective years of 2016 and 2017 in the Telangana state of India. Compared to our earlier studies for 2013 and 2014, resistance allele frequency to Cry1Ac in the cotton bollworm in the following two years remains unchanged. The significance of these results is discussed in the context of non-Bt host crops acting as refuge for cotton bollworm for ensuring sustainable resistance management.
Collapse
Affiliation(s)
- T V K Singh
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India.
| | - Vinod S Kukanur
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India; International Crops Research Institute for Semi-arid Tropics, Hyderabad, India
| | - Supriya G B
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India
| |
Collapse
|
137
|
Dively GP, Kuhar TP, Taylor S, Doughty HB, Holmstrom K, Gilrein D, Nault BA, Ingerson-Mahar J, Whalen J, Reisig D, Frank DL, Fleischer SJ, Owens D, Welty C, Reay-Jones FPF, Porter P, Smith JL, Saguez J, Murray S, Wallingford A, Byker H, Jensen B, Burkness E, Hutchison WD, Hamby KA. Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved Resistance to Bt Toxins. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:307-319. [PMID: 33274391 DOI: 10.1093/jee/toaa264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 06/12/2023]
Abstract
As part of an insect resistance management plan to preserve Bt transgenic technology, annual monitoring of target pests is mandated to detect susceptibility changes to Bt toxins. Currently Helicoverpa zea (Boddie) monitoring involves investigating unexpected injury in Bt crop fields and collecting larvae from non-Bt host plants for laboratory diet bioassays to determine mortality responses to diagnostic concentrations of Bt toxins. To date, this monitoring approach has not detected any significant change from the known range of baseline susceptibility to Bt toxins, yet practical field-evolved resistance in H. zea populations and numerous occurrences of unexpected injury occur in Bt crops. In this study, we implemented a network of 73 sentinel sweet corn trials, spanning 16 U.S. states and 4 Canadian provinces, for monitoring changes in H. zea susceptibility to Cry and Vip3A toxins by measuring differences in ear damage and larval infestations between isogenic pairs of non-Bt and Bt hybrids over three years. This approach can monitor susceptibility changes and regional differences in other ear-feeding lepidopteran pests. Temporal changes in the field efficacy of each toxin were evidenced by comparing our current results with earlier published studies, including baseline data for each Bt trait when first commercialized. Changes in amount of ear damage showed significant increases in H. zea resistance to Cry toxins and possibly lower susceptibility to Vip3a. Our findings demonstrate that the sentinel plot approach as an in-field screen can effectively monitor phenotypic resistance and document field-evolved resistance in target pest populations, improving resistance monitoring for Bt crops.
Collapse
Affiliation(s)
- G P Dively
- Department of Entomology, University of Maryland, College Park, MD
| | - T P Kuhar
- Department of Entomology, Virginia Tech, Blacksburg, VA
| | - S Taylor
- Department of Entomology, Virginia Tech, Suffolk, VA
| | - H B Doughty
- Virginia Tech ESAREC/Entomology, Painter, VA
| | | | - D Gilrein
- LIHREC, Cornell University, Riverhead, NY
| | - B A Nault
- Department of Entomology, Cornell AgriTech, Geneva, NY
| | | | - J Whalen
- Private IPM Consultant, Millington, MD
| | - D Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC
| | | | - S J Fleischer
- Department of Entomology, Penn State University, University Park, PA
| | - David Owens
- University of Delaware Cooperative Extension, Carvel REC, Georgetown, DE
| | - C Welty
- Rothenbuhler Lab, Ohio State University, Columbus, OH
| | - F P F Reay-Jones
- Pee Dee Research and Education Center, Clemson University, Florence, SC
| | - P Porter
- Department of Entomology, Texas A&M University, AgriLife Research and Extension Center, Lubbock, TX
| | - J L Smith
- Field Crop Pest Management, University of Guelph, Ridgetown, Ontario, Canada
| | - J Saguez
- CEROM, 740 Chemin Trudeau, Saint-Mathieu-de-Beloeil, Quebec J3G 0E2, Canada
| | - S Murray
- Perennia Food and Agriculture, Kentville, Nova Scotia, Canada
| | - A Wallingford
- University of New Hampshire Cooperative Extension, Durham, NH
| | - H Byker
- Department of Plant Agriculture, University of Guelph, Winchester, Ontario, Canada
| | - B Jensen
- Department of Entomology, University of Wisconsin, Madison, WI
| | - E Burkness
- Department of Entomology, University of Minnesota, St. Paul, MN
| | - W D Hutchison
- Department of Entomology, University of Minnesota, St. Paul, MN
| | - K A Hamby
- Department of Entomology, University of Maryland, College Park, MD
| |
Collapse
|
138
|
Liang S, Luo J, Alariqi M, Xu Z, Wang A, Zafar MN, Ren J, Wang F, Liu X, Xin Y, Xu H, Guo W, Wang Y, Ma W, Chen L, Lindsey K, Zhang X, Jin S. Silencing of a LIM gene in cotton exhibits enhanced resistance against Apolygus lucorum. J Cell Physiol 2021; 236:5921-5936. [PMID: 33481281 DOI: 10.1002/jcp.30281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/06/2020] [Accepted: 12/26/2020] [Indexed: 01/18/2023]
Abstract
Plant bugs (Miridae species) have become major agricultural pests that cause increasing and severe economic damage. Plant-mediated RNA interference (RNAi) is emerging as an eco-friendly, efficient, and reliable strategy for pest management. In this study, we isolated and characterized a lethal gene of Apolygus lucorum and named it Apolygus lucorum LIM (AlLIM), which produced A. lucorum mortality rates ranging from 38% to 81%. Downregulation of the AlLIM gene expression in A. lucorum by injection of a double-stranded RNA (dsRNA) led to muscle structural disorganization that resulted in metamorphosis deficiency and increased mortality. Then we constructed a plant expression vector that enabled transgenic cotton to highly and stably express dsRNA of AlLIM (dsAlLIM) by Agrobacterium-mediated genetic transformation. In the field bioassay, dsAlLIM transgenic cotton was protected from A. lucorum damage with high efficiency, with almost no detectable yield loss. Therefore, our study successfully provides a promising genetically modified strategy to overpower A. lucorum attack.
Collapse
Affiliation(s)
- Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.,Academy of Industry innovation and Development, Huanghuai University, Zhumadian, Henan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Muhammad Naeem Zafar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuefei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanfeng Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haonan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
139
|
Liu F, Luo J, Zhu X, Zhao C, Niu L, Cui J. Transgenic Cry1Ac/CpTI cotton assessment finds no detrimental effects on the insect predator Chrysoperla sinica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111680. [PMID: 33396012 DOI: 10.1016/j.ecoenv.2020.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The widespread commercialization of genetically modified (GM) cotton makes it important to assess the potential impact of this recombinant crop on non-target organisms. As important natural enemies of cotton field predators, green lacewing Chrysoperla sinica larvae are exposed to Bt insecticidal proteins expressed by GM cotton by feeding on herbivorous pests, and adults are directly exposed to Bt proteins by cotton pollen consumption. However, potential impacts of transgenic Bt cotton on C. sinica remain unclear. In this study, we evaluated the effects of two transgenic cotton varieties, CCRI41 and CCRI45, which express Cry1Ac (Bt toxin) and CpTI (Cowpea Trypsin Inhibitor), on C. sinica larvae and adults. After being fed with cotton aphids Aphis gossypii reared on transgenic cotton, the survival rate, developmental duration, pupation rate, and emergence rate of larvae were not adversely affected. After being fed two types of transgenic cotton pollen, the 7-day weight of adults and the preoviposition period and the cumulative oviposition of females were not significantly different from control specimen. Taken together, these results indicate that the potential risks of the two tested GM cotton varieties for the predator C. sinica are negligible. CAPSULE: Our study indicated that GM cotton varieties CCRI41 and CCRI45 have no adverse effects on insect predator C. sinica.
Collapse
Affiliation(s)
- Fang Liu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangzhen Zhu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Chenchen Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Niu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jinjie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan Province, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| |
Collapse
|
140
|
Wang Y, Gao L, Moussian B. Drosophila, Chitin and Insect Pest Management. Curr Pharm Des 2021; 26:3546-3553. [PMID: 32693764 DOI: 10.2174/1381612826666200721002354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
Insects are a great menace in agriculture and vectors of human diseases. Hence, controlling insect populations is an important issue worldwide. A common strategy to control insects is the application of insecticides. However, insecticides entail three major problems. First, insecticides are chemicals that stress ecosystems and may even be harmful to humans. Second, insecticides are often unspecific and also eradicate beneficial insect species like the honeybee. Third, insects are able to develop resistance to insecticides. Therefore, the efficient generation of new potent insecticides and their intelligent delivery are the major tasks in agriculture. In addition, acceptance or refusal in society is a major issue that has to be considered in the application of a pest management strategy. In this paper, we unify two issues: 1) we illustrate that our molecular knowledge of the chitin synthesis and organization pathways may offer new opportunities to design novel insecticides that are environmentally harmless at the same time being specific to a pest species; and 2) we advocate that the fruit fly Drosophila melanogaster may serve as an excellent model of insect to study the effects of insecticides at the genetic, molecular and histology level in order to better understand their mode of action and to optimize their impact. Especially, chitin synthesis and organization proteins and enzymes are excellently dissected in the fruit fly, providing a rich source for new insecticide targets. Thus, D. melanogaster offers a cheap, efficient and fast assay system to address agricultural questions, as has been demonstrated to be the case in bio-medical research areas.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
141
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
142
|
Bacillus thuringiensis Cry1Ab Domain III β-16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 2021; 87:AEM.01930-20. [PMID: 33127814 DOI: 10.1128/aem.01930-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/24/2020] [Indexed: 01/09/2023] Open
Abstract
Helicoverpa armigera is a major insect pest of several crops worldwide. This insect is susceptible to some Bacillus thuringiensis (Bt) Cry insecticidal proteins expressed in transgenic crops or used in biopesticides. Previously, we identified H. armigera prohibitin (HaPHB) as a Cry1Ac-binding protein. Here, we further analyzed the potential role of PHB as a Cry toxin receptor in comparison to cadherin (CAD), well recognized as a Cry1Ac receptor. HaPHB-2 midgut protein and HaCAD toxin-binding region (TBR) fragment from H. armigera were expressed in Escherichia coli cells, and binding assays with different Cry1 toxins were performed. We demonstrated that Cry1Ab, Cry1Ac, and Cry1Fa toxins bound to HaPHB-2 in a manner similar to that seen with HaCAD-TBR. Different Cry1Ab mutant toxins located in domain II (Cry1AbF371A and Cry1AbG439D) or domain III (Cry1AbL511A and Cry1AbN514A), which were previously characterized and found to be affected in receptor binding, were analyzed regarding their binding interaction with HaPHB-2 and toxicity against H. armigera One β-16 mutant (Cry1AbN514A) showed increased binding to HaPHB-2 that correlated with 6-fold-higher toxicity against H. armigera, whereas the other β-16 mutant (Cry1AbL511A) was affected in binding to HaPHB-2 and lost toxicity against H. armigera Our data indicate that β-16 from domain III of Cry1Ab is involved in interactions with HaPHB-2 and in toxicity. This report identifies a region of Cry1Ab involved in binding to HaPHB-2 from a Lepidoptera insect, suggesting that this protein may participate as a novel receptor in the mechanism of action of the Cry1 toxins in H. armigera IMPORTANCE Helicoverpa armigera is a polyphagous pest that feeds on important crops worldwide. This insect pest is sensitive to different Cry1 toxins from Bacillus thuringiensis In this study, we analyzed the potential role of PHB-2 as a Cry1 toxin receptor in comparison to CAD. We show that different Cry1 toxins bound to HaPHB-2 and HaCAD-TBR similarly and identify β-16 from domain III of Cry1Ab as a binding region involved in the interaction with HaPHB-2 and in toxicity. This report characterized HaPHB-Cry1 binding interaction, providing novel insights into potential target sites for improving Cry1 toxicity against H. armigera.
Collapse
|
143
|
Huang F. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops. GM CROPS & FOOD 2021; 12:192-211. [PMID: 33380258 PMCID: PMC7781549 DOI: 10.1080/21645698.2020.1852065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Evolution of resistance to genetically modified Bacillus thuringiensis (Bt) crops in pest populations is a major threat to the sustainability of the technology. Incidents of field resistance that have led to control problems of Bt crops or significantly reduced susceptibility of individual Bt proteins in pyramided plants have increased dramatically across the world, especially in recent years. Analysis of globally published data showed that 61.5% and 60.0% of the cases of resistance with major alleles that allowed homozygous resistant genotypes to survival on Bt crops were functionally non-recessive and did not involve fitness costs, respectively. Dominance levels (DFLs) measured on Bt plants ranged from -0.02 to 1.56 with a mean (± sem) of 0.35 ± 0.13 for the 13 cases of single-gene resistance to Bt plants that have been evaluated. Among these, all six cases with field control problems were functionally non-recessive with a mean DFL of 0.63 ± 0.24, which was significantly greater than the DFL (0.11 ± 0.07) of the seven cases without field resistance. In addition, index of fitness costs (IFC) of major resistance was calculated for each case based on the fitness of resistant (R'R') and heterozygous (R'S') genotypes on non-Bt plants divided by the fitness of their susceptible (S'S') counterparts. The estimated IFCs for 15 cases of single-gene resistance were similar for R'R' and R'S', and for the cases with and without field resistance; and the values averaged 1.10 ± 0.12 for R'R' and 1.20 ± 0.18 for R'S'. Limited published data suggest that resistance of insects to dual/multiple-gene Bt crops is likely to be more recessive than the related single-gene resistance, but their IFCs are similar. The quantitative analysis of the global data documents that the prevalence of non-recessive resistance has played an essential role in the widespread evolution of resistance to Bt crops, while the lack of fitness costs is apparently not as critical as the non-recessive resistance. The results suggest that planting of 'high dose' traits is an effective method for Bt crop IRM and more comprehensive management strategies that are also effective for functionally non-recessive resistance should be deployed.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
144
|
Boeckman CJ, Anderson JA, Linderblood C, Olson T, Roper J, Sturtz K, Walker C, Woods R. Environmental risk assessment of the DvSSJ1 dsRNA and the IPD072Aa protein to non-target organisms. GM CROPS & FOOD 2021; 12:459-478. [PMID: 34904520 PMCID: PMC8820247 DOI: 10.1080/21645698.2021.1982348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Event DP-Ø23211-2 (hereafter referred to as DP23211) maize expresses the DvSSJ1 double-stranded RNA (DvSSJ1 dsRNA) and the IPD072Aa protein, encoded by the ipd072Aa gene. DvSSJ1 dsRNA and the IPD072Aa protein each provide control of corn rootworms (Diabrotica spp.) when expressed in plants. As part of the environmental risk assessment (ERA), the potential hazard to non-target organisms (NTOs) exposed to the DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize was assessed. Worst-case estimated environmental concentrations (EECs) for different NTO functional groups (pollinators and pollen feeders, soil dwelling detritivores, predators and parasitoids, aquatic detritivores, insectivorous birds, and wild mammals) were calculated using worst-case assumptions. Several factors that reduce exposure to NTOs under more realistic environmental conditions were applied, when needed to provide more environmentally relevant EECs. Laboratory bioassays were conducted to assess the activity of DvSSJ1 dsRNA or the IPD072Aa protein against selected surrogate species, and margins of exposure (MOEs) were calculated by comparing the Tier I hazard study results to worst-case or refined EECs. Based on specificity and MOE values, DvSSJ1 dsRNA and the IPD072Aa protein expressed in DP23211 maize are not expected to be harmful to NTO populations at environmentally relevant concentrations.
Collapse
|
145
|
Saikai Y, Hurley TM, Mitchell PD. An agent-based model of insect resistance management and mitigation for Bt maize: a social science perspective. PEST MANAGEMENT SCIENCE 2021; 77:273-284. [PMID: 32696499 DOI: 10.1002/ps.6016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Farmers around the world have used Bt maize for more than two decades, delaying resistance using a high-dose/refuge strategy. Nevertheless, field-evolved resistance to Bacillus thuringiensis (Bt) toxins has been documented. This paper describes a spatially explicit population genetics model of resistance to Bt toxins by the insect Ostrinia nubilalis and an agent-based model of farmer adoption of Bt maize incorporating social networks. The model was used to evaluate multiple resistance mitigation policies, including combinations of increased refuges for all farms, localized bans on Bt maize where resistance develops, area-wide sprays of insecticides on fields with resistance and taxes on Bt maize seed for all farms. Evaluation metrics included resistance allele frequency, pest population density, farmer adoption of Bt maize and economic surplus. RESULTS The most effective mitigation policies for maintaining a low resistance allele frequency were 50% refuge and localized bans. Area-wide sprays were the most effective for maintaining low pest populations. Based on economic surplus, refuge requirements were the recommended policy for mitigating resistance to high-dose Bt maize. Social networks further enhanced the benefits of refuges relative to other mitigation policies but accelerated the emergence of resistance. CONCLUSION These results support using refuges as the foundation of resistance mitigation for high-dose Bt maize, just as for resistance management. Other mitigation policies examined were more effective but more costly. Social factors had substantial effects on the recommended management and mitigation of insect resistance, suggesting that agent-based models can make useful contributions for policy analysis.
Collapse
Affiliation(s)
- Yuji Saikai
- Agricultural and Applied Economics, University of Wisconsin, Madison, WI, USA
| | | | - Paul D Mitchell
- Agricultural and Applied Economics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
146
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
147
|
Jackson HO, Taunt HN, Mordaka PM, Smith AG, Purton S. The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:708370. [PMID: 34630459 PMCID: PMC8497815 DOI: 10.3389/fpls.2021.708370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 05/04/2023]
Abstract
Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes. In many cases, this will require re-programming the metabolism of the chloroplast, or other plastids in non-green tissues, through a combination of chloroplast and nuclear engineering. However, current technologies for sophisticated chloroplast engineering ("transplastomics") of plants are limited to just a handful of species. Moreover, the testing of metabolic rewiring in the chloroplast of plant models is often impractical given their obligate phototrophy, the extended time needed to create stable non-chimeric transplastomic lines, and the technical challenges associated with regeneration of whole plants. In contrast, the unicellular green alga, Chlamydomonas reinhardtii is a facultative heterotroph that allows for extensive modification of chloroplast function, including non-photosynthetic designs. Moreover, chloroplast engineering in C. reinhardtii is facile, with the ability to generate novel lines in a matter of weeks, and a well-defined molecular toolbox allows for rapid iterations of the "Design-Build-Test-Learn" (DBTL) cycle of modern synthetic biology approaches. The recent development of combinatorial DNA assembly pipelines for designing and building transgene clusters, simple methods for marker-free delivery of these clusters into the chloroplast genome, and the pre-existing wealth of knowledge regarding chloroplast gene expression and regulation in C. reinhardtii further adds to the versatility of transplastomics using this organism. Herein, we review the inherent advantages of the algal chloroplast as a simple and tractable testbed for metabolic engineering designs, which could then be implemented in higher plants.
Collapse
Affiliation(s)
- Harry O. Jackson
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Henry N. Taunt
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Pawel M. Mordaka
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- *Correspondence: Saul Purton
| |
Collapse
|
148
|
Cunningham J, Thuijsman F, Peeters R, Viossat Y, Brown J, Gatenby R, Staňková K. Optimal control to reach eco-evolutionary stability in metastatic castrate-resistant prostate cancer. PLoS One 2020; 15:e0243386. [PMID: 33290430 PMCID: PMC7723267 DOI: 10.1371/journal.pone.0243386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
In the absence of curative therapies, treatment of metastatic castrate-resistant prostate cancer (mCRPC) using currently available drugs can be improved by integrating evolutionary principles that govern proliferation of resistant subpopulations into current treatment protocols. Here we develop what is coined as an 'evolutionary stable therapy', within the context of the mathematical model that has been used to inform the first adaptive therapy clinical trial of mCRPC. The objective of this therapy is to maintain a stable polymorphic tumor heterogeneity of sensitive and resistant cells to therapy in order to prolong treatment efficacy and progression free survival. Optimal control analysis shows that an increasing dose titration protocol, a very common clinical dosing process, can achieve tumor stabilization for a wide range of potential initial tumor compositions and volumes. Furthermore, larger tumor volumes may counter intuitively be more likely to be stabilized if sensitive cells dominate the tumor composition at time of initial treatment, suggesting a delay of initial treatment could prove beneficial. While it remains uncertain if metastatic disease in humans has the properties that allow it to be truly stabilized, the benefits of a dose titration protocol warrant additional pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Jessica Cunningham
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Frank Thuijsman
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ralf Peeters
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Yannick Viossat
- CEREMADE, Université Paris-Dauphine, Université PSL, Paris, France
| | - Joel Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Kateřina Staňková
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
149
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
150
|
Li G, Huang J, Ji T, Tian C, Zhao X, Feng H. Baseline susceptibility and resistance allele frequency in Ostrinia furnacalis related to Cry1 toxins in the Huanghuaihai summer corn region of China. PEST MANAGEMENT SCIENCE 2020; 76:4311-4317. [PMID: 32649029 DOI: 10.1002/ps.5999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ostrinia furnacalis (Guenée) is one of the most destructive pests of corn and is a major target of transgenic corn expressing Bt (Bacillus thuringiensis) toxins in the Huanghuaihai summer corn region of China. Prior to the widespread commercialization of transgenic Bt corn, it is necessary to estimate baseline susceptibility to Bt toxins and Bt toxin resistance allele frequencies in O. furnacalis. RESULTS The median lethal concentration (LC50 ) values of the Bt toxins Cry1Ab, Cry1Ac and Cry1F for 15 different populations ranged from 0.887 to 1.617, 1.251 to 2.594 and 4.146 to 6.465 ng cm-2 , respectively. The LC99 values of 93, 45, and 197 ng cm-2 for Cry1Ab, Cry1Ac and Cry1F, respectively, killed > 99% of individuals of eight O. furnacalis populations collected in 2017 and were identified as diagnostic concentrations for monitoring susceptibility in O. furnacalis populations in this region. Using the F2 screening method with these diagnostic concentrations, the resistance allele frequencies related to Cry1Ab, Cry1Ac and Cry1F were found to be 0.002 (0.000283-0.006484), 0.001 (0.000030-0.004295) and 0.001 (0.000030-0.004295), respectively, in 2018. CONCLUSION Fifteen populations of O. furnacalis collected in the Huanghuaihai summer corn region of China were all susceptible to Cry1Ab, Cry1Ac and Cry1F toxins, and the susceptibility showed no significant variation among these O. furnacalis populations. The estimated resistance allele frequency to Cry1Ab, Cry1Ac and Cry1F was rare in this region. This provided essential knowledge for making the decision to commercialize Bt maize, and monitoring resistance development and evaluating resistance management strategies in the future in the Huanghuaihai summer corn region of China. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoping Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tingjie Ji
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|