101
|
Jiang YS, Hu MH, Jan JS, Hu JJ. Incorporation of Glutamic Acid or Amino-Protected Glutamic Acid into Poly(Glycerol Sebacate): Synthesis and Characterization. Polymers (Basel) 2022; 14:polym14112206. [PMID: 35683879 PMCID: PMC9182726 DOI: 10.3390/polym14112206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Poly(glycerol sebacate) (PGS), a soft, tough elastomer with excellent biocompatibility, has been exploited successfully in many tissue engineering applications. Although tunable to some extent, the rapid in vivo degradation kinetics of PGS is not compatible with the healing rate of some tissues. The incorporation of L-glutamic acid into a PGS network with an aim to retard the degradation rate of PGS through the formation of peptide bonds was conducted in this study. A series of poly(glycerol sebacate glutamate) (PGSE) containing various molar ratios of sebacic acid/L-glutamic acid were synthesized. Two kinds of amino-protected glutamic acids, Boc-L-glutamic acid and Z-L-glutamic acid were used to prepare controls that consist of no peptide bonds, denoted as PGSE-B and PGSE-Z, respectively. The prepolymers were characterized using 1H-NMR spectroscopy. Cured elastomers were characterized using FT-IR, DSC, TGA, mechanical testing, and contact angle measurement. In vitro enzymatic degradation of PGSE over a period of 28 days was investigated. FT-IR spectroscopy confirmed the formation of peptide bonds. The glass transition temperature for the elastomer was found to increase as the ratio of sebacic acid/glutamic acid was increased to four. The decomposition temperature of the elastomer decreased as the amount of glutamic acid was increased. PGSE exhibited less stiffness and larger elongation at break as the ratio of sebacic acid/glutamic acid was decreased. Notably, PGSE-Z was stiffer and had smaller elongation at break than PGSE and PGSE-B at the same molar ratio of monomers. The results of in vitro enzymatic degradation demonstrated that PGSE has a lower degradation rate than does PGS, whereas PGSE-B and PGSE-Z degrade at a greater rate than does PGS. SEM images suggest that the degradation of these crosslinked elastomers is due to surface erosion. The cytocompatibility of PGSE was considered acceptable although slightly lower than that of PGS. The altered mechanical properties and retarded degradation kinetics for PGSE reflect the influence of peptide bonds formed by the introduction of L-glutamic acid. PGSE displaying a lower degradation rate compared to that for PGS can be used as a scaffold material for the repair or regeneration of tissues that are featured by a low healing rate.
Collapse
Affiliation(s)
- Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Hsien Hu
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da-Yeh University, Changhua 515, Taiwan;
- Orthopedic Department, Showchwan Memorial Hospital, Changhua 500, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (J.-S.J.); (J.-J.H.)
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-S.J.); (J.-J.H.)
| |
Collapse
|
102
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
103
|
Farr NT. Revealing Localised Mechanochemistry of Biomaterials Using In Situ Multiscale Chemical Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3462. [PMID: 35629492 PMCID: PMC9144768 DOI: 10.3390/ma15103462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
The study of mechanical and chemical phenomena arising within a material that is being subjected to external stress is termed mechanochemistry (MC). Recent advances in MC have revealed the prospect not only to enable a greener route to chemical transformations but also to offer previously unobtainable opportunities in the production and screening of biomaterials. To date, the field of MC has been constrained by the inability of current characterisation techniques to provide essential localised multiscale chemically mapping information. A potential method to overcome this is secondary electron hyperspectral imaging (SEHI). SEHI is a multiscale material characterisation technique applied within a scanning electron microscope (SEM). Based on the collection of secondary electron (SE) emission spectra at low primary beam energies, SEHI is applicable to the chemical assessment of uncoated polymer surfaces. Here, we demonstrate that SEHI can provide in situ MC information using poly(glycerol sebacate)-methacrylate (PGS-M) as an example biomaterial of interest. This study brings the use of a bespoke in situ SEM holder together with the application of SEHI to provide, for the first time, enhanced biomaterial mechanochemical characterisation.
Collapse
Affiliation(s)
- Nicholas T.H. Farr
- Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK;
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfeld Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
104
|
Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech 2022; 23:139. [PMID: 35536418 PMCID: PMC9088731 DOI: 10.1208/s12249-022-02279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Collapse
|
105
|
Rezk AI, Yeon Kim J, Su Kim B, Hee Park C, Sang Kim C. De novo dual functional 3D scaffold using computational simulation with controlled drug release. J Colloid Interface Sci 2022; 625:12-23. [PMID: 35714404 DOI: 10.1016/j.jcis.2022.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023]
Abstract
A novel and facile synthesis is made of cotton-like three-dimensional (3D) fibrous scaffold containing spatiotemporally defined patterns of simvastatin (SIM) optimized for angiogenesis-coupled osteogenesis. Herein, we demonstrate the 3D fiber deposition mechanism in detail during the electrospinning process via computer simulation. The 3D fibrous scaffolds were functionalized with hydroxyapatite nanoparticles (HA - NPs) to induce the biomineralization process mimicking the natural apatite layer. The morphology, physiochemical properties, biomimetic mineralization, and drug release of the as-fabricated 3D fibrous scaffolds of simvastatin-loaded poly (ɛ-caprolactone) poly (glycerol-sebacate) hydroxyapatite nanoparticles (3D - PGHS) were investigated. The effects of simvastatin on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and angiogenesis in human umbilical vein endothelial cells (HUVECs) were assessed. The results showed that the 3D - PGHS both enhanced the expression of osteogenic markers including ALP, RUNX2, and COLA1 in hMSCs, and promoted the migration and tube formation of HUVECs. This finding demonstrates the potential of 3D scaffold-loaded SIM as a putative point-of-care therapy for tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ju Yeon Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Beom Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Jeonbuk National University, Jeonju City 561-756, Republic of Korea; Cellco Inc., Jeonju University, Cheonjam-ro303, Wansan-gu 55069, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
106
|
Seyfikar S, Asgharnejad-laskoukalayeha M, Hassan Jafari S, Goodarzi V, Hadi Salehi M, Zamanlui S. Introducing a New Approach to Preparing Bionanocomposite Sponges Based on Poly (glycerol sebacate urethane) (PGSU) with Great Interconnectivity and High Hydrophilicity Properties for Application in Tissue Engineering. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
107
|
An electrospun PGS/PU fibrous scaffold to support and promote endothelial differentiation of mesenchymal stem cells under dynamic culture condition. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
108
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
109
|
Golbaten-Mofrad H, Salehi MH, Jafari SH, Goodarzi V, Entezari M, Hashemi M. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater 2022; 110:2241-2257. [PMID: 35467798 DOI: 10.1002/jbm.b.35073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
This study has attempted to systematically investigate the influence of nanoclay and graphene oxide (GO) on thermal, mechanical, hydrophobic, and, most importantly, biological properties of poly(glycerol sebacate)/gelatin (PGS/gel) nanocomposites. The PGS/gel copolymer nanocomposites were successfully synthesized via in situ polymerization, approved by rudimentary characterization methods. The nanofillers were appropriately dispersed within the elastomeric matrix according to morphological studies. Also, the fillers posed as a hydrophobic entity that slightly decreased the hydrophilic properties of PGS/gel. This could be sensed clearly in hybrid composite due to the robust network of GO and clay. Water contact angle values for gelatin-contained nanocomposites were reported in the range of 38.42° to 66.7°, indicating the hydrophilic nature of the prepared samples. Thermal and mechanical studies of nanocomposites displayed rather contradicting results as the former improved while a slight decrease in the latter was noticed compared to the pristine specimens. In dry conditions, their storage modulus was in the range of 0.94-6.4 MPa, making them suitable for mimicking some soft tissues. The swelling ratio for nanocomposites containing nanoparticles was associated with an ascending trend so that GO improved the swelling rate by up to 45%. Biological analyses, such as Ames and in vitro cell viability tests, exhibited promising outcomes. As for the mutagenesis effect, the PGS and hybrid samples showed negative results. The presence of functional groups on the nanofillers' surface positively influenced the cells' metabolic activity as well as its attachment to the matrix. After 7 days, the cell proliferation rate resulted in an 82% improvement for the GO-containing nanocomposite, significantly higher than its neat counterpart (65%). This study has shown the feasibility of the prepared bio-elastomer nanocomposites for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Hooman Golbaten-Mofrad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Hadi Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
110
|
Lang K, Quichocho HB, Black SP, Bramson MTK, Linhardt RJ, Corr DT, Gross RA. Lipase-Catalyzed Poly(glycerol-1,8-octanediol-sebacate): Biomaterial Engineering by Combining Compositional and Crosslinking Variables. Biomacromolecules 2022; 23:2150-2159. [PMID: 35468284 DOI: 10.1021/acs.biomac.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined poly(glycerol-1,8-octanediol-sebacate) (PGOS) copolymers with low-level substitution of O (1,8-octanediol) for G (glycerol) units (G/O ratios 0.5:0.5, 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09) prepared in bulk by immobilized Candida antarctica Lipase B (N435) catalysis. The central question explored was the extent that exchanging less than half of poly(glycerol sebacate) (PGS) glycerol units with 1,8-octanediol can be used as a strategy to fine-tune biomaterial properties. Synthesized copolymers having G/O ratios of 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09 have similar molecular weights, where Mw varied from 52,800 to 63,800 g/mol, Mn varied from 5100 to 6450 g/mol, and ĐM (molecular mass dispersity, Mw/Mn) values were also similar (8.4-11.4). All of the copolymers were branched, and dendritic glycerol units reached 11% for PGOS-0.91:0.09:1.0. Analysis of DSC second heating scans revealed that copolymers with higher 1,8-octanediol contents have relatively higher Tm and ΔHf values. Over the copolymer compositional range studied herein, Tm and ΔHf values varied from 5.3 to 21.1 °C and 8.0 to 23.1 J/g, respectively. Stress-strain curves of PGOS copolymers cured at 140 °C for 48 h exhibited either a unimodal, bimodal, or trimodal response to tensile loading. Varying G/O from 10:1 to 2:1 resulted in significant increases in the peak stress (0.26-4.01 MPa), preyield modulus (0.65-62.59 MPa), failure to strain (64-110%), and failure toughness (0.1-0.56 MPa). This demonstrates that altering the G/O ratio over a narrow compositional range provides biomaterials with widely different yet tunable mechanical properties. Further investigation of PGOS-0.75:0.25:1.0 films revealed that varying the cure conditions from 120 to 160 °C for periods of 24-72 h provides access to biomaterials with a failure strain range from 15 to 224% and Young's modulus from 1.17 to 10.85 MPa. Hence, using the dual variables of compositional variation and changes in cure conditions provides an exciting platform for PGS analogues to optimize material-tissue interactions. Increased contents of 1,8-octanediol slowed in vitro degradation. Slowed degradation of PGOS relative to PGS will be valuable for use in slower healing wounds.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ha'Ani-Belle Quichocho
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sarah P Black
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael T K Bramson
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T Corr
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
111
|
Tevlek A, Topuz B, Akbay E, Aydin HM. Surface channel patterned and endothelialized poly(glycerol sebacate) based elastomers. J Biomater Appl 2022; 37:287-302. [DOI: 10.1177/08853282221085798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prevascularization of tissue equivalents is critical for fulfilling the need for sufficient vascular organization for nutrient and gas transport. Hence, endothelial cell culture on biomaterials is of great importance for researchers. Numerous alternate strategies have been suggested in this sense, with cell-based methods being the most commonly employed. In this study, poly (glycerol sebacate) (PGS) elastomers with varying crosslinking ratios were synthesized and their surfaces were patterned with channels by using laser ablation technique. In order to determine an ideal material for cell culture studies, the elastomers were subsequently mechanically, chemically, and biologically characterized. Following that, human umbilical vein endothelial cells (HUVECs) were seeded into the channels established on the PGS membranes and cultured under various culture conditions to establish the optimal culture parameters. Lastly, the endothelial cell responses to the synthesized PGS elastomers were evaluated. Remarkable cell proliferation and impressive cellular organizations were noticed on the constructs created as part of the investigation. On the concrete output of this research, arrangements in various geometries can be created by laser ablation method and the effects of various molecules, drugs or agents on endothelial cells can be evaluated. The platforms produced can be employed as an intermediate biomaterial layer containing endothelial cells for vascularization of tissue-engineered structures, particularly in layer-by-layer tissue engineering approaches.
Collapse
Affiliation(s)
- Atakan Tevlek
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Bengisu Topuz
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
| | - Esin Akbay
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Institute of Science, Bioengineering Division, Hacettepe University, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, Ankara, Turkey§Current Affiliation: METU MEMS Center, Ankara, Turkey
| |
Collapse
|
112
|
Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Universal Scientific Education and Research Network (USERN) Tabriz Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA
- Department of Medicine Stanford University School of Medicine Stanford California USA
| |
Collapse
|
113
|
Shi M, Bai L, Xu M, Li Z, Hu T, Hu J, Zhang Z, Yin Z, Guo B. Micropatterned conductive elastomer patch based on poly(glycerol sebacate)-graphene for cardiac tissue repair. Biofabrication 2022; 14. [PMID: 35235923 DOI: 10.1088/1758-5090/ac59f2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7 S/m), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines. In vivo test results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension in systole and left ventricular internal dimension in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.
Collapse
Affiliation(s)
- Mengting Shi
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Lang Bai
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Zhenlong Li
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Tianli Hu
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Juan Hu
- Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi, 710049, CHINA
| | - Zixi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Road, Xi'an, 710061, CHINA
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Baolin Guo
- Xi'an Jiaotong University, Frontier Institute of Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
114
|
Nakamoto M, Noguchi M, Nishiguchi A, Mano JF, Matsusaki M, Akashi M. Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-γ-glutamate and calcium cations. Mater Today Bio 2022; 14:100225. [PMID: 35280331 PMCID: PMC8914556 DOI: 10.1016/j.mtbio.2022.100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
We report a highly stretchable hydrogel based on the crosslinking structure between calcium cations and alendronates (ALN) conjugated with poly-γ-glutamate (γ-PGA), a typical biodegradable polymer. γ-PGA with ALN (γ-PGA-ALN) forms the hydrogel in the aqueous solution containing CaCl2. The hydrogel shows 2000% of stretchability and reversible stretching without failure at a strain of 250%. The fracture strain and stress are tunable by varying the concentration of either γ-PGA-ALN or CaCl2, indicating the importance of fine-tuning of the density of the cross-linkage to control the mechanical properties of the hydrogel. We believe the biodegradable polymer based highly stretchable hydrogel has potential for use in various fields such as tissue engineering.
Collapse
Affiliation(s)
- Masahiko Nakamoto
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Moe Noguchi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Nishiguchi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Michiya Matsusaki
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
115
|
Zulkifli Z, Tan JJ, Ku Marsilla KI, Rusli A, Abdullah MK, Shuib RK, Shafiq MD, Abdul Hamid ZA. Shape memory poly (glycerol sebacate)‐based electrospun fiber scaffolds for tissue engineering applications: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zulaikha Zulkifli
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Jun Jie Tan
- Regenerative Medicine Cluster, Advanced Medical & Dental Institute Universiti Sains Malaysia Kepala Batas Malaysia
| | - Ku Ishak Ku Marsilla
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Muhammad Khalil Abdullah
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Raa Khimi Shuib
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
116
|
Yoon S, Chen B. Modulating the Properties of Poly(glycerol sebacate)-Based Polyurethane Hydrogels Using an Organoclay. ACS Biomater Sci Eng 2022; 8:786-800. [PMID: 35006684 DOI: 10.1021/acsbiomaterials.1c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elastomeric hydrogels are promising in soft tissue applications due to their biomimetic mechanical and physical behaviors. In this study, we design and synthesize a poly(glycerol sebacate)-based polyurethane-clay nanocomposite hydrogel system with controllable mechanical, swelling, drug release, and biodegradation behaviors. The polymer-clay nanocomposites are synthesized by in situ polymerization in the presence of a solvent, which facilitates the dispersion of clay within the polymer matrix and their bonding. The nanocomposite hydrogels exhibit higher water swelling ratios in comparison to the neat polymer. The fully swollen hydrogels are capable of enduring complex mechanical deformations such as stretching and knotting, while the tensile moduli of the hydrogels mimic various soft tissues in human body. The mechanical behavior of hydrogels is significantly enhanced by the addition of no more than 3 phr clay, showing higher stiffness, strength, ductility, and toughness. The drug loading and release behavior of the hydrogels is investigated with three model drugs, showing selective drug loading capacity and sustained release, based on the Coulombic interaction between the clay and drug molecules. Biodegradation tests under a simulated body condition reveal a highly tunable degradation rate by the clay content in the nanocomposite hydrogels. Good cytocompatibility by the cell metabolic assay with mouse fibroblasts in vitro is also demonstrated. Finally, three-dimensional microporous foam is manufactured as a proof-of-concept study.
Collapse
Affiliation(s)
- Sungkwon Yoon
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AH, U.K.,Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AH, U.K
| |
Collapse
|
117
|
Zeng T, Yuan P, Liang L, Zhang X, Zhang H, Wu W. Cartilaginous Extracellular Matrix Enriched with Human Gingival Mesenchymal Stem Cells Derived "Matrix Bound Extracellular Vesicles" Enabled Functional Reconstruction of Tracheal Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102735. [PMID: 34841733 PMCID: PMC8805569 DOI: 10.1002/advs.202102735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/14/2021] [Indexed: 05/27/2023]
Abstract
Stem cells derived extracellular vesicles (EVs) conceive cues essential for tissue repair. Mammalian cartilaginous extracellular matrix (cECM) may not be optimally inductive for tracheal regeneration because of the granulomatous, instead of regenerative, responses in injured adult mammalian tracheas. Given the high regenerative capacity of gingiva, it is hypothesized human gingival mesenchymal stem cells derived EVs (gEVs) can induce mammalian tracheal epithelia regeneration. Coculturing chondrocytes with GMSCs produce abundant "matrix bound gEVs (gMVs)" in forming cartilaginous ECM, which are further preserved in acellular cECM (cACM) following mild, short-period decellularization. The results show that gMVs-cACM could be well anchored on polyglycerol sebacate microporous patch thus enforce the surgical suturability and mechanical strength. In rabbit tracheal defect, the gMVs-cACM patch induces rapid regeneration of vascularized ciliated columnar epithelium, which supports long-term survival of animals. gMVs-cACM treated groups exhibit proliferation of tracheal progenitors-basal epithelial cells, as well as, activation of JAK2/STAT1 pathway in reparative cells. This study departs from conventional focuses on tissue derived ECM and introduces a new approach for tracheal tissue regeneration.
Collapse
Affiliation(s)
- Tian Zeng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Anesthesiologyand Department of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
- Department of Anesthesiologythe 986th Air Force Hospital, Xijing hospitalthe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Pingping Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Lirong Liang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of AnesthesiologySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Hui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of AnesthesiologySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
118
|
Wang D, Tang Z, Wang Z, Zhang L, Guo B. A bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised polysulfide as a crosslinker. Polym Chem 2022. [DOI: 10.1039/d1py01287h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the synthesis of a bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised sulfur-polymer (SP) as a crosslinker for the bio-based polyester elastomer (BPE).
Collapse
Affiliation(s)
- Dong Wang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhao Wang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
119
|
Becerril-Rodriguez IC, Claeyssens F. Low methacrylated poly (glycerol sebacate) for soft tissue engineering. Polym Chem 2022. [DOI: 10.1039/d2py00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue engineering for soft tissue has made great advances in recent years, though there are still challenges to overcome. The main problem is that autologous tissue implants have not given...
Collapse
|
120
|
Rekabgardan M, Rahmani M, Soleimani M, HosSein Zadeh S, Roozafzoon R, Parandakh A, Khani MM. A Bilayered, Electrospun Poly(Glycerol-Sebacate)/Polyurethane-Polyurethane Scaffold for Engineering of Endothelial Basement Membrane. ASAIO J 2022; 68:123-132. [PMID: 34138777 DOI: 10.1097/mat.0000000000001423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the cardiovascular system, heart valves and vessels are subjected to continuous cyclic mechanical loadings due to the pulsatile nature of blood flow. Hence, in leveraging tissue engineering (TE) strategies to regenerate such a system, the candidate scaffold should not only be biocompatible with the desired biodegradation rate, but it should also be mechanically competent to provide a supportive structure for facilitating stem cells retention, growth, and differentiation. To this end, herein, we introduced a novel scaffold composed of poly(glycerol-sebacate) (PGS) and polyurethane (PU), which comprises of two layers: an electrospun pure PU layer beneath another electrospun PGS/PU layer with a different ratio of PGS to PU (3:2, 1:1, 2:3 Wt:Wt). The electrospun PGS/PU-PU scaffold was mechanically competent and showed intended hydrophilicity and a good biodegradation rate. Moreover, the PGS/PU-PU scaffold indicated cell viability and proliferation within ten days of in vitro cell culture and upon 7 day vascular endothelial growth factor (VEGF) stimulation, supported endothelial differentiation of mesenchymal stem cells by significant overexpression of platelet-endothelial cell adhesion molecule-1, von Willebrand factor, and VEGF receptor 2. The results of this study could be implemented in cardiovascular TE strategies when regeneration of blood vessel or heart valve is desired.
Collapse
Affiliation(s)
- Mahmood Rekabgardan
- From the Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoud Soleimani
- From the Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cell Therapy and Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar HosSein Zadeh
- From the Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Roozafzoon
- From the Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad-Mehdi Khani
- From the Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
121
|
Kolankowski K, Gadomska‐Gajadhur A, Wrzecionek M, Ruśkowski P. Mathematically described model of poly(glycerol maleate) cross‐linking process using triethylenetetramine addition. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| |
Collapse
|
122
|
Turner B, Ramesh S, Menegatti S, Daniele M. Resorbable elastomers for implantable medical devices: highlights and applications. POLYM INT 2021. [DOI: 10.1002/pi.6349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Brendan Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of Chapel Hill Raleigh NC USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of Chapel Hill Raleigh NC USA
- Department of Electrical and Computer Engineering North Carolina State University Raleigh NC USA
| |
Collapse
|
123
|
Monem M, Ahmadi Z, Fakhri V, Goodarzi V. Preparing and characterization of Poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02866-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
124
|
Ning Z, Lang K, Xia K, Linhardt RJ, Gross RA. Lipase-Catalyzed Synthesis and Characterization of Poly(glycerol sebacate). Biomacromolecules 2021; 23:398-408. [PMID: 34936341 DOI: 10.1021/acs.biomac.1c01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study demonstrated that immobilized Candida antarctica lipase B (N435) catalysis in bulk leads to higher molecular weight poly(glycerol sebacate), PGS, than self-catalyzed condensation polymerization. Since the glass-transition temperature, fragility, modulus, and strength for rubbery networks are inversely dependent on the concentration of chain ends, higher molecular weight PGS prepolymers will enable the preparation of cross-linked PGS matrices with unique mechanical properties. The evolution of molecular species during the prepolymerization step conducted at 120 °C for 24 h, prior to enzyme addition, revealed regular decreases in sebacic acid and glycerol-sebacate dimer with corresponding increases in oligomers with chain lengths from 3 to 7 units such that a homogeneous liquid substrate has resulted. At 67 h, for N435-catalyzed PGS synthesis, the carboxylic acid conversion reached 82% without formation of a gel fraction, and number-average molecular weight (Mn) and weight-average molecular weight (Mw) values reached 6000 and 59 400 g/mol, respectively. In contrast, self-catalyzed PGS condensation polymerizations required termination at 55 h to avoid gelation, reached 72% conversion, and Mn and Mw values of 2600 and 13 800 g/mol, respectively. We also report the extent that solvent fractionation can enrich PGS in higher molecular weight chains. The use of methanol as a nonsolvent increased Mn and Mw by 131.7 and 18.3%, respectively, and narrower dispersity (Đ) decreased by 47.7% relative to the nonfractionated product.
Collapse
Affiliation(s)
- Zhuoyuan Ning
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
125
|
Warner H, Wu Y, Wagner WD. Syndecan-4 functionalization of tissue regeneration scaffolds improves interaction with endothelial progenitor cells. Regen Biomater 2021; 8:rbab070. [PMID: 34900335 PMCID: PMC8659348 DOI: 10.1093/rb/rbab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Key to most implanted cell free scaffolds for tissue regeneration is the ability to sequester and retain undifferentiated mesenchymal stem cells at the repair site. In this report, syndecan-4, a heparan sulfate containing proteoglycan, was investigated as a unique molecule for use in scaffold functionalization. An electrospun hybrid scaffold comprised of poly (glycerol) sebacate (PGS), silk fibroin and type I collagen (PFC) was used as a model scaffold to develop a procedure and test the hypothesis that functionalization would result in increased scaffold binding of endothelial progenitor cells (EPCs). For these studies both Syndecan-4 and stromal derived factor-1α (SDF-1α) were used in functionalization PFC. Syndecan-4 functionalized PFC bound 4.8 fold more SDF-1α compared to nonfunctionalized PFC. Binding was specific as determined by heparin displacement studies. After culture for 7 days, significantly, more EPCs were detected on PFC scaffolds having both syndecan-4 and SDF-1α compared to scaffolds of PFC with only syndecan-4, or PFC adsorbed with SDF-1α, or PFC alone. Taken together, this study demonstrates that EPCs can be bound to and significantly expanded on PFC material through syndecan-4 mediated growth factor binding. Syndecan-4 with a multiplicity of binding sites has the potential to functionalize and expand stem cells on a variety of scaffold materials for use in tissue regeneration.
Collapse
Affiliation(s)
- Harleigh Warner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - Yidi Wu
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - William D Wagner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
126
|
Panja S, Siehr A, Sahoo A, Siegel RA, Shen W. Biodegradable Elastomers Enabling Thermoprocessing Below 100 °C. Biomacromolecules 2021; 23:163-173. [PMID: 34898190 DOI: 10.1021/acs.biomac.1c01197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and biocompatible elastomers are highly desirable for many biomedical applications. Here, we report synthesis and characterization of poly(ε-caprolactone)-co-poly(β-methyl-δ-valerolactone)-co-poly(ε-caprolactone) (PCL-PβMδVL-PCL) elastomers. These materials have strain to failure values greater than 1000%. Tensile set measurements according to an ASTM standard revealed a 98.24% strain recovery 10 min after the force was removed and complete strain recovery 40 min after the force was removed. The PβMδVL midblock is amorphous with a glass-transition temperature of -51 °C, and PCL end blocks are semicrystalline and have a melting temperature in the range of 52-55 °C. Due to their thermoplastic nature and the low melting temperature, these elastomers can be readily processed by printing, extrusion, or hot-pressing at 60 °C. Lysozyme, a model bioactive agent, was incorporated into a PCL-PβMδVL-PCL elastomer through melt blending in an extruder, and the blend was further hot-pressed into films; both processing steps were performed at 60 °C. No loss of lysozyme bioactivity was observed. PCL-PβMδVL-PCL elastomers are as cytocompatible as tissue culture polystyrene in supporting cell viability and cell growth, and they are degradable in aqueous environments through hydrolysis. The degradable, cytocompatible, elastomeric, and thermoplastic properties of PCL-PβMδVL-PCL polymers collectively render them potentially valuable for many applications in the biomedical field, such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Anasuya Sahoo
- Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 SE Harvard St, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
127
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|
128
|
Chang T, Liu C, Lu K, Wu Y, Xu M, Yu Q, Shen Z, Jiang T, Zhang Y. Biomaterials based cardiac patches for the treatment of myocardial infarction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 94:77-89. [DOI: 10.1016/j.jmst.2021.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
129
|
Sha D, Wu Z, Zhang J, Ma Y, Yang Z, Yuan Y. Development of modified and multifunctional poly(glycerol sebacate) (PGS)-based biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
130
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
131
|
Random and aligned electrospun poly(ε-caprolactone) (PCL)/poly(1,8-octanediol-co-citrate) (POC) fiber mats for cardiac tissue engineering using benign solvents. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
132
|
Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S, Salehi MH, Goodarzi V, Wurm FR, Jafari SH. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
133
|
Gadomska‐Gajadhur A, Bandzerewicz A, Wrzecionek M, Ruśkowski P. Biobased poly(glycerol citrate) synthesis optimization via design of experiments. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| |
Collapse
|
134
|
Wanasingha N, Dorishetty P, Dutta NK, Choudhury NR. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021; 7:148. [PMID: 34563034 PMCID: PMC8482214 DOI: 10.3390/gels7030148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/07/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure-property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels' flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gels.
Collapse
Affiliation(s)
| | | | - Naba K. Dutta
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| | - Namita Roy Choudhury
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia; (N.W.); (P.D.)
| |
Collapse
|
135
|
Chang CW, Yeh YC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol Biosci 2021; 21:e2100248. [PMID: 34514730 DOI: 10.1002/mabi.202100248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Synthetic polymers have been widely employed to prepare hydrogels for biomedical applications, such as cell culture, drug delivery, and tissue engineering. However, the activity of cells cultured in the synthetic polymer-based hydrogels faces the challenges of limited cell proliferation and spreading compared to cells cultured in natural polymer-based hydrogels. To address this concern, a hybrid hydrogel strategy is demonstrated by incorporating thiolated gelatin (GS) into the norbornene-functionalized poly (glycerol sebacate)-co-polyethylene glycol (Nor_PGS-co-PEG, NPP) network to prepare highly biocompatible NPP/GS_UV hydrogels after the thiol-ene photo-crosslinking reaction. The GS introduces several desirable features (i.e., enhanced water content, enlarged pore size, increased mechanical property, and more cell adhesion sites) to the NPP/GS_UV hydrogels, facilitating the cell proliferation and spreading inside the network. Thus, the highly biocompatible NPP/GS_UV hydrogels are promising materials for cell encapsulation and tissue engineering applications. Taken together, the hybrid hydrogel strategy is demonstrated as a powerful approach to fabricate hydrogels with a highly friendly environment for cell culture, expanding the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
136
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
137
|
Wang CC, Chen JY, Wang J. The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing. J Biomed Mater Res A 2021; 110:204-216. [PMID: 34397160 DOI: 10.1002/jbm.a.37277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/06/2022]
Abstract
Digital light processing additive manufacturing (DLP-AM) technology has received a lot of attention in the field of biomedical engineering due to its high precision and customizability. However, some photoinitiators, as one of the key components in DLP-AM, may present toxicity and limit the application of DLP-AM toward biomedical applications. In order to gain further insights into the correlation between biocompatibility and photoinitiators in photoresins, a study on the selection of photoinitiators used in DLP-AM is conducted. The light absorbance range and cytocompatibility of four photoinitiators, vitamin B2 combined with triethanolamine (B2/TEOA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), 2-dimethoxy-2-phenylacetophenone (DMPA), and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (I2959), are characterized. Each photoinitiator is then combined with poly(glycerol sebacate) acrylate (PGSA) and poly(ε-caprolactone) diacrylate (PCLDA), to evaluate their miscibility and film formation ability through photopolymerization. The mechanical properties, in vitro and in vivo biocompatibility studies on bulk films are investigated. It is found that B2/TEOA and TPO exhibit a wider light absorbance range than I2959 and DMPA. PGSA films with B2/TEOA (PGSA-B2/TEOA) is capable of sustaining cell proliferation up to 10 days and showing low immune responses after 14 days post implantation, proving its biocompatibility. Although B2/TEOA requires longer photopolymerization time, the mechanical strength of PGSA-B2/TEOA is comparable to PGSA films with TPO and DMPA, and this combination is 3D-printable through DLP-AM at the rate of 100 s per layer. In summary, B2/TEOA is a promising photoinitiator for 3D printing.
Collapse
Affiliation(s)
- Chia-Chun Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - June-Yo Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
138
|
Piszko P, Włodarczyk M, Zielińska S, Gazińska M, Płociński P, Rudnicka K, Szwed A, Krupa A, Grzymajło M, Sobczak-Kupiec A, Słota D, Kobielarz M, Wojtków M, Szustakiewicz K. PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering. Int J Mol Sci 2021; 22:8587. [PMID: 34445293 PMCID: PMC8395318 DOI: 10.3390/ijms22168587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022] Open
Abstract
In this research, we synthesize and characterize poly(glycerol sebacate) pre-polymer (pPGS) (1H NMR, FTiR, GPC, and TGA). Nano-hydroxyapatite (HAp) is synthesized using the wet precipitation method. Next, the materials are used to prepare a PGS-based composite with a 25 wt.% addition of HAp. Microporous composites are formed by means of thermally induced phase separation (TIPS) followed by thermal cross-linking (TCL) and salt leaching (SL). The manufactured microporous materials (PGS and PGS/HAp) are then subjected to imaging by means of SEM and µCT for the porous structure characterization. DSC, TGA, and water contact angle measurements are used for further evaluation of the materials. To assess the cytocompatibility and biological potential of PGS-based composites, preosteoblasts and differentiated hFOB 1.19 osteoblasts are employed as in vitro models. Apart from the cytocompatibility, the scaffolds supported cell adhesion and were readily populated by the hFOB1.19 preosteoblasts. HAp-facilitated scaffolds displayed osteoconductive properties, supporting the terminal differentiation of osteoblasts as indicated by the production of alkaline phosphatase, osteocalcin and osteopontin. Notably, the PGS/HAp scaffolds induced the production of significant amounts of osteoclastogenic cytokines: IL-1β, IL-6 and TNF-α, which induced scaffold remodeling and promoted the reconstruction of bone tissue. Initial biocompatibility tests showed no signs of adverse effects of PGS-based scaffolds toward adult BALB/c mice.
Collapse
Affiliation(s)
- Paweł Piszko
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.Z.); (M.G.); (M.G.)
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12-16, 90-237 Łódź, Poland; (M.W.); (P.P.); (K.R.); (A.S.); (A.K.)
| | - Sonia Zielińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.Z.); (M.G.); (M.G.)
| | - Małgorzata Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.Z.); (M.G.); (M.G.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12-16, 90-237 Łódź, Poland; (M.W.); (P.P.); (K.R.); (A.S.); (A.K.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12-16, 90-237 Łódź, Poland; (M.W.); (P.P.); (K.R.); (A.S.); (A.K.)
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12-16, 90-237 Łódź, Poland; (M.W.); (P.P.); (K.R.); (A.S.); (A.K.)
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12-16, 90-237 Łódź, Poland; (M.W.); (P.P.); (K.R.); (A.S.); (A.K.)
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.Z.); (M.G.); (M.G.)
| | - Agnieszka Sobczak-Kupiec
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (D.S.)
| | - Dagmara Słota
- Institute of Materials Science, Faculty of Materials Science and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (D.S.)
| | - Magdalena Kobielarz
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.K.); (M.W.)
| | - Magdalena Wojtków
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (M.K.); (M.W.)
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (S.Z.); (M.G.); (M.G.)
| |
Collapse
|
139
|
Behtouei E, Zandi M, Askari F, Daemi H, Zamanlui S, Arabsorkhi‐Mishabi A, Pezeshki‐Modaress M. Bead‐free and tough electrospun
PCL
/gelatin/
PGS
ternary nanofibrous scaffolds for tissue engineering application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ebrahim Behtouei
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Mojgan Zandi
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Fahimeh Askari
- Department of Polymer Science Iran Polymer and Petrochemical Institute Tehran Iran
| | - Hamed Daemi
- Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center ACECR, Royan Institute Tehran Iran
| | - Soheila Zamanlui
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran, Central Branch Islamic Azad University Tehran Iran
| | | | | |
Collapse
|
140
|
Jiang WC, Hsu WY, Ao-Ieong WS, Wang CY, Wang J, Yet SF. A novel engineered vascular construct of stem cell-laden 3D-printed PGSA scaffold enhances tissue revascularization. Biofabrication 2021; 13. [PMID: 34233298 DOI: 10.1088/1758-5090/ac1259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022]
Abstract
Development of transplantable engineered tissue has been hampered by lacking vascular network within the engineered tissue. Three-dimensional (3D) printing has emerged as a new technology with great potential in fabrication and customization of geometric microstructure. In this study, utilizing digital light processing system, we manufactured a recently designed novel 3D architecture scaffold with poly(glycerol sebacate) acrylate (PGSA). Vascular construct was subsequently generated by seeding stem cells within this scaffold. PGSA provided inductive substrate in terms of supporting three-germ layer differentiation of embryonic stem cells (ESCs) and also promoting ESCs-derived vascular progenitor cells (VPCs) differentiation into endothelial cells (ECs). Furthermore, the differentiation efficiency of VPCs into ECs on PGSA was much higher than that on collagen IV or fibronectin. The results from seeding VPCs in the rotating hexagonal PGSA scaffold suggest that this architectural framework is highly efficient for cell engraftment in 3D structures. After long-term suspension culture of the VPCs in scaffold under directed EC differentiation condition, VPC-differentiated ECs were populated in the scaffold and expressed EC markers. Transplantation of the vascular construct in mice resulted in formation of new vascular network and integration of the microvasculature within the scaffold into the existing vasculature of host tissue. Importantly, in a mouse model of wound healing, ECs from the transplanted vascular construct directly contributed to revascularization and enhanced blood perfusion at the injured site. Collectively, this transplantable vascular construct provides an innovative alternative therapeutic strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wan-Yuan Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yen Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
141
|
Wei C, Feng Y, Che D, Zhang J, Zhou X, Shi Y, Wang L. Biomaterials in skin tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1933977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Wei
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yihua Feng
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Dezhao Che
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jiahui Zhang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xuan Zhou
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yanbin Shi
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Li Wang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
142
|
Mokhtari N, Zargar Kharazi A. Blood compatibility and cell response improvement of poly glycerol sebacate/poly lactic acid scaffold for vascular graft applications. J Biomed Mater Res A 2021; 109:2673-2684. [PMID: 34228399 DOI: 10.1002/jbm.a.37259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Plasma surface modification is one of the new methods for improving the surface properties of the scaffold and accelerating tissue regeneration. The aim of this study was to create poly glycerol sebacate/poly lactic acid (PGS/PLA) composite scaffold by electrospun method and modified the scaffold by oxygen plasma for use as a vascular graft. Plasma surface modified PGS/PLA scaffold morphology study showed relatively uniform fibers with an average diameter of 637 ± 149.4 nm and porosity of 82%. The mechanical evaluation of the PGS/PLA scaffold showed properties close to the natural vessels. Atomic force microscopy images exhibited an increase in the roughness of the scaffold after plasma surface modification; however, hemocompatibility studies revealed that it had no adverse effect on blood compatibility. Wettability studies revealed the superhydrophilic property of the modified scaffold (contact angle near to zero). Besides, the human umbilical vein endothelial cells proliferation and adhesion were improved significantly. Obtaining mechanical properties near to the natural vessels due to the suitable composition and significant improvement in blood compatibility and cell growth make the modified PGS/PLA composite a suitable candidate for vascular tissue regeneration.
Collapse
Affiliation(s)
- Niloofar Mokhtari
- Tissue Engineering Group, Department of Materials Engineering, Islamic Azad University Najafabad Branch, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
143
|
Mohamed MA, Shahini A, Rajabian N, Caserto J, El-Sokkary AM, Akl MA, Andreadis ST, Cheng C. Fast photocurable thiol-ene elastomers with tunable biodegradability, mechanical and surface properties enhance myoblast differentiation and contractile function. Bioact Mater 2021; 6:2120-2133. [PMID: 33511311 PMCID: PMC7810627 DOI: 10.1016/j.bioactmat.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Biodegradable elastomers are important emerging biomaterials for biomedical applications, particularly in the area of soft-tissue engineering in which scaffolds need to match the physicochemical properties of native tissues. Here, we report novel fast photocurable elastomers with readily tunable mechanical properties, surface wettability, and degradability. These elastomers are prepared by a 5-min UV-irradiation of thiol-ene reaction systems of glycerol tripentenoate (GTP; a triene) or the combination of GTP and 4-pentenyl 4-pentenoate (PP; a diene) with a carefully chosen series of di- or tri-thiols. In the subsequent application study, these elastomers were found to be capable of overcoming delamination of myotubes, a technical bottleneck limiting the in vitro growth of mature functional myofibers. The glycerol-based elastomers supported the proliferation of mouse and human myoblasts, as well as myogenic differentiation into contractile myotubes. More notably, while beating mouse myotubes detached from conventional tissue culture plates, they remain adherent on the elastomer surface. The results suggest that these elastomers as novel biomaterials may provide a promising platform for engineering functional soft tissues with potential applications in regenerative medicine or pharmacological testing.
Collapse
Affiliation(s)
- Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Chemistry Department, College of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Julia Caserto
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ahmed M.A. El-Sokkary
- Chemistry Department, College of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Magda A. Akl
- Chemistry Department, College of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14263, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
144
|
Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101233. [PMID: 34014619 PMCID: PMC8292855 DOI: 10.1002/advs.202101233] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/02/2023]
Abstract
Through advances in molecular design, understanding of processing parameters, and development of non-traditional device fabrication techniques, the field of wearable and implantable skin-inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human- and environmentally-friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real-life applications. Then, various strategies in designing the next-generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.
Collapse
Affiliation(s)
- Jerika A. Chiong
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Helen Tran
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Yangju Lin
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| | - Yu Zheng
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Zhenan Bao
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| |
Collapse
|
145
|
Liu X, Chen W, Shao B, Zhang X, Wang Y, Zhang S, Wu W. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials 2021; 276:120998. [PMID: 34237507 DOI: 10.1016/j.biomaterials.2021.120998] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Crosstalk between bone marrow mesenchymal stem cells (BMSCs) and macrophages plays vital role in bone healing. By investigating the mechanism of collagen membrane-guided bone regeneration, we found compact structure and rapid membrane degradation compromised the duration of M2 macrophages influx, which restricts the recruitment of BMSCs that is essential for bone healing. To tackle this issue, a biodegrading elastomeric compound consisting of poly(glycerol sebacate) (PGS) and polycaprolactone (PCL) was fabricated into hierarchically porous membrane. The rational design of 3D microstructure enabled sufficient polydopamine (PDA) coating. Without any addition of growth factors, the 3D-patterned PDA membrane enables early and durable influx of M2 macrophages, which in turn promotes BMSCs recruitment and osteogenic differentiation. Furthermore, 4D-morphing of the membrane fully regenerates the dome shaped calvarial bone as well as arc-shape bone in peri-implant alveolar defect without filling xenogenous substitute. This study revealed the superiority of 3D printed microstructures in immunomodulatory materials. The availability of 4D-morphing for PGS/PCL construct expanded their advantages in reconstructing craniofacial bone.
Collapse
Affiliation(s)
- Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China; Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Bo Shao
- Department of Oral Implant Center, People's Hospital of Inner Mongolia Autonomous Region, Hohhot, 010110, PR China
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology Department of Oral & Maxillofacial Surgery School of Stomatology the Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
146
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
147
|
Wrzecionek M, Bandzerewicz A, Dutkowska E, Dulnik J, Denis P, Gadomska‐Gajadhur A. Poly(glycerol citrate)‐polylactide nonwovens toward tissue engineering applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Ewa Dutkowska
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Judyta Dulnik
- Laboratory of Polymers and Biomaterials Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials Institute of Fundamental Technological Research Polish Academy of Sciences Warsaw Poland
| | | |
Collapse
|
148
|
Mittal N, Ojanguren A, Niederberger M, Lizundia E. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004814. [PMID: 34194934 PMCID: PMC8224425 DOI: 10.1002/advs.202004814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Indexed: 05/08/2023]
Abstract
Transient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment. Transient technology enables a more efficient recycling as it enhances material retrieval rates, limiting both human and environmental exposures to the hazardous pollutants present in conventional batteries. Little efforts are focused to catalog and understand the degradation characteristics of transient batteries. As the energy field is a property-driven science, not only electrochemical performance but also their degradation behavior plays a pivotal role in defining the specific end-use applications. The state-of-the-art transient batteries are critically reviewed with special emphasis on the degradation mechanisms, transiency time, and biocompatibility of the released degradation products. The potential of transient batteries to change the current paradigm that considers batteries as harmful waste is highlighted. Overall, transient batteries are ready for takeoff and hold a promising future to be a frontrunner in the uptake of circular economy concepts.
Collapse
Affiliation(s)
- Neeru Mittal
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Alazne Ojanguren
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Erlantz Lizundia
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
- Life Cycle Thinking GroupDepartment of Graphic Design and Engineering ProjectsFaculty of Engineering in BilbaoUniversity of the Basque Country (UPV/EHU)Bilbao48013Spain
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
| |
Collapse
|
149
|
Hu JJ, Liu CC, Lin CH, Tuan-Mu HY. Synthesis, Characterization, and Electrospinning of a Functionalizable, Polycaprolactone-Based Polyurethane for Soft Tissue Engineering. Polymers (Basel) 2021; 13:polym13091527. [PMID: 34068633 PMCID: PMC8126094 DOI: 10.3390/polym13091527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
We synthesized a biodegradable, elastomeric, and functionalizable polyurethane (PU) that can be electrospun for use as a scaffold in soft tissue engineering. The PU was synthesized from polycaprolactone diol, hexamethylene diisocyanate, and dimethylolpropionic acid (DMPA) chain extender using two-step polymerization and designated as PU-DMPA. A control PU using 1,4-butanediol (1,4-BDO) as a chain extender was synthesized similarly and designated as PU-BDO. The chemical structure of the two PUs was verified by FT-IR and 1H-NMR. The PU-DMPA had a lower molecular weight than the PU-BDO (~16,700 Da vs. ~78,600 Da). The melting enthalpy of the PU-DMPA was greater than that of the PU-BDO. Both the PUs exhibited elastomeric behaviors with a comparable elongation at break (λ=L/L0= 13.2). The PU-DMPA had a higher initial modulus (19.8 MPa vs. 8.7 MPa) and a lower linear modulus (0.7 MPa vs. 1.2 MPa) and ultimate strength (9.5 MPa vs. 13.8 MPa) than the PU-BDO. The PU-DMPA had better hydrophilicity than the PU-BDO. Both the PUs displayed no cytotoxicity, although the adhesion of human umbilical artery smooth muscle cells on the PU-DMPA surface was better. Bead free electrospun PU-DMPA membranes with a narrow fiber diameter distribution were successfully fabricated. As a demonstration of its functionalizability, gelatin was conjugated to the electrospun PU-DMPA membrane using carbodiimide chemistry. Moreover, hyaluronic acid was immobilized on the amino-functionalized PU-DMPA. In conclusion, the PU-DMPA has the potential to be used as a scaffold material for soft tissue engineering.
Collapse
Affiliation(s)
- Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-3-5712121 (ext. 55110); Fax: +886-3-5720634
| | - Chia-Chi Liu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ho-Yi Tuan-Mu
- Department of Physical Therapy, Tzu Chi University, Hualien 970, Taiwan;
- Department of Sports Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| |
Collapse
|
150
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|