101
|
Wiraja C, Yeo DC, Tham KC, Chew SWT, Lim X, Xu C. Real-Time Imaging of Dynamic Cell Reprogramming with Nanosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703440. [PMID: 29611333 DOI: 10.1002/smll.201703440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Cellular reprogramming, the process by which somatic cells regain pluripotency, is relevant in many disease modeling, therapeutic, and drug discovery applications. Molecular evaluation of reprogramming (e.g., polymerase chain reaction, immunostaining) is typically disruptive, and only provides snapshots of phenotypic traits. Gene reporter constructs facilitate live-cell evaluation but is labor intensive and may risk insertional mutagenesis during viral transfection. Herein, the utilization of a non-integrative nanosensor is demonstrated to visualize key reprogramming events in situ within live cells. Principally based on sustained intracellular release of encapsulated molecular probes, nanosensors successfully monitored mesenchymal-epithelial transition, pluripotency acquisition, and transdifferentiation events. Tracking the dynamic expression of four pivotal biomarkers (i.e., THY1, E-CADHERIN, OCT4, and GATA4 mRNA), nanosensor signal showed great agreement with polymerase chain reaction and gene reporter imaging (R2 > 0.9). Overall, such facile, versatile nanosensor enables real-time monitoring of low-frequency reprogramming events, thereby useful for high-throughput assessment, optimization, and biomarker-specific cell enrichment.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Khek-Chian Tham
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
| | - Sharon W T Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xinhong Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
102
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
103
|
Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease. Stem Cells Int 2018; 2018:2601945. [PMID: 29731776 PMCID: PMC5872653 DOI: 10.1155/2018/2601945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cell-like populations have been derived from mouse-induced pluripotent stem cells (miPSC-MSC) with the capability for tissue regeneration. In this study, murine iPSC underwent differentiation towards an MSC-like immunophenotype. Stable miPSC-MSC cultures expressed the MSC-associated markers, CD73, CD105, and Sca-1, but lacked expression of the pluripotency marker, SSEA1, and hematopoietic markers, CD34 and CD45. Functionally, miPSC-MSC exhibited the potential for trilineage differentiation into osteoblasts, adipocytes, and chondrocytes and the capacity to suppress the proliferation of mitogen-activated splenocytes. The efficacy of miPSC-MSC was assessed in an acute inflammation model following systemic or local delivery into mice with subcutaneous implants containing heat-inactivated P. gingivalis. Histological analysis revealed less inflammatory cellular infiltrate within the sponges in mice treated with miPSC-MSC cells delivered locally rather than systemically. Assessment of proinflammatory cytokines in mouse spleens found that CXCL1 transcripts and protein were reduced in mice treated with miPSC-MSC. In a periodontitis model, mice subjected to oral inoculation with P. gingivalis revealed less bone tissue destruction and inflammation within the jaws when treated with miPSC-MSC compared to PBS alone. Our results demonstrated that miPSC-MSC derived from iPSC have the capacity to control acute and chronic inflammatory responses associated with the destruction of periodontal tissue. Therefore, miPSC-MSC present a promising novel source of stromal cells which could be used in the treatment of periodontal disease and other inflammatory systemic diseases such as rheumatoid arthritis.
Collapse
|
104
|
Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 2018. [PMID: 29519889 DOI: 10.1242/dev.156166] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA 94035, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA.,Department of Medicine (Division of Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford, CA 94035, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA.,Department of Medicine (Division of Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA 94035, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA.,Department of Medicine (Division of Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94035, USA .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA.,Department of Medicine (Division of Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
105
|
Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2018; 33:144-172. [PMID: 29385962 DOI: 10.1080/02648725.2018.1430464] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Payam Zarrintaj
- b School of Chemical Engineering, College of Engineering , University of Tehran , Tehran , Iran
| | - Mohammad Omid Oftadeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran.,c Stem Cell Technology Research Center , Tehran , Iran
| | - Farid Keramati
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Hamideh Fouladiha
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Salma Sohrabi-Jahromi
- d Gottingen Center for Molecular Biosciences , Georg August University , Göttingen , Germany
| | | |
Collapse
|
106
|
Derivation and Identification of Motor Neurons from Human Urine-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2018. [PMID: 29531534 PMCID: PMC5829358 DOI: 10.1155/2018/3628578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have provided new opportunities for motor neuron disease (MND) modeling, drug screening, and cellular therapeutic development. Among the various types of iPSCs, urine-derived iPSCs have become a promising source of stem cells because they can be safely and noninvasively isolated and easily reprogrammed. Here, for the first time, we differentiated urine-derived iPSCs (urine-iPSCs) into motor neurons (MNs) and compared the capacity of urine-iPSCs and cord-blood-derived iPSCs (B-iPSCs) to differentiate into MNs. With the use of small molecules, mature MNs were generated from urine-iPSCs as early as 26 days in culture. Furthermore, in coculture with muscle cells, MNs projected long axons and formed neuromuscular junctions (NMJs). Immunofluorescence and PCR confirmed the expression levels of both MN and NMJ markers. The comparison of the ratios of positive labeling for MN markers between urine-iPSCs and B-iPSCs demonstrated that the differentiation potentials of these cells were not significantly different. The abovementioned results indicate that urine-iPSCs are a new, promising source of stem cells for MND modeling and further cellular therapeutic development.
Collapse
|
107
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|
108
|
Wang Y, Nicolas CT, Chen HS, Ross JJ, De Lorenzo SB, Nyberg SL. Recent Advances in Decellularization and Recellularization for Tissue-Engineered Liver Grafts. Cells Tissues Organs 2017; 204:125-136. [PMID: 28972946 DOI: 10.1159/000479597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Liver transplantation from deceased or living human donors remains the only proven option for patients with end-stage liver disease. However, the shortage of donor organs is a significant clinical concern that has led to the pursuit of tissue-engineered liver grafts generated from decellularized liver extracellular matrix and functional cells. Investigative efforts on optimizing both liver decellularization and recellularization protocols have been made in recent decades. In the current review, we briefly summarize these advances, including the generation of high-quality liver extracellular matrix scaffolds, evaluation criteria for quality control, modification of matrix for enhanced properties, and reseeding strategies. These efforts to optimize the methods of decellularization and recellularization lay the groundwork towards generating a transplantable, human-sized liver graft for the treatment of patients with severe liver disease.
Collapse
Affiliation(s)
- Yujia Wang
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
109
|
Kwok CK, Ueda Y, Kadari A, Günther K, Ergün S, Heron A, Schnitzler AC, Rook M, Edenhofer F. Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single‐use bioreactors. J Tissue Eng Regen Med 2017; 12:e1076-e1087. [DOI: 10.1002/term.2435] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/10/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Chee Keong Kwok
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
| | - Yuichiro Ueda
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
| | - Asifiqbal Kadari
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
| | - Katharina Günther
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
| | - Süleyman Ergün
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
| | - Antoine Heron
- The life science business of Merck KGaA Darmstadt Germany
| | | | - Martha Rook
- EMD Millipore Corporation Bedford Massachusetts USA
| | - Frank Edenhofer
- Stem Cell and Regenerative Medicine GroupInstitute of Anatomy and Cell Biology II, University of Würzburg Würzburg Germany
- Institute of Molecular Biology & Center for Molecular Biosciences Innsbruck, Genomics, Stem Cell Biology and Regenerative Medicine Leopold‐Franzens‐University & CMBI Innsbruck Innsbruck Austria
| |
Collapse
|
110
|
Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 2017; 120:133-141. [PMID: 28916494 DOI: 10.1016/j.addr.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022]
Abstract
Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" (Lee et al., 2012). Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) (Sayed et al. 2017) trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation (Sayed et al., 2015). Recently, we also identified reactive oxygen species (ROS) (Zhou et al. 2016) and reactive nitrogen species (RNS) (Meng et al., 2016) as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Fig. 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity.
Collapse
|
111
|
LaRanger R, Peters-Hall JR, Coquelin M, Alabi BR, Chen CT, Wright WE, Shay JW. Reconstituting Mouse Lungs with Conditionally Reprogrammed Human Bronchial Epithelial Cells. Tissue Eng Part A 2017; 24:559-568. [PMID: 28726588 DOI: 10.1089/ten.tea.2017.0114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We developed methods for conditionally reprogramming (CR) primary human bronchial epithelial cells (HBECs) to extend their functional lifespan and permit their differentiation into both upper and lower airway lung epithelium. We also developed a bioreactor to support vascular perfusion and rhythmic breathing of decellularized mouse lungs reconstituted with CR HBECs isolated from patients with and without cystic fibrosis (CF). While conditionally reprogrammed cells only differentiate into an upper airway epithelium after 35 days at the air-liquid interface, in reconstituted lungs these cells differentiate into upper airway bronchial epithelium and lower airway alveolar structures after 12 days. Rapid scale-up and the ability to obtain clonal derivatives of primary patient-derived HBECs without the need for genetic manipulation may permit rapid reconstitution of the lung epithelium; facilitating the study of lung disease in tissue-engineered models.
Collapse
Affiliation(s)
- Ryan LaRanger
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jennifer R Peters-Hall
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Melissa Coquelin
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Busola R Alabi
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Christopher T Chen
- 2 Biomedical Engineering Program, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Woodring E Wright
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jerry W Shay
- 1 Department of Cell Biology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
112
|
Liu C, Himmati F, Sayed N. Paying the Toll in Nuclear Reprogramming. Front Cell Dev Biol 2017; 5:70. [PMID: 28861413 PMCID: PMC5562677 DOI: 10.3389/fcell.2017.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
The ability to reverse lineage-committed cells toward pluripotent stem cells or to another cell type is one of the ultimate goals in regenerative medicine. We recently discovered that activation of innate immunity, through Toll-like receptor 3, is required during this conversion of cell fate by causing global changes in the expression and activity of epigenetic modifiers. Here we discuss, in a comprehensive manner, the recent studies on the role of innate immunity in nuclear reprogramming and transdifferentiation, the underlying mechanisms, and its role in regenerative medicine.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
- Department of Medicine, Stanford University School of MedicineStanford, CA, United States
| | - Farhan Himmati
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanford, CA, United States
- Department of Medicine, Stanford University School of MedicineStanford, CA, United States
| |
Collapse
|
113
|
Abazova N, Krijgsveld J. Advances in stem cell proteomics. Curr Opin Genet Dev 2017; 46:149-155. [PMID: 28806595 DOI: 10.1016/j.gde.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
Abstract
Stem cells are at the basis of organismal development, characterized by their potential to differentiate towards specific lineages upon receiving proper signals. To understand the molecular principles underlying gain and loss of pluripotency, proteomics plays an increasingly important role owing to technical developments in mass spectrometry and implementation of innovative biochemical approaches. Here we review how quantitative proteomics has been used to investigate protein expression, localization, interaction and modification in stem cells both in vitro and in vivo, thereby complementing other omics approaches to study fundamental properties of stem cell plasticity.
Collapse
Affiliation(s)
- Nade Abazova
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
114
|
Bueno C, Menendez P. Human acute leukemia induced pluripotent stem cells: a unique model for investigating disease development and pathogenesis. Stem Cell Investig 2017; 4:55. [PMID: 28725651 DOI: 10.21037/sci.2017.05.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
115
|
Kugler J, Huhse B, Tralau T, Luch A. Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol 2017; 13:833-841. [PMID: 28675072 DOI: 10.1080/17425255.2017.1351548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.
Collapse
Affiliation(s)
- Josephine Kugler
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Bettina Huhse
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
116
|
Zhu G, Yang H, Chen X, Wu J, Zhang Y, Zhao XM. CSTEA: a webserver for the Cell State Transition Expression Atlas. Nucleic Acids Res 2017; 45:W103-W108. [PMID: 28486666 PMCID: PMC5570201 DOI: 10.1093/nar/gkx402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Cell state transition is one of the fundamental events in the development of multicellular organisms, and the transition trajectory path has recently attracted much attention. With the accumulation of large amounts of "-omics" data, it is becoming possible to get insights into the molecule mechanisms underlying the transitions between cell states. Here, we present CSTEA (Cell State Transition Expression Atlas), a webserver that organizes, analyzes and visualizes the time-course gene expression data during cell differentiation, cellular reprogramming and trans-differentiation in human and mouse. In particular, CSTEA defines gene signatures for uncharacterized stages during cell state transitions, thereby enabling both experimental and computational biologists to better understand the mechanisms of cell fate determination in mammals. To our best knowledge, CSTEA is the first webserver dedicated to the analysis of time-series gene expression data during cell state transitions. CSTEA is freely available at http://comp-sysbio.org/cstea/.
Collapse
Affiliation(s)
- Guanghui Zhu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Hui Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Xiao Chen
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Jun Wu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Yong Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Xing-Ming Zhao
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| |
Collapse
|
117
|
Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci Rep 2017; 7:2850. [PMID: 28588295 PMCID: PMC5460280 DOI: 10.1038/s41598-017-03246-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.
Collapse
|
118
|
Cortese FAB, Aguiar S, Santostasi G. Induced Cell Turnover: A Novel Therapeutic Modality for In Situ Tissue Regeneration. Hum Gene Ther 2017; 28:703-716. [PMID: 28557533 DOI: 10.1089/hum.2016.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Induced cell turnover (ICT) is a theoretical intervention in which the targeted ablation of damaged, diseased, and/or nonfunctional cells is coupled with replacement by partially differentiated induced pluripotent stem cells in a gradual and multiphasic manner. Tissue-specific ablation can be achieved using pro-apoptotic small molecule cocktails, peptide mimetics, and/or tissue-tropic adeno-associated virus-delivered suicide genes driven by cell type-specific promoters. Replenishment with new cells can be mediated by systemic administration of cells engineered for homing, robustness, and even enhanced function and disease resistance. Otherwise, the controlled release of cells can be achieved using implanted biodegradable scaffolds, hydrogels, and polymer matrixes. In theory, ICT would enable in situ tissue regeneration without the need for surgical transplantation of organs produced ex vivo, and addresses non-transplantable tissues (such as the vasculature, lymph nodes, and the nervous system). This article outlines several complimentary strategies for overcoming barriers to ICT in an effort to stimulate further research at this promising interface of cell therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Francesco Albert Bosco Cortese
- 1 Biogerontology Research Foundation, Oxford, United Kingdom .,2 Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Canada
| | - Sebastian Aguiar
- 3 Neurobiology Department, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Santostasi
- 4 Department of Neurology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
119
|
Kaewkhaw R, Swaroop M, Homma K, Nakamura J, Brooks M, Kaya KD, Chaitankar V, Michael S, Tawa G, Zou J, Rao M, Zheng W, Cogliati T, Swaroop A. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines. Invest Ophthalmol Vis Sci 2017; 57:ORSFl1-ORSFl11. [PMID: 27116668 PMCID: PMC4855830 DOI: 10.1167/iovs.15-17639] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration.
Collapse
Affiliation(s)
- Rossukon Kaewkhaw
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 2Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Manju Swaroop
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Kohei Homma
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jutaro Nakamura
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Matthew Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Koray Dogan Kaya
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Michael
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Gregory Tawa
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Jizhong Zou
- iPSC Core, Center for Molecular Medicine, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States
| | - Mahendra Rao
- The New York Stem Cell Foundation Research Institute, New York, New York, United States
| | - Wei Zheng
- National Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
120
|
Romero-Moya D, Santos-Ocaña C, Castaño J, Garrabou G, Rodríguez-Gómez JA, Ruiz-Bonilla V, Bueno C, González-Rodríguez P, Giorgetti A, Perdiguero E, Prieto C, Moren-Nuñez C, Fernández-Ayala DJ, Victoria Cascajo M, Velasco I, Canals JM, Montero R, Yubero D, Jou C, López-Barneo J, Cardellach F, Muñoz-Cánoves P, Artuch R, Navas P, Menendez P. Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q 10 Deficiency. Stem Cells 2017; 35:1687-1703. [PMID: 28472853 DOI: 10.1002/stem.2634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10 ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ10 biosynthesis (COQ genes) cause primary CoQ10 deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.483G > C (E161D)) in COQ4. The patient's fibroblasts showed a decrease in [CoQ10 ], CoQ10 biosynthesis, MRC activity affecting complexes I/II + III, and respiration defects. Bona fide induced pluripotent stem cell (iPSCs) lines carrying the COQ4 mutation (CQ4-iPSCs) were generated, characterized and genetically edited using the CRISPR-Cas9 system (CQ4ed -iPSCs). Extensive differentiation and metabolic assays of control-iPSCs, CQ4-iPSCs and CQ4ed -iPSCs demonstrated a genotype association, reproducing the disease phenotype. The COQ4 mutation in iPSC was associated with CoQ10 deficiency, metabolic dysfunction, and respiration defects. iPSC differentiation into SkM was compromised, and the resulting SkM also displayed respiration defects. Remarkably, iPSC differentiation in dopaminergic or motor neurons was unaffected. This study offers an unprecedented iPSC model recapitulating CoQ10 deficiency-associated functional and metabolic phenotypes caused by COQ4 mutation. Stem Cells 2017;35:1687-1703.
Collapse
Affiliation(s)
- Damià Romero-Moya
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gloria Garrabou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José A Rodríguez-Gómez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain
| | - Vanesa Ruiz-Bonilla
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Patricia González-Rodríguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Eusebio Perdiguero
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Constanza Moren-Nuñez
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Maria Victoria Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Iván Velasco
- Insituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México.,Laboratorio de Reprogramación Celular del IFC en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", México DF, México
| | - Josep Maria Canals
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Stem Cells and Regenerative Medicine Laboratory, Production and validation center of advanced therapies (Creatio) Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Neuroscience Institute, University of Barcelona, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Raquel Montero
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Delia Yubero
- Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - José López-Barneo
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville, Seville, Spain.,CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Francesc Cardellach
- CIBER de Enfermedades Raras (CIBERER), Spain.,Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS-Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Rafael Artuch
- CIBER de Enfermedades Raras (CIBERER), Spain.,Clinical Biochemistry Department, Pediatric Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide-CSIC, Sevilla, Spain.,CIBER de Enfermedades Raras (CIBERER), Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institució Catalana Recerca Estudis Avančats (ICREA), Lluís Companys 23, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Spain
| |
Collapse
|
121
|
Kuo YC, Rajesh R. Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:680-689. [PMID: 28532079 DOI: 10.1016/j.msec.2017.03.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023]
Abstract
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied. The results indicated that the average diameter of HCSLNs was 90-240nm and the particle size of HCSLNs with EQ 1 was smaller than that with SA. The zeta potential and electrophoresis analysis showed that HCSLNs with SA had a positively charged potential and HCSLNs with EQ 1 had a negatively charged potential at pH7.4. The high-resolution transmission electron microscope confirmed the loading of NGF on the surface of HCSLNs. Differentiation of iPSCs using NGF-loaded HCSLNs with EQ 1 exhibited higher absolute values of the electrophoretic mobility and zeta potential than differentiation using NGF-loaded HCSLNs with SA. The immunochemical staining of neuronal nuclei revealed that NGF-loaded HCSLNs can be used for differentiation of iPSCs into neurons. NGF-loaded HCSLNs with EQ 1 had higher viability of iPSCs than NGF-loaded HCSLNs with SA. NGF-loaded HCSLNs with EQ 1 may be promising formulation to regulate the membrane charge of iPSCs during neuronal differentiation.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
122
|
Li YC, Zhu K, Young TH. Induced pluripotent stem cells, form in vitro tissue engineering to in vivo allogeneic transplantation. J Thorac Dis 2017; 9:455-459. [PMID: 28449443 DOI: 10.21037/jtd.2017.02.77] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi-Chen Li
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kai Zhu
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
123
|
Fagnocchi L, Zippo A. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Front Cell Dev Biol 2017; 5:7. [PMID: 28217689 PMCID: PMC5289991 DOI: 10.3389/fcell.2017.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity. Among the transcription factors, MYC represents a central hub, which modulates and integrates multiple mechanisms involved both in the maintenance of pluripotency and in cell reprogramming. Indeed, it instructs the PSC-specific cell cycle, metabolism and epigenetic landscape, contributes to limit exit from pluripotency and modulates signaling cascades affecting the PSC identity. Moreover, MYC extends its regulation on pluripotency by controlling PSC-specific non-coding RNAs. In this report, we review the MYC-controlled networks, which support the pluripotent state and discuss how their perturbation could affect cell identity. We further discuss recent finding demonstrating a central role of MYC in triggering epigenetic memory in PSCs, which depends on the establishment of a WNT-centered self-reinforcing circuit. Finally, we comment on the therapeutic implications of the role of MYC in affecting PSCs. Indeed, PSCs are used for both disease and cancer modeling and to derive cells for regenerative medicine. For these reasons, unraveling the MYC-mediated mechanism in those cells is fundamental to exploit their full potential and to identify therapeutic targets.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| | - Alessio Zippo
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| |
Collapse
|
124
|
Woodsworth DJ, Holt RA. Cell-Based Therapeutics: Making a Faustian Pact with Biology. Trends Mol Med 2017; 23:104-115. [PMID: 28129958 DOI: 10.1016/j.molmed.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The diversity and specialization found in biological molecules, pathways, and cells is staggering, and should be exploited for therapeutic use. Through evolution these biological systems have attained a level of functionality that would be impossible to recapitulate with de novo assembly. To adapt these systems for therapeutic applications it will be often necessary to re-engineer molecules and pathways to yield novel sensory, control, and effector modules for insertion into existing, specialized cellular chassis. However, these efforts will be greatly impeded and confounded by the noise, complexity, and context-dependency inherent in biological systems. Thus, we argue that repurposing biology for cell-based therapeutics will be an arduous process, but one that will yield great benefit, and is superior to any alternative.
Collapse
Affiliation(s)
- Daniel J Woodsworth
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
125
|
Choudhury Y, Toh YC, Xing J, Qu Y, Poh J, Li H, Tan HS, Kanesvaran R, Yu H, Tan MH. Patient-specific hepatocyte-like cells derived from induced pluripotent stem cells model pazopanib-mediated hepatotoxicity. Sci Rep 2017; 7:41238. [PMID: 28120901 PMCID: PMC5264611 DOI: 10.1038/srep41238] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Idiosyncratic drug-induced hepatotoxicity is a major cause of liver damage and drug pipeline failure, and is difficult to study as patient-specific features are not readily incorporated in traditional hepatotoxicity testing approaches using population pooled cell sources. Here we demonstrate the use of patient-specific hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells for modeling idiosyncratic hepatotoxicity to pazopanib (PZ), a tyrosine kinase inhibitor drug associated with significant hepatotoxicity of unknown mechanistic basis. In vitro cytotoxicity assays confirmed that HLCs from patients with clinically identified hepatotoxicity were more sensitive to PZ-induced toxicity than other individuals, while a prototype hepatotoxin acetaminophen was similarly toxic to all HLCs studied. Transcriptional analyses showed that PZ induces oxidative stress (OS) in HLCs in general, but in HLCs from susceptible individuals, PZ causes relative disruption of iron metabolism and higher burden of OS. Our study establishes the first patient-specific HLC-based platform for idiosyncratic hepatotoxicity testing, incorporating multiple potential causative factors and permitting the correlation of transcriptomic and cellular responses to clinical phenotypes. Establishment of patient-specific HLCs with clinical phenotypes representing population variations will be valuable for pharmaceutical drug testing.
Collapse
Affiliation(s)
- Yukti Choudhury
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yi Chin Toh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore 117583, Republic of Singapore
| | - Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Yinghua Qu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Jonathan Poh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore
| | - Hui Shan Tan
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Yong Loo Lin School of Medicine and Mechanobiology Institute, National University of Singapore, Republic of Singapore.,Gastroenterology Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos #04-01, Singapore 138669, Republic of Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore 169610, Republic of Singapore
| |
Collapse
|
126
|
Ngan CGY, Quigley A, Kapsa RMI, Choong PFM. Engineering skeletal muscle - from two to three dimensions. J Tissue Eng Regen Med 2017; 12:e1-e6. [PMID: 28066991 DOI: 10.1002/term.2265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Catherine G Y Ngan
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Anita Quigley
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Robert M I Kapsa
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Peter F M Choong
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
127
|
Moise S, Céspedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep 2017; 7:39922. [PMID: 28045082 PMCID: PMC5206667 DOI: 10.1038/srep39922] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.
Collapse
Affiliation(s)
- Sandhya Moise
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Eva Céspedes
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Dalibor Soukup
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - James M. Byrne
- Centre for Applied Geoscience (ZAG), University of Tuebingen, Tuebingen 72076, Germany
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Neil D. Telling
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| |
Collapse
|
128
|
YIZHAR-BARNEA OFER, AVRAHAM KARENB. Single cell analysis of the inner ear sensory organs. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2017; 61:205-213. [PMID: 28621418 PMCID: PMC5709810 DOI: 10.1387/ijdb.160453ka] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inner ear is composed of a complex mixture of cells, which together allow organisms to hear and maintain balance. The cells in the inner ear, which undergo an extraordinary process of development, have only recently begun to be studied on an individual level. As it has recently become clear that individual cells, previously considered to be of uniform character, may differ dramatically from each other, the need to study cell-to-cell variation, along with distinct transcriptional and regulatory signatures, has taken hold in the scientific community. In conjunction with high-throughput technologies, attempts are underway to dissect the inter- and intra-cellular variability of different cell types and developmental states of the inner ear from a novel perspective. Single cell analysis of the inner ear sensory organs holds the promise of providing a significant boost in building an omics network that translates into a comprehensive understanding of the mechanisms of hearing and balance. These networks may uncover critical elements for trans-differentiation, regeneration and/or reprogramming, providing entry points for therapeutics of deafness and vestibular pathologies.
Collapse
Affiliation(s)
- OFER YIZHAR-BARNEA
- Department of Human Molecular Genetics and Biochemistry, Sackler
Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel
Aviv, Israel
| | - KAREN B. AVRAHAM
- Department of Human Molecular Genetics and Biochemistry, Sackler
Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel
Aviv, Israel
| |
Collapse
|
129
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
130
|
Qin J, Yan B, Hu Y, Wang P, Wang J. Applications of integrative OMICs approaches to gene regulation studies. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
131
|
Limbal Stem Cells from Aged Donors Are a Suitable Source for Clinical Application. Stem Cells Int 2016; 2016:3032128. [PMID: 28042298 PMCID: PMC5155095 DOI: 10.1155/2016/3032128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) are the progenitor cells that maintain the transparency of the cornea. Limbal stem cell deficiency (LSCD) leads to corneal opacity, inflammation, scarring, and blindness. A clinical approach to treat this condition consists in LSC transplantation (LSCT) after ex vivo expansion of LSC. In unilateral LSCD, an autologous transplant is possible, but cases of bilateral LSCD require allogenic LSCT. Cadaveric donors represent the most important source of LSC allografts for treatment of bilateral LSCD when living relative donors are not available. To evaluate the suitability of aged cadaveric donors for LSCT, we compared three pools of LSC from donors of different ages (<60 years, 60–75 years, and >75 years). We evaluated graft quality in terms of percent of p63-positive (p63+) cells by immunofluorescence, colony forming efficiency, and mRNA and protein expression of p63, PAX6, Wnt7a, E-cadherin, and cytokeratin (CK) 12, CK3, and CK19. The results showed that LSC cultures from aged donors can express ≥3% of p63+ cells—considered as the minimum value for predicting favorable clinical outcomes after LSCT—suggesting that these cells could be a suitable source of LSC for transplantation. Our results also indicate the need to evaluate LSC graft quality criteria for each donor.
Collapse
|
132
|
Wang PY, Hung SSC, Thissen H, Kingshott P, Wong RCB. Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs). Sci Rep 2016; 6:36845. [PMID: 27833126 PMCID: PMC5104981 DOI: 10.1038/srep36845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into any cell type and provide significant advances to cell therapy and regenerative medicine. However, the current protocol for hiPSC generation is relatively inefficient and often results in many partially reprogrammed colonies, which increases the cost and reduces the applicability of hiPSCs. Biophysical stimulation, in particular from tuning cell-surface interactions, can trigger specific cellular responses that could in turn promote the reprogramming process. In this study, human fibroblasts were reprogrammed into hiPSCs using a feeder-free system and episomal vectors using novel substrates based on binary colloidal crystals (BCCs). BCCs are made from two different spherical particle materials (Si and PMMA) ranging in size from nanometers to micrometers that self-assemble into hexagonal close-packed arrays. Our results show that the BCCs, particularly those made from a crystal of 2 μm Si and 0.11 μm PMMA particles (2SiPM) facilitate the reprogramming process and increase the proportion of fully reprogrammed hiPSC colonies, even without a vitronectin coating. Subsequent isolation of clonal hiPSC lines demonstrates that they express pluripotent markers (OCT4 and TRA-1-60). This proof-of-concept study demonstrates that cell reprogramming can be improved on substrates where surface properties are tailored to the application.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Anatomy and Neuroscience, Florey Neuroscience and Mental Health Institute, The University of Melbourne, Victoria 3000, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - Sandy Shen-Chi Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Victoria 3002, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Victoria 3002, Australia
| |
Collapse
|
133
|
Pir P, Le Novère N. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods Mol Biol 2016; 1386:331-50. [PMID: 26677190 DOI: 10.1007/978-1-4939-3283-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.
Collapse
Affiliation(s)
- Pınar Pir
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
134
|
Liu Z, Fang H, Slikker W, Tong W. Potential Reuse of Oncology Drugs in the Treatment of Rare Diseases. Trends Pharmacol Sci 2016; 37:843-857. [DOI: 10.1016/j.tips.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|
135
|
Xu Y, Shan W, Li X, Wang B, Liu S, Wang Y, Long Y, Tie R, Wang L, Cai S, Zhang H, Lin Y, Zhang M, Zheng W, Luo Y, Yu X, Yee JK, Ji J, Huang H. A synthetic three-dimensional niche system facilitates generation of functional hematopoietic cells from human-induced pluripotent stem cells. J Hematol Oncol 2016; 9:102. [PMID: 27686241 PMCID: PMC5043527 DOI: 10.1186/s13045-016-0326-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background The efficient generation of hematopoietic stem cells (HSCs) from human-induced pluripotent stem cells (iPSCs) holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far. Methods We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM)-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro. Results Approximately 70 % of human CD34+ hematopoietic cells accompanied with CD43+ progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU) assay showed that iPSC-derived CD34+ cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation. Conclusions Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0326-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Senquan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yebo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yan Long
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Hao Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jiing-Kuan Yee
- Department of Diabetes and Metabolic Diseases Research, City of Hope, Duarte, CA, 91010, USA
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
136
|
Muñoz-López A, Romero-Moya D, Prieto C, Ramos-Mejía V, Agraz-Doblas A, Varela I, Buschbeck M, Palau A, Carvajal-Vergara X, Giorgetti A, Ford A, Lako M, Granada I, Ruiz-Xivillé N, Rodríguez-Perales S, Torres-Ruíz R, Stam RW, Fuster JL, Fraga MF, Nakanishi M, Cazzaniga G, Bardini M, Cobo I, Bayon GF, Fernandez AF, Bueno C, Menendez P. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency. Stem Cell Reports 2016; 7:602-618. [PMID: 27666791 PMCID: PMC5063541 DOI: 10.1016/j.stemcr.2016.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL) has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L)-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency. Neither primary B-ALL blasts nor leukemic B cell lines can be reprogrammed to iPSCs Global transcriptome and DNA methylome suggest a developmental refractoriness
Collapse
Affiliation(s)
- Alvaro Muñoz-López
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Damià Romero-Moya
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina Prieto
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Verónica Ramos-Mejía
- Genomic Oncology Department, Centre for Genomics and Oncology GENyO, 18016 Granada, Spain
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; IBBTEC, CSIC-University of Cantabria, 39011 Santander, Spain
| | - Ignacio Varela
- IBBTEC, CSIC-University of Cantabria, 39011 Santander, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Anna Palau
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Xonia Carvajal-Vergara
- Cell Therapy Department, Centro de Investigación Médica Aplicada (CIMA), 31008 Pamplona, Spain
| | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Anthony Ford
- Centre for Evolution and Cancer, Institute of Cancer Research, London SW7 3RP, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 7RU, UK
| | - Isabel Granada
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncología, 08916 Badalona, Spain
| | - Neus Ruiz-Xivillé
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Hematology Department, Hospital Germans Trias i Pujol, Institut Català d'Oncología, 08916 Badalona, Spain
| | | | - Raul Torres-Ruíz
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Cytogenetics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ronald W Stam
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center, Erasmus University, 3015 CN Rotterdam, the Netherlands
| | - Jose Luis Fuster
- Department of Pediatric Oncohematology, Clinical University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraka 305-0046, Japan
| | - Gianni Cazzaniga
- University di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20052 Monza MB, Italy
| | - Michela Bardini
- University di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20052 Monza MB, Italy
| | - Isabel Cobo
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Gustavo F Bayon
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33003 Oviedo, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain.
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08036 Barcelona, Spain.
| |
Collapse
|
137
|
Coskun V, Lombardo DM. Studying the pathophysiologic connection between cardiovascular and nervous systems using stem cells. J Neurosci Res 2016; 94:1499-1510. [PMID: 27629698 DOI: 10.1002/jnr.23924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022]
Abstract
The cardiovascular and nervous systems are deeply connected during development, health, and disease. Both systems affect and regulate the development of each other during embryogenesis and the early postnatal period. Specialized neural crest cells contribute to cardiac structures, and a number of growth factors released from the cardiac tissue (e.g., glial cell line-derived neurotrophic factor, neurturin, nerve growth factor, Neurotrophin-3) ensure proper maturation of the incoming parasympathetic and sympathetic neurons. Physiologically, the cardiovascular and nervous systems operate in harmony to adapt to various physical and emotional conditions to maintain homeostasis through sympathetic and parasympathetic nervous systems. Moreover, neurocardiac regulation involves a neuroaxis consisting of cortex, amygdala, and other subcortical structures, which have the ability to modify lower-level neurons in the hierarchy. Given the interconnectivity of cardiac and neural systems, when one undergoes pathological changes, the other is affected to a certain extent. In addition, there are specific neurocardiac diseases that affect both systems simultaneously, such as Huntington disease, Lewy body diseases, Friedreich ataxia, congenital heart diseases, Danon disease, and Timothy syndrome. Over the last decade, in vitro modeling of neurocardiac diseases using induced pluripotent stem cells (iPSCs) has provided an invaluable opportunity to elevate our knowledge about the brain-heart connection, since previously primary cardiomyocytes and neurons had been extremely difficult to maintain long-term in vitro. Ultimately, the ability of iPSC technology to model abnormal functional phenotypes of human neurocardiac disorders, combined with the ease of therapeutic screening using this approach, will transform patient care through personalized medicine in the future. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Volkan Coskun
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California.
| | - Dawn M Lombardo
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California
| |
Collapse
|
138
|
Abstract
Embryonic pluripotency can be recapitulated in vitro by a spectrum of pluripotent stem cell states stabilized with different culture conditions. Their distinct spatiotemporal characteristics provide an unprecedented tool for the study of early human development. The newly unveiled ability of some stem cell types for crossing xeno-barriers will facilitate the generation of interspecies chimeric embryos from distant species, including humans. When combined with efficient zygote genome editing technologies, xenogeneic human pluripotent stem cells may also open new frontiers for regenerative medicine applications, including the possibility of generating human organs in animals via interspecies chimeric complementation.
Collapse
|
139
|
El-Khairi R, Vallier L. The role of hepatocyte nuclear factor 1β in disease and development. Diabetes Obes Metab 2016; 18 Suppl 1:23-32. [PMID: 27615128 DOI: 10.1111/dom.12715] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Heterozygous mutations in the gene that encodes the transcription factor hepatocyte nuclear factor 1β (HNF1B) result in a multi-system disorder. HNF1B was initially discovered as a monogenic diabetes gene; however, renal cysts are the most frequently detected feature. Other clinical features include pancreatic hypoplasia and exocrine insufficiency, genital tract malformations, abnormal liver function, cholestasis and early-onset gout. Heterozygous mutations and complete gene deletions in HNF1B each account for approximately 50% of all cases of HNF1B-associated disease and may show autosomal dominant inheritance or arise spontaneously. There is no clear genotype-phenotype correlation indicating that haploinsufficiency is the main disease mechanism. Data from animal models suggest that HNF1B is essential for several stages of pancreas and liver development. However, mice with heterozygous mutations in HNF1B show no phenotype in contrast to the phenotype seen in humans. This suggests that mouse models do not fully replicate the features of human disease and complementary studies in human systems are necessary to determine the molecular mechanisms underlying HNF1B-associated disease. This review discusses the role of HNF1B in human and murine pancreas and liver development, summarizes the disease phenotypes and identifies areas for future investigations in HNF1B-associated diabetes and liver disease.
Collapse
Affiliation(s)
- R El-Khairi
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - L Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Cambridge, UK.
| |
Collapse
|
140
|
Liu K, Yu C, Xie M, Li K, Ding S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 2016; 23:893-916. [PMID: 27524294 DOI: 10.1016/j.chembiol.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine aims to repair and regenerate injured tissues and restore their impaired functions. Recent developments in stem cell biology have attracted significant interest in their applications in regenerative medicine. Chemical approaches using small molecules have yielded exciting results in induction and differentiation of pluripotent stem cells, lineage conversion of somatic cells, and ex vivo as well as in vivo modulation of adult stem cells. In this review, we discuss recent progress, new insights, and future challenges of the chemical approaches in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chen Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
141
|
Makarev E, Fortney K, Litovchenko M, Braunewell KH, Zhavoronkov A, Atala A. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells. Oncotarget 2016; 6:23204-12. [PMID: 26327604 PMCID: PMC4695112 DOI: 10.18632/oncotarget.4673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway level, and provided examples of how pathway activity can be applied to identify iPSC line abnormalities or to predict in vitro differentiation potential. Our results indicate that pathway activation profiling is a promising strategy for evaluating the safety and potency of iPSC lines in translational medicine applications.
Collapse
Affiliation(s)
- Eugene Makarev
- Atlas Regeneration, Inc, Winston-Salem, NC, USA.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Fortney
- Atlas Regeneration, Inc, Winston-Salem, NC, USA.,Department of Developmental Biology, Stanford University Medical Center, Stanford, CA, USA
| | - Maria Litovchenko
- Department of Computational Genomics, Ludwig Maximilian University of Munich, Germany
| | - Karl H Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD, USA.,The Biogerontology Research Foundation, London, UK
| | - Anthony Atala
- Atlas Regeneration, Inc, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
142
|
Gao M, Yao H, Dong Q, Zhang H, Yang Z, Yang Y, Zhu J, Xu M, Xu R. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain. Sci Rep 2016; 6:29955. [PMID: 27417157 PMCID: PMC4945932 DOI: 10.1038/srep29955] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Hui Yao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Hongtian Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Zhijun Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Yang Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Jianwei Zhu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ruxiang Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
143
|
Coulombel L. [Repartee about Philippe Lysy's article]. Med Sci (Paris) 2016; 32:648-9. [PMID: 27406778 DOI: 10.1051/medsci/20163206031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
144
|
Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, Zhou XL, Geng L, Qiu C, Pan X, Jung YW, Cheng J, Lu J, Zhong M, Weissman SM, Park IH. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports 2016; 7:43-54. [PMID: 27373925 PMCID: PMC4945581 DOI: 10.1016/j.stemcr.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.
Collapse
Affiliation(s)
- Eriona Hysolli
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Juan Su
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA; Department of Cell Biology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Tianyu Zhong
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA; Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 Northeast, 10th Street, Oklahoma City, OK 73104, USA
| | - Xiao-Ling Zhou
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, P.R. China
| | - Lin Geng
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Caihong Qiu
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Xinghua Pan
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Yong-Wook Jung
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA; Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea
| | - Jijun Cheng
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Jun Lu
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sherman M Weissman
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA.
| |
Collapse
|
145
|
González F. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish. Dev Dyn 2016; 245:788-806. [DOI: 10.1002/dvdy.24414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- Federico González
- Institute for Bioengineering of Catalonia (IBEC); Calle Baldiri Reixac 15-21 08028 Barcelona Spain
| |
Collapse
|
146
|
Gene correction in patient-specific iPSCs for therapy development and disease modeling. Hum Genet 2016; 135:1041-58. [PMID: 27256364 DOI: 10.1007/s00439-016-1691-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field.
Collapse
|
147
|
Lin YD, Ko MC, Wu ST, Li SF, Hu JF, Lai YJ, Harn HIC, Laio IC, Yeh ML, Yeh HI, Tang MJ, Chang KC, Su FC, Wei EIH, Lee ST, Chen JH, Hoffman AS, Wu WT, Hsieh PCH. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater Sci 2016; 2:567-80. [PMID: 26827729 DOI: 10.1039/c3bm60289c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heart is an extremely sophisticated organ with nanoscale anisotropic structure, contractility and electro-conductivity; however, few studies have addressed the influence of cardiac anisotropy on cell transplantation for myocardial repair. Here, we hypothesized that a graft's anisotropy of myofiber orientation determines the mechano-electrical characteristics and the therapeutic efficacy. We developed aligned- and random-orientated nanofibrous electrospun patches (aEP and rEP, respectively) with or without seeding of cardiomyocytes (CMs) and endothelial cells (ECs) to test this hypothesis. Atomic force microscopy showed a better beating frequency and amplitude of CMs when cultured on aEP than that from cells cultured on rEP. For the in vivo test, a total of 66 rats were divided into six groups: sham, myocardial infarction (MI), MI + aEP, MI + rEP, MI + CM-EC/aEP and MI + CM-EC/rEP (n ≥ 10 for each group). Implantation of aEP or rEP provided mechanical support and thus retarded functional aggravation at 56 days after MI. Importantly, CM-EC/aEP implantation further improved therapeutic outcomes, while cardiac deterioration occurred on the CM-EC/rEP group. Similar results were shown by hemodynamic and infarct size examination. Another independent in vivo study was performed and electrocardiography and optical mapping demonstrated that there were more ectopic activities and defective electro-coupling after CM-EC/rEP implantation, which worsened cardiac functions. Together these results provide comprehensive functional characterizations and demonstrate the therapeutic efficacy of a nanopatterned anisotropic cardiac patch. Importantly, the study confirms the significance of cardiac anisotropy recapitulation in myocardial tissue engineering, which is valuable for the future development of translational nanomedicine.
Collapse
Affiliation(s)
- Yi-Dong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Ming-Chin Ko
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Su-Ting Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Feng Hu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jun Lai
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Hans I-Chen Harn
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chuang Laio
- Department of Pathology, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-I Yeh
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Jer Tang
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Erika I H Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sho-Tone Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jyh-Hong Chen
- Department of Medicine, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Allan S Hoffman
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Wen-Teng Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
148
|
He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 2016; 44:e85. [PMID: 26850641 PMCID: PMC4872082 DOI: 10.1093/nar/gkw064] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunlai Tan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Rui Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dexuan Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxing You
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jianwei Ren
- CUHK Shenzhen Research Institute, Shenzhen, 518057, China Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
149
|
Zhang YS, Xia Y. Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine (Lond) 2016; 10:689-92. [PMID: 25816873 DOI: 10.2217/nnm.15.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
150
|
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. [PMID: 27063289 PMCID: PMC4831023 DOI: 10.1038/ncomms11247] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology has advanced the design of standardized transcription control
devices that programme cellular behaviour. By coupling synthetic signalling cascade-
and transcription factor-based gene switches with reverse and differential
sensitivity to the licensed food additive vanillic acid, we designed a synthetic
lineage-control network combining vanillic acid-triggered mutually exclusive
expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF)
and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant
induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A;
OFF-ON). This designer network consisting of different network topologies
orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA
variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived
pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like
cells, whose glucose-stimulated insulin-release dynamics are comparable to human
pancreatic islets. Synthetic lineage-control networks may provide the missing link
to genetically programme somatic cells into autologous cell phenotypes for
regenerative medicine. Synthetic biology offers the potential for the design and
implementation of rationally designed, complex genetic programmes. Here the authors
design a genetic network to trigger the differentiation of patient derived IPSCs into
beta-like cells.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|