101
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
102
|
Bernardi P. Looking Back to the Future of Mitochondrial Research. Front Physiol 2021; 12:682467. [PMID: 33995132 PMCID: PMC8119648 DOI: 10.3389/fphys.2021.682467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
103
|
Korde AS, Maragos WF. Mitochondrial N-methyl-d-aspartate receptor activation enhances bioenergetics by calcium-dependent and -Independent mechanisms. Mitochondrion 2021; 59:76-82. [PMID: 33894358 DOI: 10.1016/j.mito.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Our laboratory has demonstrated that functional N-methyl-d-aspartate-like receptors are present on neuronal mitochondria (NMDAm). This novel site gates the influx of Ca2+ and causes a several-fold increase in ATP levels. Although elevations in ATP in other cell types have been linked to increases in mitochondrial Ca2+, it has not been established whether the same holds true for calcium uptake via NMDAm. In this study, we have investigated the effect of NMDAm activation on a variety of bioenergetic parameters. Our findings suggest that mitochondrial bioenergetics are not only modulated by NMDAm activation in a Ca2+-dependent but also in a Ca2+-independent manner.
Collapse
Affiliation(s)
- Amit S Korde
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, 23249, USA
| | - William F Maragos
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, 23249, USA.
| |
Collapse
|
104
|
Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB, Madesh M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 2021; 320:C465-C482. [PMID: 33296287 PMCID: PMC8260355 DOI: 10.1152/ajpcell.00502.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative β-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences and School of Engineering and Applied Sciences, University at Buffalo-State University of New York, Buffalo, New York
| | - Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Muniswamy Madesh
- Department of Medicine/Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
105
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
106
|
Marchi S, Zanella M, Pinton P, Crafa S, Boniolo G. MitopatHs: a new logically-framed tool for visualizing multiple mitochondrial pathways. iScience 2021; 24:102324. [PMID: 33889820 PMCID: PMC8050385 DOI: 10.1016/j.isci.2021.102324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are key organelles inside the cell that house a wide range of molecular pathways involved in energy metabolism, ions homeostasis, and cell death. Several databases characterize the different mitochondrial aspects and thus support basic and clinical research. Here we present MitopatHs, a web-based data set that allows navigating among the biochemical signaling pathways (PatHs) of human (H) mitochondria (Mito). MitopatHs is designed to visualize and comprehend virtually all types of pathways in two complementary ways: a logical view, where the sequence of biochemical reactions is presented as logical deductions, and an intuitive graphical visualization, which enables the examination and the analysis of each step of the pathway. MitopatHs is a manually curated, open access and collaborative tool, whose goal is to enable the visualization and comprehension of complicated molecular routes in an easy and fast way.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marco Zanella
- Department of Mathematics, University of Padua, Padua, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy
| | - Silvia Crafa
- Department of Mathematics, University of Padua, Padua, Italy
| | - Giovanni Boniolo
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
107
|
Tanwar J, Singh JB, Motiani RK. Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion 2021; 57:9-22. [PMID: 33316420 PMCID: PMC7610953 DOI: 10.1016/j.mito.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.
Collapse
Affiliation(s)
- Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 10025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaya Bharti Singh
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
108
|
Docampo R, Vercesi AE, Huang G, Lander N, Chiurillo MA, Bertolini M. Mitochondrial Ca 2+ homeostasis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:261-289. [PMID: 34253297 PMCID: PMC10424509 DOI: 10.1016/bs.ircmb.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| | - Anibal E Vercesi
- Departamento de Patologia Clinica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Mayara Bertolini
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
109
|
Mitochondrial metabolism and calcium homeostasis in the development of NAFLD leading to hepatocellular carcinoma. Mitochondrion 2021; 58:24-37. [PMID: 33581332 DOI: 10.1016/j.mito.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome characterized by excessive accumulation of hepatic lipid droplets. The disease progresses with steatosis as the premise for hepatocytic damage and tissue scarring, often culminating in hepatocellular carcinoma (HCC). Perturbations in mitochondrial metabolism and energetics were found to be associated with, and often instrumental in various stages of this progression. Functional impairment of the mitochondria affects all aspects of cellular functioning and a particularly important one is calcium signalling. Changes in mitochondrial calcium specifically in hepatocytes of a fatty liver, is reflected by alterations in calcium signalling as well as calcium transporter activities. This deranged Ca2+ homeostasis aids in even more uptake of lipids into the mitochondria and a shift in equilibrium, both metabolically as well as in terms of energy production, leading to completely altered cellular states. These alterations have been reviewed as a perspective to understand the disease progression through NAFLD leading to HCC.
Collapse
|
110
|
Boyman L, Greiser M, Lederer WJ. Calcium influx through the mitochondrial calcium uniporter holocomplex, MCU cx. J Mol Cell Cardiol 2021; 151:145-154. [PMID: 33147447 PMCID: PMC7880866 DOI: 10.1016/j.yjmcc.2020.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA; The Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
111
|
Abstract
One of the most fascinating aspects of mitochondria is their remarkable ability to accumulate and store large amounts of calcium in the presence of phosphate leading to mitochondrial calcification. In this paper, we briefly address the mechanisms that regulate mitochondrial calcium homeostasis followed by the extensive review on the formation and characterization of intramitochondrial calcium phosphate granules leading to mitochondrial calcification and its relevance to physiological and pathological calcifications of body tissues.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
112
|
Saxena R, Saribas S, Jadiya P, Tomar D, Kaminski R, Elrod JW, Safak M. Human neurotropic polyomavirus, JC virus, agnoprotein targets mitochondrion and modulates its functions. Virology 2021; 553:135-153. [PMID: 33278736 PMCID: PMC7847276 DOI: 10.1016/j.virol.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.
Collapse
Affiliation(s)
- Reshu Saxena
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Rafal Kaminski
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
113
|
Plasma-activated interfaces for biomedical engineering. Bioact Mater 2021; 6:2134-2143. [PMID: 33511312 PMCID: PMC7810626 DOI: 10.1016/j.bioactmat.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
As an important phenomenon to monitor disease development, cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials. Therefore, finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients. In the past decades, plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation, tissue regeneration, cancer therapy, and so on. Based on the potent functions of plasma modified surfaces, this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions. After a brief introduction, plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described. The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications. The Interfaces between organisms/cells and abiotic materials are crucial for cell signaling. Plasmas containing energetic and active species are potent tool to construct biomedical interfaces. The objective here is to summarize recent plasma-activated interfaces to spur interdisciplinary efforts for clinical applications.
Collapse
|
114
|
Fei M, Zhang L, Wang H, Zhu Y, Niu W, Tang T, Han Y. Inhibition of Cathepsin S Induces Mitochondrial Apoptosis in Glioblastoma Cell Lines Through Mitochondrial Stress and Autophagosome Accumulation. Front Oncol 2021; 10:516746. [PMID: 33425712 PMCID: PMC7787074 DOI: 10.3389/fonc.2020.516746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Cathepsin S (CTSS), a lysosomal cysteine protease, is overexpressed in various cancers, including glioblastoma (GB). A high level of CTSS is associated with tumor progression and poor outcome in GB. However, the underlying mechanisms of its role in the biological characteristics of G5B remain to be elucidated. Here, we uncovered a potential role of CTSS in the lysosomes and mitochondria of GB cells (GBCs). Downregulation of CTSS in GBCs could increase the expression of autophagy-related proteins; however, there was no significant change in p62, suggesting autophagy blockade. Moreover, inhibition of CTSS increased the expression of mitochondrial calcium uniporter (MCU) and enhanced mitochondrial Ca2+ uptake ability, causing mitochondrial Ca2+ overload, the generation of copious reactive oxygen species (ROS) and eventual mitochondrial apoptosis. Additionally, elevated damage to mitochondria exacerbated the burden of autophagy. Finally, we found that silence of MCU could alleviate the inhibition of CTSS-induced autophagosome accumulation and mitochondrial stress. Collectively, these results demonstrate that CTSS plays an important role in the process of autophagic flux and mitochondrial functions in GBCs.
Collapse
Affiliation(s)
- Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanling Han
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
115
|
Kim E, Lee DM, Seo MJ, Lee HJ, Choi KS. Intracellular Ca 2 + Imbalance Critically Contributes to Paraptosis. Front Cell Dev Biol 2021; 8:607844. [PMID: 33585447 PMCID: PMC7873879 DOI: 10.3389/fcell.2020.607844] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023] Open
Abstract
Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Since paraptosis is morphologically and biochemically different from apoptosis, understanding its regulatory mechanisms may provide a novel therapeutic strategy in malignant cancer cells that have proven resistant to conventional pro-apoptotic treatments. Relatively little is known about the molecular basis of paraptosis, but perturbations of cellular proteostasis and ion homeostasis appear to critically contribute to the process. Ca2+ transport has been shown to be important in the paraptosis induced by several natural products, metal complexes, and co-treatment with proteasome inhibitors and certain Ca2+-modulating agents. In particular, the Ca2+-mediated communication between the ER and mitochondria plays a crucial role in paraptosis. Mitochondrial Ca2+ overload from the intracellular Ca2+-flux system located at the ER–mitochondrial axis can induce mitochondrial dilation during paraptosis, while the accumulation of misfolded proteins within the ER lumen is believed to exert an osmotic force and draw water from the cytoplasm to distend the ER lumen. In this process, Ca2+ release from the ER also critically contributes to aggravating ER stress and ER dilation. This review focuses on the role of Ca2+ transport in paraptosis by summarizing the recent findings related to the actions of Ca2+-modulating paraptosis-inducing agents and discussing the potential cancer therapeutic strategies that may effectively induce paraptosis via Ca2+ signaling.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Min Ji Seo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Hong Jae Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
116
|
Wang X, Hu LP, Qin WT, Yang Q, Chen DY, Li Q, Zhou KX, Huang PQ, Xu CJ, Li J, Yao LL, Wang YH, Tian GA, Yang JY, Yang MW, Liu DJ, Sun YW, Jiang SH, Zhang XL, Zhang ZG. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat Commun 2021; 12:174. [PMID: 33420030 PMCID: PMC7794439 DOI: 10.1038/s41467-020-20447-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive metastatic disease characterized by an immunosuppressive microenvironment. Here the authors show that a subset of P2RX1-negative neutrophils with immunosuppressive properties accumulate in PDAC metastatic liver tissues and promote tumor growth.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.,Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei-Ting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Yu Chen
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kai-Xia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei-Qi Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chun-Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lin-Li Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
117
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
118
|
Mitochondrial osmoregulation in evolution, cation transport and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148368. [PMID: 33422486 DOI: 10.1016/j.bbabio.2021.148368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
This review provides a retrospective on the role of osmotic regulation in the process of eukaryogenesis. Specifically, it focuses on the adjustments which must have been made by the original colonizing α-proteobacteria that led to the evolution of modern mitochondria. We focus on the cations that are fundamentally involved in volume determination and cellular metabolism and define the transporter landscape in relation to these ions in mitochondria as we know today. We provide analysis on how the cations interplay and together maintain osmotic balance that allows for effective ATP synthesis in the organelle.
Collapse
|
119
|
Hamilton J, Brustovetsky T, Brustovetsky N. The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca 2+-induced damage. J Biol Chem 2021; 296:100669. [PMID: 33864812 PMCID: PMC8131324 DOI: 10.1016/j.jbc.2021.100669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU) and cyclophilin D (CyD) are key players in induction of the permeability transition pore (PTP), which leads to mitochondrial depolarization and swelling, the major signs of Ca2+-induced mitochondrial damage. Mitochondrial depolarization inhibits ATP production, whereas swelling results in the release of mitochondrial pro-apoptotic proteins. The extent to which simultaneous deletion of MCU and CyD inhibits PTP induction and prevents damage of brain mitochondria is not clear. Here, we investigated the effects of MCU and CyD deletion on the propensity for PTP induction using mitochondria isolated from the brains of MCU-KO, CyD-KO, and newly created MCU/CyD-double knockout (DKO) mice. Neither deletion of MCU nor of CyD affected respiration or membrane potential in mitochondria isolated from the brains of these mice. Mitochondria from MCU-KO and MCU/CyD-DKO mice displayed reduced Ca2+ uptake and diminished extent of PTP induction. The Ca2+ uptake by mitochondria from CyD-KO mice was increased compared with mitochondria from WT mice. Deletion of CyD prevented mitochondrial swelling and resulted in transient depolarization in response to Ca2+, but it did not prevent Ca2+-induced delayed mitochondrial depolarization. Mitochondria from MCU/CyD-DKO mice did not swell in response to Ca2+, but they did exhibit mild sustained depolarization. Dibucaine, an inhibitor of the Ca2+-activated mitochondrial phospholipase A2, attenuated and bovine serum albumin completely eliminated the sustained depolarization. This suggests the involvement of phospholipase A2 and free fatty acids. Thus, in addition to induction of the classical PTP, alternative deleterious mechanisms may contribute to mitochondrial damage following exposure to elevated Ca2+.
Collapse
Affiliation(s)
- James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
120
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
121
|
Bertolini MS, Docampo R. Different Sensitivity of Control and MICU1- and MICU2-Ablated Trypanosoma cruzi Mitochondrial Calcium Uniporter Complex to Ruthenium-Based Inhibitors. Int J Mol Sci 2020; 21:ijms21239316. [PMID: 33297372 PMCID: PMC7730205 DOI: 10.3390/ijms21239316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial Ca2+ uptake in trypanosomatids shares biochemical characteristics with that of animals. However, the composition of the mitochondrial Ca2+ uniporter complex (MCUC) in these parasites is quite peculiar, suggesting lineage-specific adaptations. In this work, we compared the inhibitory activity of ruthenium red (RuRed) and Ru360, the most commonly used MCUC inhibitors, with that of the recently described inhibitor Ru265, on Trypanosoma cruzi, the agent of Chagas disease. Ru265 was more potent than Ru360 and RuRed in inhibiting mitochondrial Ca2+ transport in permeabilized cells. When dose-response effects were investigated, an increase in sensitivity for Ru360 and Ru265 was observed in TcMICU1-KO and TcMICU2-KO cells as compared with control cells. In the presence of RuRed, a significant increase in sensitivity was observed only in TcMICU2-KO cells. However, application of Ru265 to intact cells did not affect growth and respiration of epimastigotes, mitochondrial Ca2+ uptake in Rhod-2-labeled intact cells, or attachment to host cells and infection by trypomastigotes, suggesting a low permeability for this compound in trypanosomes.
Collapse
|
122
|
Tomar D, Elrod JW. Metabolite regulation of the mitochondrial calcium uniporter channel. Cell Calcium 2020; 92:102288. [PMID: 32956979 PMCID: PMC8017895 DOI: 10.1016/j.ceca.2020.102288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
Calcium (Ca2+) is known to stimulate mitochondrial bioenergetics through the modulation of TCA cycle dehydrogenases and electron transport chain (ETC) complexes. This is hypothesized to be an essential pathway of energetic control to meet cellular ATP demand. While regulatory mechanisms of mitochondrial calcium uptake have been reported, it remains unknown if metabolite flux itself feedsback to regulate mitochondrial calcium (mCa2+) uptake. This hypothesis was recently tested by Nemani et al. (Sci. Signal. 2020) where the authors report that TCA cycle substrate flux regulates the mitochondrial calcium uniporter channel gatekeeper, mitochondrial calcium uptake 1 (MICU1), gene transcription in an early growth response protein 1 (EGR1) dependent fashion. They posit this is a regulatory feedback mechanism to control ionic homeostasis and mitochondrial bioenergetics with changing fuel availability. Here, we provide a historical overview of mitochondrial calcium exchange and comprehensive appraisal of these results in the context of recent literature and discuss possible regulatory pathways of mCa2+ uptake and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
123
|
Gutiérrez-Aguilar M. Mitochondrial calcium transport and permeability transition as rational targets for plant protection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148288. [PMID: 32800781 DOI: 10.1016/j.bbabio.2020.148288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition (MPT) is a death-inducing mechanism that collapses electrochemical gradients across inner mitochondrial membranes. Several studies in model plants have detailed potential MPT-dependent cell death upon abiotic stress in response to heat shock, ultraviolet radiation, heavy metal toxicity and waterlogging. However, the molecular specifics of the MPT and its possible role on plant cell death remain controversial. This review addresses previous and recent developments on the role(s) of the MPT in plants. Considering these advances, MPT targeting can constitute a plausible strategy to ameliorate cell death in plants upon abiotic stress.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, Mexico.
| |
Collapse
|
124
|
Filadi R, Greotti E. The yin and yang of mitochondrial Ca 2+ signaling in cell physiology and pathology. Cell Calcium 2020; 93:102321. [PMID: 33310302 DOI: 10.1016/j.ceca.2020.102321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Riccardo Filadi
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| | - Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy.
| |
Collapse
|
125
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
126
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
127
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Belosludtseva NV, Belosludtsev KN. The Effect of Deflazacort Treatment on the Functioning of Skeletal Muscle Mitochondria in Duchenne Muscular Dystrophy. Int J Mol Sci 2020; 21:E8763. [PMID: 33228255 PMCID: PMC7699511 DOI: 10.3390/ijms21228763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.
Collapse
MESH Headings
- Adenine Nucleotide Translocator 2/genetics
- Adenine Nucleotide Translocator 2/metabolism
- Adenosine Triphosphate/biosynthesis
- Animals
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Peptidyl-Prolyl Isomerase F/genetics
- Peptidyl-Prolyl Isomerase F/metabolism
- Electron Transport Complex III/genetics
- Electron Transport Complex III/metabolism
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Gene Expression Regulation/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proton-Translocating ATPases/genetics
- Mitochondrial Proton-Translocating ATPases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Pregnenediones/pharmacology
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (K.S.T.); (V.S.S.); (K.N.B.)
- Biophotonics Center, Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov st. 38, 119991 Moscow, Russia
| |
Collapse
|
128
|
Dejos C, Gkika D, Cantelmo AR. The Two-Way Relationship Between Calcium and Metabolism in Cancer. Front Cell Dev Biol 2020; 8:573747. [PMID: 33282859 PMCID: PMC7691323 DOI: 10.3389/fcell.2020.573747] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium ion (Ca2+) signaling is critical to many physiological processes, and its kinetics and subcellular localization are tightly regulated in all cell types. All Ca2+ flux perturbations impact cell function and may contribute to various diseases, including cancer. Several modulators of Ca2+ signaling are attractive pharmacological targets due to their accessibility at the plasma membrane. Despite this, the number of specific inhibitors is still limited, and to date there are no anticancer drugs in the clinic that target Ca2+ signaling. Ca2+ dynamics are impacted, in part, by modifications of cellular metabolic pathways. Conversely, it is well established that Ca2+ regulates cellular bioenergetics by allosterically activating key metabolic enzymes and metabolite shuttles or indirectly by modulating signaling cascades. A coordinated interplay between Ca2+ and metabolism is essential in maintaining cellular homeostasis. In this review, we provide a snapshot of the reciprocal interaction between Ca2+ and metabolism and discuss the potential consequences of this interplay in cancer cells. We highlight the contribution of Ca2+ to the metabolic reprogramming observed in cancer. We also describe how the metabolic adaptation of cancer cells influences this crosstalk to regulate protumorigenic signaling pathways. We suggest that the dual targeting of these processes might provide unprecedented opportunities for anticancer strategies. Interestingly, promising evidence for the synergistic effects of antimetabolites and Ca2+-modulating agents is emerging.
Collapse
Affiliation(s)
- Camille Dejos
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Dimitra Gkika
- Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| | - Anna Rita Cantelmo
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| |
Collapse
|
129
|
Calvo-Rodriguez M, Bacskai BJ. Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci 2020; 44:136-151. [PMID: 33160650 DOI: 10.1016/j.tins.2020.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of almost all neurological diseases, including Alzheimer's disease (AD). Historically, a primary focus in this context has been the link between mitochondrial dynamics and amyloid β toxicity. Recent evidence suggests that dysregulation of mitochondrial calcium homeostasis is also related to tau and other risk factors in AD, although an ongoing challenge in the field is that data collected from different models or experimental settings have not always been consistent. We examine recent literature on mitochondrial dysregulation in AD, with special emphasis on mitochondrial calcium. We include data from in vitro systems, genetic animal models, and AD-derived human tissue, and discuss whether mitochondrial calcium transporters should be proposed as therapeutic candidates for the development of neuroprotective drugs against AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
130
|
Bas-Orth C, Schneider J, Lewen A, McQueen J, Hasenpusch-Theil K, Theil T, Hardingham GE, Bading H, Kann O. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab 2020; 40:2225-2239. [PMID: 31722597 PMCID: PMC7585921 DOI: 10.1177/0271678x19887777] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of the mitochondrial calcium uniporter (MCU) gene (Mcu) in cellular energy homeostasis and generation of electrical brain rhythms is widely unknown. We investigated this issue in mice and rats using Mcu-knockout and -knockdown strategies in vivo and in situ and determined the effects of these genetic manipulations on hippocampal gamma oscillations (30-70 Hz) and sharp wave-ripples. These physiological network states require precise neurotransmission between pyramidal cells and inhibitory interneurons, support spike-timing and synaptic plasticity and are associated with perception, attention and memory. Absence of the MCU resulted in (i) gamma oscillations with decreased power (by >40%) and lower synchrony, including less precise neural action potential generation ('spiking'), (ii) sharp waves with decreased incidence (by about 22%) and decreased fast ripple frequency (by about 3%) and (iii) lack of activity-dependent pyruvate dehydrogenase dephosphorylation. However, compensatory adaptation in gene expression related to mitochondrial function and glucose metabolism was not detected. These data suggest that the neuronal MCU is crucial for the generation of network rhythms, most likely by influences on oxidative phosphorylation and perhaps by controlling cytoplasmic Ca2+ homeostasis. This work contributes to an increased understanding of mitochondrial Ca2+ uptake in cortical information processing underlying cognition and behaviour.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Justus Schneider
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Lewen
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Jamie McQueen
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilmar Bading
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Oliver Kann
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
131
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
132
|
Wang F, Meng TG, Li J, Hou Y, Luo SM, Schatten H, Sun QY, Ou XH. Mitochondrial Ca 2 + Is Related to Mitochondrial Activity and Dynamic Events in Mouse Oocytes. Front Cell Dev Biol 2020; 8:585932. [PMID: 33195238 PMCID: PMC7652752 DOI: 10.3389/fcell.2020.585932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial energy insufficiency is strongly associated with oocyte activation disorders. Ca2+, especially that in the mitochondrial matrix, plays a pivotal role in mitochondrial energy supplementation, but the underlying mechanisms are still only poorly understood. An encoded mitochondrial matrix Ca2+ probe (Mt-GCaMP6s) was introduced to observe mitochondrial Ca2+ ([Ca2+]m) dynamic changes during oocyte maturation and activation. We found that active mitochondria surrounding the nucleus showed a higher [Ca2+]m than those distributed in the cortex during oocyte maturation. During oocyte partheno-activation, the patterns of Ca2+ dynamic changes were synchronous in the cytoplasm and mitochondria. Such higher concentration of mitochondrial matrix Ca2+ was closely related to the distribution of mitochondrial calcium uptake (MICU) protein. We further showed that higher [Ca2+]m mitochondria around the chromosomes in oocytes might have a potential role in stimulating mitochondrial energy for calmodulin-responsive oocyte spindle formation, while synchronizing Ca2+ functions in the cytoplasm and nuclear area are important for oocyte activation.
Collapse
Affiliation(s)
- Feng Wang
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
133
|
Naumova N, Šachl R. Regulation of Cell Death by Mitochondrial Transport Systems of Calcium and Bcl-2 Proteins. MEMBRANES 2020; 10:E299. [PMID: 33096926 PMCID: PMC7590060 DOI: 10.3390/membranes10100299] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria represent the fundamental system for cellular energy metabolism, by not only supplying energy in the form of ATP, but also by affecting physiology and cell death via the regulation of calcium homeostasis and the activity of Bcl-2 proteins. A lot of research has recently been devoted to understanding the interplay between Bcl-2 proteins, the regulation of these interactions within the cell, and how these interactions lead to the changes in calcium homeostasis. However, the role of Bcl-2 proteins in the mediation of mitochondrial calcium homeostasis, and therefore the induction of cell death pathways, remain underestimated and are still not well understood. In this review, we first summarize our knowledge about calcium transport systems in mitochondria, which, when miss-regulated, can induce necrosis. We continue by reviewing and analyzing the functions of Bcl-2 proteins in apoptosis. Finally, we link these two regulatory mechanisms together, exploring the interactions between the mitochondrial Ca2+ transport systems and Bcl-2 proteins, both capable of inducing cell death, with the potential to determine the cell death pathway-either the apoptotic or the necrotic one.
Collapse
Affiliation(s)
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic;
| |
Collapse
|
134
|
The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart. Int J Mol Sci 2020; 21:ijms21207689. [PMID: 33080805 PMCID: PMC7589179 DOI: 10.3390/ijms21207689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium ion (Ca2+) plays a critical role in the cardiac mitochondria function. Ca2+ entering the mitochondria is necessary for ATP production and the contractile activity of cardiomyocytes. However, excessive Ca2+ in the mitochondria results in mitochondrial dysfunction and cell death. Mitochondria maintain Ca2+ homeostasis in normal cardiomyocytes through a comprehensive regulatory mechanism by controlling the uptake and release of Ca2+ in response to the cellular demand. Understanding the mechanism of modulating mitochondrial Ca2+ homeostasis in the cardiomyocyte could bring new insights into the pathogenesis of cardiac disease and help developing the strategy to prevent the heart from damage at an early stage. In this review, we summarized the latest findings in the studies on the cardiac mitochondrial Ca2+ homeostasis, focusing on the regulation of mitochondrial calcium uptake, which acts as a double-edged sword in the cardiac function. Specifically, we discussed the dual roles of mitochondrial Ca2+ in mitochondrial activity and the impact on cardiac function, the molecular basis and regulatory mechanisms, and the potential future research interest.
Collapse
|
135
|
Daw CC, Ramachandran K, Enslow BT, Maity S, Bursic B, Novello MJ, Rubannelsonkumar CS, Mashal AH, Ravichandran J, Bakewell TM, Wang W, Li K, Madaris TR, Shannon CE, Norton L, Kandala S, Caplan J, Srikantan S, Stathopulos PB, Reeves WB, Madesh M. Lactate Elicits ER-Mitochondrial Mg 2+ Dynamics to Integrate Cellular Metabolism. Cell 2020; 183:474-489.e17. [PMID: 33035451 PMCID: PMC7572828 DOI: 10.1016/j.cell.2020.08.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Cassidy C Daw
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Benjamin T Enslow
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Soumya Maity
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brian Bursic
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Matthew J Novello
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Cherubina S Rubannelsonkumar
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayah H Mashal
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Joel Ravichandran
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Terry M Bakewell
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Weiwei Wang
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kang Li
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Christopher E Shannon
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Luke Norton
- Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Soundarya Kandala
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Subramanya Srikantan
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - W Brian Reeves
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine/Cardiology/Diabetes/Nephrology Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
136
|
Torkzaban B, Natarajaseenivasan K, Mohseni Ahooyi T, Shekarabi M, Amini S, Langford TD, Khalili K. The lncRNA LOC102549805 (U1) modulates neurotoxicity of HIV-1 Tat protein. Cell Death Dis 2020; 11:835. [PMID: 33033233 PMCID: PMC7546609 DOI: 10.1038/s41419-020-03033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
HIV-1 Tat is a potent neurotoxic protein that is released by HIV-1 infected cells in the brain and perturbs neuronal homeostasis, causing a broad range of neurological disorders in people living with HIV-1. Furthermore, the effects of Tat have been addressed in numerous studies to investigate the molecular events associated with neuronal cells survival and death. Here, we discovered that exposure of rat primary neurons to Tat resulted in the up-regulation of an uncharacterized long non-coding RNA (lncRNA), LOC102549805 (lncRNA-U1). Our observations showed that increased expression of lncRNA-U1 in neurons disrupts bioenergetic pathways by dysregulating homeostasis of Ca2+, mitigating mitochondrial oxygen reduction, and decreasing ATP production, all of which point mitochondrial impairment in neurons via the Tat-mediated lncRNA-U1 induction. These changes were associated with imbalances in autophagy and apoptosis pathways. Additionally, this study showed the ability of Tat to modulate expression of the neuropeptide B/W receptor 1 (NPBWR1) gene via up-regulation of lncRNA-U1. Collectively, our results identified Tat-mediated lncRNA-U1 upregulation resulting in disruption of neuronal homeostasis.
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Masoud Shekarabi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - T Dianne Langford
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
137
|
Gherardi G, Monticelli H, Rizzuto R, Mammucari C. The Mitochondrial Ca 2+ Uptake and the Fine-Tuning of Aerobic Metabolism. Front Physiol 2020; 11:554904. [PMID: 33117189 PMCID: PMC7575740 DOI: 10.3389/fphys.2020.554904] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, the role of mitochondrial activity in high-energy demand organs and in the orchestration of whole-body metabolism has received renewed attention. In mitochondria, pyruvate oxidation, ensured by efficient mitochondrial pyruvate entry and matrix dehydrogenases activity, generates acetyl CoA that enters the TCA cycle. TCA cycle activity, in turn, provides reducing equivalents and electrons that feed the electron transport chain eventually producing ATP. Mitochondrial Ca2+ uptake plays an essential role in the control of aerobic metabolism. Mitochondrial Ca2+ accumulation stimulates aerobic metabolism by inducing the activity of three TCA cycle dehydrogenases. In detail, matrix Ca2+ indirectly modulates pyruvate dehydrogenase via pyruvate dehydrogenase phosphatase 1, and directly activates isocitrate and α-ketoglutarate dehydrogenases. Here, we will discuss the contribution of mitochondrial Ca2+ uptake to the metabolic homeostasis of organs involved in systemic metabolism, including liver, skeletal muscle, and adipose tissue. We will also tackle the role of mitochondrial Ca2+ uptake in the heart, a high-energy consuming organ whose function strictly depends on appropriate Ca2+ signaling.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
138
|
Rao G, Dwivedi SKD, Zhang Y, Dey A, Shameer K, Karthik R, Srikantan S, Hossen MN, Wren JD, Madesh M, Dudley JT, Bhattacharya R, Mukherjee P. MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep 2020; 21:e48483. [PMID: 32851774 PMCID: PMC7534609 DOI: 10.15252/embr.201948483] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression. Here, we demonstrate that microRNA-195-5p (miR-195) directly targets the 3' UTR of the MICU1 mRNA and represses MICU1 expression. Additionally, miR-195 is under-expressed in ovarian cancer cell lines, and restoring miR-195 expression reestablishes native MICU1 levels and the associated phenotypes. Stable expression of miR-195 in a human xenograft model of ovarian cancer significantly reduces tumor growth, increases tumor doubling times, and enhances overall survival. In conclusion, miR-195 controls MICU1 levels in ovarian cancer and could be exploited to normalize aberrant MICU1 expression, thus reversing both glycolysis and chemoresistance and consequently improving patient outcomes.
Collapse
Affiliation(s)
- Geeta Rao
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | | | - Yushan Zhang
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Anindya Dey
- Department of Obstetrics and GynecologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Khader Shameer
- Institute of Next Generation Healthcare (INGH)Icahn Institute for Data Science and Genomic TechnologyDepartment of Genetics and Genomic SciencesMount Sinai Health SystemNew YorkNYUSA
| | - Ramachandran Karthik
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Subramanya Srikantan
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Md Nazir Hossen
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Jonathan D Wren
- Genes & Human Disease Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Muniswamy Madesh
- Department of MedicineCardiology DivisionUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Joel T Dudley
- Institute of Next Generation Healthcare (INGH)Icahn Institute for Data Science and Genomic TechnologyDepartment of Genetics and Genomic SciencesMount Sinai Health SystemNew YorkNYUSA
| | - Resham Bhattacharya
- Department of Obstetrics and GynecologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Peggy and Charles Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Priyabrata Mukherjee
- Department of PathologyThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Peggy and Charles Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
139
|
Wetzel MD, Stanley K, Wang WW, Maity S, Madesh M, Reeves WB, Awad AS. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020; 5:142187. [PMID: 32956070 PMCID: PMC7566719 DOI: 10.1172/jci.insight.142187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.
Collapse
|
140
|
Bisbach CM, Hutto RA, Poria D, Cleghorn WM, Abbas F, Vinberg F, Kefalov VJ, Hurley JB, Brockerhoff SE. Mitochondrial Calcium Uniporter (MCU) deficiency reveals an alternate path for Ca 2+ uptake in photoreceptor mitochondria. Sci Rep 2020; 10:16041. [PMID: 32994451 PMCID: PMC7525533 DOI: 10.1038/s41598-020-72708-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Abstract
Rods and cones use intracellular Ca2+ to regulate many functions, including phototransduction and neurotransmission. The Mitochondrial Calcium Uniporter (MCU) complex is thought to be the primary pathway for Ca2+ entry into mitochondria in eukaryotes. We investigate the hypothesis that mitochondrial Ca2+ uptake via MCU influences phototransduction and energy metabolism in photoreceptors using a mcu-/- zebrafish and a rod photoreceptor-specific Mcu-/- mouse. Using genetically encoded Ca2+ sensors to directly examine Ca2+ uptake in zebrafish cone mitochondria, we found that loss of MCU reduces but does not eliminate mitochondrial Ca2+ uptake. Loss of MCU does not lead to photoreceptor degeneration, mildly affects mitochondrial metabolism, and does not alter physiological responses to light, even in the absence of the Na+/Ca2+, K+ exchanger. Our results reveal that MCU is dispensable for vertebrate photoreceptor function, consistent with its low expression and the presence of an alternative pathway for Ca2+ uptake into photoreceptor mitochondria.
Collapse
Affiliation(s)
- Celia M Bisbach
- Biochemistry Department, University of Washington, Seattle, WA, USA
| | - Rachel A Hutto
- Biochemistry Department, University of Washington, Seattle, WA, USA
| | - Deepak Poria
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Fatima Abbas
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - James B Hurley
- Biochemistry Department, University of Washington, Seattle, WA, USA
- Ophthalmology Department, University of Washington, Seattle, WA, USA
| | - Susan E Brockerhoff
- Biochemistry Department, University of Washington, Seattle, WA, USA.
- Ophthalmology Department, University of Washington, Seattle, WA, USA.
| |
Collapse
|
141
|
Diaz-Juarez J, Suarez JA, Dillmann WH, Suarez J. Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165984. [PMID: 33002576 DOI: 10.1016/j.bbadis.2020.165984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus-induced heart disease, including diabetic cardiomyopathy, is an important medical problem and is difficult to treat. Diabetes mellitus increases the risk for heart failure and decreases cardiac myocyte function, which are linked to changes in cardiac mitochondrial energy metabolism. The free mitochondrial calcium concentration ([Ca2+]m) is fundamental in activating the mitochondrial respiratory chain complexes and ATP production and is also known to regulate the activity of key mitochondrial dehydrogenases. The mitochondrial calcium uniporter complex (MCUC) plays a major role in mediating mitochondrial Ca2+ import, and its expression and function therefore may have a marked impact on cardiac myocyte metabolism and function. Here, we summarize the pathophysiological role of [Ca2+]m handling and MCUC in the diabetic heart. In addition, we evaluate potential therapeutic targets, directed to the machinery that regulates mitochondrial calcium handling, to alleviate diabetes-related cardiac disease.
Collapse
Affiliation(s)
- Julieta Diaz-Juarez
- Department of Pharmacology, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Seccion XVI, 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Jorge A Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jorge Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
142
|
Zulkifli M, Neff JK, Timbalia SA, Garza NM, Chen Y, Watrous JD, Murgia M, Trivedi PP, Anderson SK, Tomar D, Nilsson R, Madesh M, Jain M, Gohil VM. Yeast homologs of human MCUR1 regulate mitochondrial proline metabolism. Nat Commun 2020; 11:4866. [PMID: 32978391 PMCID: PMC7519068 DOI: 10.1038/s41467-020-18704-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - John K Neff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Shrishiv A Timbalia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yingqi Chen
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35121, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Prachi P Trivedi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Steven K Anderson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dhanendra Tomar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, 9500 Gilman Avenue, La Jolla, CA, 92093, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
143
|
Wang C, Baradaran R, Long SB. Structure and Reconstitution of an MCU-EMRE Mitochondrial Ca 2+ Uniporter Complex. J Mol Biol 2020; 432:5632-5648. [PMID: 32841658 PMCID: PMC7577567 DOI: 10.1016/j.jmb.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
The proteins MCU and EMRE form the minimal functional unit of the mitochondrial calcium uniporter complex in metazoans, a highly selective and tightly controlled Ca2+ channel of the inner mitochondrial membrane that regulates cellular metabolism. Here we present functional reconstitution of an MCU-EMRE complex from the red flour beetle, Tribolium castaneum, and a cryo-EM structure of the complex at 3.5 Å resolution. Using a novel assay, we demonstrate robust Ca2+ uptake into proteoliposomes containing the purified complex. Uptake is dependent on EMRE and also on the mitochondrial lipid cardiolipin. The structure reveals a tetrameric channel with a single ion pore. EMRE is located at the periphery of the transmembrane domain and associates primarily with the first transmembrane helix of MCU. Coiled-coil and juxtamembrane domains within the matrix portion of the complex adopt markedly different conformations than in a structure of a human MCU-EMRE complex, suggesting that the structures represent different conformations of these functionally similar metazoan channels.
Collapse
Affiliation(s)
- Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rozbeh Baradaran
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Stephen Barstow Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
144
|
Marchi S, Giorgi C, Galluzzi L, Pinton P. Ca 2+ Fluxes and Cancer. Mol Cell 2020; 78:1055-1069. [PMID: 32559424 DOI: 10.1016/j.molcel.2020.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| | - Paolo Pinton
- Department of Medical Sciences, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
145
|
Natarajan V, Mah T, Peishi C, Tan SY, Chawla R, Arumugam TV, Ramasamy A, Mallilankaraman K. Oxygen Glucose Deprivation Induced Prosurvival Autophagy Is Insufficient to Rescue Endothelial Function. Front Physiol 2020; 11:533683. [PMID: 33041854 PMCID: PMC7526687 DOI: 10.3389/fphys.2020.533683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction, referring to a disturbance in the vascular homeostasis, has been implicated in many disease conditions including ischemic/reperfusion injury and atherosclerosis. Endothelial mitochondria have been increasingly recognized as a regulator of calcium homeostasis which has implications in the execution of diverse cellular events and energy production. The mitochondrial calcium uniporter complex through which calcium enters the mitochondria is composed of several proteins, including the pore-forming subunit MCU and its regulators MCUR1, MICU1, and MICU2. Mitochondrial calcium overload leads to opening of MPTP (mitochondrial permeability transition pore) and results in apoptotic cell death. Whereas, blockage of calcium entry into the mitochondria results in reduced ATP production thereby activates AMPK-mediated pro-survival autophagy. Here, we investigated the expression of mitochondrial calcium uniporter complex components (MCU, MCUR1, MICU1, and MICU2), induction of autophagy and apoptotic cell death in endothelial cells in response to oxygen-glucose deprivation. Human pulmonary microvascular endothelial cells (HPMVECs) were subjected to oxygen-glucose deprivation (OGD) at 3-h timepoints up to 12 h. Interestingly, except MCUR1 which was significantly downregulated, all other components of the uniporter (MCU, MICU1, and MICU2) remained unchanged. MCUR1 downregulation has been shown to activate AMPK mediated pro-survival autophagy. Similarly, MCUR1 downregulation in response to OGD resulted in AMPK phosphorylation and LC3 processing indicating the activation of pro-survival autophagy. Despite the activation of autophagy, OGD induced Caspase-mediated apoptotic cell death. Blockade of autophagy did not reduce OGD-induced apoptotic cell death whereas serum starvation conferred enough cellular and functional protection. In conclusion, the autophagic flux induced by MCUR1 downregulation in response to OGD is insufficient in protecting endothelial cells from undergoing apoptotic cell death and requires enhancement of autophagic flux by additional means such as serum starvation.
Collapse
Affiliation(s)
- Venkateswaran Natarajan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tania Mah
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chen Peishi
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shu Yi Tan
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ritu Chawla
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiruma Valavan Arumugam
- Department of Physiology, Anatomy and Microbiology School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | | | - Karthik Mallilankaraman
- Mitochondrial Physiology and Metabolism Lab, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Center for Healthy Longevity, NUHS, Singapore, Singapore
| |
Collapse
|
146
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
147
|
Carvalho EJ, Stathopulos PB, Madesh M. Regulation of Ca 2+ exchanges and signaling in mitochondria. CURRENT OPINION IN PHYSIOLOGY 2020; 17:197-206. [PMID: 33103015 DOI: 10.1016/j.cophys.2020.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial calcium (mCa2+) homeostasis also plays a key role in the buffering of cytosolic calcium (cCa2+) and calcium transported into the mitochondrial matrix regulates cellular metabolism, migration and cell fate decisions. Recent work has highlighted the importance of mCa2+ homeostasis in regulating cellular function. The discovery of the mCa2+ uptake complex has shed new light on the role of mCa2+ dynamics in cytoskeletal remodeling, mitochondrial shape and motility in cellular dynamics. Here we attempt to decipher the vast landscape of calcium regulatory effects of the mitochondria, the underlying mechanisms and the dynamics that control cellular function.
Collapse
Affiliation(s)
- Edmund J Carvalho
- Department of Medicine, Centre for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX, 78228.,Department of Microbiology, Centre for Cellular Immunotherapies, University of Pennsylvania, Pennsylvania, 19104
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, Centre for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX, 78228
| |
Collapse
|
148
|
Wu W, Shen Q, Zhang R, Qiu Z, Wang Y, Zheng J, Jia Z. The structure of the MICU1-MICU2 complex unveils the regulation of the mitochondrial calcium uniporter. EMBO J 2020; 39:e104285. [PMID: 32790952 DOI: 10.15252/embj.2019104285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The MICU1-MICU2 heterodimer regulates the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake. Herein, we present two crystal structures of the MICU1-MICU2 heterodimer, in which Ca2+ -free and Ca2+ -bound EF-hands are observed in both proteins, revealing both electrostatic and hydrophobic interfaces. Furthermore, we show that MICU1 interacts with EMRE, another regulator of MCU, through a Ca2+ -dependent alkaline groove. Ca2+ binding strengthens the MICU1-EMRE interaction, which in turn facilitates Ca2+ uptake. Conversely, the MICU1-MCU interaction is favored in the absence of Ca2+ , thus inhibiting the channel activity. This Ca2+ -dependent switch illuminates how calcium signals are transmitted from regulatory subunits to the calcium channel and the transition between gatekeeping and activation channel functions. Furthermore, competition with an EMRE peptide alters the uniporter threshold in resting conditions and elevates Ca2+ accumulation in stimulated mitochondria, confirming the gatekeeper role of the MICU1-MICU2 heterodimer. Taken together, these structural and functional data provide new insights into the regulation of mitochondrial calcium uptake.
Collapse
Affiliation(s)
- Wenping Wu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
149
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
150
|
Holman SP, Lobo AS, Novorolsky RJ, Nichols M, Fiander MDJ, Konda P, Kennedy BE, Gujar S, Robertson GS. Neuronal mitochondrial calcium uniporter deficiency exacerbates axonal injury and suppresses remyelination in mice subjected to experimental autoimmune encephalomyelitis. Exp Neurol 2020; 333:113430. [PMID: 32745471 DOI: 10.1016/j.expneurol.2020.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
High-capacity mitochondrial calcium (Ca2+) uptake by the mitochondrial Ca2+ uniporter (MCU) is strategically positioned to support the survival and remyelination of axons in multiple sclerosis (MS) by undocking mitochondria, buffering Ca2+ and elevating adenosine triphosphate (ATP) synthesis at metabolically stressed sites. Respiratory chain deficits in MS are proposed to metabolically compromise axon survival and remyelination by suppressing MCU activity. In support of this hypothesis, clinical scores, mitochondrial dysfunction, myelin loss, axon damage and inflammation were elevated while remyelination was blocked in neuronal MCU deficient (Thy1-MCU Def) mice relative to Thy1 controls subjected to experimental autoimmune encephalomyelitis (EAE). At the first sign of walking deficits, mitochondria in EAE/Thy1 axons showed signs of activation. By contrast, cytoskeletal damage, fragmented mitochondria and large autophagosomes were seen in EAE/Thy1-MCU Def axons. As EAE severity increased, EAE/Thy1 axons were filled with massively swollen mitochondria with damaged cristae while EAE/Thy1-MCU Def axons were riddled with late autophagosomes. ATP concentrations and mitochondrial gene expression were suppressed while calpain activity, autophagy-related gene mRNA levels and autophagosome marker (LC3) co-localization in Thy1-expressing neurons were elevated in the spinal cords of EAE/Thy1-MCU Def compared to EAE/Thy1 mice. These findings suggest that MCU inhibition contributes to axonal damage that drives MS progression.
Collapse
Affiliation(s)
- Scott P Holman
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Aurelio S Lobo
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Robyn J Novorolsky
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Matthew Nichols
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Maximillian D J Fiander
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Prathyusha Konda
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Barry E Kennedy
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - Shashi Gujar
- Department of Pathology, Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada
| | - George S Robertson
- Department of Pharmacology, Brain Repair Centre, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Faculty of Medicine, Dalhousie University, 1348 Summer Street, Life Sciences Research Institute, North Tower, Halifax B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax B3H 2E2, Canada.
| |
Collapse
|