101
|
Romano S, Zito G, Lara Yépez SN, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. OPTICS EXPRESS 2019; 27:18776-18786. [PMID: 31252814 DOI: 10.1364/oe.27.018776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.
Collapse
|
102
|
Lepeshov S, Krasnok A, Alù A. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. NANOTECHNOLOGY 2019; 30:254004. [PMID: 30844774 DOI: 10.1088/1361-6528/ab0daf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recently emerged concept of all-dielectric nanophotonics based on optical Mie resonances in high-index dielectric nanoparticles has proven to be a promising pathway to boost light-matter interactions at the nanoscale. In this work, we discuss the opportunities enabled by the interaction of dielectric nanoresonators with 2D transition metal dichalcogenides (2D TMDCs), leading to weak and strong coupling regimes. We perform a comprehensive analysis of bright exciton photoluminescence (PL) enhancement from various 2D TMDCs, including WS2, MoS2, WSe2, and MoSe2 via their coupling to Mie resonances of a silicon nanoparticle. For each case, we find the system parameters corresponding to maximal PL enhancement taking into account excitation rate, Purcell factor and radiation efficiency. We demonstrate numerically that all-dielectric Si nanoantennas can significantly enhance the PL intensity from 2D TMDC by a factor of hundred through precise optimization of the geometrical and material parameters. Our results may be useful for high-efficiency 2D TMDC-based optoelectronic, nanophotonic, and quantum optical devices.
Collapse
|
103
|
Mitsai E, Naffouti M, David T, Abbarchi M, Hassayoun L, Storozhenko D, Mironenko A, Bratskaya S, Juodkazis S, Makarov S, Kuchmizhak A. Si 1-xGe x nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications. NANOSCALE 2019; 11:11634-11641. [PMID: 31173032 DOI: 10.1039/c9nr01837a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Active light-emitting all-dielectric nanoantennas recently have demonstrated great potential as highly efficient nanoscale light sources owing to their strong luminescent and Raman responses. However, their large-scale fabrication faces a number of problems related to productivity limits of existing lithography techniques. Thus, high-throughput fabrication strategies allowing in a facile way to tailor of the nanoantenna emission and thermal properties in the process of their fabrication are highly desirable for various applications. Here, we propose a cost-effective approach to large-scale fabrication of Si1-xGex alloyed Mie nanoresonators possessing an enhanced inherent Raman response which can be simply tailored via tuning the Ge concentration. Moreover, by tailoring the relative Ge composition one can gradually change a complex refractive index of the produced Si1-xGex alloy, which affects the ratio between radiative and nonradiative losses in Si1-xGex nanoantennas, which is crucial for optimization of their optical heating efficiency. Composition-tunable Si1-xGex nanoantennas with an optimized size, light-to-heat conversion and Raman response are implemented for non-invasive sensing of 4-aminothiophenol molecules with a temperature feedback modality and high subwavelength spatial resolution. The results are important for advanced multichannel optical sensing, providing information on analyte's composition, analyte-nanoantenna temperature response and spatial position.
Collapse
Affiliation(s)
- E Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Numerical Study on Mie Resonances in Single GaAs Nanomembranes. NANOMATERIALS 2019; 9:nano9060856. [PMID: 31195647 PMCID: PMC6630972 DOI: 10.3390/nano9060856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
Abstract
GaAs nanomembranes grown by selective area epitaxy are novel structures. The high refractive index of GaAs makes them good candidates for nanoantennas. We numerically studied the optical modal structure of the resonator. The nanomembrane geometry introduces a strong light-polarization dependence. The scattering is dominated by an electric dipole contribution for polarization along the nanomembrane long dimension and by a magnetic dipole contribution in the orthogonal direction. The dependence on the geometry of the resonances close to the GaAs band gap was modeled by a single coefficient. It describes the resonance shifts against up-to 40% changes in length, height, and width. We showed that the nanomembranes exhibited field enhancement, far-field directionality, and tunability with the GaAs band gap. All these elements confirm their great potential as nanoantennas.
Collapse
|
105
|
Yang Y, Bozhevolnyi SI. Nonradiating anapole states in nanophotonics: from fundamentals to applications. NANOTECHNOLOGY 2019; 30:204001. [PMID: 30695763 DOI: 10.1088/1361-6528/ab02b0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nonradiating sources are nontrivial charge-current distributions that do not generate fields outside the source domain. The pursuit of their possible existence has fascinated several generations of physicists and triggered developments in various branches of science ranging from medical imaging to dark matter. Recently, one of the most fundamental types of nonradiating sources, named anapole states, has been realized in nanophotonics regime and soon spurred considerable research efforts and widespread interest. A series of astounding advances have been achieved within a very short period of time, uncovering the great potential of anapole states in many aspects such as lasing, sensing, metamaterials, and nonlinear optics. In this review, we provide a detailed account of anapole states in nanophotonics research, encompassing their basic concepts, historical origins, and new physical effects. We discuss the recent research frontiers in understanding and employing optical anapoles and provide an outlook for this vibrant field of research.
Collapse
Affiliation(s)
- Yuanqing Yang
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
106
|
Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics. Sci Rep 2019; 9:7138. [PMID: 31073157 PMCID: PMC6509350 DOI: 10.1038/s41598-019-43545-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
In the context of using portions of a photosynthetic apparatus of green plants and photosynthesizing bacteria in bioinspired photovoltaic systems, we consider possible control of the chlorophyll excited state decay rate using nanoantennas in the form of a single metal and semiconductor nanoparticle. Since chlorophyll luminescence competes with electron delivery for chemical reactions chain and also to an external circuit, we examine possible excited state decay inhibition contrary to radiative rate enhancement. Both metal and semiconductor nanoparticles enable inhibition of radiative decay rate by one order of the magnitude as compared to that in vacuum, whereas a metal nanosphere cannot perform the overall decay inhibition since slowing down of radiative decay occurs only along with the similar growth of its nonradiative counterpart whereas a semiconductor nanoantenna is lossless. Additionally, at normal orientation of the emitter dipole moment to a nanoparticle surface, a silicon nanoparticle promotes enhancement of radiative decay by one order of the magnitude within the whole visible range. Our results can be used for other photochemical or photovoltaic processes, and strong radiative decay enhancement found for dielectric nanoantennas paves the way to radiative decays and light emitters engineering without non-radiative losses.
Collapse
|
107
|
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A Review on Surface-Enhanced Raman Scattering. BIOSENSORS 2019; 9:E57. [PMID: 30999661 PMCID: PMC6627380 DOI: 10.3390/bios9020057] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Collapse
Affiliation(s)
- Roberto Pilot
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Raffaella Signorini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Christian Durante
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Laura Orian
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
- Consorzio INSTM, via G. Giusti 9, 50121 Firenze, Italy.
| | - Manjari Bhamidipati
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
108
|
Liang L, Teh DBL, Dinh ND, Chen W, Chen Q, Wu Y, Chowdhury S, Yamanaka A, Sum TC, Chen CH, Thakor NV, All AH, Liu X. Upconversion amplification through dielectric superlensing modulation. Nat Commun 2019; 10:1391. [PMID: 30918264 PMCID: PMC6437158 DOI: 10.1038/s41467-019-09345-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/07/2019] [Indexed: 11/09/2022] Open
Abstract
Achieving efficient photon upconversion under low irradiance is not only a fundamental challenge but also central to numerous advanced applications spanning from photovoltaics to biophotonics. However, to date, almost all approaches for upconversion luminescence intensification require stringent controls over numerous factors such as composition and size of nanophosphors. Here, we report the utilization of dielectric microbeads to significantly enhance the photon upconversion processes in lanthanide-doped nanocrystals. By modulating the wavefront of both excitation and emission fields through dielectric superlensing effects, luminescence amplification up to 5 orders of magnitude can be achieved. This design delineates a general strategy to converge a low-power incident light beam into a photonic hotspot of high field intensity, while simultaneously enabling collimation of highly divergent emission for far-field accumulation. The dielectric superlensing-mediated strategy may provide a major step forward in facilitating photon upconversion processes toward practical applications in the fields of photobiology, energy conversion, and optogenetics. Emission levels useful for applications from upconversion nanoparticles require high laser irradiance. Here, Liang et al. exploit the superlensing effect from dielectric microbeads to enhance the luminescence efficiency of upconversion nanoparticles and show its application for optogenetics.
Collapse
Affiliation(s)
- Liangliang Liang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Daniel B L Teh
- Department of Biochemistry, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore
| | - Ngoc-Duy Dinh
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119228, Singapore
| | - Weiqiang Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qiushui Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Yiming Wu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chia-Hung Chen
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore.,Department of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Nitish V Thakor
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, 119228, Singapore
| | - Angelo H All
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore. .,Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore. .,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
109
|
Sabri L, Huang Q, Liu JN, Cunningham BT. Design of anapole mode electromagnetic field enhancement structures for biosensing applications. OPTICS EXPRESS 2019; 27:7196-7212. [PMID: 30876288 DOI: 10.1364/oe.27.007196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The design of an all-dielectric nanoantenna based on nonradiating "anapole" modes is studied for biosensing applications in an aqueous environment, using FDTD electromagnetic simulation. The strictly confined electromagnetic field within a circular or rectangular opening at the center of a cylindrical silicon disk produces a single point electromagnetic hotspot with up to 6.5x enhancement of |E|, for the 630-650 nm wavelength range, and we can increase the value up to 25x by coupling additional electromagnetic energy from an underlying PEC-backed substrate. We characterize the effects of the substrate design and slot dimensions on the field enhancement magnitude, for devices operating in a water medium.
Collapse
|
110
|
Song HS, Lee GJ, Yoo DE, Kim YJ, Yoo YJ, Lee DW, Siva V, Kang IS, Song YM. Reflective color filter with precise control of the color coordinate achieved by stacking silicon nanowire arrays onto ultrathin optical coatings. Sci Rep 2019; 9:3350. [PMID: 30833674 PMCID: PMC6399234 DOI: 10.1038/s41598-019-40001-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
The engineering of structural colors is currently a promising, rapidly emerging research field because structural colors of outstanding spatial resolution and durability can be generated using a sustainable production method. However, the restricted and saturated color range in micro/nano-fabricated structural ‘pigments’ has hindered the dissemination of structural color printing. Here, this article presents a spectral mixing color filter (SMCF), which is the concept of fine-tunable color systems, capable of addressing the current issues in structural color engineering, by stacking a vertical silicon nanowire array embedded in a transparent polymer onto ultrathin optical coating layers. These two photonic structures enable independent tuning the optical resonance of each structure, depending on geometrical parameters, such as the diameter of nanowires and thickness of absorbing medium. Hence, the SMCF facilitates the linear combination of two resonant spectra, thereby enabling fine-tuning and widening of the color gamut. Theoretical studies and experimental results reveal the detailed working mechanisms and extraordinary mechanical feature of the SMCF. Based on the analyses, the concept of flexible optical device, e.g., a reflective anti-counterfeiting sticker, is demonstrated. Successful characterization demonstrates that the proposed strategy can promote the color controllability/purity of structural color and the applicability as flexible optical device.
Collapse
Affiliation(s)
- Han Sung Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Gil Ju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dong Eun Yoo
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeong Jae Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dong-Wook Lee
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Vantari Siva
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Il-Suk Kang
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
111
|
Sadrara M, Miri M. Electric and Magnetic Hotspots via Hollow InSb Microspheres for Enhanced Terahertz Spectroscopy. Sci Rep 2019; 9:2926. [PMID: 30814534 PMCID: PMC6393507 DOI: 10.1038/s41598-018-35833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/11/2018] [Indexed: 11/08/2022] Open
Abstract
We study electric and magnetic hotspots in the gap between hollow InSb microspheres forming dimers and trimers. The outer radius, core volume fraction, distance, and temperature of the microspheres can be chosen to achieve field enhancement at a certain frequency corresponding to the transition between energy levels of a molecule placed in the gap. For example, utilizing 80 μm radius spheres at a gap of 2 μm held at a temperature of 295 K, allow electric field intensity enhancements of 10-2880 and magnetic field intensity enhancements of 3-61 in the frequency window 0.35-1.50 THz. The core volume fraction and the ambient temperature affect the enhancements, particularly in the frequency window 1.5-2 THz. Electric and magnetic hotspots are promising for THz absorption and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Mahdiyeh Sadrara
- Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran
| | - MirFaez Miri
- Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran.
| |
Collapse
|
112
|
Xu Z, Crozier KB. All-dielectric nanotweezers for trapping and observation of a single quantum dot. OPTICS EXPRESS 2019; 27:4034-4045. [PMID: 30876026 DOI: 10.1364/oe.27.004034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
We report the optical trapping of a single streptavidin-coated CdSe/ZnS quantum dot whose overall diameter is around 15-20 nm, in a microfluidic chamber by an all-dielectric (silicon) nanotweezer with negligible local heating. The use of fluorescence microscopy allows us to readily observe trapping events, tracking the fluorescence emission from, and the position of, each individual trapped quantum dot as a function of time. The blinking behavior of the quantum dots is observed during the trapping process, that is, in the near field region of the silicon nanoantenna. We furthermore show that the continuous wave infrared laser employed to trap the quantum dots can also excite photoluminescence from them via two-photon absorption. We present Maxwell stress tensor simulations of optical forces applied to a single quantum dot in the nanoantenna's vicinity. This work demonstrates that all-dielectric nanotweezers are a promising means to handle quantum dots in solution, enabling them to be localized for observations over extended periods of time.
Collapse
|
113
|
Danesi S, Alessandri I. Using optical resonances to control heat generation and propagation in silicon nanostructures. Phys Chem Chem Phys 2019; 21:11724-11730. [DOI: 10.1039/c8cp07573e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated electronics, photonics and optoelectronics need full control of lattice reconstruction processes in silicon nanostructures at the nanoscale level.
Collapse
Affiliation(s)
- Stefano Danesi
- INSTM-UdR Brescia
- 25123 Brescia
- Italy
- Department of Mechanical and Industrial Engineering
- 25123 Brescia
| | - Ivano Alessandri
- INSTM-UdR Brescia
- 25123 Brescia
- Italy
- Department of Information Engineering
- University of Brescia
| |
Collapse
|
114
|
Luo X. Subwavelength Artificial Structures: Opening a New Era for Engineering Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804680. [PMID: 30468525 DOI: 10.1002/adma.201804680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Indexed: 06/09/2023]
Abstract
In the past centuries, the scale of engineering optics has evolved toward two opposite directions: one is represented by giant telescopes with apertures larger than tens of meters and the other is the rapidly developing micro/nano-optics and nanophotonics. At the nanoscale, subwavelength light-matter interaction is blended with classic and quantum effects in various functional materials such as noble metals, semiconductors, phase-change materials, and 2D materials, which provides unprecedented opportunities to upgrade the performance of classic optical devices and overcome the fundamental and engineering difficulties faced by traditional optical engineers. Here, the research motivations and recent advances in subwavelength artificial structures are summarized, with a particular emphasis on their practical applications in super-resolution and large-aperture imaging systems, as well as highly efficient and spectrally selective absorbers and emitters. The role of dispersion engineering and near-field coupling in the form of catenary optical fields is highlighted, which reveals a methodology to engineer the electromagnetic response of complex subwavelength structures. Challenges and tentative solutions are presented regarding multiscale design, optimization, fabrication, and system integration, with the hope of providing recipes to transform the theoretical and technological breakthroughs on subwavelength hierarchical structures to the next generation of engineering optics, namely Engineering Optics 2.0.
Collapse
Affiliation(s)
- Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
115
|
Luo X, Tsai D, Gu M, Hong M. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev 2019; 48:2458-2494. [PMID: 30839959 DOI: 10.1039/c8cs00864g] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with the rapid development of micro/nanofabrication technology, the past few decades have seen the flourishing emergence of subwavelength-structured materials and interfaces for optical field engineering at the nanoscale. Three remarkable properties associated with these subwavelength-structured materials are the squeezed optical fields beyond the diffraction limit, gradient optical fields in the subwavelength scale, and enhanced optical fields that are orders of magnitude greater than the incident field. These engineered optical fields have inspired fundamental and practical advances in both engineering optics and modern chemistry. The first property is the basis of sub-diffraction-limited imaging, lithography, and dense data storage. The second property has led to the emergence of a couple of thin and planar functional optical devices with a reduced footprint. The third one causes enhanced radiation (e.g., fluorescence), scattering (e.g., Raman scattering), and absorption (e.g., infrared absorption and circular dichroism), offering a unique platform for single-molecule-level biochemical sensing, and high-efficiency chemical reaction and energy conversion. In this review, we summarize recent advances in subwavelength-structured materials that bear extraordinary squeezed, gradient, and enhanced optical fields, with a particular emphasis on their optical and chemical applications. Finally, challenges and outlooks in this promising field are discussed.
Collapse
Affiliation(s)
- Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
| | | | | | | |
Collapse
|
116
|
Mao P, Liu C, Favraud G, Chen Q, Han M, Fratalocchi A, Zhang S. Broadband single molecule SERS detection designed by warped optical spaces. Nat Commun 2018; 9:5428. [PMID: 30575738 PMCID: PMC6303368 DOI: 10.1038/s41467-018-07869-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
Engineering hotspots is of crucial importance in many applications including energy harvesting, nano-lasers, subwavelength imaging, and biomedical sensing. Surface-enhanced Raman scattering spectroscopy is a key technique to identify analytes that would otherwise be difficult to diagnose. In standard systems, hotspots are realised with nanostructures made by acute tips or narrow gaps. Owing to the low probability for molecules to reach such tiny active regions, high sensitivity is always accompanied by a large preparation time for analyte accumulation which hinders the time response. Inspired by transformation optics, we introduce an approach based on warped spaces to manipulate hotspots, resulting in broadband enhancements in both the magnitude and volume. Experiments for single molecule detection with a fast soaking time are realised in conjunction with broadband response and uniformity. Such engineering could provide a new design platform for a rich manifold of devices, which can benefit from broadband and huge field enhancements. In standard SERS the probability for the molecules to reach tiny hotpot regions is low. Here, the authors introduce an approach based on warped spaces that offers a strategy to manipulate hotspots of metallic nanostructures, resulting in large broadband enhancements in both the magnitude and the volume size.
Collapse
Affiliation(s)
- Peng Mao
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom.,College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Changxu Liu
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Gael Favraud
- PRIMALIGHT, Faculty of Electrical Engineering, Applied Mathematics and Computational Science, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Min Han
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Andrea Fratalocchi
- PRIMALIGHT, Faculty of Electrical Engineering, Applied Mathematics and Computational Science, KAUST, Thuwal, 23955-6900, Saudi Arabia.
| | - Shuang Zhang
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
117
|
Ullah K, Huang L, Habib M, Liu X. Engineering the optical properties of dielectric nanospheres by resonant modes. NANOTECHNOLOGY 2018; 29:505204. [PMID: 30260798 DOI: 10.1088/1361-6528/aae4d2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent progress in nanoscale optical physics is associated with the development of a new branch of nanophotonics exploring strong Mie resonances in dielectric nanoparticles with high refractive index (HRI). The high-index resonant dielectric nanostructures form building blocks for novel photonic meta-devices with low losses and advanced functionalities. In this work, we investigate the size effect of an HRI cuprous oxide (Cu2O) nanosphere on the optical properties of the structure, such as, scattering and absorption spectrum. We also experimentally demonstrate that the scattering field can be significantly engineered by tuning the radius of Cu2O. It is found that the resonant eigenmodes supported by the nanospheres play the dominant role in the absorption and scattering characteristic of the structure. From the perspective of eigenmodes, we can immediately find the right structure parameters to realize strong absorption (scattering) at either single wavelength or broadband wavelength. Furthermore, the multipole expansion method has been applied to explore the physical nature (i.e. electric mode or magnetic mode) of the eigenmode as well as contributions from different modes.
Collapse
Affiliation(s)
- Kaleem Ullah
- School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
118
|
Grinblat G, Berté R, Nielsen MP, Li Y, Oulton RF, Maier SA. Sub-20 fs All-Optical Switching in a Single Au-Clad Si Nanodisk. NANO LETTERS 2018; 18:7896-7900. [PMID: 30449109 DOI: 10.1021/acs.nanolett.8b03770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dielectric nanoantennas have recently emerged as promising elements for nonlinear and ultrafast nanophotonics due to their ability to concentrate light on the nanometer scale with low losses, while exhibiting large nonlinear susceptibilities. In this work, we demonstrate that single Si nanodisks covered with a thin 30 nm thick layer of Au can generate positive and negative sub-20 fs reflectivity modulations of ∼0.3% in the vicinity of the first-order anapole mode, when excited around the second-order anapole mode. The experimental results, characterized in the visible to near-infrared spectral range, suggest that the nonlinear optical Kerr effect is the responsible mechanism for the observed all-optical switching phenomena. These findings represent an important step toward nanoscale ultrafast all-optical signal processing.
Collapse
Affiliation(s)
- Gustavo Grinblat
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Rodrigo Berté
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- CAPES Foundation, Ministry of Education of Brazil , Brasília , Federal District 70040-020 , Brazil
| | - Michael P Nielsen
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- School of Photovoltaic and Renewable Energy Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Yi Li
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Rupert F Oulton
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik , Ludwig-Maximilians-Universität München , München 80539 , Germany
| |
Collapse
|
119
|
Abujetas DR, Sánchez-Gil JA, Sáenz JJ. Generalized Brewster effect in high-refractive-index nanorod-based metasurfaces. OPTICS EXPRESS 2018; 26:31523-31541. [PMID: 30650737 DOI: 10.1364/oe.26.031523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
The interference between electric and magnetic dipolar fields is known to lead to asymmetric angular distributions of the scattered intensity from small high refractive index (HRI) particles. Properly designed all-dielectric metasurfaces based on HRI spheres have been shown to exhibit zero reflectivity, a generalized Brewster's effect, potentially for any angle, wavelength and polarization of choice. At normal incidence, the effect is related to the absence of backscattering from small dielectric spheres or disks at the, so-called, first Kerker condition. In contrast, homogeneous HRI cylinders do not fulfil the first Kerker condition due to the mismatch between the local electric and magnetic density of states. In this work, we show that although a zero back-scattering condition can never be achieved for individual cylinders, when they are arranged in a periodic array their mutual interaction leads to an anomalous Kerker condition, leading to a generalized Brewster's effect in a nanorod-based metasurface. We derive a coupled electric and magnetic dipole (CEMD) analytical formulation to describe the properties of a periodic array of HRI nanorods in full agreement with exact numerical calculations.
Collapse
|
120
|
Deng YH, Yang ZJ, He J. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. OPTICS EXPRESS 2018; 26:31116-31128. [PMID: 30650702 DOI: 10.1364/oe.26.031116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
A dielectric nanostructure with a high refractive index can exhibit strong optical resonances with considerable electric field enhancement around the entire structure volume. Here we show theoretically that a dielectric structure with this feature can boost the local electric field of a small plasmonic nanoantenna placed nearby. We construct a hybrid system of a plasmonic nanoantenna and a dielectric nanocavity, where the nanocavity is a concentric disk-ring structure with a lossless material n = 3.3 and the nanoantenna is a gold nanorod dimer. The resonant electric field enhancement at the gap center of the antenna in the hybrid structure reaches more than one order of magnitude higher than that of the individual antenna. The dielectric structure plays two roles in the hybrid system, namely the amplified excitation field and an environment causing the redshift of the antenna resonance. The hybrid configuration is applicable to the cases with various geometries and different materials of the hybrid system. Our results can find applications in enhanced nanoscale light-matter interactions such as surface-enhanced Raman scattering, nonlinear optics, and plasmon-exciton couplings.
Collapse
|
121
|
Wendisch F, Saller MS, Eadie A, Reyer A, Musso M, Rey M, Vogel N, Diwald O, Bourret GR. Three-Dimensional Electrochemical Axial Lithography on Si Micro- and Nanowire Arrays. NANO LETTERS 2018; 18:7343-7349. [PMID: 30359028 PMCID: PMC6238956 DOI: 10.1021/acs.nanolett.8b03608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A templated electrochemical technique for patterning macroscopic arrays of single-crystalline Si micro- and nanowires with feature dimensions down to 5 nm is reported. This technique, termed three-dimensional electrochemical axial lithography (3DEAL), allows the design and parallel fabrication of hybrid silicon nanowire arrays decorated with complex metal nano-ring architectures in a flexible and modular approach. While conventional templated approaches are based on the direct replication of a template, our method can be used to perform high-resolution lithography on pre-existing nanostructures. This is made possible by the synthesis of a porous template with tunable dimensions that guides the deposition of well-defined metallic shells around the Si wires. The synthesis of a variety of ring architectures composed of different metals (Au, Ag, Fe, and Ni) with controlled sequence, height, and position along the wire is demonstrated for both straight and kinked wires. We observe a strong enhancement of the Raman signal for arrays of Si nanowires decorated with multiple gold rings due to the plasmonic hot spots created in these tailored architectures. The uniformity of the fabrication method is evidenced by a homogeneous increase in the Raman signal throughout the macroscopic sample. This demonstrates the reliability of the method for engineering plasmonic fields in three dimensions within Si wire arrays.
Collapse
Affiliation(s)
- Fedja
J. Wendisch
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Michael S. Saller
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Alex Eadie
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Andreas Reyer
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Maurizio Musso
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Marcel Rey
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Oliver Diwald
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
- E-mail:
| |
Collapse
|
122
|
Ha ST, Fu YH, Emani NK, Pan Z, Bakker RM, Paniagua-Domínguez R, Kuznetsov AI. Directional lasing in resonant semiconductor nanoantenna arrays. NATURE NANOTECHNOLOGY 2018; 13:1042-1047. [PMID: 30127475 DOI: 10.1038/s41565-018-0245-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 05/22/2023]
Abstract
High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.
Collapse
Affiliation(s)
- Son Tung Ha
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuan Hsing Fu
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore
| | - Naresh Kumar Emani
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Indian Institute of Technology, Hyderabad, India
| | - Zhenying Pan
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Reuben M Bakker
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ramón Paniagua-Domínguez
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore
| | - Arseniy I Kuznetsov
- Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
123
|
The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanostructured High Refractive Index (HRI) dielectric materials, when acting as nanoantennas or metasurfaces in the near-infrared (NIR) and visible (VIS) spectral ranges, can interact with light and show interesting scattering directionality properties. Also, HRI dielectric materials with low absorption in these spectral ranges show very low heat radiation when illuminated. Up to now, most of the studies of these kind of materials have been explored in the VIS-NIR. However, to the best of our knowledge, these properties have not been extended to the ultraviolet (UV), where their application in fields like photocatalysis, biosensing, surface-enhanced spectroscopies or light guiding and trapping can be of extraordinary relevance. Here, we present a detailed numerical study of the directional scattering properties, near-field enhancement and heat generation of several materials that can be good candidates for those applications in the UV. These materials include aluminum phosphide, aluminum arsenide, aluminum nitride, diamond, cerium dioxide and titanium dioxide. In this study, we compare their performance when forming either isolated nanoparticles or dimers to build either nanoantennas or unit cells for more complex metasurfaces.
Collapse
|
124
|
Černigoj J, Silvestri F, Stoevelaar LP, Berzinš J, Gerini G. Lattice Resonances and Local Field Enhancement in Array of Dielectric Dimers for Surface Enhanced Raman Spectroscopy. Sci Rep 2018; 8:15706. [PMID: 30356089 PMCID: PMC6200810 DOI: 10.1038/s41598-018-33941-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
In this paper, we propose the use of high refractive index dimers for the realization of a surface enhanced Raman spectroscopy substrate, with an average enhancement factor comparable to plasmonic structures. The use of low loss dielectric materials is favorable to metallic ones, because of their lower light absorption and consequently a much lower heating effect of the substrate. We combined two different mechanisms of field enhancement to overcome the main weakness of dielectric dimers: a low enhancement factor compared to the plasmonic ones. A first mechanisms is associated to surface lattice resonances. This generates a narrow-band high enhancement, which is exploited to enhance the excitation light. A second mechanism exploits the local field enhancement between the dimers’ resonators, for the band where the molecule Raman emission spectrum is located. The fact that both field enhancements can be tuned by acting on separate geometric parameters, makes possible to optimize the design for many different molecules. The optimized structure and its performance is presented together with a discussion of the different enhancement mechanisms.
Collapse
Affiliation(s)
- Jernej Černigoj
- The Netherlands Organization for Applied Scientific Research, TNO, Optics Department, 2628CK, Delft, The Netherlands
| | - Fabrizio Silvestri
- The Netherlands Organization for Applied Scientific Research, TNO, Optics Department, 2628CK, Delft, The Netherlands.
| | - L Pjotr Stoevelaar
- The Netherlands Organization for Applied Scientific Research, TNO, Optics Department, 2628CK, Delft, The Netherlands.,Eindhoven University of Technology, TU/e, Electromagnetics Group, 5600MB, Eindhoven, The Netherlands
| | - Jonas Berzinš
- The Netherlands Organization for Applied Scientific Research, TNO, Optics Department, 2628CK, Delft, The Netherlands.,Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, 07745, Jena, Germany
| | - Giampiero Gerini
- The Netherlands Organization for Applied Scientific Research, TNO, Optics Department, 2628CK, Delft, The Netherlands.,Eindhoven University of Technology, TU/e, Electromagnetics Group, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
125
|
Fathi ZR, Menguc MP, Erturk H. Plasmon coupling between complex gold nanostructures and a dielectric substrate. APPLIED OPTICS 2018; 57:8954-8963. [PMID: 30461882 DOI: 10.1364/ao.57.008954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Intercoupling of an incident electric field in metal nanoparticles causes asymmetric distribution of surface charges, which eventuates in shifting of the surface plasmon resonance frequency. This feature can be used in tuning the surface plasmon resonance and controlling the light absorption in a desired wavelength. This work provides a theoretical study of the plasmonic properties of complex gold nanostructures on a dielectric substrate where the nanoparticles have different morphologies. For analysis, we have developed a discrete dipole approximation with surface interactions-z, which is the third version of the MATLAB-based DDA-SI toolbox. In this version, lower-upper decomposition of the interaction matrix is used as a preconditioning of the LSQR iterative solver. This method accelerates the DDA-SI calculations by decreasing the total number of iteration steps and decreases the relative residual to achieve more accurate results. In the analysis, nanostructures are assumed to be gold dimers, trimers, and quadrumers with different sizes and elongations of cubical or spherical geometries on a BK7 substrate. The results show that absorption spectra exhibit both red- and blueshifted plasmon resonances in array, depending on the particle shape and elongation. The cubic structure of gold array provides the highest absorption efficiency, while the spherical structures give wider bandwidth; the combination of these structures could be used to design a system with intended features. We demonstrate that the geometrical symmetry plays an important role in the plasmon resonance of gold arrays, and it is shifted when the symmetry of the array is broken.
Collapse
|
126
|
Kim E, Cho JW, Nguyen TK, Nguyen TTT, Yoon S, Choi JH, Park YC, Kim SK, Kim YS, Kim DW. MoS 2 monolayers on Si and SiO 2 nanocone arrays: influences of 3D dielectric material refractive index on 2D MoS 2 optical absorption. NANOSCALE 2018; 10:18920-18925. [PMID: 30288523 DOI: 10.1039/c8nr06597g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heterostructures enable the control of transport and recombination of charge carriers, which are either injected through electrodes, or created by light illumination. Instead of full 2D-material-heterostructures in device applications, using hybrid heterostructures consisting of 2D and 3D materials is an alternative approach to take advantage of the unique physical properties of 2D materials. In addition, 3D dielectric nanostructures exhibit useful optical properties such as broadband omnidirectional antireflection effects and strongly concentrated light near the surface. In this work, the optical properties of 2D MoS2 monolayers conformally coated on 3D Si-based nanocone (NC) arrays are investigated. Numerical calculations show that the absorption in MoS2 monolayers on SiO2 NC is significantly enhanced, compared with that for MoS2 monolayers on Si NC. The weak light confinement in low refractive index SiO2 NC leads to greater absorption in the MoS2 monolayers. The measured photoluminescence and Raman intensities of the MoS2 monolayers on SiO2 NC are much greater than those on Si NC, which supports the calculation results. This work demonstrates that 2D MoS2-3D Si nano-heterostructures are promising candidates for use in high-performance integrated optoelectronic device applications.
Collapse
Affiliation(s)
- Eunah Kim
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gili VF, Ghirardini L, Rocco D, Marino G, Favero I, Roland I, Pellegrini G, Duò L, Finazzi M, Carletti L, Locatelli A, Lemaître A, Neshev D, De Angelis C, Leo G, Celebrano M. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2306-2314. [PMID: 30202699 PMCID: PMC6122063 DOI: 10.3762/bjnano.9.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/31/2018] [Indexed: 05/26/2023]
Abstract
Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.
Collapse
Affiliation(s)
- Valerio F Gili
- Matériaux et Phénomènes Quantiques, Université Paris Diderot - Sorbonne Paris Cité, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
| | - Lavinia Ghirardini
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Davide Rocco
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Giuseppe Marino
- Matériaux et Phénomènes Quantiques, Université Paris Diderot - Sorbonne Paris Cité, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
| | - Ivan Favero
- Matériaux et Phénomènes Quantiques, Université Paris Diderot - Sorbonne Paris Cité, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
| | - Iännis Roland
- Matériaux et Phénomènes Quantiques, Université Paris Diderot - Sorbonne Paris Cité, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
| | - Giovanni Pellegrini
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Lamberto Duò
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Marco Finazzi
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Luca Carletti
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Andrea Locatelli
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Aristide Lemaître
- Centre de Nanosciences et de Nanotechnologies, CNRS-UMR9001, Route de Nozay, 91460 Marcoussis, France
| | - Dragomir Neshev
- Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, 2601 ACT Canberra, Australia
| | - Costantino De Angelis
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Giuseppe Leo
- Matériaux et Phénomènes Quantiques, Université Paris Diderot - Sorbonne Paris Cité, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
| | - Michele Celebrano
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
128
|
Hybrid Metal-Dielectric Nano-Aperture Antenna for Surface Enhanced Fluorescence. MATERIALS 2018; 11:ma11081435. [PMID: 30110964 PMCID: PMC6119926 DOI: 10.3390/ma11081435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/02/2022]
Abstract
A hybrid metal-dielectric nano-aperture antenna is proposed for surface-enhanced fluorescence applications. The nano-apertures that formed in the composite thin film consist of silicon and gold layers. These were numerically investigated in detail. The hybrid nano-aperture shows a more uniform field distribution within the apertures and a higher antenna quantum yield than pure gold nano-apertures. The spectral features of the hybrid nano-apertures are independent of the aperture size. This shows a high enhancement effect in the near-infrared region. The nano-apertures with a dielectric gap were then demonstrated theoretically for larger enhancement effects. The hybrid nano-aperture is fully adaptable to large-scale availability and reproducible fabrication. The hybrid antenna will improve the effectiveness of surface-enhanced fluorescence for applications, including sensitive biosensing and fluorescence analysis.
Collapse
|
129
|
Garín M, Solà M, Julian A, Ortega P. Enabling silicon-on-silicon photonics with pedestalled Mie resonators. NANOSCALE 2018; 10:14406-14413. [PMID: 30039148 DOI: 10.1039/c8nr02259c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-refractive-index Mie resonators are regarded as promising building blocks for low-loss all-dielectric nanophotonic applications. To avoid the otherwise excessive damping and loss of symmetry such devices typically need to be implemented over a low-index substrate, which hampers their integration in many practical applications. In this paper we propose a new photonic structure consisting of silicon-on-silicon spheroidal-like resonators, each one supported by a slim silicon pedestal that makes the micro-cavities stand optically separated from the substrate while providing both mechanical stability and electrical contact with the substrate. These structures are produced in high-quality monocrystalline Si and their size and arrangement can be precisely controlled through standard lithography. We demonstrate that such structures present an optical performance similar to the one achieved with low-index substrates, opening new avenues for developing novel hybrid photonic/electronic devices.
Collapse
Affiliation(s)
- M Garín
- Grup de recerca en Micro i Nanotecnologies, Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya, c/Jordi Girona Pascual 1-3, Barcelona 08034, Spain.
| | | | | | | |
Collapse
|
130
|
Xiao TH, Cheng Z, Goda K. Giant Optical Activity in an All-Dielectric Spiral Nanoflower. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800485. [PMID: 29968281 DOI: 10.1002/smll.201800485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Optical activity is an effect of prominent importance in stereochemistry, analytical chemistry, metamaterials, spin photonics, and astrobiology, but is naturally minuscule. Metallic nanostructures are commonly exploited as basic elements for artificially producing large optical activity by virtue of surface plasmon resonance (SPR) on the nanostructures. However, their intrinsic high ohmic loss amplified by the SPR results in low energy efficiency and large photothermal heat generation, severely limiting their performance and practical utility. Giant optical activity by inducing magnetic resonance in an all-dielectric spiral nanoflower (spiral-flower-shaped nanostructure) is demonstrated here. Specifically, a large circular-intensity difference of ≈35% is theoretically predicted and experimentally demonstrated by optimizing the magnetic quadrupole contribution of the nanoflower to scattered light. The nanoflower overcomes the bottleneck of the traditional metallic platforms and enables the development of diverse chiroptical devices and applications.
Collapse
Affiliation(s)
- Ting-Hui Xiao
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
| | - Zhenzhou Cheng
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
131
|
Dawood F, Wang J, Schulze PA, Sheehan CJ, Buck MR, Dennis AM, Majumder S, Krishnamurthy S, Ticknor M, Staude I, Brener I, Goodwin PM, Amro NA, Hollingsworth JA. The Role of Liquid Ink Transport in the Direct Placement of Quantum Dot Emitters onto Sub-Micrometer Antennas by Dip-Pen Nanolithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801503. [PMID: 29952107 DOI: 10.1002/smll.201801503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Dip-pen nanolithography (DPN) is used to precisely position core/thick-shell ("giant") quantum dots (gQDs; ≥10 nm in diameter) exclusively on top of silicon nanodisk antennas (≈500 nm diameter pillars with a height of ≈200 nm), resulting in periodic arrays of hybrid nanostructures and demonstrating a facile integration strategy toward next-generation quantum light sources. A three-step reading-inking-writing approach is employed, where atomic force microscopy (AFM) images of the pre-patterned substrate topography are used as maps to direct accurate placement of nanocrystals. The DPN "ink" comprises gQDs suspended in a non-aqueous carrier solvent, o-dichlorobenzene. Systematic analyses of factors influencing deposition rate for this non-conventional DPN ink are described for flat substrates and used to establish the conditions required to achieve small (sub-500 nm) feature sizes, namely: dwell time, ink-substrate contact angle and ink volume. Finally, it is shown that the rate of solvent transport controls the feature size in which gQDs are found on the substrate, but also that the number and consistency of nanocrystals deposited depends on the stability of the gQD suspension. Overall, the results lay the groundwork for expanded use of nanocrystal liquid inks and DPN for fabrication of multi-component nanostructures that are challenging to create using traditional lithographic techniques.
Collapse
Affiliation(s)
- Farah Dawood
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jun Wang
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Peter A Schulze
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Chris J Sheehan
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Matthew R Buck
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Allison M Dennis
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Somak Majumder
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sachi Krishnamurthy
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Matthew Ticknor
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Isabelle Staude
- Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Igal Brener
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Peter M Goodwin
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Nabil A Amro
- Advanced Creative Solutions Technology, Carlsbad, CA, 92008, USA
| | - Jennifer A Hollingsworth
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
132
|
Sanz-Paz M, Ernandes C, Esparza JU, Burr GW, van Hulst NF, Maitre A, Aigouy L, Gacoin T, Bonod N, Garcia-Parajo MF, Bidault S, Mivelle M. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas. NANO LETTERS 2018; 18:3481-3487. [PMID: 29701991 DOI: 10.1021/acs.nanolett.8b00548] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electric and magnetic optical fields carry the same amount of energy. Nevertheless, the efficiency with which matter interacts with electric optical fields is commonly accepted to be at least 4 orders of magnitude higher than with magnetic optical fields. Here, we experimentally demonstrate that properly designed photonic nanoantennas can selectively manipulate the magnetic versus electric emission of luminescent nanocrystals. In particular, we show selective enhancement of magnetic emission from trivalent europium-doped nanoparticles in the vicinity of a nanoantenna tailored to exhibit a magnetic resonance. Specifically, by controlling the spatial coupling between emitters and an individual nanoresonator located at the edge of a near-field optical scanning tip, we record with nanoscale precision local distributions of both magnetic and electric radiative local densities of states (LDOS). The map of the radiative LDOS reveals the modification of both the magnetic and electric quantum environments induced by the presence of the nanoantenna. This manipulation and enhancement of magnetic light-matter interaction by means of nanoantennas opens up new possibilities for the research fields of optoelectronics, chiral optics, nonlinear and nano-optics, spintronics, and metamaterials, among others.
Collapse
Affiliation(s)
- Maria Sanz-Paz
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , Castelldefels , 08860 Barcelona , Spain
| | - Cyrine Ernandes
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR 7588 , 75005 Paris , France
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI Paristech, CNRS , 75005 Paris , France
| | - Juan Uriel Esparza
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR 7588 , 75005 Paris , France
| | - Geoffrey W Burr
- IBM Almaden Research Center , San Jose , California 95120 , United States
| | - Niek F van Hulst
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , Castelldefels , 08860 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Agnès Maitre
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR 7588 , 75005 Paris , France
| | - Lionel Aigouy
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI Paristech, CNRS , 75005 Paris , France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée , Ecole Polytechnique , Route de Saclay , 91128 Palaiseau , France
| | - Nicolas Bonod
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille , France
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , Castelldefels , 08860 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Sébastien Bidault
- ESPCI Paris, PSL Research University, CNRS, Institut Langevin , 75005 Paris , France
| | - Mathieu Mivelle
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , Castelldefels , 08860 Barcelona , Spain
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR 7588 , 75005 Paris , France
| |
Collapse
|
133
|
Bohn J, Bucher T, Chong KE, Komar A, Choi DY, Neshev DN, Kivshar YS, Pertsch T, Staude I. Active Tuning of Spontaneous Emission by Mie-Resonant Dielectric Metasurfaces. NANO LETTERS 2018; 18:3461-3465. [PMID: 29709198 DOI: 10.1021/acs.nanolett.8b00475] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mie-resonant dielectric metasurfaces offer comprehensive opportunities for the manipulation of light fields with high efficiency. Additionally, various strategies for the dynamic tuning of the optical response of such metasurfaces were demonstrated, making them important candidates for reconfigurable optical devices. However, dynamic control of the light-emission properties of active Mie-resonant dielectric metasurfaces by an external control parameter has not been demonstrated so far. Here, we experimentally demonstrate the dynamic tuning of spontaneous emission from a Mie-resonant dielectric metasurface that is situated on a fluorescent substrate and embedded into a liquid crystal cell. By switching the liquid crystal from the nematic state to the isotropic state via control of the cell temperature, we induce a shift of the spectral position of the metasurface resonances. This results in a change of the local photonic density of states, which, in turn, governs the enhancement of spontaneous emission from the substrate. Specifically, we observe spectral tuning of both the electric and magnetic dipole resonances, resulting in a 2-fold increase of the emission intensity at λ ≈ 900 nm. Our results demonstrate a viable strategy to realize flat tunable light sources based on dielectric metasurfaces.
Collapse
Affiliation(s)
- Justus Bohn
- Institute of Applied Physics , Abbe Center of Photonics, Friedrich Schiller University Jena , 07745 Jena , Germany
| | - Tobias Bucher
- Institute of Applied Physics , Abbe Center of Photonics, Friedrich Schiller University Jena , 07745 Jena , Germany
| | | | | | | | | | | | - Thomas Pertsch
- Institute of Applied Physics , Abbe Center of Photonics, Friedrich Schiller University Jena , 07745 Jena , Germany
| | - Isabelle Staude
- Institute of Applied Physics , Abbe Center of Photonics, Friedrich Schiller University Jena , 07745 Jena , Germany
| |
Collapse
|
134
|
Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, Kivshar YS, Altug H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018; 360:1105-1109. [DOI: 10.1126/science.aas9768] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.
Collapse
|
135
|
Mitsai E, Kuchmizhak A, Pustovalov E, Sergeev A, Mironenko A, Bratskaya S, Linklater DP, Balčytis A, Ivanova E, Juodkazis S. Chemically non-perturbing SERS detection of a catalytic reaction with black silicon. NANOSCALE 2018; 10:9780-9787. [PMID: 29767209 DOI: 10.1039/c8nr02123f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
All-dielectric resonant micro- and nano-structures made of high-index dielectrics have recently emerged as a promising surface-enhanced Raman scattering (SERS) platform which can complement or potentially replace the metal-based counterparts in routine sensing measurements. These unique structures combine the highly-tunable optical response and high field enhancement with the non-invasiveness, i.e. chemically non-perturbing the analyte, simple chemical modification and recyclability. Meanwhile, commercially competitive fabrication technologies for mass production of such structures are still missing. Here, we attest a chemically inert black silicon (b-Si) substrate consisting of randomly-arranged spiky Mie resonators for a true non-invasive (chemically non-perturbing) SERS identification of the molecular fingerprints at low concentrations. Based on the comparative in situ SERS tracking of the para-aminothiophenol (PATP)-to-4,4'-dimercaptoazobenzene (DMAB) catalytic conversion on the bare and metal-coated b-Si, we justify the applicability of the metal-free b-Si for ultra-sensitive non-invasive SERS detection at a concentration level as low as 10-6 M. We performed supporting finite-difference time-domain (FDTD) calculations to reveal the electromagnetic enhancement provided by an isolated spiky Si resonator in the visible spectral range. Additional comparative SERS studies of the PATP-to-DMAB conversion performed with a chemically active bare black copper oxide (b-CuO) substrate as well as SERS detection of the slow daylight-driven PATP-to-DMAB catalytic conversion in the aqueous methanol solution loaded with colloidal silver nanoparticles (Ag NPs) confirm the non-invasive SERS performance of the all-dielectric crystalline b-Si substrate. A proposed SERS substrate can be fabricated using the easy-to-implement scalable technology of plasma etching amenable on substrate areas over 10 × 10 cm2 making such inexpensive all-dielectric substrates promising for routine SERS applications, where the non-invasiveness is of high importance.
Collapse
Affiliation(s)
- E Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
On the scattering directionality of a dielectric particle dimer of High Refractive Index. Sci Rep 2018; 8:7976. [PMID: 29789610 PMCID: PMC5964075 DOI: 10.1038/s41598-018-26359-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.
Collapse
|
137
|
Zalogina AS, Savelev RS, Ushakova EV, Zograf GP, Komissarenko FE, Milichko VA, Makarov SV, Zuev DA, Shadrivov IV. Purcell effect in active diamond nanoantennas. NANOSCALE 2018; 10:8721-8727. [PMID: 29701731 DOI: 10.1039/c7nr07953b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We suggest a novel class of active nanoantennas based on diamond nanoparticles with embedded nitrogen-vacancy centres coupled to Mie resonances of nanoparticles. We theoretically study the optical properties of such nanoantennas including the field enhancement and Purcell effect, and experimentally demonstrate the enhancement of the fluorescence rate of the emitters due to particle resonances, as compared to a nonresonant regime. Our results pave the way towards active dielectric nanophotonics for quantum light sources, bioimaging, and quantum information processing.
Collapse
|
138
|
Bontempi N, Vassalini I, Danesi S, Ferroni M, Donarelli M, Colombi P, Alessandri I. Non-Plasmonic SERS with Silicon: Is It Really Safe? New Insights into the Optothermal Properties of Core/Shell Microbeads. J Phys Chem Lett 2018; 9:2127-2132. [PMID: 29601206 DOI: 10.1021/acs.jpclett.8b00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO2/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.
Collapse
Affiliation(s)
- Nicolò Bontempi
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| | - Irene Vassalini
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Mechanical and Industrial Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | - Stefano Danesi
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Mechanical and Industrial Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | - Matteo Ferroni
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| | - Maurizio Donarelli
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
| | | | - Ivano Alessandri
- INSTM-UdR Brescia , via Branze 38 , 25123 Brescia , Italy
- Department of Information Engineering , University of Brescia , via Branze 38 , 25123 Brescia , Italy
- INO-CNR , via Branze 38 , 25123 Brescia , Italy
| |
Collapse
|
139
|
Photoluminescence quenching of dye molecules near a resonant silicon nanoparticle. Sci Rep 2018; 8:6107. [PMID: 29666416 PMCID: PMC5904138 DOI: 10.1038/s41598-018-24492-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 02/04/2023] Open
Abstract
Luminescent molecules attached to resonant colloidal particles are an important tool to study light-matter interaction. A traditional approach to enhance the photoluminescence intensity of the luminescent molecules in such conjugates is to incorporate spacer-coated plasmonic nanoantennas, where the spacer prevents intense non-radiative decay of the luminescent molecules. Here, we explore the capabilities of an alternative platform for photoluminescence enhancement, which is based on low-loss Mie-resonant colloidal silicon particles. We demonstrate that resonant silicon particles of spherical shape are more efficient for photoluminescence enhancement than their plasmonic counterparts in spacer-free configuration. Our theoretical calculations show that significant enhancement originates from larger quantum yields supported by silicon particles and their resonant features. Our results prove the potential of high-index dielectric particles for spacer-free enhancement of photoluminescence, which potentially could be a future platform for bioimaging and nanolasers.
Collapse
|
140
|
Dong K, Deng Y, Wang X, Tom KB, You Z, Yao J. Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures. OPTICS LETTERS 2018; 43:1826-1829. [PMID: 29652374 DOI: 10.1364/ol.43.001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Dissipative loss in optical materials is considered one of the major challenges in nano-optics. Here we show that, counter-intuitively, a large imaginary part of material permittivity contributes positively to subwavelength light enhancement and confinement. The Purcell factor and the fluorescence enhancement of dissipative dielectric bowtie nanoantennas, such as Si in ultraviolet (UV), are demonstrated to be orders of magnitude higher than their lossless dielectric counterparts, which is particularly favorable in deep UV applications where metals are plasmonically inactive. The loss-facilitated field enhancement is the result of a large material property contrast and an electric field discontinuity. These dissipative dielectric nanostructures can be easily achieved with a great variety of dielectrics at their Lorentz oscillation frequencies, thus having the potential to build a completely new material platform boosting light-matter interaction over broader frequency ranges, with advantages such as bio-compatibility, CMOS compatibility, and harsh environment endurance.
Collapse
|
141
|
Huang B, Lu W, Liu Z, Gao S. Low-energy high-speed plasmonic enhanced modulator using graphene. OPTICS EXPRESS 2018; 26:7358-7367. [PMID: 29609292 DOI: 10.1364/oe.26.007358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Graphene, as a type of flexible and electrically adjustable two-dimensional material, has exceptional optical and electrical properties that make it possible to be used in modulators. However, the poor interaction between optical fields and a single atom graphene layer prevents the easy implementation of graphene modulators. Currently available devices often require a larger overlap area of graphene to obtain the desired phase or amplitude modulation, which results in a rather large footprint and high capacitance and consequently increases the energy consumption and reduces the modulation speed. In this paper, a localized plasmonic-enhanced waveguide modulator with high-speed tunability using graphene is proposed for telecommunication applications. Strong modulation of the transmission takes place due to the enhanced interaction between the ultrathin plasmon patches and the graphene, when the plasmons are tuned on- and off-resonance by the gate-tunable graphene. A 400 GHz modulation rate using low gated-voltages with an active device area of 0.2 μm2 and a low consumption of only 0.5 fJ/bit is achieved, which paves the way for ultrafast low-energy optical waveguide modulation and switching.
Collapse
|
142
|
Ao X. Surface mode with large field enhancement in dielectric-dimer-on-mirror structures. OPTICS LETTERS 2018; 43:1091-1094. [PMID: 29489788 DOI: 10.1364/ol.43.001091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Plasmonic nanostructures with accessible and strongly enhanced fields are useful for a variety of applications related to surface-enhanced light-matter interaction. We describe a method to migrate localized fields from a metal to dielectric surface. By arranging low-index contrast dielectric dimers on an optically thick metal film, a narrow-linewidth resonant mode is formed through diffraction coupling, with accessible enhancement away from a metal surface. The enhancement in the electric field intensity is over 2000 by dielectric dimers with a 100 nm gap and 720 nm period, and the resonant linewidth is about 0.35 nm around the wavelength of 725 nm. The dispersion of this periodic structure allows resonant enhancement of not only emission but also excitation. The design principle provides a means to tune the narrow-linewidth resonance over a wide wavelength range from ultraviolet to near-infrared.
Collapse
|
143
|
Light Emission from Plasmonic Nanostructures Enhanced with Fluorescent Nanodiamonds. Sci Rep 2018; 8:3605. [PMID: 29483560 PMCID: PMC5826936 DOI: 10.1038/s41598-018-22019-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/15/2018] [Indexed: 11/08/2022] Open
Abstract
In the surface-enhanced fluorescence (SEF) process, it is well known that the plasmonic nanostructure can enhance the light emission of fluorescent emitters. With the help of atomic force microscopy, a hybrid system consisting of a fluorescent nanodiamond and a gold nanoparticle was assembled step-by-step for in situ optical measurements. We demonstrate that fluorescent emitters can also enhance the light emission from gold nanoparticles which is judged through the intrinsic anti-Stokes emission owing to the nanostructures. The light emission intensity, spectral shape, and lifetime of the hybrid system were dependent on the coupling configuration. The interaction between gold nanoparticles and fluorescent emitter was modelled based on the concept of a quantised optical cavity by considering the nanodiamond and the nanoparticle as a two-level energy system and a nanoresonator, respectively. The theoretical calculations reveal that the dielectric antenna effect can enhance the local field felt by the nanoparticle, which contributes more to the light emission enhancement of the nanoparticles rather than the plasmonic coupling effect. The findings reveal that the SEF is a mutually enhancing process. This suggests the hybrid system should be considered as an entity to analyse and optimise surface-enhanced spectroscopy.
Collapse
|
144
|
Naeimi Z, Miri M. Magnetic and electric hotspots via fractal clusters of hollow silicon nanoparticles. OPTICS LETTERS 2018; 43:462-465. [PMID: 29400815 DOI: 10.1364/ol.43.000462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
We show that fractal clusters of hollow Si nanoparticles provide both magnetic hotspots (MHs) and electric hotspots (EHs). The hollow size tailors the wavelength dependence of the field enhancement. In the wavelength window 400-750 nm, magnetic field intensity enhancements of 10-3790 and electric field intensity enhancements of 10-400 are achievable. Wavelength-tuned MHs and EHs allow better enhancement of Raman optical activity, fluorescence and circular dichroism of molecules, and so on. Si nanoparticles overcome the limitations of metallic ones, which provide only EHs at the price of heat perturbations on a nearby quantum emitter due to metallic ohmic losses.
Collapse
|
145
|
Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. NANO CONVERGENCE 2018; 5:1. [PMID: 29375956 PMCID: PMC5762775 DOI: 10.1186/s40580-017-0133-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/26/2017] [Indexed: 05/21/2023]
Abstract
Structural coloring is production of color by surfaces that have microstructure fine enough to interfere with visible light; this phenomenon provides a novel paradigm for color printing. Plasmonic color is an emergent property of the interaction between light and metallic surfaces. This phenomenon can surpass the diffraction limit and achieve near unlimited lifetime. We categorize plasmonic color filters according to their designs (hole, rod, metal-insulator-metal, grating), and also describe structures supported by Mie resonance. We discuss the principles, and the merits and demerits of each color filter. We also discuss a new concept of color filters with tunability and reconfigurability, which enable printing of structural color to yield dynamic coloring at will. Approaches for dynamic coloring are classified as liquid crystal, chemical transition and mechanical deformation. At the end of review, we highlight a scale-up of fabrication methods, including nanoimprinting, self-assembly and laser-induced process that may enable real-world application of structural coloring.
Collapse
Affiliation(s)
- Taejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Heonyeong Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
146
|
Danesi S, Gandolfi M, Carletti L, Bontempi N, De Angelis C, Banfi F, Alessandri I. Photo-induced heat generation in non-plasmonic nanoantennas. Phys Chem Chem Phys 2018; 20:15307-15315. [DOI: 10.1039/c8cp01919c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photo-induced heat generation in SiO2/Si core/shell nanoantennas is analysed on the basis of their optothermal properties.
Collapse
Affiliation(s)
- Stefano Danesi
- INSTM-UdR Brescia
- 2513 Brescia
- Italy
- Department of Mechanical and Industrial Engineering
- 2513 Brescia
| | - Marco Gandolfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP)
- 25121 Brescia
- Italy
- Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
| | - Luca Carletti
- Department of Information Engineering
- University of Brescia
- 2513 Brescia
- Italy
| | | | | | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP)
- 25121 Brescia
- Italy
- Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
| | - Ivano Alessandri
- INSTM-UdR Brescia
- 2513 Brescia
- Italy
- Department of Information Engineering
- University of Brescia
| |
Collapse
|
147
|
Liu JN, Huang Q, Liu KK, Singamaneni S, Cunningham BT. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. NANO LETTERS 2017; 17:7569-7577. [PMID: 29078049 DOI: 10.1021/acs.nanolett.7b03519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoantennas offer the ultimate spatial control over light by concentrating optical energy well below the diffraction limit, whereas their quality factor (Q) is constrained by large radiative and dissipative losses. Dielectric microcavities, on the other hand, are capable of generating a high Q-factor through an extended photon storage time but have a diffraction-limited optical mode volume. Here we bridge the two worlds, by studying an exemplary hybrid system integrating plasmonic gold nanorods acting as nanoantennas with an on-resonance dielectric photonic crystal (PC) slab acting as a low-loss microcavity and, more importantly, by synergistically combining their advantages to produce a much stronger local field enhancement than that of the separate entities. To achieve this synergy between the two polar opposite types of nanophotonic resonant elements, we show that it is crucial to coordinate both the dissipative loss of the nanoantenna and the Q-factor of the low-loss cavity. In comparison to the antenna-cavity coupling approach using a Fabry-Perot resonator, which has proved successful for resonant amplification of the antenna's local field intensity, we theoretically and experimentally show that coupling to a modest-Q PC guided resonance can produce a greater amplification by at least an order of magnitude. The synergistic nanoantenna-microcavity hybrid strategy opens new opportunities for further enhancing nanoscale light-matter interactions to benefit numerous areas such as nonlinear optics, nanolasers, plasmonic hot carrier technology, and surface-enhanced Raman and infrared absorption spectroscopies.
Collapse
Affiliation(s)
- Jui-Nung Liu
- Department of Electrical and Computer Engineering, Department of Bioengineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Qinglan Huang
- Department of Electrical and Computer Engineering, Department of Bioengineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Keng-Ku Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
148
|
Kim S, Kim E, Lee YU, Ko E, Park HH, Wu JW, Kim DW. Strong Light Confinement in Metal-Coated Si Nanopillars: Interplay of Plasmonic Effects and Geometric Resonance. NANOSCALE RESEARCH LETTERS 2017; 12:151. [PMID: 28249367 PMCID: PMC5328893 DOI: 10.1186/s11671-017-1932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/18/2017] [Indexed: 06/02/2023]
Abstract
We investigated the influence of metal coating on the optical characteristics of Si nanopillar (NP) arrays with and without thin metal layers coated on the sample surface. The reflection dips of the metal-coated arrays were much broader and more pronounced than those of the bare arrays. The coated metal layers consisted of two parts-the metal disks on the Si NP top and the holey metal backreflectors on the Si substrate. The Mie-like geometrical resonance in the NPs, the localized surface plasmons in the metal disks, and the propagation of surface plasmon polariton along the backreflector/substrate interface could contribute to the reflection spectra. Finite-difference time-domain simulation results showed that the interplay of the plasmonic effects and the geometric resonance gave rise to significantly enhanced light confinement and consequent local absorption in the metal-Si hybrid nanostructures.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Physics, Ewha Womans University, Seoul, 120-750, Korea
| | - Eunah Kim
- Department of Physics, Ewha Womans University, Seoul, 120-750, Korea
| | - Yeon Ui Lee
- Department of Physics, Ewha Womans University, Seoul, 120-750, Korea
| | - Eunkyo Ko
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Hyeong-Ho Park
- Device Platforms Lab., Device Engineering Labs., Korea Advanced Nano Fab Center (KANC), Suwon, 443-270, Korea
| | - Jeong Weon Wu
- Department of Physics, Ewha Womans University, Seoul, 120-750, Korea
| | - Dong-Wook Kim
- Department of Physics, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
149
|
Yuan S, Qiu X, Cui C, Zhu L, Wang Y, Li Y, Song J, Huang Q, Xia J. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. ACS NANO 2017; 11:10704-10711. [PMID: 29023088 DOI: 10.1021/acsnano.7b04810] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
All-dielectric metamaterials offer great flexibility for controlling light-matter interaction, owing to their strong electric and magnetic resonances with negligible loss at wavelengths above the material bandgap. Here, we propose an all-dielectric asymmetric metasurface structure exhibiting high quality factor and prominent Fano line shape. Over three-orders photoluminescence enhancement is demonstrated in the fabricated all-dielectric metasurface with record-high quality factor of 1011. We find this strong emission enhancement is attributed to the coherent Fano resonances, which originate from the destructive interferences of antisymmetric displacement currents in the asymmetric all-dielectric metasurface. Our observations show a promising approach to realize light emitters based on all-dielectric metasurfaces.
Collapse
Affiliation(s)
- Shuai Yuan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xingzhi Qiu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Chengcong Cui
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Liangqiu Zhu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yuxi Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yi Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Jinwen Song
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qingzhong Huang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Jinsong Xia
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
150
|
Hemphill AS, Shen Y, Liu Y, Wang LV. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. APPLIED PHYSICS LETTERS 2017. [PMID: 29249832 DOI: 10.1063/1.4994311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Collapse
Affiliation(s)
| | - Yuecheng Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|