101
|
Oleynikova NA, Kharlova OA, Danilova NV, Malkov PG. [Multiplex fluorescent imaging of cancer-associated fibroblasts in colorectal cancer]. Arkh Patol 2022; 84:11-19. [PMID: 36178217 DOI: 10.17116/patol20228405111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population in the tumor stroma and have important prognostic and clinical significance for solid tumors, including colorectal cancer. The identification of CAF presents difficulties due to the lack of a unique diagnostic marker. OBJECTIVE Detection of CAF by multiplex immunohistochemical staining and assessment of their colocalization. MATERIAL AND METHODS For multiplex IHC staining specimens of 10 colon adenocarcinomas without neoadjuvant treatment were selected. We used «OPAL 7-COLOR MANUAL IHC KIT» (Akoya Biosciences, USA) with five antibodies (FAP, PDGFRβ, CD31, POD, PCK) for staining and Mantra 2 Quantitative Pathology Imaging System (Akoya Biosciences, USA) for evaluation of results. RESULTS CD31 and CAF markers (FAP, PDGFRβ, POD) are expressed fundamentally in different cells (p<0.0001) in all areas of the tumor (apical, central, invasive margin). Pairs FAP+PDGFRβ in all zones demonstrated significantly higher (p<0.0001) square of tandem staining. It shows that these markers are expressed in the same stromal cells (probably CAF). In pair FAP+POD significant colocalization (p=0.011) was detected only in apical zone. We connect this finding rather with active proliferation of population of young fibroblasts in zones of ulceration and granulations than with CAF. CONCLUSION We evaluated co-localization of CAF markers (FAP, PDGFRβ, POD) and endothelial cells (CD31) in different zones of colorectal carcinomas. We showed colocalization of CAF markers for pairs FAP+PDGFRβ in all tumor zones and for pair FAP+POD in apical zone.
Collapse
Affiliation(s)
| | - O A Kharlova
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
102
|
Wan R, Bai L, Cai C, Ya W, Jiang J, Hu C, Chen Q, Zhao B, Li Y. Discovery of tumor immune infiltration-related snoRNAs for predicting tumor immune microenvironment status and prognosis in lung adenocarcinoma. Comput Struct Biotechnol J 2021; 19:6386-6399. [PMID: 34938414 PMCID: PMC8649667 DOI: 10.1016/j.csbj.2021.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) has a high mortality rate and is difficult to diagnose and treat in its early stage. Previous studies have demonstrated that small nucleolar RNAs (snoRNAs) play a critical role in tumor immune infiltration and the development of a variety of solid tumors. However, there have been no studies on the correlation between tumor-infiltrating immune-related snoRNAs (TIISRs) and LUAD. In this study, we filtered six immune-related snoRNAs based on the tissue specificity index (TSI) and expression profile of all snoRNAs between all LUAD cell lines from the Cancer Cell Line Encyclopedia and 21 types of immune cells from the Gene Expression Omnibus database. Further, we performed real-time quantitative polymerase chain reaction (RT-qPCR) to validate the expression status of these snoRNAs on peripheral blood mononuclear cells (PBMCs) and lung cancer cell lines. Next, we developed a TIISR signature based on the expression profiles of snoRNAs from 479 LUAD patients filtered by the random survival forest algorithm. We then analyzed the value of this TIISR signature (TIISR risk score) for assessing tumor immune infiltration, immune checkpoint inhibitor (ICI) treatment response, and the prognosis of LUAD between groups with high and low TIISR risk score. Further, we found that the TIISR risk score groups showed significant differences in biological characteristics and that the risk score could be used to assess the level of tumor immune cell infiltration, thereby predicting prognosis and responsiveness to immunotherapy in LUAD patients.
Collapse
Key Words
- AUC, area under the curve
- CCLE, Cancer Cell Line Encyclopedia
- FPKM, fragments per kilobase of transcript per million
- GEO, Gene Expression Omnibus
- GO, gene ontology
- GSVA, gene set variation analysis
- HIC, immunohistochemistry
- HR, hazard ratio
- ICIs, immune checkpoints inhibitors
- IF, immunofluorescence
- Immune checkpoints
- LUAD, lung adenocarcinoma
- Lung adenocarcinoma
- NK cell, natural killer cell
- PBMC, Peripheral Blood Mononuclear Cell
- ROC, receiver operating characteristic
- RSF, random survival forest
- RT-qPCR, Real-time Quantitative Polymerase Chain Reaction
- Small nucleolar RNAs
- TCGA, The Cancer Genome Atlas
- TIISR signature
- TIISR, tumor-infiltrating immune-related snoRNA
- TIME, tumor immune microenvironment
- TPM, transcripts per kilobase million
- TSI, tissue specificity index
- Tumor cell immune infiltration
- ncRNA, noncoding RNA
- snoRNAs, small nucleolar RNAs
- ssGSEA, single-sample gene set enrichment analysis
Collapse
Affiliation(s)
- Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Lu Bai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Changjing Cai
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Wang Ya
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Qiong Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China, 410008
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. 410008
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China. 410008
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China. 410008
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, P.R. China, 410008
- Corresponding author.
| |
Collapse
|
103
|
Wang RQ, Zhao W, Yang HK, Dong JM, Lin WJ, He FZ, Cui M, Zhou ZL. Single-Cell RNA Sequencing Analysis of the Heterogeneity in Gene Regulatory Networks in Colorectal Cancer. Front Cell Dev Biol 2021; 9:765578. [PMID: 34917613 PMCID: PMC8669944 DOI: 10.3389/fcell.2021.765578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells with different consensus molecular subtypes (CMS). The advancements in single-cell RNA sequencing have facilitated the development of gene regulatory networks to decode key regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC patients by using single-cell RNA-sequencing data. CMS for all malignant cells were assigned using CMScaller. Gene set variation analysis showed pathway activity differences consistent with those reported in previous studies. Cell–cell communication analysis confirmed that CMS1 was more closely related to immune cells, and that monocytes and macrophages play dominant roles in the CRC tumor microenvironment. On the basis of the constructed gene regulation networks (GRNs) for each subtype, we identified that the critical transcription factor ERG is universally activated and upregulated in all CMS in comparison with normal cells, and that it performed diverse roles by regulating the expression of different downstream genes. In summary, molecular subtyping of single-cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene regulatory networks and identify critical regulators of CRC.
Collapse
Affiliation(s)
- Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wei Zhao
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wei-Jie Lin
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Fa-Zhong He
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Min Cui
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
104
|
Brown KM, Xue A, Smith RC, Samra JS, Gill AJ, Hugh TJ. Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Med 2021; 11:492-506. [PMID: 34874125 PMCID: PMC8729056 DOI: 10.1002/cam4.4452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aims Cancer‐associated stroma (CAS) is emerging as a key determinant of metastasis in colorectal cancer (CRC); however, little is known about CAS in colorectal liver metastases (CRLM). This study aimed to validate the prognostic significance of stromal protein biomarkers in primary CRC and CRLM. Secondly, this study aimed to describe the transcriptome of the CAS of CRLM and identify novel targetable pathways of metastasis. Methods A case–control study design from a prospectively maintained database was adopted. The prognostic value of epithelial and stromal CALD1, IGFBP7, POSTN, FAP, TGF‐β and pSMAD2 expression was assessed by immunohistochemistry (IHC) in multivariate models. Pathway enrichment and sparse partial least square‐discriminant analysis (sPLS‐DA) were performed on a nested cohort after isolating epithelial tumour and CAS by laser capture microdissection. Results 110 CRCs with 124 paired CRLMs, and 110 matched non‐metastatic control CRCs were included. Median follow‐up was 62 and 45 months for primary and CRLM groups, respectively. Stromal FAP and POSTN were independent predictors for the development of CRLM. After CRLM resection, stromal IGFBP7 and POSTN were predictors of poorer survival. sPLS‐DA on the nested cohort identified a number of novel targetable stromal genes and pathways that defined poor prognosis CRC and the CAS of CRLM. Conclusions This study is the first to describe key differences in stromal gene expression between paired primary CRC and CRLM as well as identifying several targetable biomarkers and transcriptomic pathways whose relevance specifically in the CAS of CRC and CRLM have not been previously described.
Collapse
Affiliation(s)
- Kai M Brown
- Cancer Surgery and Metabolism Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ross C Smith
- Cancer Surgery and Metabolism Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jaswinder S Samra
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony J Gill
- Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Cancer Diagnosis and Pathology Group, University of Sydney, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas J Hugh
- Cancer Surgery and Metabolism Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
105
|
Fong ELS, Iyer NG. Next generation in vitro tumor models guiding cancer therapy. Adv Drug Deliv Rev 2021; 179:114047. [PMID: 34763000 DOI: 10.1016/j.addr.2021.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
106
|
Dougherty U, Mustafi R, Zhu H, Zhu X, Deb D, Meredith SC, Ayaloglu-Butun F, Fletcher M, Sanchez A, Pekow J, Deng Z, Amini N, Konda VJ, Rao VL, Sakuraba A, Kwesi A, Kupfer SS, Fichera A, Joseph L, Hart J, He F, He TC, West-Szymanski D, Li YC, Bissonnette M. Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated colon cancer. Epigenetics 2021; 16:1317-1334. [PMID: 33356812 PMCID: PMC8813074 DOI: 10.1080/15592294.2020.1863117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Because ADAM17 promotes colonic tumorigenesis, we investigated potential miRNAs regulating ADAM17; and examined effects of diet and tumorigenesis on these miRNAs. We also examined pre-miRNA processing and tumour suppressor roles of several of these miRNAs in experimental colon cancer. Using TargetScan, miR-145, miR-148a, and miR-152 were predicted to regulate ADAM17. miR-143 was also investigated as miR-143 and miR-145 are co-transcribed and associated with decreased tumour growth. HCT116 colon cancer cells (CCC) were co-transfected with predicted ADAM17-regulating miRNAs and luciferase reporters controlled by ADAM17-3'UTR. Separately, pre-miR-143 processing by colonic cells was measured. miRNAs were quantified by RT-PCR. Tumours were induced with AOM/DSS in WT and transgenic mice (Tg) expressing pre-miR-143/miR-145 under villin promoter. HCT116 transfection with miR-145, -148a or -152, but not scrambled miRNA inhibited ADAM17 expression and luciferase activity. The latter was suppressed by mutations in ADAM17-3'UTR. Lysates from colonocytes, but not CCC, processed pre-miR-143 and mixing experiments suggested CCC lacked a competency factor. Colonic miR-143, miR-145, miR-148a, and miR-152 were downregulated in tumours and more moderately by feeding mice a Western diet. Tg mice were resistant to DSS colitis and had significantly lower cancer incidence and tumour multiplicity. Tg expression blocked up-regulation of putative targets of miR-143 and miR-145, including ADAM17, K-Ras, XPO5, and SET. miR-145, miR-148a, and miR-152 directly suppress colonocyte ADAM17 and are down-regulated in colon cancer. This is the first direct demonstration of tumour suppressor roles for miR-143 and miR-145 in an in vivo model of colonic tumorigenesis.
Collapse
Affiliation(s)
| | - Reba Mustafi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Hongyan Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Dilip Deb
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | | | | | - Arantxa Sanchez
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Nader Amini
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Vani J Konda
- Department of Medicine, Baylor University, Dallas, TX, USA
| | - Vijaya L. Rao
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Akushika Kwesi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Loren Joseph
- Departments of Pathology, Beth Israel, Harvard Medical School, Boston, MA, USA
| | - John Hart
- Departments of Pathology, University of Chicago, Chicago IL, USA
| | - Fang He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | | | - Yan Chun Li
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | |
Collapse
|
107
|
Chen Y, Hu S, Shu Y, Qi Z, Zhang B, Kuang Y, Ma J, Cheng P. Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Hum Gene Ther 2021; 33:237-249. [PMID: 34405694 DOI: 10.1089/hum.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME). In this study, we investigated if halofuginone, an antifibrotic drug, can augment the therapeutic effects of oncolytic vesicular stomatitis virus (VSV). The results revealed that halofuginone significantly disrupts the collagen network in tumors and promotes the distribution of VSV and infiltration of CD8+ T cells (p < 0.0001). Combined treatment of VSV and halofuginone also modulates the immunosuppressive TME via deletion of TAM, MDSCs, and regulatory T cells (Tregs). Collectively, the combination therapy remarkably inhibits the tumor growth in multiple murine models and prolongs survival of mice. The results demonstrate the clinical potential of halofuginone in combination with oncolytic virus.
Collapse
Affiliation(s)
- Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yueting Kuang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
108
|
Hammad A, Elshaer M, Tang X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8997-9015. [PMID: 34814332 DOI: 10.3934/mbe.2021443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software to identify hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) database and the pathology data presented by in the human protein atlas (HPA) database were used to verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional enrichment analysis showed that these genes were significantly enriched in biological processes related to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
109
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
110
|
Abstract
The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.
Collapse
|
111
|
Chowdhury S, Hofree M, Lin K, Maru D, Kopetz S, Shen JP. Implications of Intratumor Heterogeneity on Consensus Molecular Subtype (CMS) in Colorectal Cancer. Cancers (Basel) 2021; 13:4923. [PMID: 34638407 PMCID: PMC8507736 DOI: 10.3390/cancers13194923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
The implications of intratumor heterogeneity on the four consensus molecular subtypes (CMS) of colorectal cancer (CRC) are not well known. Here, we use single-cell RNA sequencing (scRNASeq) to build an algorithm to assign CMS classification to individual cells, which we use to explore the distributions of CMSs in tumor and non-tumor cells. A dataset of colorectal tumors with bulk RNAseq (n = 3232) was used to identify CMS specific-marker gene sets. These gene sets were then applied to a discovery dataset of scRNASeq profiles (n = 10) to develop an algorithm for single-cell CMS (scCMS) assignment, which recapitulated the intrinsic biology of all four CMSs. The single-cell CMS assignment algorithm was used to explore the scRNASeq profiles of two prospective CRC tumors with mixed CMS via bulk sequencing. We find that every CRC tumor contains individual cells of each scCMS, as well as many individual cells that have enrichment for features of more than one scCMS (called mixed cells). scCMS4 and scCMS1 cells dominate stroma and immune cell clusters, respectively, but account for less than 3% epithelial cells. These data imply that CMS1 and CMS4 are driven by the transcriptomic contribution of immune and stromal cells, respectively, not tumor cells.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| |
Collapse
|
112
|
Furman SA, Stern AM, Uttam S, Taylor DL, Pullara F, Chennubhotla SC. In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence. CELL REPORTS METHODS 2021; 1:100072. [PMID: 34888541 PMCID: PMC8653984 DOI: 10.1016/j.crmeth.2021.100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 04/21/2023]
Abstract
Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compositions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network signaling coevolves with a continuum of cell states and functional plasticity associated with disease progression and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identifying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information and network biology analyses enables the discovery of outcome-associated microdomains visualized as distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 biomarkers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform providing insights into pathophysiological mechanisms and novel drug targets to inform personalized therapeutic strategies.
Collapse
Affiliation(s)
- Samantha A. Furman
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew M. Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shikhar Uttam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| | - Filippo Pullara
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| | - S. Chakra Chennubhotla
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- SpIntellx, Inc., 2425 Sidney Street, Pittsburgh, PA 15203, USA
| |
Collapse
|
113
|
Franzè E, Marafini I, Troncone E, Salvatori S, Monteleone G. Interleukin-34 promotes tumorigenic signals for colon cancer cells. Cell Death Discov 2021; 7:245. [PMID: 34535634 PMCID: PMC8448832 DOI: 10.1038/s41420-021-00636-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common forms of malignancy in the Western world. Accumulating evidence indicates that colon carcinogenesis is tightly controlled by tumour-associated immune cells and stromal cells, which can either stimulate or suppress CRC cell growth and survival, mainly via the production of cytokines. Interleukin-34 (IL-34), a cytokine known to regulate mainly monocyte/macrophage survival and function, is highly produced within the CRC microenvironment by several cell types, including cancer cells, tumour-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), and regulates the pro-tumoural functions of such cells. In this article, we summarize the available data supporting the multiple effects of IL-34 in human CRC.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Silvia Salvatori
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "TOR VERGATA", Rome, Italy.
| |
Collapse
|
114
|
Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater 2021; 132:461-472. [PMID: 33388439 DOI: 10.1016/j.actbio.2020.12.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
The lack of cancer-associated fibroblasts (CAFs) in patient-derived organoid (PDO) models is a major limitation as CAFs contribute to tumor progression and drug resistance. In the present study, we addressed this problem by establishing in vitro conditions that enable the co-culture of colorectal cancer (CRC) PDO with patient-derived CAFs. Considering that the CRC extracellular matrix is high in hyaluronan and collagen I, we hypothesized that hyaluronan-gelatin hydrogels may serve as a suitable alternative 3D matrix to traditionally used basement membrane extracts to support the co-culture of CRC PDO and CAFs. We report the development of in vitro models consisting of CRC PDO encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived CAFs. Through RNA- and whole -exome sequencing, we first show that these hydrogels are capable of maintaining key molecular characteristics of the original patient tumors in CRC PDO but not support the culture of CAFs. Further, based on our findings that CRC PDO culture medium poorly supports CAF viability, we developed a co-culture strategy that maintains the viability of both CRC PDO and CAFs. We found that even in the absence of growth factors conventionally used to support CRC PDO culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs co-culture models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine. STATEMENT OF SIGNIFICANCE: We report the development of an engineered tumor microenvironment consisting of colorectal cancer patient-derived organoids (CRC PDO) encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived cancer-associated fibroblasts (CAFs). Through sequential culture, we found that in the absence of growth factors added to the co-culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine.
Collapse
|
115
|
Wang J, Uddin MN, Akter R, Wu Y. Contribution of endothelial cell-derived transcriptomes to the colon cancer based on bioinformatics analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7280-7300. [PMID: 34814249 DOI: 10.3934/mbe.2021360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UNLABELLED Colon tumor endothelial cells (CTECs) plays substantial roles to induce immune invasion, angiogenesis and metastasis. Thus, identification of the CTECs-derived transcriptomes could be helpful for colon cancer diagnosis and potential therapy. METHODS By analysis of CTECs-derived gene expression profiling dataset, we identified differentially expressed genes (DEGs) between CTECs and colon normal endothelial cells (CNECs). In addition, we identified the significant pathways and protein-protein interaction (PPI) network that was significantly associated with the DEGs. Furthermore, we identified hub genes whose expression was significantly associated with prognosis and immune cell infiltrations in colon cancer. Finally, we identified the significant correlations between the prognostic hub genes and immune-inhibitory markers in colon cancer. RESULTS We identified 362 DEGs in CTECs relative to the CNECs, including117 up-regulated genes and 245 down-regulated genes in the CTECs. In addition, we identified significantly up-regulated pathways in CTECs that were mainly involved in cancer and immune regulation. Furthermore, we identified hub genes (such as SPARC, COL1A1, COL1A2 and IGFBP3) that are associated with prognosis and immune cells infiltrations in colon cancer. Interestingly, we found that prognosis-associated hub genes (SPARC, COL1A1, COL1A2 and IGFBP3) are positively correlated with immune-inhibitory markers of various immunosuppressive cells, including TAM, M2 macrophage, Tregs and T cell exhaustion. Finally, our findings revealed that prognosis-associated upregulated hub genes are positively correlated with immune checkpoint markers, including PD-L1 and PD-L2 and the immunosuppressive markers including TGFB1 and TGFBR1. CONCLUSIONS The identification of CTECs-specific transcriptomes may provide crucial insights into the colon tumor microenvironment that mediates the development of colon cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Rehana Akter
- Bioinformatics Research Lab, Center for Research Innovation and Development (CRID), Dhaka, Bangladesh
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
116
|
Zhang T, Yuan K, Wang Y, Xu M, Cai S, Chen C, Ma J. Identification of Candidate Biomarkers and Prognostic Analysis in Colorectal Cancer Liver Metastases. Front Oncol 2021; 11:652354. [PMID: 34422629 PMCID: PMC8371911 DOI: 10.3389/fonc.2021.652354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
Background Colorectal cancer (CRC), one of the most common malignant tumors worldwide, has a high mortality rate, especially for patients with CRC liver metastasis (CLM). However, CLM pathogenesis remains unclear. Methods We integrated multiple cohort datasets and databases to clarify and verify potential key candidate biomarkers and signal transduction pathways in CLM. GEO2R, DAVID 6.8, ImageGP, STRING, UALCAN, ONCOMINE, THE HUMAN PROTEIN ATLAS, GEPIA 2.0, cBioPortal, TIMER 2.0, DRUGSURV, CRN, GSEA 4.0.3, FUNRICH 3.1.3 and R 4.0.3 were utilized in this study. Results Sixty-three pairs of matched colorectal primary cancer and liver metastatic gene expression profiles were screened from three gene expression profiles (GSE6988, GSE14297 and GSE81558). Thirty-one up-regulated genes and four down-regulated genes were identified from these three gene expression profiles and verified by another gene expression profiles (GSE 49355) and TCGA database. Two pathways (IGFBP-IGF signaling pathway and complement-coagulation cascade), eighteen key differentially expressed genes (DEGs), six hub genes (SPARCL1, CDH2, CP, HP, TF and SERPINA5) and two biomarkers (CDH2 and SPARCL1) with significantly prognostic values were screened by multi-omics data analysis and verified by Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) cohort. Conclusions In this study, we identified a robust set of potential candidate biomarkers in CLM, which would provide potential value for early diagnosis and prognosis, and would promote molecular targeting therapy for CRC and CLM.
Collapse
Affiliation(s)
- Tianhao Zhang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaitao Yuan
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingzhao Wang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingze Xu
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangqi Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Ma
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
117
|
Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clin Sci (Lond) 2021; 135:35-52. [PMID: 33399850 PMCID: PMC7796313 DOI: 10.1042/cs20201236] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Cancers may escape elimination by the host immune system by rewiring the tumour microenvironment towards an immune suppressive state. Transforming growth factor-β (TGF-β) is a secreted multifunctional cytokine that strongly regulates the activity of immune cells while, in parallel, can promote malignant features such as cancer cell invasion and migration, angiogenesis, and the emergence of cancer-associated fibroblasts. TGF-β is abundantly expressed in cancers and, most often, its abundance associated with poor clinical outcomes. Immunotherapeutic strategies, particularly T cell checkpoint blockade therapies, so far, only produce clinical benefit in a minority of cancer patients. The inhibition of TGF-β activity is a promising approach to increase the efficacy of T cell checkpoint blockade therapies. In this review, we briefly outline the immunoregulatory functions of TGF-β in physiological and malignant contexts. We then deliberate on how the therapeutic targeting of TGF-β may lead to a broadened applicability and success of state-of-the-art immunotherapies.
Collapse
|
118
|
Eide PW, Moosavi SH, Eilertsen IA, Brunsell TH, Langerud J, Berg KCG, Røsok BI, Bjørnbeth BA, Nesbakken A, Lothe RA, Sveen A. Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer. NPJ Genom Med 2021; 6:59. [PMID: 34262039 PMCID: PMC8280229 DOI: 10.1038/s41525-021-00223-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gene expression-based subtypes of colorectal cancer have clinical relevance, but the representativeness of primary tumors and the consensus molecular subtypes (CMS) for metastatic cancers is not well known. We investigated the metastatic heterogeneity of CMS. The best approach to subtype translation was delineated by comparisons of transcriptomic profiles from 317 primary tumors and 295 liver metastases, including multi-metastatic samples from 45 patients and 14 primary-metastasis sets. Associations were validated in an external data set (n = 618). Projection of metastases onto principal components of primary tumors showed that metastases were depleted of CMS1-immune/CMS3-metabolic signals, enriched for CMS4-mesenchymal/stromal signals, and heavily influenced by the microenvironment. The tailored CMS classifier (available in an updated version of the R package CMScaller) therefore implemented an approach to regress out the liver tissue background. The majority of classified metastases were either CMS2 or CMS4. Nonetheless, subtype switching and inter-metastatic CMS heterogeneity were frequent and increased with sampling intensity. Poor-prognostic value of CMS1/3 metastases was consistent in the context of intra-patient tumor heterogeneity.
Collapse
Affiliation(s)
- Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Seyed H Moosavi
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tuva H Brunsell
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Jonas Langerud
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bård I Røsok
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Bjørn A Bjørnbeth
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway. .,Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
119
|
Stadler M, Pudelko K, Biermeier A, Walterskirchen N, Gaigneaux A, Weindorfer C, Harrer N, Klett H, Hengstschläger M, Schüler J, Sommergruber W, Oehler R, Bergmann M, Letellier E, Dolznig H. Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett 2021; 520:184-200. [PMID: 34256095 DOI: 10.1016/j.canlet.2021.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) accounts for about 10% of cancer deaths worldwide. Colon carcinogenesis is critically influenced by the tumor microenvironment. Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) represent the major components of the tumor microenvironment. TAMs promote tumor progression, angiogenesis and tissue remodeling. However, the impact of the molecular crosstalk of tumor cells (TCs) with CAFs and macrophages on monocyte recruitment and their phenotypic conversion is not known in detail so far. In a 3D human organotypic CRC model, we show that CAFs and normal colonic fibroblasts are critically involved in monocyte recruitment and for the establishment of a macrophage phenotype, characterized by high CD163 expression. This is in line with the steady recruitment and differentiation of monocytes to immunosuppressive macrophages in the normal colon. Cytokine profiling revealed that CAFs produce M-CSF, and IL6, IL8, HGF and CCL2 secretion was specifically induced by CAFs in co-cultures with macrophages. Moreover, macrophage/CAF/TCs co-cultures increased TC invasion. We demonstrate that CAFs and macrophages are the major producers of CCL2 and, upon co-culture, increase their CCL2 production twofold and 40-fold, respectively. CAFs and macrophages expressing high CCL2 were also found in vivo in CRC, strongly supporting our findings. CCL2, CCR2, CSF1R and CD163 expression in macrophages was dependent on active MCSFR signaling as shown by M-CSFR inhibition. These results indicate that colon fibroblasts and not TCs are the major cellular component, recruiting and dictating the fate of infiltrated monocytes towards a specific macrophage population, characterized by high CD163 expression and CCL2 production.
Collapse
Affiliation(s)
- Mira Stadler
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria
| | - Karoline Pudelko
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria
| | - Alexander Biermeier
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria
| | - Natalie Walterskirchen
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 20, A-1090 Vienna, Austria
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue du Swing, L-4367, Campus Belval, Luxembourg
| | - Claudia Weindorfer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria
| | - Nathalie Harrer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria, Dr. Boehringer-Gasse 5-11, A-1130 Vienna, Austria
| | - Hagen Klett
- Charles River Research Services Germany GmbH, Am Flughafen 12-14, 79108 Freiburg, Germany
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria
| | - Julia Schüler
- Charles River Research Services Germany GmbH, Am Flughafen 12-14, 79108 Freiburg, Germany
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria, Dr. Boehringer-Gasse 5-11, A-1130 Vienna, Austria
| | - Rudolf Oehler
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 20, A-1090 Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 20, A-1090 Vienna, Austria
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue du Swing, L-4367, Campus Belval, Luxembourg
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, A-1090 Vienna, Austria.
| |
Collapse
|
120
|
Yashima-Abo A, Otsuka K, Nishizuka SS. Editorial Comment to "A nomogram Based on a Collagen Feature Support Vector Machine for Predicting the Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients". Ann Surg Oncol 2021; 28:5818-5819. [PMID: 34165654 DOI: 10.1245/s10434-021-10328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Akiko Yashima-Abo
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Iwate, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Iwate, Japan.
| |
Collapse
|
121
|
Zhao Y, Li MC, Konaté MM, Chen L, Das B, Karlovich C, Williams PM, Evrard YA, Doroshow JH, McShane LM. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository. J Transl Med 2021; 19:269. [PMID: 34158060 PMCID: PMC8220791 DOI: 10.1186/s12967-021-02936-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background In order to correctly decode phenotypic information from RNA-sequencing (RNA-seq) data, careful selection of the RNA-seq quantification measure is critical for inter-sample comparisons and for downstream analyses, such as differential gene expression between two or more conditions. Several methods have been proposed and continue to be used. However, a consensus has not been reached regarding the best gene expression quantification method for RNA-seq data analysis. Methods In the present study, we used replicate samples from each of 20 patient-derived xenograft (PDX) models spanning 15 tumor types, for a total of 61 human tumor xenograft samples available through the NCI patient-derived model repository (PDMR). We compared the reproducibility across replicate samples based on TPM (transcripts per million), FPKM (fragments per kilobase of transcript per million fragments mapped), and normalized counts using coefficient of variation, intraclass correlation coefficient, and cluster analysis. Results Our results revealed that hierarchical clustering on normalized count data tended to group replicate samples from the same PDX model together more accurately than TPM and FPKM data. Furthermore, normalized count data were observed to have the lowest median coefficient of variation (CV), and highest intraclass correlation (ICC) values across all replicate samples from the same model and for the same gene across all PDX models compared to TPM and FPKM data. Conclusion We provided compelling evidence for a preferred quantification measure to conduct downstream analyses of PDX RNA-seq data. To our knowledge, this is the first comparative study of RNA-seq data quantification measures conducted on PDX models, which are known to be inherently more variable than cell line models. Our findings are consistent with what others have shown for human tumors and cell lines and add further support to the thesis that normalized counts are the best choice for the analysis of RNA-seq data across samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02936-w.
Collapse
Affiliation(s)
- Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Mariam M Konaté
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Li Chen
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Biswajit Das
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chris Karlovich
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - P Mickey Williams
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yvonne A Evrard
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
122
|
Ghidini M, Fusco N, Salati M, Khakoo S, Tomasello G, Petrelli F, Trapani D, Petrillo A. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy. Curr Drug Targets 2021; 22:1021-1033. [PMID: 33563194 DOI: 10.2174/1389450122666210204204415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has revolutionized the treatment landscape in a number of solid tumors. In colorectal cancer, evidence suggests that microsatellite high (MSI-H) tumors are the most responsive to immune checkpoint blockade due to increased neo-antigen load and a favorable tumor microenvironment. Indeed, Pembrolizumab now represents a first-line option in such patients. However, MSI-H tumors represent the minority and a proportion of patients' progress despite initially responding. Trials are investigating different immunotherapy combinatorial strategies to enhance immune response in less immunogenic colorectal tumors. Such strategies include dual immune checkpoint blockade, combining immune checkpoint inhibitors with other treatment modalities such as radiotherapy, chemotherapy or other biological or targeted agents. Moreover, there is an increasing drive to identify biomarkers to better select patients most likely to respond to immunotherapy and understand intrinsic and acquired resistance mechanisms. Apart from MSI-H tumors, there is a strong rationale to suggest that tumors with alterations in DNA polymerase epsilon and DNA polymerase delta are also likely to respond to immunotherapy and trials in this subpopulation are underway. Other strategies such as priming O6-methylguanineDNA methyltransferase silenced tumors with alkylating agents to make them receptive to immune checkpoint blockade are also being investigated. Here we discuss different colorectal subpopulations together with their likelihood of response to immune checkpoint blockade and strategies to overcome barriers to a successful clinical outcome. We summarize evidence from published clinical trials and provide an overview of trials in progress whilst discussing newer immunotherapy strategies such as adoptive cell therapies and cancer vaccines.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Massimiliano Salati
- PhD Program, Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shelize Khakoo
- Department of Medicine, The Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | - Gianluca Tomasello
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Petrelli
- Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
123
|
Szeglin BC, Wu C, Marco MR, Park HS, Zhang Z, Zhang B, Garcia-Aguilar J, Beauchamp RD, Chen XS, Smith JJ. A SMAD4-modulated gene profile predicts disease-free survival in stage II and III colorectal cancer. Cancer Rep (Hoboken) 2021; 5:e1423. [PMID: 34114372 PMCID: PMC8789617 DOI: 10.1002/cnr2.1423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer is the second‐leading cause of cancer‐related mortality in the United States and a leading cause of cancer‐related mortality worldwide. Loss of SMAD4, a critical tumor suppressor and the central node of the transforming growth factor‐beta superfamily, is associated with worse outcomes for colorectal cancer patients; however, it is unknown whether an RNA‐based profile associated with SMAD4 expression could be used to better identify high‐risk colorectal cancer patients. Aim Identify a gene expression‐based SMAD4‐modulated profile and test its association with patient outcome. Methods and results Using a discovery dataset of 250 colorectal cancer patients, we analyzed expression of BMP/Wnt target genes for association with SMAD4 expression. Promoters of the BMP/Wnt genes were interrogated for SMAD‐binding elements. Fifteen genes were implicated and three tested for modulation by SMAD4 in patient‐derived colorectal cancer tumoroids. Expression of the 15 genes was used for unsupervised hierarchical clustering of a training dataset and two resulting clusters modeled in a centroid model. This model was applied to an independent validation dataset of stage II and III patients. Disease‐free survival was analyzed by the Kaplan‐Meier method. In vitro analysis of three genes identified in the SMAD4‐modulated profile (JAG1, TCF7, and MYC) revealed modulation by SMAD4 consistent with the trend observed in the profile. In the training dataset (n = 553), the profile was not associated with outcome. However, among stage II and III patients (n = 461), distinct clusters were identified by unsupervised hierarchical clustering that were associated with disease‐free survival (p = .02, log‐rank test). The main model was applied to a validation dataset of stage II/III CRC patients (n = 257) which confirmed the association of clustering with disease‐free survival (p = .013, log‐rank test). Conclusions A SMAD4‐modulated gene expression profile identified high‐risk stage II and III colorectal cancer patients, can predict disease‐free survival, and has prognostic potential for stage II and III colorectal cancer patients.
Collapse
Affiliation(s)
- Bryan C Szeglin
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chao Wu
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Michael R Marco
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hyun Sung Park
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Weill Cornell Medical College, New York, USA
| | - Zeda Zhang
- Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics and the Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Julio Garcia-Aguilar
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
124
|
McAndrews KM, Vázquez-Arreguín K, Kwak C, Sugimoto H, Zheng X, Li B, Kirtley ML, LeBleu VS, Kalluri R. αSMA + fibroblasts suppress Lgr5 + cancer stem cells and restrain colorectal cancer progression. Oncogene 2021; 40:4440-4452. [PMID: 34108617 DOI: 10.1038/s41388-021-01866-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The development and progression of solid tumors is dependent on cancer cell autonomous drivers and the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) in the TME possess both tumor-promoting and tumor-restraining functions. In the current study, we interrogated the role of αSMA+ CAFs in a genetic mouse model of metastatic colorectal cancer (CRC). Selective depletion of αSMA+ CAFs resulted in increased tumor invasiveness, lymph node metastasis, and reduced overall survival. Depletion of αSMA+ CAFs reduced BMP4 and increased TGFβ1 secretion from stromal cells, and was associated with increased Lgr5+ cancer stem-like cells (CSCs) and the generation of an immunosuppressive TME with increased frequency of Foxp3+ regulatory T cells and suppression of CD8+ T cells. This study demonstrates that αSMA+ CAFs in CRC exert tumor-restraining functions via BMP4/TGFβ1 paracrine signaling that serves to suppress Lgr5+ CSCs and promote anti-tumor immunity, ultimately limiting CRC progression.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karina Vázquez-Arreguín
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Changsoo Kwak
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle L Kirtley
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raghu Kalluri
- Metastasis Research Center, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
125
|
Hossain MJ, Chowdhury UN, Islam MB, Uddin S, Ahmed MB, Quinn JMW, Moni MA. Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer. Comput Biol Med 2021; 135:104539. [PMID: 34153790 DOI: 10.1016/j.compbiomed.2021.104539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal malignant lesions. Determining how the identified risk factors drive the formation and development of CRC could be an essential means for effective therapeutic development. Aiming this, we investigated how the altered gene expression resulting from exposure to putative CRC risk factors contribute to prognostic biomarker identification. Differentially expressed genes (DEGs) were first identified for CRC and other eight risk factors. Gene set enrichment analysis (GSEA) through the molecular pathway and gene ontology (GO), as well as protein-protein interaction (PPI) network, were then conducted to predict the functions of these DEGs. Our identified genes were explored through the dbGaP and OMIM databases to compare with the already identified and known prognostic CRC biomarkers. The survival time of CRC patients was also examined using a Cox Proportional Hazard regression-based prognostic model by integrating transcriptome data from The Cancer Genome Atlas (TCGA). In this study, PPI analysis identified 4 sub-networks and 8 hub genes that may be potential therapeutic targets, including CXCL8, ICAM1, SOD2, CXCL2, CCL20, OIP5, BUB1, ASPM and IL1RN. We also identified seven signature genes (PRR5.ARHGAP8, CA7, NEDD4L, GFR2, ARHGAP8, SMTN, OIP5) in independent analysis and among which PRR5. ARHGAP8 was found in both multivariate analyses and in analyses that combined gene expression and clinical information. This approach provides both mechanistic information and, when combined with predictive clinical information, good evidence that the identified genes are significant biomarkers of processes involved in CRC progression and survival.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahadat Uddin
- Complex Systems Research Group & Project Management Program, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mohammad Ali Moni
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; WHO Collaborating Centre on eHealth, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
126
|
Ishikawa S, Nishida N, Fujino S, Ogino T, Takahashi H, Miyoshi N, Uemura M, Satoh T, Yamamoto H, Mizushima T, Doki Y, Eguchi H. Comprehensive profiling of novel epithelial-mesenchymal transition mediators and their clinical significance in colorectal cancer. Sci Rep 2021; 11:11759. [PMID: 34083586 PMCID: PMC8175715 DOI: 10.1038/s41598-021-91102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a drastic phenotypic change during cancer metastasis and is one of the most important hallmarks of aggressive cancer. Although the overexpression of some specific transcription factors explains the functional alteration of EMT-induced cells, a complete picture of this biological process is yet to be elucidated. To comprehensively profile EMT-related genes in colorectal cancer, we quantified the EMT induction ability of each gene according to its similarity to the cancer stromal gene signature and termed it “mesenchymal score.” This bioinformatic approach successfully identified 90 candidate EMT mediators, which are strongly predictive of survival in clinical samples. Among these candidates, we discovered that the neuronal gene ARC, possibly originating from the retrotransposon, unexpectedly plays a crucial role in EMT induction. Profiling of novel EMT mediators we demonstrated here may help understand the complexity of the EMT program and open up new avenues for therapeutic intervention in colorectal cancer.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Nishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
127
|
Ueno H, Kajiwara Y, Ajioka Y, Sugai T, Sekine S, Ishiguro M, Takashima A, Kanemitsu Y. Histopathological atlas of desmoplastic reaction characterization in colorectal cancer. Jpn J Clin Oncol 2021; 51:1004-1012. [PMID: 33855369 PMCID: PMC8193706 DOI: 10.1093/jjco/hyab040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Emergent scientific evidence indicates the central role of cancer-associated fibroblasts in determining whether the microenvironment of cancer works as friend or foe of the host; however, there is no unified histological evaluation framework of fibrotic stroma in colorectal cancers. Myxoid stroma and keloid-like collagen are site-specific histopathological features generated by cancer-associated fibroblasts, which appear exclusively in the tumor front during desmoplastic reaction. On the basis of these two stromal components, desmoplastic reaction is categorized into three patterns-immature, intermediate and mature-using hematoxylin and eosin staining. In January 2020, a prospective randomized clinical trial, JCOG1805, to elucidate the value of adjuvant chemotherapy in stage II colorectal cancer patients with pathological risk factors of recurrence was launched in Japan, in which intermediate/immature desmoplastic reaction is one of the four risk factors selected as inclusion criteria. This paper covers the diagnostic criteria for the desmoplastic reaction classification being used in the JCOG1805 study.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Yoich Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Megumi Ishiguro
- Department of Translational Oncology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Atsuo Takashima
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yukihide Kanemitsu
- Department of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
128
|
Sacchetti A, Teeuwssen M, Verhagen M, Joosten R, Xu T, Stabile R, van der Steen B, Watson MM, Gusinac A, Kim WK, Ubink I, Van de Werken HJG, Fumagalli A, Paauwe M, Van Rheenen J, Sansom OJ, Kranenburg O, Fodde R. Phenotypic plasticity underlies local invasion and distant metastasis in colon cancer. eLife 2021; 10:e61461. [PMID: 34036938 PMCID: PMC8192123 DOI: 10.7554/elife.61461] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Phenotypic plasticity represents the most relevant hallmark of the carcinoma cell as it bestows it with the capacity of transiently altering its morphological and functional features while en route to the metastatic site. However, the study of phenotypic plasticity is hindered by the rarity of these events within primary lesions and by the lack of experimental models. Here, we identified a subpopulation of phenotypic plastic colon cancer cells: EpCAMlo cells are motile, invasive, chemo-resistant, and highly metastatic. EpCAMlo bulk and single-cell RNAseq analysis indicated (1) enhanced Wnt/β-catenin signaling, (2) a broad spectrum of degrees of epithelial to mesenchymal transition (EMT) activation including hybrid E/M states (partial EMT) with highly plastic features, and (3) high correlation with the CMS4 subtype, accounting for colon cancer cases with poor prognosis and a pronounced stromal component. Of note, a signature of genes specifically expressed in EpCAMlo cancer cells is highly predictive of overall survival in tumors other than CMS4, thus highlighting the relevance of quasi-mesenchymal tumor cells across the spectrum of colon cancers. Enhanced Wnt and the downstream EMT activation represent key events in eliciting phenotypic plasticity along the invasive front of primary colon carcinomas. Distinct sets of epithelial and mesenchymal genes define transcriptional trajectories through which state transitions arise. pEMT cells, often earmarked by the extracellular matrix glycoprotein SPARC together with nuclear ZEB1 and β-catenin along the invasive front of primary colon carcinomas, are predicted to represent the origin of these (de)differentiation routes through biologically distinct cellular states and to underlie the phenotypic plasticity of colon cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Tong Xu
- Department of Pathology, Erasmus MCRotterdamNetherlands
| | | | - Berdine van der Steen
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus University Medical Center, Erasmus MCRotterdamNetherlands
| | | | - Alem Gusinac
- Department of Pathology, Erasmus MCRotterdamNetherlands
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Inge Ubink
- Department of Surgical Oncology, Cancer Centre, University Medical Centre UtrechtUtrechtNetherlands
| | - Harmen JG Van de Werken
- Cancer Computational Biology Center and Department of Urology; Erasmus University Medical CenterRotterdamNetherlands
| | | | - Madelon Paauwe
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Jacco Van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmsterdamNetherlands
| | - Owen J Sansom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Onno Kranenburg
- Department of Surgical Oncology, Cancer Centre, University Medical Centre UtrechtUtrechtNetherlands
| | | |
Collapse
|
129
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:ijms22105246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
- Correspondence:
| |
Collapse
|
130
|
Tyler M, Tirosh I. Decoupling epithelial-mesenchymal transitions from stromal profiles by integrative expression analysis. Nat Commun 2021; 12:2592. [PMID: 33972543 PMCID: PMC8110844 DOI: 10.1038/s41467-021-22800-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/29/2021] [Indexed: 02/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is the most commonly cited mechanism for cancer metastasis, but it is difficult to distinguish from profiles of normal stromal cells in the tumour microenvironment. In this study we use published single cell RNA-seq data to directly compare mesenchymal signatures from cancer and stromal cells. Informed by these comparisons, we developed a computational framework to decouple these two sources of mesenchymal expression profiles using bulk RNA-seq datasets. This deconvolution offers the opportunity to characterise EMT across hundreds of tumours and examine its association with metastasis and other clinical features. With this approach, we find three distinct patterns of EMT, associated with squamous, gynaecological and gastrointestinal cancer types. Surprisingly, in most cancer types, EMT patterns are not associated with increased chance of metastasis, suggesting that other steps in the metastatic cascade may represent the main bottleneck. This work provides a comprehensive evaluation of EMT profiles and their functional significance across hundreds of tumours while circumventing the confounding effect of stromal cells.
Collapse
Affiliation(s)
- Michael Tyler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
131
|
Baker AT, Abuwarwar MH, Poly L, Wilkins S, Fletcher AL. Cancer-Associated Fibroblasts and T Cells: From Mechanisms to Outcomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:310-320. [PMID: 33397745 DOI: 10.4049/jimmunol.2001203] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, T cell immunotherapy has changed the face of cancer treatment, providing robust treatment options for several previously intractable cancers. Unfortunately, many epithelial tumors with high mortality rates respond poorly to immunotherapy, and an understanding of the key impediments is urgently required. Cancer-associated fibroblasts (CAFs) comprise the most frequent nonneoplastic cellular component in most solid tumors. Far from an inert scaffold, CAFs significantly influence tumor neogenesis, persistence, and metastasis and are emerging as a key player in immunotherapy resistance. In this review, we discuss the physical and chemical barriers that CAFs place between effector T cells and their tumor cell targets, and the therapies poised to target them.
Collapse
Affiliation(s)
- Alfie T Baker
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Mohammed H Abuwarwar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Lylarath Poly
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern 3144, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Victoria, Australia; and
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; .,Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
132
|
Arpa G, Vanoli A, Grillo F, Fiocca R, Klersy C, Furlan D, Sessa F, Ardizzone S, Sampietro G, Macciomei MC, Nesi G, Tonelli F, Capella C, Latella G, Ciardi A, Caronna R, Lenti MV, Ciccocioppo R, Barresi V, Malvi D, D'Errico A, Rizzello F, Poggioli G, Mescoli C, Rugge M, Luinetti O, Paulli M, Di Sabatino A, Solcia E. Prognostic relevance and putative histogenetic role of cytokeratin 7 and MUC5AC expression in Crohn's disease-associated small bowel carcinoma. Virchows Arch 2021; 479:667-678. [PMID: 33963925 PMCID: PMC8516779 DOI: 10.1007/s00428-021-03109-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 01/27/2023]
Abstract
Most Crohn’s disease-associated small bowel carcinomas (CrD-SBCs) are diagnosed in advanced stage and have poor prognosis. To improve diagnosis and therapy, a better knowledge of tumour precancerous lesions, histotypes and prognostic factors is needed. We investigated histologically and immunohistochemically 52 CrD-SBCs and 51 small bowel carcinomas unrelated to inflammatory disease, together with their tumour-associated mucosa, looking for Crohn-selective changes. Histologic patterns and phenotypic markers potentially predictive of CrD-SBC histogenesis and prognosis were analysed. Cytokeratin 7 or MUC5AC-positive metaplastic changes were found in about half of investigated CrD-SBCs, significantly more frequently than in CrD-unrelated SBCs. They correlated with metaplastic changes of their associated mucosa, while being absent in normal ileal mucosa. Histologic patterns suggestive for progression of some cytokeratin 7 and/or MUC5AC-positive metaplastic lesions into cancer of the same phenotype were also observed. Patient survival analyses showed that tumour cytokeratin 7 or MUC5AC expression and non-cohesive histotype were adverse prognostic factors at univariable analysis, while cytokeratin 7 and non-cohesive histotype were also found to predict worse survival in stage- and age-inclusive multivariable analyses. Besides conventional dysplasia, hyperplasia-like non-conventional lesions were observed in CrD-SBC-associated mucosa, with patterns suggestive for a histogenetic link with adjacent cancer. In conclusion the cytokeratin 7 and/or MUC5AC-positive metaplastic foci and the non-conventional growths may have a role in cancer histogenesis, while tumour cytokeratin 7 and non-cohesive histotype may also predict poor patient survival. Present findings are worth being considered in future prospective histogenetic and clinical studies.
Collapse
Affiliation(s)
- Giovanni Arpa
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Via Carlo Forlanini 16 -, 27100, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Via Carlo Forlanini 16 -, 27100, Pavia, Italy.
| | - Federica Grillo
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University Hospital and Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Roberto Fiocca
- Pathology Unit, Department of Surgical and Diagnostic Sciences, University Hospital and Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Catherine Klersy
- Service of Clinical Epidemiology & Biometry, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Daniela Furlan
- Anatomic Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Anatomic Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Francesco Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Carlo Capella
- Anatomic Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Ciardi
- Department of Radiological, Oncological, Pathological Sciences, Umberto I Hospital, La Sapienza University, Rome, Italy
| | - Roberto Caronna
- Surgical Sciences, Umberto I Hospital, La Sapienza University, Rome, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine, Fondazione IRCCS San Matteo Hospital, University of Pavia, Pavia, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, Verona, Italy
| | - Valeria Barresi
- Section of Anatomical Pathology, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Deborah Malvi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Institute of Oncology and Transplant Pathology, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonietta D'Errico
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Institute of Oncology and Transplant Pathology, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fernando Rizzello
- Intestinal Chronic Bowel Disease Unit, Department of Medical and Surgical Sciences, Sant'Orsola Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gilberto Poggioli
- Surgery of the Alimentary Tract, Department of Medical and Surgical Sciences, Sant'Orsola - Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Claudia Mescoli
- Pathology Unit, Department of Medicine DIMED, University of Padua, Padova, Italy
| | - Massimo Rugge
- Pathology Unit, Department of Medicine DIMED, University of Padua, Padova, Italy
| | - Ombretta Luinetti
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Via Carlo Forlanini 16 -, 27100, Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Via Carlo Forlanini 16 -, 27100, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, Fondazione IRCCS San Matteo Hospital, University of Pavia, Pavia, Italy
| | - Enrico Solcia
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Via Carlo Forlanini 16 -, 27100, Pavia, Italy
| |
Collapse
|
133
|
Yang M, Wei Z, Feng M, Zhu Y, Chen Y, Zhu D. Pharmacological Inhibition and Genetic Knockdown of BCL9 Modulate the Cellular Landscape of Cancer-Associated Fibroblasts in the Tumor-Immune Microenvironment of Colorectal Cancer. Front Oncol 2021; 11:603556. [PMID: 34026600 PMCID: PMC8131873 DOI: 10.3389/fonc.2021.603556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) exert a key role in cancer progression and liver metastasis. They are activated in the tumor microenvironment (TME), but their prometastatic mechanisms are not defined. CAFs are abundant in colorectal cancer (CRC). However, it is not clear whether they are raised from local tissue-resident fibroblasts or pericryptal fibroblasts and distant fibroblast precursors, and whether they may stimulate metastasis-promoting communication. B-cell lymphoma 9/B-cell lymphoma 9-like (BCL9/BCL9L) is the key transcription cofactor of β-catenin. We studied the TME of CRC with single-cell sequencing and consequently found that Bcl9 depletion caused a pro-tumor effect of CAFs, while inhibition of abnormal activation of Wnt/β-catenin signal through Bcl9 depletion benefited T-cell–mediated antitumor immune responses. We also identified and evaluated four types of CAFs in CRC with liver metastasis. In summary, we demonstrate cell type landscape and transcription difference upon BCL9 suppression in CAFs, as well as how CAF affects cancer associated immune surveillance by inhibition of Wnt signaling. Targeting the Wnt signaling pathway via modulating CAF may be a potential therapeutic approach.
Collapse
Affiliation(s)
- Mengxuan Yang
- Central Hospital of Minhang District, Shanghai, China
| | - Zhuang Wei
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Mei Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanyuan Zhu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yong Chen
- Department of General Surgery, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Di Zhu
- Central Hospital of Minhang District, Shanghai, China.,New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
134
|
Herrera M, Berral-González A, López-Cade I, Galindo-Pumariño C, Bueno-Fortes S, Martín-Merino M, Carrato A, Ocaña A, De La Pinta C, López-Alfonso A, Peña C, García-Barberán V, De Las Rivas J. Cancer-associated fibroblast-derived gene signatures determine prognosis in colon cancer patients. Mol Cancer 2021; 20:73. [PMID: 33926453 PMCID: PMC8082938 DOI: 10.1186/s12943-021-01367-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Berral-González
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
| | - Igor López-Cade
- Molecular Oncology Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain
| | - Santiago Bueno-Fortes
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain
| | - Manuel Martín-Merino
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.,Facultad de Informática, Universidad Pontificia de Salamanca (UPSA), Salamanca, Spain
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC) and CIBERONC, Madrid, Spain
| | - Carolina De La Pinta
- Radio-Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, Madrid, Spain
| | | | - Cristina Peña
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain.
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Salamanca, Spain.
| |
Collapse
|
135
|
Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, Ueha S, Yamazaki S, Kawauchi M, Nakamura E, Nishiyama C, Kojima Y, Adachi-Akahane S, Hasegawa M, Nakayama M, Oshima M, Yagita H, Shibuya K, Mikami T, Inohara N, Matsushima K, Tada N, Nakano H. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun 2021; 12:2281. [PMID: 33863879 PMCID: PMC8052408 DOI: 10.1038/s41467-021-22450-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment. The stromal fibroblast population in the colon is composed of heterogeneous and distinct cell subtypes that play a crucial role in the development of colitis and colon cancer. Here the authors generate IL-11 reporter mice and characterize the origin and phenotype of inflammatory IL-11+ fibroblasts in colitis and colon cancer preclinical models.
Collapse
Affiliation(s)
- Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - Wakami Takeda
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Mika Kawauchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mizuho Nakayama
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan. .,Host Defense Research Center, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
136
|
Involvement of Smad7 in Inflammatory Diseases of the Gut and Colon Cancer. Int J Mol Sci 2021; 22:ijms22083922. [PMID: 33920230 PMCID: PMC8069188 DOI: 10.3390/ijms22083922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
In physiological conditions, the human intestinal mucosa is massively infiltrated with various subsets of immune cells, the activity of which is tightly regulated by several counter-regulatory factors. One of these factors is transforming growth factor-β1 (TGF-β1), a cytokine produced by multiple cell types and targeting virtually all the intestinal mucosal cells. Binding of TGF-β1 to its receptors triggers Smad2/3 signaling, thus culminating in the attenuation/suppression of immune–inflammatory responses. In patients with Crohn’s disease and patients with ulcerative colitis, the major human inflammatory bowel diseases (IBD), and in mice with IBD-like colitis, there is defective TGF-β1/Smad signaling due to high levels of the intracellular inhibitor Smad7. Pharmacological inhibition of Smad7 restores TGF-β1 function, thereby reducing inflammatory pathways in patients with IBD and colitic mice. On the other hand, transgenic over-expression of Smad7 in T cells exacerbates colitis in various mouse models of IBD. Smad7 is also over-expressed in other inflammatory disorders of the gut, such as refractory celiac disease, necrotizing enterocolitis and cytomegalovirus-induced colitis, even though evidence is still scarce and mainly descriptive. Furthermore, Smad7 has been involved in colon carcinogenesis through complex and heterogeneous mechanisms, and Smad7 polymorphisms could influence cancer prognosis. In this article, we review the data about the expression and role of Smad7 in intestinal inflammation and cancer.
Collapse
|
137
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
138
|
Avolio M, Trusolino L. Rational Treatment of Metastatic Colorectal Cancer: A Reverse Tale of Men, Mice, and Culture Dishes. Cancer Discov 2021; 11:1644-1660. [PMID: 33820776 DOI: 10.1158/2159-8290.cd-20-1531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Stratification of colorectal cancer into subgroups with different response to therapy was initially guided by descriptive associations between specific biomarkers and treatment outcome. Recently, preclinical models based on propagatable patient-derived tumor samples have yielded an improved understanding of disease biology, which has facilitated the functional validation of correlative information and the discovery of novel response determinants, therapeutic targets, and mechanisms of tumor adaptation and drug resistance. We review the contribution of patient-derived models to advancing colorectal cancer characterization, discuss their influence on clinical decision-making, and highlight emerging challenges in the interpretation and clinical transferability of results obtainable with such approaches. SIGNIFICANCE: Association studies in patients with colorectal cancer have led to the identification of response biomarkers, some of which have been implemented as companion diagnostics for therapeutic decisions. By enabling biological investigation in a clinically relevant experimental context, patient-derived colorectal cancer models have proved useful to examine the causal role of such biomarkers in dictating drug sensitivity and are providing fresh knowledge on new actionable targets, dynamics of tumor evolution and adaptation, and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Marco Avolio
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Torino, Italy. .,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
139
|
Gonzalez Castro LN, Tirosh I, Suvà ML. Decoding Cancer Biology One Cell at a Time. Cancer Discov 2021; 11:960-970. [PMID: 33811126 PMCID: PMC8030694 DOI: 10.1158/2159-8290.cd-20-1376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
Human tumors are composed of diverse malignant and nonmalignant cells, generating a complex ecosystem that governs tumor biology and response to treatments. Recent technological advances have enabled the characterization of tumors at single-cell resolution, providing a compelling strategy to dissect their intricate biology. Here we describe recent developments in single-cell expression profiling and the studies applying them in clinical settings. We highlight some of the powerful insights gleaned from these studies for tumor classification, stem cell programs, tumor microenvironment, metastasis, and response to targeted and immune therapies. SIGNIFICANCE: Intratumor heterogeneity (ITH) has been a major barrier to our understanding of cancer. Single-cell genomics is leading a revolution in our ability to systematically dissect ITH. In this review, we focus on single-cell expression profiling and lessons learned in key aspects of human tumor biology.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
140
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
141
|
Prognostic value of desmoplastic reaction characterisation in stage II colon cancer: prospective validation in a Phase 3 study (SACURA Trial). Br J Cancer 2021; 124:1088-1097. [PMID: 33414540 PMCID: PMC7960987 DOI: 10.1038/s41416-020-01222-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The characterisation of desmoplastic reaction (DR) has emerged as a new, independent prognostic determinant in colorectal cancer. Herein, we report the validation of its prognostic value in a randomised controlled study (SACURA trial). METHODS The study included 991 stage II colon cancer patients. DR was classified by the central review as Mature, Intermediate or Immature based on the presence of hyalinised collagen bundles and myxoid stroma at the desmoplastic front. All clinical and pathological data, including DR characterisations, were prospectively recorded and analysed 5 years after the completion of the registration. RESULTS The five-year relapse-free survival (RFS) rate was the highest in the Mature group (N = 638), followed by the Intermediate (N = 294) and Immature groups (N = 59). Multivariate analysis revealed that DR classification was an independent prognostic factor, and based on Harrell's C-index, the Cox model for predicting RFS was significantly improved by including DR. In the conditional inference tree analysis, DR categorisation was the first split factor for predicting RFS, followed by T-stage, microsatellite instability status and budding. CONCLUSIONS Histological categorisation of DR provides important prognostic information that could contribute to the efficient selection of stage II colon cancer patients who would benefit from postoperative adjuvant therapy.
Collapse
|
142
|
Sirinukunwattana K, Domingo E, Richman SD, Redmond KL, Blake A, Verrill C, Leedham SJ, Chatzipli A, Hardy C, Whalley CM, Wu CH, Beggs AD, McDermott U, Dunne PD, Meade A, Walker SM, Murray GI, Samuel L, Seymour M, Tomlinson I, Quirke P, Maughan T, Rittscher J, Koelzer VH. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 2021; 70:544-554. [PMID: 32690604 PMCID: PMC7873419 DOI: 10.1136/gutjnl-2019-319866] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. DESIGN Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. RESULTS Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. CONCLUSION This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows.
Collapse
Affiliation(s)
- Korsuk Sirinukunwattana
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Susan D Richman
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Keara L Redmond
- Centre for Cancer Research and Cell Biology, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, UK
| | - Clare Verrill
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgical Sciences and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Gastrointestinal Stem-cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Oxford, UK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Celina M Whalley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, UK
| | - Andrew D Beggs
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Angela Meade
- MRC Clinical Trials Unit at University College London, London, UK
| | | | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Leslie Samuel
- Department of Clinical Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Matthew Seymour
- Department of Oncology, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Edinburgh Cancer Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Phil Quirke
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Timothy Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Oncology, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
143
|
Loughrey MB, Fisher NC, McCooey AJ, Dunne PD. Comment on "Identification of EMT-related high-risk stage II colorectal cancer and characterisation of metastasis-related genes". Br J Cancer 2021; 124:1175-1176. [PMID: 33311590 PMCID: PMC7961054 DOI: 10.1038/s41416-020-01213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Affiliation(s)
- Maurice B Loughrey
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aoife J McCooey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
144
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
145
|
Chen C, Liu Y, Han P, Cui B. Research Progress of Preoperative FPR, FAR or AFR in Patients with Colorectal Cancer. Cancer Manag Res 2021; 13:1791-1801. [PMID: 33654428 PMCID: PMC7910077 DOI: 10.2147/cmar.s292605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Research has confirmed that plasma albumin (Alb), prealbumin (PA) and fibrinogen (Fib) are involved in regulating the occurrence and development of various tumors. Their levels in peripheral blood are related to the survival outcome and treatment response of patients, but the accuracy and specificity of single application have yet to be fully realized. A growing amount of evidence indicates that predictors such as preoperative fibrinogen to prealbumin ratio (FPR), fibrinogen to albumin ratio (FAR) or albumin to fibrinogen ratio (AFR) are emerging as comprehensive indicators. Indeed, their components play a key regulatory role in the progression of colorectal cancer (CRC). Preoperative FPR, FAR or AFR levels, therefore, are expected to become new biomarkers for prognosis evaluation and curative effect prediction for CRC patients and are significant in the guidance they could provide for the development of individualized treatment strategies.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Peng Han
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, People's Republic of China
| |
Collapse
|
146
|
AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition. Cancers (Basel) 2021; 13:cancers13040801. [PMID: 33673003 PMCID: PMC7918753 DOI: 10.3390/cancers13040801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer can be subdivided into four distinct subtypes that are characterised by different clinical features and responses to therapies currently used in the clinic to treat this disease. One of those subtypes, called CMS4, is associated with a worse prognosis and poor response to therapies compared to other subtypes. We therefore set out to explore what proteins are differentially expressed and used in CMS4 to find potential new targets for therapy. We found that protein AKT3 is highly expressed in CMS4, and that active AKT3 inhibits a protein that stalls growth of cancer cells (p27KIP1). We can target AKT3 with inhibitors which leads to strongly reduced growth of cancer cell lines that are categorised as CMS4. Furthermore, our data suggests that high AKT3 expression in tumour cells may be used to identify poor prognosis colorectal cancer patients. Future research should point out if high AKT3 expression can be used to select colorectal cancer patients that have a poor prognosis but that could benefit from AKT3-targeted treatment. Abstract Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.
Collapse
|
147
|
Zhu X, Tian X, Ji L, Zhang X, Cao Y, Shen C, Hu Y, Wong JWH, Fang JY, Hong J, Chen H. A tumor microenvironment-specific gene expression signature predicts chemotherapy resistance in colorectal cancer patients. NPJ Precis Oncol 2021; 5:7. [PMID: 33580207 PMCID: PMC7881244 DOI: 10.1038/s41698-021-00142-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Studies have shown that tumor microenvironment (TME) might affect drug sensitivity and the classification of colorectal cancer (CRC). Using TME-specific gene signature to identify CRC subtypes with distinctive clinical relevance has not yet been tested. A total of 18 "bulk" RNA-seq datasets (total n = 2269) and four single-cell RNA-seq datasets were included in this study. We constructed a "Signature associated with FOLFIRI resistant and Microenvironment" (SFM) that could discriminate both TME and drug sensitivity. Further, SFM subtypes were identified using K-means clustering and verified in three independent cohorts. Nearest template prediction algorithm was used to predict drug response. TME estimation was performed by CIBERSORT and microenvironment cell populations-counter (MCP-counter) methods. We identified six SFM subtypes based on SFM signature that discriminated both TME and drug sensitivity. The SFM subtypes were associated with distinct clinicopathological, molecular and phenotypic characteristics, specific enrichments of gene signatures, signaling pathways, prognosis, gut microbiome patterns, and tumor lymphocytes infiltration. Among them, SFM-C and -F were immune suppressive. SFM-F had higher stromal fraction with epithelial-to-mesenchymal transition phenotype, while SFM-C was characterized as microsatellite instability phenotype which was responsive to immunotherapy. SFM-D, -E, and -F were sensitive to FOLFIRI and FOLFOX, while SFM-A, -B, and -C were responsive to EGFR inhibitors. Finally, SFM subtypes had strong prognostic value in which SFM-E and -F had worse survival than other subtypes. SFM subtypes enable the stratification of CRC with potential chemotherapy response thereby providing more precise therapeutic options for these patients.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianglong Tian
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linhua Ji
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Cao
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Hu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
148
|
Boyaval F, van Zeijl R, Dalebout H, Holst S, van Pelt G, Fariña-Sarasqueta A, Mesker W, Tollenaar R, Morreau H, Wuhrer M, Heijs B. N-Glycomic Signature of Stage II Colorectal Cancer and Its Association With the Tumor Microenvironment. Mol Cell Proteomics 2021; 20:100057. [PMID: 33581319 PMCID: PMC7973300 DOI: 10.1074/mcp.ra120.002215] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The choice for adjuvant chemotherapy in stage II colorectal cancer is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II colorectal cancer tissue samples. The cancer cells, compared with normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.
Collapse
Affiliation(s)
- Fanny Boyaval
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - René van Zeijl
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Dalebout
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephanie Holst
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gabi van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Arantza Fariña-Sarasqueta
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Wilma Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
149
|
MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization. Cell Rep 2021; 34:108724. [PMID: 33535045 DOI: 10.1016/j.celrep.2021.108724] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The signal adaptor MyD88, an essential component of TLR signaling, plays an important role in gut-microbiome interactions. However, its contribution to colitis-associated cancer (CAC) is still controversial. Far less is known about the specific effects of MyD88 signaling in myofibroblasts in CAC development. Here, we used a CAC mouse model in which MyD88 was selectively depleted in myofibroblasts. Myofibroblast MyD88-deficient mice are resistant to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced tumorigenesis, as evidenced by the decrease in the number and sizes of tumors. MyD88 deficiency in myofibroblasts attenuates intestinal epithelial cell (IEC) proliferation after acute DSS-induced colitis. Furthermore, MyD88 signaling in myofibroblasts increases the secretion of osteopontin (OPN), which promotes macrophage M2 polarization through binding to αvβ3 and CD44, leading to activation of the STAT3/PPARγ pathway. Thus, MyD88 signaling in myofibroblasts crucially contributes to colorectal cancer development and provides a promising therapeutic target for the prevention of colitis-associated carcinogenesis.
Collapse
|
150
|
AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021; 11:e308. [PMID: 33635003 PMCID: PMC7868082 DOI: 10.1002/ctm2.308] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communication between these tumor microenvironments (TME) and cells drives cancer progression and influences response to existing therapies. In order to provide better treatments for patients, we must understand how various cell-types collaborate within the TME to drive cancer and consider the multiple signals present between and within different cancer types. To investigate how tissues function, we need a model to measure both how signals are transferred between cells and how that information is processed within cells. The interplay of collaboration between different cell-types requires cell-cell communication. This article aims to review the current in vitro and in vivo mono-cellular and multi-cellular cultures models of colorectal cancer (CRC), and to explore how they can be used for single-cell multi-omics approaches for isolating multiple types of molecules from a single-cell required for cell-cell communication to distinguish cancer cells from normal cells. Integrating the existing single-cell signaling measurements and models, and through understanding the cell identity and how different cell types communicate, will help predict drug sensitivities in tumor cells and between- and within-patients responses.
Collapse
Affiliation(s)
- Shaikha AlMusawi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| | - Mehreen Ahmed
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|