101
|
New Insights on the Emerging Genomic Landscape of CXCR4 in Cancer: A Lesson from WHIM. Vaccines (Basel) 2020; 8:vaccines8020164. [PMID: 32260318 PMCID: PMC7349554 DOI: 10.3390/vaccines8020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Deciphering the molecular alterations leading to disease initiation and progression is currently crucial to identify the most relevant targets for precision therapy in cancer patients. Cancers express a complex chemokine network influencing leucocyte infiltration and angiogenesis. Moreover, malignant cells also express a selective repertoire of chemokine receptors that sustain their growth and spread. At present, different cancer types have been shown to overexpress C-X-C chemokine receptor type 4 (CXCR4) and to respond to its ligand C-X-C motif chemokine 12 (CXCL12). The CXCL12/CXCR4 axis influences cancer biology, promoting survival, proliferation, and angiogenesis, and plays a pivotal role in directing migration of cancer cells to sites of metastases, making it a prognostic marker and a therapeutic target. More recently, mutations in the C-terminus of CXCR4 have been identified in the genomic landscape of patients affected by Waldenstrom's macroglobulinemia, a rare B cell neoplasm. These mutations closely resemble those occurring in Warts, Hypogammaglobulinemia, Immunodeficiency, and Myelokathexis (WHIM) syndrome, an immunodeficiency associated with CXCR4 aberrant expression and activity and with chemotherapy resistance in clinical trials. In this review, we summarize the current knowledge on the relevance of CXCR4 mutations in cancer biology, focusing on its importance as predictors of clinical presentation and response to therapy.
Collapse
|
102
|
Peng Y, Yang T, Tang X, Chen F, Wang S. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells. Cell Biochem Biophys 2020; 78:23-30. [PMID: 31875277 DOI: 10.1007/s12013-019-00898-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022]
Abstract
The CRISPR/Cas9 system is an effective tool for gene editing. However, this conventional expression system cannot control the timing of gene editing and does not utilize resistance screening markers. Therefore, carrying out CRISPR/Cas9 experiments is extremely inconvenient. Our aim is to develop an inducible lentiviral vector-based gene-editing system for C-X-C chemokine receptor 4 (CXCR4) by CRISPR/Cas9, and to demonstrate its function in MKN-45 cell. The DNA fragments of Blasticidin and T2A-GFP were produced using the lenti-Cas9-BLAST and PX458 plasmids as templates. The PCR products were harvested and cloned into the lenti-guide-puro plasmid to yield the lenti-guide-BLAST-GFP plasmid. Three double-stranded guide RNA (gRNA) sequences targeting the exon 2 of CXCR4 gene were designed online (http://crispr.mit.edu), synthesized, and recombined into the lenti-guide-BLAST-GFP plasmid, to yield the lenti-guide-BLAST-GFP-gRNA plasmid. The pCW-Cas9 and lenti-guide-BLAST-GFP-gRNA plasmids were packaged with lentiviral vectors, which were then transfected into MKN-45 cells, to identify the CXCR4 gene-editing effects using the T7 endonuclease 1 (T7E1) and Western blot assays. The lenti-guide-BLAST-GFP and lenti-guide-BLAST-GFP-gRNA plasmids were successfully constructed and packaged, to yield lentiviral particles. Transfection of the pCW-Cas9 and lenti-guide-BLAST-GFP-gRNA viral vectors could decrease the expression of CXCR4 protein, and lead to gene editing in MKN-45 cells. The efficiencies of gRNA-1, gRNA-2, and gRNA-3 were 45.6%, 53.6%, and 56.7%, respectively. Furthermore, the chemotactic efficiency of the dual viral vector-infected MKN-45 cells was significantly decreased in response to SDF-1. The numbers of migratory cells in the lower chamber of the transwell system were 30.0 ± 0.23, 29.7 ± 1.55, 28.2 ± 1.11 and 36.1 ± 2.00 cells per field (400×) for gRNA-1, gRNA-2, gRNA-3 and the control, respectively (P < 0.05). We constructed an inducible CXCR4 gene-editing, dual-vector CRISPR/Cas9 system, which could induce CXCR4 gene editing in MKN-45 cells in a doxycycline-dependent manner and thus reduce the migration of MKN-45 cells.
Collapse
Affiliation(s)
- Yanhua Peng
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
- Department of Anesthesiology, People's Hospital of Deyang City, Taishan North Road 173, Deyang, 618000, China
| | - Taobo Yang
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Xixi Tang
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Fei Chen
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Shouyong Wang
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China.
| |
Collapse
|
103
|
Treon SP, Xu L, Guerrera ML, Jimenez C, Hunter ZR, Liu X, Demos M, Gustine J, Chan G, Munshi M, Tsakmaklis N, Chen JG, Kofides A, Sklavenitis-Pistofidis R, Bustoros M, Keezer A, Meid K, Patterson CJ, Sacco A, Roccaro A, Branagan AR, Yang G, Ghobrial IM, Castillo JJ. Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. J Clin Oncol 2020; 38:1198-1208. [PMID: 32083995 DOI: 10.1200/jco.19.02314] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Next-generation sequencing has revealed recurring somatic mutations in Waldenström macroglobulinemia (WM), including MYD88 (95%-97%), CXCR4 (30%-40%), ARID1A (17%), and CD79B (8%-15%). Deletions involving chromosome 6q are common in patients with mutated MYD88 and include genes that modulate NFKB, BCL2, Bruton tyrosine kinase (BTK), and apoptosis. Patients with wild-type MYD88 WM show an increased risk of transformation and death and exhibit many mutations found in diffuse large B-cell lymphoma. The discovery of MYD88 and CXCR4 mutations in WM has facilitated rational drug development, including the development of BTK and CXCR4 inhibitors. Responses to many agents commonly used to treat WM, including the BTK inhibitor ibrutinib, are affected by MYD88 and/or CXCR4 mutation status. The mutation status of both MYD88 and CXCR4 can be used for a precision-guided treatment approach to WM.
Collapse
Affiliation(s)
- Steven P Treon
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Lian Xu
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Maria Luisa Guerrera
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Cristina Jimenez
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Zachary R Hunter
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Xia Liu
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Maria Demos
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Joshua Gustine
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Gloria Chan
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Manit Munshi
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Nicholas Tsakmaklis
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Jiaji G Chen
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Amanda Kofides
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Romanos Sklavenitis-Pistofidis
- Department of Medicine, Harvard Medical School, Boston, MA.,Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA.,Clinical Research Development and Phase I Unit, CREA Laboratory, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Mark Bustoros
- Department of Medicine, Harvard Medical School, Boston, MA.,Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Andrew Keezer
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Kirsten Meid
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | | | - Antonio Sacco
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA.,Clinical Research Development and Phase I Unit, CREA Laboratory, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Aldo Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Andrew R Branagan
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA
| | - Guang Yang
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Irene M Ghobrial
- Department of Medicine, Harvard Medical School, Boston, MA.,Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
104
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
105
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
106
|
Abstract
Amplified innate leukocytes (neutrophils and monocytes/macrophages) are associated with advanced ischemic and non-ischemic heart failure (HF). Intensified neutrophilic leukocytosis (neutrophilia) and sustained activation of neutrophils is the predominant factor that determines over activated inflammation in acute HF and the outcome of long-term chronic HF. After heart attack, the first wave of innate responsive and short-lived neutrophils is essential for the initiation of inflammation, resolution of inflammation, and cardiac repair, however uncontrolled and long-term activation of neutrophils leads to collateral damage of myocardium. In the presented review, we highlighted the interactive and integrative role of neutrophil phenotypes in cellular and molecular events of ischemic HF. In addition, we discussed the current, nonimmune, immune, and novel paradigms of neutrophils in HF associated with differential factors with a specific interest in non-resolving inflammation and resolution physiology.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
107
|
Borna S, Drobek A, Kralova J, Glatzova D, Splichalova I, Fabisik M, Pokorna J, Skopcova T, Angelisova P, Kanderova V, Starkova J, Stanek P, Matveichuk OV, Pavliuchenko N, Kwiatkowska K, Protty MB, Tomlinson MG, Alberich‐Jorda M, Korinek V, Brdicka T. Transmembrane adaptor protein WBP1L regulates CXCR4 signalling and murine haematopoiesis. J Cell Mol Med 2020; 24:1980-1992. [PMID: 31845480 PMCID: PMC6991692 DOI: 10.1111/jcmm.14895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.
Collapse
Affiliation(s)
- Simon Borna
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Ales Drobek
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jarmila Kralova
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Daniela Glatzova
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
- Department of Biophysical ChemistryJ. Heyrovsky Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Iva Splichalova
- Laboratory of ImmunobiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Pavla Angelisova
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Veronika Kanderova
- CLIP ‐ Childhood Leukaemia Investigation Prague and Department of Pediatric Hematology and OncologySecond Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Julia Starkova
- CLIP ‐ Childhood Leukaemia Investigation Prague and Department of Pediatric Hematology and OncologySecond Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Stanek
- Second Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Orest V. Matveichuk
- Laboratory of Molecular Membrane BiologyNencki Institute of Experimental BiologyWarsawPoland
| | - Nataliia Pavliuchenko
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane BiologyNencki Institute of Experimental BiologyWarsawPoland
| | - Majd B. Protty
- Institute of Biomedical ResearchUniversity of BirminghamBirminghamUK
- Present address:
Sir Geraint Evans Cardiovascular Research BuildingCardiff UniversityCardiffUK
| | | | - Meritxell Alberich‐Jorda
- Laboratory of HematooncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte SignalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
108
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
109
|
Gao JL, Owusu-Ansah A, Paun A, Beacht K, Yim E, Siwicki M, Yang A, Liu Q, McDermott DH, Murphy PM. Low-level Cxcr4-haploinsufficient HSC engraftment is sufficient to correct leukopenia in WHIM syndrome mice. JCI Insight 2019; 4:132140. [PMID: 31687976 DOI: 10.1172/jci.insight.132140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function mutations in chemokine receptor CXCR4. Patient WHIM-09 was spontaneously cured by chromothriptic deletion of 1 copy of 164 genes, including the CXCR4WHIM allele, presumably in a single hematopoietic stem cell (HSC) that repopulated HSCs and the myeloid lineage. Testing the specific contribution of CXCR4 hemizygosity to her cure, we previously demonstrated enhanced engraftment of Cxcr4+/o HSCs after transplantation in WHIM (Cxcr4+/w) model mice, but the potency was not quantitated. We now report graded-dose competitive transplantation experiments using lethally irradiated Cxcr4+/+ recipients in which mixed BM cells containing approximately 5 Cxcr4+/o HSCs and a 100-fold excess of Cxcr4+/w HSCs achieved durable 50% Cxcr4+/o myeloid and B cell chimerism in blood and approximately 20% Cxcr4+/o HSC chimerism in BM. In Cxcr4+/o/Cxcr4+/w parabiotic mice, we observed 80%-100% Cxcr4+/o myeloid and lymphoid chimerism in the blood and 15% Cxcr4+/o HSC chimerism in BM from the Cxcr4+/w parabiont, which was durable after separation from the Cxcr4+/o parabiont. Thus, CXCR4 haploinsufficiency likely significantly contributed to the selective repopulation of HSCs and the myeloid lineage from a single chromothriptic HSC in WHIM-09. Moreover, the results suggest that WHIM allele silencing of patient HSCs is a viable gene therapy strategy.
Collapse
Affiliation(s)
- Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | | | - Andrea Paun
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kimberly Beacht
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Erin Yim
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Marie Siwicki
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Alexander Yang
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Qian Liu
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, and
| |
Collapse
|
110
|
Silva LM, Brenchley L, Moutsopoulos NM. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev 2019; 287:226-235. [PMID: 30565245 DOI: 10.1111/imr.12724] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/06/2018] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common human inflammatory disease. In this condition, microbiota trigger excessive inflammation in oral mucosal tissues surrounding the dentition, resulting in destruction of tooth-supporting structures (connective tissue and bone). While susceptibility factors for common forms of periodontitis are not clearly understood, studies in patients with single genetic defects reveal a critical role for tissue neutrophils in disease susceptibility. Indeed, various genetic defects in the development, egress from the bone marrow, chemotaxis, and extravasation are clearly linked to aggressive/severe periodontitis at an early age. Here, we provide an overview of genetic defects in neutrophil biology that are linked to periodontitis. In particular, we focus on the mechanisms underlying Leukocyte Adhesion Deficiency-I, the prototypic Mendelian defect of impaired neutrophil extravasation and severe periodontitis.
Collapse
Affiliation(s)
- Lakmali M Silva
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland.,Proteases and Remodeling Section, NIDCR, NIH, Bethesda, Maryland
| | - Laurie Brenchley
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, Maryland
| | | |
Collapse
|
111
|
Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019; 96:778-793. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.
Collapse
Affiliation(s)
- Joyce Heuninck
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Cristina Perpiñá Viciano
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Ali Işbilir
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Birgit Caspar
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Davide Capoferri
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Briddon
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Thierry Durroux
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Hill
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Martin J Lohse
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Graeme Milligan
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Jean-Philippe Pin
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Carsten Hoffmann
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| |
Collapse
|
112
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
113
|
Trivett MT, Burke JD, Deleage C, Coren LV, Hill BJ, Jain S, Barsov EV, Breed MW, Kramer JA, Del Prete GQ, Lifson JD, Swanstrom AE, Ott DE. Preferential Small Intestine Homing and Persistence of CD8 T Cells in Rhesus Macaques Achieved by Molecularly Engineered Expression of CCR9 and Reduced Ex Vivo Manipulation. J Virol 2019; 93:e00896-19. [PMID: 31434738 PMCID: PMC6803279 DOI: 10.1128/jvi.00896-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
Adoptive cell transfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity in vivo In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity in vivo Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques. Additionally, we increase in vivo persistence and overall systemic distribution of infused CD8 T cells, especially in secondary lymphoid tissues, by minimizing ex vivo culture/manipulation, thereby avoiding the loss of CD28+/CD95+ central memory T cells by differentiation in culture. These proof-of-principle results establish the feasibility of preferentially localizing PBMC-derived CD8 T cells to the small intestine and enables the direct experimental ACT-based assessment of the potential role of the quality and timing of effective antiviral CD8 T-cell responses to inhibit viral infection and subsequent replication in small intestine CD4 T cells. More broadly, these results support the engineered expression of homing proteins to direct CD8 T cells to target tissues as a means for both experimental and potential therapeutic advances in T-cell immunotherapies, including cancer.IMPORTANCEAdoptive cell transfer (ACT) of T cells engineered with antigen-specific effector properties can deliver targeted immune responses against malignancies and infectious diseases. Current T-cell-based therapeutic ACT relies on circulatory distribution to deliver engineered T cells to their targets, an approach which has proven effective for some leukemias but provided only limited efficacy against solid tumors. Here, engineered expression of the CCR9 homing receptor redirected CD8 T cells to the small intestine in rhesus macaque ACT experiments. Targeted homing of engineered T-cell immunotherapies holds promise to increase the effectiveness of adoptively transferred cells in both experimental and clinical settings.
Collapse
Affiliation(s)
- Matthew T Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D Burke
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brenna J Hill
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W Breed
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joshua A Kramer
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
114
|
Zhang A, Chen X, Li Z, Ruan M, Zhang Y, Zhu X. Acute myeloid leukemia arising after Hodgkin lymphoma in a patient with WHIM syndrome. Pediatr Blood Cancer 2019; 66:e27951. [PMID: 31368255 DOI: 10.1002/pbc.27951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Aoli Zhang
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Chen
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhanqi Li
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Min Ruan
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - YingChi Zhang
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
115
|
Family studies of warts, hypogammaglobulinemia, immunodeficiency, myelokathexis syndrome. Curr Opin Hematol 2019; 27:11-17. [PMID: 31652152 DOI: 10.1097/moh.0000000000000554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW WHIM syndrome (warts, hypogammaglobulinemia, immunodeficiency, myelokathexis, or WHIMs) is a very rare autosomal dominant immunodeficiency disorder attributable to mutations in CXCR4. We reviewed clinical manifestations in 24 patients in 9 families to expand understanding of this syndrome. RECENT FINDINGS Warts, cellulitis and respiratory infections are common in patients with WHIMs. Less commonly these patients have congenital heart disease, human papilloma virus-associated malignancies (cervical and vulvular) and lymphomas. Hearing loss because of recurrent otitis media is another important complication. Treatment with granulocyte colony-stimulating factor is controversial; this review indicates that it is effective to prevent and treat infections based upon long-term observations of patients enrolled in the Severe Chronic Neutropenia International Registry. Understanding the natural history and diversity of this syndrome are important for ongoing clinical trials of novel agents to treat WHIMs. SUMMARY WHIM syndrome has diverse manifestations; some features occur consistently in almost all patients, for example, neutropenia, lymphocytopenia and mild hypogammaglobulinemia. However, the clinical consequences are quite variable across patient cohorts and within families. Each complication is important as a cause for morbidity and a source for patient and family concerns.
Collapse
|
116
|
Egholm C, Heeb LEM, Impellizzieri D, Boyman O. The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses. Front Immunol 2019; 10:2507. [PMID: 31708926 PMCID: PMC6821784 DOI: 10.3389/fimmu.2019.02507] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune responses. Type 2 immunity ensures several host-protective processes such as defense against helminth parasites and wound repair, however, type 2 immune responses also drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have not traditionally been considered a part of type 2 immunity. While neutrophils might be beneficial in initiating a type 2 immune response, their involvement and activation is rather unwanted at later stages. This is evidenced by examples of type 2 immune responses where increased neutrophil responses are able to enhance immunity, however, at the cost of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis toward potent intermediary chemoattractants, inhibits the formation of neutrophil extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor on neutrophils. These effects are observed in both mouse and human neutrophils. Thus, we propose for type 2 immune responses that neutrophils are, as in other immune responses, the first non-resident cells to arrive at a site of inflammation or infection, thereby guiding and attracting other innate and adaptive immune cells; however, as soon as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis, and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation and guide the design of targeted therapeutic approaches for modulating neutrophils during inflammation and neutropenia.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas E M Heeb
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
117
|
Wang G, Hu W, Chen H, Shou X, Ye T, Xu Y. Cocktail Strategy Based on NK Cell-Derived Exosomes and Their Biomimetic Nanoparticles for Dual Tumor Therapy. Cancers (Basel) 2019; 11:cancers11101560. [PMID: 31615145 PMCID: PMC6827005 DOI: 10.3390/cancers11101560] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/23/2023] Open
Abstract
Successful cancer therapy requires drugs being precisely delivered to tumors. Nanosized drugs have attracted considerable recent attention, but their toxicity and high immunogenicity are important obstacles hampering their clinical translation. Here we report a novel “cocktail therapy” strategy based on excess natural killer cell-derived exosomes (NKEXOs) in combination with their biomimetic core–shell nanoparticles (NNs) for tumor-targeted therapy. The NNs were self- assembled with a dendrimer core loading therapeutic miRNA and a hydrophilic NKEXOs shell. Their successful fabrication was confirmed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The resulting NN/NKEXO cocktail showed highly efficient targeting and therapeutic miRNA delivery to neuroblastoma cells in vivo, as demonstrated by two-photon excited scanning fluorescence imaging (TPEFI) and with an IVIS Spectrum in vivo imaging system (IVIS), leading to dual inhibition of tumor growth. With unique biocompatibility, we propose this NN/NKEXO cocktail as a new avenue for tumor therapy, with potential prospects for clinical applications.
Collapse
|
118
|
Bartneck M, Wang J. Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Front Immunol 2019; 10:2257. [PMID: 31616430 PMCID: PMC6764082 DOI: 10.3389/fimmu.2019.02257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophil granulocytes are the most numerous type of leukocyte in humans bearing an enormous, yet largely unexplored therapeutic potential. Scientists have very recently increased their efforts to study and understand these cells which contribute to various types of inflammatory diseases and cancer. The mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against host tissues and pathogens require more attention. The reactive oxygen species (ROS) are a popular source of cellular stress and organ injury, and are critically expressed by neutrophils. By combating pathogens using molecular combat factors such as neutrophil extracellular traps (NETs), these are immobilized and killed i.e., by ROS. NETs and ROS are essential for the immune defense, but upon excessive activation, may also harm healthy tissue. Thus, exploring new routes for modulating their migration and activation is highly desired for creating novel anti-inflammatory treatment options. Leukocyte transmigration represents a key process for inflammatory cell infiltration to injury sites. In this review, we briefly summarize the differentiation and roles of neutrophils, with a spotlight on intravital imaging. We further discuss the potential of nanomedicines, i.e., selectin mimetics to target cell migration and influence liver disease outcome in animal models. Novel perspectives further arise from formulations of the wide array of options of small non-coding RNA such as small interfering RNA (siRNA) and micro-RNA (miR) which exhibit enzymatic functions: while siRNA binds and degrades a single mRNA based on full complementarity of binding, miR can up and down-regulate multiple targets in gene transcription and translation, mediated by partial complementarity of binding. Notably, miR is known to regulate at least 60% of the protein-coding genes and thus includes a potent strategy for a large number of targets in neutrophils. Nanomedicines can combine properties of different drugs in a single formulation, i.e., combining surface functionalization with ligands and drug delivery. Inevitably, nanomedicines accumulate in other phagocytes, a fact that should be controlled for every novel formulation to restrain activation of macrophages or modifications of the immunological synapse. Controlled drug release enabled by nanotechnological delivery systems may advance the options of modulating neutrophil activation and migration.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
119
|
Bao X, Hanson AL, Madeleine MM, Wang SS, Schwartz SM, Newell F, Pettersson-Kymmer U, Hemminki K, Tiews S, Steinberg W, Rader JS, Castro F, Safaeian M, Franco EL, Coutlée F, Ohlsson C, Cortes A, Marshall M, Mukhopadhyay P, Cremin K, Johnson LG, Garland SM, Tabrizi SN, Wentzensen N, Sitas F, Trimble C, Little J, Cruickshank M, Frazer IH, Hildesheim A, Brown MA, Duncan EL, Sun YP, Leo PJ. HLA and KIR Associations of Cervical Neoplasia. J Infect Dis 2019; 218:2006-2015. [PMID: 30099516 DOI: 10.1093/infdis/jiy483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Cervical cancer is the fourth most common cancer in women, and we recently reported human leukocyte antigen (HLA) alleles showing strong associations with cervical neoplasia risk and protection. HLA ligands are recognized by killer immunoglobulin-like receptors (KIRs) expressed on a range of immune cell subsets, governing their proinflammatory activity. We hypothesized that the inheritance of particular HLA-KIR combinations would increase cervical neoplasia risk. Methods Here, we used HLA and KIR dosages imputed from single-nucleotide polymorphism genotype data from 2143 cervical neoplasia cases and 13858 healthy controls of European decent. Results The following 4 novel HLA alleles were identified in association with cervical neoplasia, owing to their linkage disequilibrium with known cervical neoplasia-associated HLA-DRB1 alleles: HLA-DRB3*9901 (odds ratio [OR], 1.24; P = 2.49 × 10-9), HLA-DRB5*0101 (OR, 1.29; P = 2.26 × 10-8), HLA-DRB5*9901 (OR, 0.77; P = 1.90 × 10-9), and HLA-DRB3*0301 (OR, 0.63; P = 4.06 × 10-5). We also found that homozygosity of HLA-C1 group alleles is a protective factor for human papillomavirus type 16 (HPV16)-related cervical neoplasia (C1/C1; OR, 0.79; P = .005). This protective association was restricted to carriers of either KIR2DL2 (OR, 0.67; P = .00045) or KIR2DS2 (OR, 0.69; P = .0006). Conclusions Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism.
Collapse
Affiliation(s)
- Xiao Bao
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, China.,Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, China.,Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| | - Aimee L Hanson
- University of Queensland Diamantina Institute, University of Queensland.,Faculty of Medicine and Biomedical Sciences, University of Queensland.,Translational Research Institute, Princess Alexandra Hospital, Woolloongabba
| | - Margaret M Madeleine
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sophia S Wang
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California
| | - Stephen M Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Felicity Newell
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| | - Ulrika Pettersson-Kymmer
- Department of Pharmacology and Clinical Neuroscience.,Department of Public Health and Clinical Medicine, Umeå University, Umeå
| | - Kari Hemminki
- Center for Primary Health Care Research, Lund University, Lund.,Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg
| | - Sven Tiews
- MHC Laboratory for Cytopathology, Dr Steinberg, Soest, Germany
| | | | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee
| | - Felipe Castro
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg
| | - Mahboobeh Safaeian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | | | - François Coutlée
- Département de Microbiologie, Infectiologie et Immunologie, Centre Hospitalier de l'Université de Montréal, Montréal, Ottawa, Canada
| | - Claes Ohlsson
- Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden.,Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adrian Cortes
- University of Queensland Diamantina Institute, University of Queensland
| | - Mhairi Marshall
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| | | | - Katie Cremin
- University of Queensland Diamantina Institute, University of Queensland
| | - Lisa G Johnson
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Suzanne M Garland
- Western Pacific Regional Human Papillomavirus Laboratory Network, Department of Microbiology and Infectious Diseases.,Murdoch Children's Research Institute, Royal Children's Hospital.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville
| | - Sepehr N Tabrizi
- Western Pacific Regional Human Papillomavirus Laboratory Network, Department of Microbiology and Infectious Diseases.,Murdoch Children's Research Institute, Royal Children's Hospital.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | - Freddy Sitas
- Cancer Council NSW, Sydney.,Sydney School of Public Health, University of Sydney, Camperdown.,School of Public Health and Community Medicine, University of New South Wales, Kensington, Australia
| | - Cornelia Trimble
- Center for Cervical Dysplasia, Johns Hopkins University, Baltimore, Maryland
| | - Julian Little
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Ian H Frazer
- Faculty of Medicine and Biomedical Sciences, University of Queensland.,Translational Research Institute, Princess Alexandra Hospital, Woolloongabba
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| | - Ying Pu Sun
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, China.,Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, China
| | - Paul J Leo
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology
| |
Collapse
|
120
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
121
|
He P, Zhou W, Liu M, Chen Y. Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Curr Top Med Chem 2019; 19:1464-1483. [PMID: 31264549 DOI: 10.2174/1568026619666190628115644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
122
|
Levy E, Reger R, Segerberg F, Lambert M, Leijonhufvud C, Baumer Y, Carlsten M, Childs R. Enhanced Bone Marrow Homing of Natural Killer Cells Following mRNA Transfection With Gain-of-Function Variant CXCR4 R334X. Front Immunol 2019; 10:1262. [PMID: 31231387 PMCID: PMC6560173 DOI: 10.3389/fimmu.2019.01262] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Adoptive transfer of natural killer (NK) cells can induce remission in patients with relapsed/refractory leukemia and myeloma. However, to date, clinical efficacy of NK cell immunotherapy has been limited to a sub-fraction of patients. Here we show that steps incorporated in the ex vivo manipulation/production of NK cell products used for adoptive infusion, such as over-night IL-2 activation or cryopreservation followed by ex vivo expansion, drastically decreases NK cell surface expression of the bone marrow (BM) homing chemokine receptor CXCR4. Reduced CXCR4 expression was associated with dampened in vitro NK cell migration toward its cognate ligand stromal-derived factor-1α (SDF-1α). NK cells isolated from patients with WHIM syndrome carry gain-of-function (GOF) mutations in CXCR4 (CXCR4R334X). Compared to healthy donors, we observed that NK cells expanded from WHIM patients have similar surface levels of CXCR4 but have a much stronger propensity to home to BM compartments when adoptively infused into NOD-scid IL2Rgammanull (NSG) mice. Therefore, in order to augment the capacity of adoptively infused NK cells to home to the BM, we genetically engineered ex vivo expanded NK cells to express the naturally occurring GOF CXCR4R334X receptor variant. Transfection of CXCR4R334X-coding mRNA into ex vivo expanded NK cells using a clinically applicable method consistently led to an increase in cell surface CXCR4 without altering NK cell phenotype, cytotoxic function, or compromising NK cell viability. Compared to non-transfected and wild type CXCR4-coding mRNA transfected counterparts, CXCR4R334X-engineered NK cells had significantly greater chemotaxis toward SDF-1α in vitro. Importantly, expression of CXCR4R334X on expanded NK cells resulted in significantly greater BM homing following adoptive transfer into NSG mice compared to non-transfected NK cell controls. Collectively, these data suggest up-regulation of cell surface CXCR4R334X on ex vivo expanded NK cells via mRNA transfection represents a novel approach to improve homing and target NK cell-based immunotherapies to BM where hematological malignancies reside.
Collapse
Affiliation(s)
- Emily Levy
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,The Department of Molecular Medicine, The George Washington University, Washington, DC, United States
| | - Robert Reger
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Filip Segerberg
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melanie Lambert
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Leijonhufvud
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Baumer
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mattias Carlsten
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Richard Childs
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
123
|
Rosenberg EM, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26:662-673.e7. [PMID: 30827936 PMCID: PMC6736600 DOI: 10.1016/j.chembiol.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on β-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Natalie Drucker
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brock Humphries
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathryn E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - James W Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Gary D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Dimitrios Morikis
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
124
|
The WHIM Syndrome Is No Longer a Whim. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1578-1579. [PMID: 31076063 DOI: 10.1016/j.jaip.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/22/2022]
|
125
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
126
|
Walkovich K, Connelly JA. Congenital Neutropenia and Rare Functional Phagocyte Disorders in Children. Hematol Oncol Clin North Am 2019; 33:533-551. [PMID: 31030818 DOI: 10.1016/j.hoc.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both profound neutropenia and functional phagocyte disorders render patients susceptible to recurrent, unusual, and/or life-threatening infections. Many disorders also have nonhematologic manifestations and a substantial risk of leukemogenesis. Diagnosis relies on clinical suspicion and interrogation of the complete blood count with differential/bone marrow examination coupled with immunologic and genetic analyses. Treatment of the quantitative neutrophil disorders depends on granulocyte colony-stimulating factor, whereas management of functional phagocyte disease is reliant on antimicrobials and/or targeted therapies. Hematopoietic stem cell transplant remains the only curative option for most disorders but is not used on a routine basis.
Collapse
Affiliation(s)
- Kelly Walkovich
- Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Drive, D4202 Medical Professional Building, SPC 5718, Ann Arbor, MI 48109-5718, USA.
| | - James A Connelly
- Pediatric Hematopoietic Stem Cell Transplant, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Pierce Avenue, 397 PRB, Nashville, TN 37232-6310, USA
| |
Collapse
|
127
|
De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019; 27:2040206619829382. [PMID: 30776910 PMCID: PMC6379795 DOI: 10.1177/2040206619829382] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMD3100 (plerixafor, Mozobil®) was first identified as an anti-HIV agent
specifically active against the T4-lymphotropic HIV strains, as it selectively
blocked the CXCR4 receptor. Through interference with the interaction of CXCR4
with its natural ligand, SDF-1 (also named CXCL12), it also mobilized the
CD34+stem cells from the bone marrow into the peripheral blood
stream. In December 2008, AMD3100 was formally approved by the US FDA for
autologous transplantation in patients with Non-Hodgkin’s Lymphoma or multiple
myeloma. It may be beneficially used in various other malignant diseases as well
as hereditary immunological disorders such as WHIM syndrome, and
physiopathological processes such as hepatopulmonary syndrome.
Collapse
|
128
|
Caballero A, Mahn SA, Ali MS, Rogers MR, Marchese A. Heterologous regulation of CXCR4 lysosomal trafficking. J Biol Chem 2019; 294:8023-8036. [PMID: 30936203 DOI: 10.1074/jbc.ra118.005991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mudassir S Ali
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - M Rose Rogers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
129
|
Galli J, Pinelli L, Micheletti S, Palumbo G, Notarangelo LD, Lougaris V, Dotta L, Fazzi E, Badolato R. Cerebellar involvement in warts Hypogammaglobulinemia immunodeficiency myelokathexis patients: neuroimaging and clinical findings. Orphanet J Rare Dis 2019; 14:61. [PMID: 30819232 PMCID: PMC6396443 DOI: 10.1186/s13023-019-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Warts Hypogammaglobulinemia Immunodeficiency Myelokathexis (WHIM) syndrome is a primary immunodeficiency characterized by recurrent bacterial infections, severe chronic neutropenia, with lymphopenia, monocytopenia and myelokathexis which is caused by heterozygous gain of functions mutations of the CXC chemokine receptor 4 (CXCR4). WHIM patients display an increased incidence of non-hematopoietic conditions, such as congenital heart disease suggesting that abnormal CXCR4 may put these patients at increased risk of congenital anomalies. Studies conducted on CXCR4 and SDF-1-deficient mice have demonstrated the role of CXCR4 signaling in neuronal cell migration and brain development. In particular, CXCR4 conditional knockout mice display abnormal cerebellar morphology and poor coordination and balance on motor testing. Results In order to evaluate a possible neurological involvement in WHIM syndrome subjects, we performed neurological examination, including International Cooperative Ataxia Rating Scale, cognitive and psychopathological assessment and brain Magnetic Resonance Imaging (MRI) in 6 WHIM patients (age range 8–51 years) with typical gain of functions mutations of CXCR4 (R334X or G336X). In three cases (P3, P5, P6) neurological evaluation revealed fine and global motor coordination disorders, balance disturbances, mild limb ataxia and excessive talkativeness. Brain MRI showed an abnormal orientation of the cerebellar folia involving bilaterally the gracilis and biventer lobules together with the tonsils in four subjects (P3, P4, P5, P6). The neuropsychiatric evaluation showed increased risk of internalizing and/or externalizing problems in four patients (P2, P3, P4, P6). Conclusions Taken together, these observations suggest CXCR4 gain of function mutations can be associated with cerebellar malformation, mild neuromotor and psychopathological dysfunction in WHIM patients.
Collapse
Affiliation(s)
- Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Lorenzo Pinelli
- Neuroradiology Unit, Section of Pediatric Neuroradiology, ASST Spedali Civili, Brescia, Italy
| | - Serena Micheletti
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | | | - Vassilios Lougaris
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Laura Dotta
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy.,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy
| | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili Hospital, Brescia, Italy.,Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy
| | - Raffaele Badolato
- Clinical and Experimental Sciences Department, University of Brescia, c/o ASST Spedali Civili, 25123, Brescia, Italy. .,Pediatric Unit and "A. Nocivelli" Institute for Molecular Medicine, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy.
| |
Collapse
|
130
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
131
|
Baron M, Simon L, Poulain S, Leblond V. How Recent Advances in Biology of Waldenström's Macroglobulinemia May Affect Therapy Strategy. Curr Oncol Rep 2019; 21:27. [PMID: 30806816 DOI: 10.1007/s11912-019-0768-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Waldenström macroglobulinemia (WM) is a rare lymphoproliferative disorder. Up to now, therapeutic choice was not influenced by the biological characteristics of the disease. Here, we will review how recent advances in biology in WM may affect therapy strategy. RECENT FINDINGS Recently, WM has been described as a new oncogenic model. MyD88 mutation has been described as a key driver mutation and has functional consequences which could be targeted. Other mutations, such as CXCR4 or TP53, have been reported. These mutations are associated with different clinical presentation, prognosis, and treatment response. Mutational status may influence therapeutic choice in some patients but additional data are required. New targeted therapies are on development.
Collapse
Affiliation(s)
- Marine Baron
- Department of Hematology, Pitié-Salpétrière Hospital APHP, Sorbonne Université, Boulevard de l'hôpital, 75013, Paris, France.
| | - Laurence Simon
- Department of Hematology, Centre-Hospitalier Sud-Francilien, Corbeil-Essonnes, France
| | - Stéphanie Poulain
- Department of Cellular Hematology, CHU de Lille, Lille, France.,INSERM UMRX 1172, IRCL, Lille, France
| | - Véronique Leblond
- Department of Hematology, Pitié-Salpétrière Hospital APHP, Sorbonne Université, Boulevard de l'hôpital, 75013, Paris, France
| |
Collapse
|
132
|
Involvement of CXCR4 in Normal and Abnormal Development. Cells 2019; 8:cells8020185. [PMID: 30791675 PMCID: PMC6406665 DOI: 10.3390/cells8020185] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
CXC motif chemokine receptor type 4 (CXCR4) is associated with normal and abnormal development, including oncogenesis. The ligand of CXCR4 is stromal cell-derived factor (SDF), also known as CXC motif ligand (CXCL) 12. Through the SDF-1/CXCR4 axis, both homing and migration of hematopoietic (stem) cells are regulated through niches in the bone marrow. Outside of the bone marrow, however, SDF-1 can recruit CXCR4-positive cells from the bone marrow. SDF/CXCR4 has been implicated in the maintenance and/or differentiation of stemness, and tissue-derived stem cells can be associated with SDF-1 and CXCR4 activity. CXCR4 plays a role in multiple pathways involved in carcinogenesis and other pathologies. Here, we summarize reports detailing the functions of CXCR4. We address the molecular signature of CXCR4 and how this molecule and cells expressing it are involved in either normal (maintaining stemness or inducing differentiation) or abnormal (developing cancer and other pathologies) events. As a constituent of stem cells, the SDF-1/CXCR4 axis influences downstream signal transduction and the cell microenvironment.
Collapse
|
133
|
McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D, Cho E, Liu Q, Trout HH, Neves JF, Gardner PJ, Bianchi DA, Blair EA, Landon EM, Silva SL, Buck CB, Murphy PM. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med 2019; 380:163-170. [PMID: 30625055 PMCID: PMC6425947 DOI: 10.1056/nejmoa1808575] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
WHIM syndrome (warts, hypogammaglobulinemia, infections, and myelokathexis), a primary immunodeficiency disorder involving panleukopenia, is caused by autosomal dominant gain-of-function mutations in CXC chemokine receptor 4 (CXCR4). Myelokathexis is neutropenia caused by neutrophil retention in bone marrow. Patients with WHIM syndrome are often treated with granulocyte colony-stimulating factor (G-CSF), which can increase neutrophil counts but does not affect cytopenias other than neutropenia. In this investigator-initiated, open-label study, three severely affected patients with WHIM syndrome who could not receive G-CSF were treated with low-dose plerixafor, a CXCR4 antagonist, for 19 to 52 months. Myelofibrosis, panleukopenia, anemia, and thrombocytopenia were ameliorated, the wart burden and frequency of infection declined, human papillomavirus-associated oropharyngeal squamous-cell carcinoma stabilized, and quality of life improved markedly. Adverse events were mainly infections attributable to the underlying immunodeficiency. One patient died from complications of elective reconstructive surgery. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- David H McDermott
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Diana V Pastrana
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Katherine R Calvo
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Stefania Pittaluga
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Daniel Velez
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elena Cho
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Qian Liu
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Hugh H Trout
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - João F Neves
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Pamela J Gardner
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - David A Bianchi
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Elizabeth A Blair
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Emily M Landon
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Susana L Silva
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Christopher B Buck
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (D.H.M., D.V., E.C., Q.L., P.M.M.), the Laboratories of Cellular Oncology (D.V.P., C.B.B.) and Pathology (S.P.), National Cancer Institute, the Department of Laboratory Medicine, Clinical Center (K.R.C.), the National Institute of Dental and Craniofacial Research (P.J.G.), and the National Institute on Deafness and Other Communication Disorders (D.A.B.), National Institutes of Health, and Kozloff and Trout MDs (H.H.T.), Bethesda, MD; the Infectious Diseases Unit and Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Pediatric University Hospital (J.F.N.), and Centro de Imunodeficiências Primárias, Academic Medical Center of Lisbon (S.L.S.), Lisbon, Portugal; and the University of Chicago Medical Center, Chicago (E.A.B., E.M.L.)
| |
Collapse
|
134
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019. [PMID: 30619343 DOI: 10.3389/fimmu.2018.02988.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
135
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019; 9:2988. [PMID: 30619343 PMCID: PMC6305424 DOI: 10.3389/fimmu.2018.02988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
136
|
Vinarkar S, Arora N, Chowdhury SS, Saha K, Pal B, Parihar M, Radhakrishnan VS, Chakrapani A, Bhartia S, Bhave S, Chandy M, Nair R, Mishra DK. MYD88 and CXCR4 Mutation Profiling in Lymphoplasmacytic Lymphoma/Waldenstrom's Macroglobulinaemia. Indian J Hematol Blood Transfus 2019; 35:57-65. [PMID: 30828149 PMCID: PMC6369099 DOI: 10.1007/s12288-018-0978-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022] Open
Abstract
Recurrent mutations affecting MYD88 and CXCR4 gene nowadays form the basis for the diagnosis, risk stratification and use of inhibitors targeting these signalling pathways in LPL/WM which are rare B cell neoplasms. MYD88 L265P mutation analysis was performed on 33 cases of LPL/WM by AS-PCR (positivity-84.8%, n = 28/33) and by Sanger sequencing (positivity-39.3%, n = 13/33). We had only two cases with CXCR4 non-sense (NS) mutation (p.S338*) using Sanger sequencing. MYD88 (L265P) mutation detection by AS-PCR can form reliable biomarker for the diagnosis of LPL/WM in molecular labs. Although the cohort is small, still the CXCR4 mutation frequency in our study is low as compared to the published literature.
Collapse
Affiliation(s)
- Sushant Vinarkar
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Neeraj Arora
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Sourav Sarma Chowdhury
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Kallol Saha
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Biswajoy Pal
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| | - Mayur Parihar
- Department of Laboratory Haematology and Cytogenetics, Tata Medical Center, Kolkata, India
| | | | | | | | - Saurabh Bhave
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Mammen Chandy
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Reena Nair
- Department of Clinical Haematology, Tata Medical Center, Kolkata, India
| | - Deepak Kumar Mishra
- Department of Laboratory Haematology and Molecular Genetics, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata, 700156 India
| |
Collapse
|
137
|
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019; 10:585. [PMID: 31507535 PMCID: PMC6718456 DOI: 10.3389/fendo.2019.00585] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.
Collapse
Affiliation(s)
- Eva M. García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - César A. Santiago
- Macromolecular X-Ray Crystallography Unit, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yasmina Juarranz
- Department Cell Biology, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
- *Correspondence: Mario Mellado
| |
Collapse
|
138
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
139
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
140
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
141
|
Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413-424. [PMID: 30342023 DOI: 10.1016/j.bcp.2018.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
142
|
De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest 2018; 48 Suppl 2:e12949. [PMID: 29734477 PMCID: PMC6767022 DOI: 10.1111/eci.12949] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemokines play a critical role in orchestrating the distribution and trafficking of neutrophils in homeostasis and disease. RESULTS The CXCR4/CXCL12 chemokine axis has been identified as a central regulator of these processes. CONCLUSION In this review, we focus on the role of CXCR4/CXCL12 chemokine axis in regulating neutrophil release from the bone marrow and the trafficking of senescent neutrophils back to the bone marrow for clearance under homeostasis and disease. We also discuss the role of CXCR4 in fine-tuning neutrophil responses in the context of inflammation.
Collapse
Affiliation(s)
- Katia De Filippo
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Sara M Rankin
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
143
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
144
|
Treon SP, Xu L, Liu X, Hunter ZR, Yang G, Castillo JJ. Genomic Landscape of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:745-752. [DOI: 10.1016/j.hoc.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
145
|
Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med 2018; 7:5217-5236. [PMID: 30589505 PMCID: PMC6198240 DOI: 10.1002/cam4.1501] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide, with concepts and knowledge about its prevention and treatment evolving rapidly. Human papillomavirus (HPV) has been identified as a major factor that leads to cervical cancer, although HPV infection alone cannot cause the disease. In fact, HPV-driven cancer is a small probability event because most infections are transient and could be cleared spontaneously by host immune system. With persistent HPV infection, decades are required for progression to cervical cancer. Therefore, this long time window provides golden opportunity for clinical intervention, and the fundament here is to elucidate the carcinogenic pattern and applicable targets during HPV-host interaction. In this review, we discuss the key factors that contribute to the persistence of HPV and cervical carcinogenesis, emerging new concepts and technologies for cancer interventions, and more urgently, how these concepts and technologies might lead to clinical precision medicine which could provide prediction, prevention, and early treatment for patients.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Gynecological oncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd RoadYuexiu, GuangzhouGuangdongChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| | - Ding Ma
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| |
Collapse
|
146
|
Peled A, Klein S, Beider K, Burger JA, Abraham M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 2018; 109:11-16. [PMID: 29903571 DOI: 10.1016/j.cyto.2018.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
Abstract
The chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1/CXCL12) are important players in the cross-talk among lymphoma, myeloma and leukemia cells and their microenvironments. In hematological malignancies and solid tumors, the overexpression of CXCR4 on the cell surface has been shown to be responsible for disease progression, increasing tumor cell survival and chemoresistance and metastasis to organs with high CXCL12 levels (e.g., lymph nodes and bone marrow (BM)). Furthermore, the overexpression of CXCR4 has been found to have prognostic significance for disease progression in many type of tumors including lymphoma, leukemia, glioma, and prostate, breast, colorectal, renal, and hepatocellular carcinomas. In leukemia, CXCR4 expression granted leukemic blasts a higher capacity to seed into BM niches, thereby protecting leukemic cells from chemotherapy-induced apoptosis, and was correlated with shorter disease-free survival. In contrast, neutralizing the interaction of CXCL12/CXCR4 with a variety of antagonists induced apoptosis and differentiation and increased the chemosensitivity of lymphoma, myeloma, and leukemia cells. The role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies and the clinical therapeutic potential of CXCR4 antagonists in these diseases is discussed.
Collapse
MESH Headings
- Apoptosis/immunology
- Cell Survival/physiology
- Chemokine CXCL12/metabolism
- Disease Progression
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Multiple Myeloma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Prognosis
- Receptors, CXCR4/metabolism
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, P.O.B 12000, Jerusalem 91120, Israel.
| | - Shiri Klein
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, P.O.B 12000, Jerusalem 91120, Israel
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center and Tel Aviv University, Tel-Hashomer, Israel
| | - Jan A Burger
- Department of Leukemia, The University of Texas Houston, TX, USA
| | - Michal Abraham
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, P.O.B 12000, Jerusalem 91120, Israel
| |
Collapse
|
147
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
148
|
Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, Pereira JP. Cell circuits between B cell progenitors and IL-7 + mesenchymal progenitor cells control B cell development. J Exp Med 2018; 215:2586-2599. [PMID: 30158115 PMCID: PMC6170173 DOI: 10.1084/jem.20180778] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023] Open
Abstract
B cell development is characterized by well-defined transitions. Fistonich et al. demonstrate that two distinct cell circuits formed between proB, preB, and IL-7+ cells regulate the size and quality of B cell progenitors and control B cell development. B cell progenitors require paracrine signals such as interleukin-7 (IL-7) provided by bone marrow stromal cells for proliferation and survival. Yet, how B cells regulate access to these signals in vivo remains unclear. Here we show that proB and IL-7+ cells form a cell circuit wired by IL-7R signaling, which controls CXCR4 and focal adhesion kinase (FAK) expression and restricts proB cell movement due to increased adhesion to IL-7+CXCL12Hi cells. PreBCR signaling breaks this circuit by switching the preB cell behavior into a fast-moving and lower-adhesion state via increased CXCR4 and reduced FAK/α4β1 expression. This behavioral change reduces preB cell exposure to IL-7, thereby attenuating IL-7R signaling in vivo. Remarkably, IL-7 production is downregulated by signals provided by preB cells with unrepaired double-stranded DNA breaks and by preB acute lymphoblastic leukemic cells. Combined, these studies revealed that distinct cell circuits control the quality and homeostasis of B cell progenitors.
Collapse
Affiliation(s)
- Chris Fistonich
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Runfeng Miao
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
149
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
150
|
Magierowicz M, Tomowiak C, Leleu X, Poulain S. Working Toward a Genomic Prognostic Classification of Waldenström Macroglobulinemia: C-X-C Chemokine Receptor Type 4 Mutation and Beyond. Hematol Oncol Clin North Am 2018; 32:753-763. [PMID: 30190015 DOI: 10.1016/j.hoc.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Waldenström macroglobulinemia is a rare indolent B-cell lymphoma. Whole-exome sequencing studies have improved our knowledge of the Waldenström macroglobulinemia mutational landscape. The MYD88 L265P mutation is present in nearly 90% of patients with Waldenström macroglobulinemia. CXCR4 mutations are identified in approximately 30% of MYD88L265P cases and have been associated with ibrutinib resistance in clinical trials. Mutations in CD79B, ARID1a, or TP53 were described at lower frequency. Deciphering the earliest initiating lesions and identifying the molecular alterations leading to disease progression currently represent important goals in the future to identify the most relevant targets for precision therapy in Waldenström macroglobulinemia.
Collapse
Affiliation(s)
- Marion Magierowicz
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, Lille, France
| | - Cécile Tomowiak
- Department of Hematology, Hospital of the Miletrie, INSERM CIC 1402, CHU of Poitiers, Poitiers, France
| | - Xavier Leleu
- Department of Hematology, Hospital of the Miletrie, INSERM CIC 1402, CHU of Poitiers, Poitiers, France
| | - Stéphanie Poulain
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, Lille, France; INSERM UMR S 1172, Team 4, Cancer Research Institute, Lille, France.
| |
Collapse
|