101
|
Miyoshi N, Barton SC, Kaneda M, Hajkova P, Surani MA. The continuing quest to comprehend genomic imprinting. Cytogenet Genome Res 2006; 113:6-11. [PMID: 16575156 DOI: 10.1159/000090808] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/11/2005] [Indexed: 11/19/2022] Open
Abstract
The discovery of the phenomenon of genomic imprinting in mammals showed that the parental genomes are functionally non-equivalent. Considerable advances have occurred in the field over the past 20 years, which has resulted in the identification and functional analysis of a number of imprinted genes the expression of which is determined by their parental origin. These genes belong to many diverse categories and they have been shown to regulate growth, complex aspects of mammalian physiology and behavior. Many aspects of the mechanism of imprinting have also been elucidated. However, the reasons for the evolution of genomic imprinting remain enigmatic. Further research is needed to determine if there is any relationship between the apparently diverse functions of imprinted genes in mammals, and their role in human diseases. It also remains to be seen what common features exist amongst the diverse imprinting control elements. The mechanisms involved in the erasure and re-establishment of imprints should provide deeper insights into epigenetic mechanisms of wide general interest.
Collapse
Affiliation(s)
- N Miyoshi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
102
|
Peters J, Holmes R, Monk D, Beechey CV, Moore GE, Williamson CM. Imprinting control within the compact Gnas locus. Cytogenet Genome Res 2006; 113:194-201. [PMID: 16575180 DOI: 10.1159/000090832] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/02/2005] [Indexed: 12/28/2022] Open
Abstract
Mouse distal chromosome 2 was one of the earliest described imprinting regions. Maternal and paternal inheritance of the region is associated with opposite phenotypes affecting growth, development and behaviour. Mis-expression of proteins determined by the imprinted Gnas locus can account for the phenotypes. The imprinting domain in mouse distal chromosome 2 is small, comprising the Gnas locus. This locus is unusually complex, containing biallelic, maternally and paternally expressed transcripts that share exons. It also contains two germline differentially methylated regions that have the characteristics of imprinting control regions. One of these specifically controls the tissue-specific imprinting of the Gnas exon 1 transcript but does not affect the imprinting of other transcripts. Imprinting of other transcripts may be controlled by the other germline differentially methylated region by a mechanism involving antisense RNA.
Collapse
Affiliation(s)
- J Peters
- MRC Mammalian Genetics Unit, Harwell, Oxon, UK.
| | | | | | | | | | | |
Collapse
|
103
|
Regha K, Latos PA, Spahn L. The imprinted mouse Igf2r/Air cluster – a model maternal imprinting system. Cytogenet Genome Res 2006; 113:165-77. [PMID: 16575177 DOI: 10.1159/000090829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 09/01/2005] [Indexed: 12/30/2022] Open
Abstract
Every diploid organism inherits a complete chromosome set from its father and mother in addition to the sex chromosomes, so that all autosomal genes are available in two copies. For most genes, both copies are expressed without preference. Imprinted genes, however, are expressed depending on their parental origin, being active on the paternal or maternal allele only. To date 73 imprinted genes are known in mouse (www.mgu.har.mrc.ac.uk/research/imprinting), 37 show paternal expression while 36 show maternal expression, indicating no bias for imprinting to occur in one sex or the other. Therefore, two different parental-specific imprinting systems may have evolved in mammals, acting specifically in the paternal or maternal gamete. Similarities and differences between the two imprinting systems will be reviewed, with specific reference to the role of non-coding RNAs and chromatin modifications. The mouse Igf2r/Air cluster is presented as a model of the maternal imprinting system.
Collapse
Affiliation(s)
- K Regha
- CeMM-Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | | | | |
Collapse
|
104
|
Van den Veyver IB, Al-Hussaini TK. Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring. Hum Reprod Update 2006; 12:233-42. [PMID: 16540529 DOI: 10.1093/humupd/dmk005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Highly recurrent hydatidiform moles (HMs) studied to date are not androgenetic but have biparental genomic contribution (BiHM). Affected women have an autosomal recessive mutation that causes their pregnancies to develop into HM. Although there is genetic heterogeneity, a major locus maps to chromosome 19q13.42, but a mutated gene has not yet been identified. Molecular studies have shown that maternal imprinting marks are deregulated in the BiHM trophoblast. The mutations that cause this condition are, therefore, hypothesized to occur in genes that encode transacting factors required for the establishment of imprinting marks in the maternal germline or for their maintenance in the embryo. Although only DNA methylation marks at imprinted loci have been studied in the BiHM, the mutation may affect genes that are essential for other forms of chromatin remodelling at imprinted loci and necessary for correct maternal allele-specific DNA methylation and imprinted gene expression. Normal pregnancies interspersed with BiHM have been reported in some of the pedigrees, but affected women repeatedly attempting pregnancy should be counselled about the risk for invasive trophoblastic disease with each subsequent BiHM.
Collapse
Affiliation(s)
- I B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1709 Dryden, Suite 1100, Houston, TX 77030, USA.
| | | |
Collapse
|
105
|
Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, Tymowska-Lalanne Z, Plagge A, Powles-Glover N, Kelsey G, Maconochie M, Peters J. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 2006; 38:350-5. [PMID: 16462745 DOI: 10.1038/ng1731] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/30/2005] [Indexed: 01/07/2023]
Abstract
Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.
Collapse
|
106
|
Arnaud P, Hata K, Kaneda M, Li E, Sasaki H, Feil R, Kelsey G. Stochastic imprinting in the progeny of Dnmt3L−/− females. Hum Mol Genet 2006; 15:589-98. [PMID: 16403808 DOI: 10.1093/hmg/ddi475] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cis-acting regulatory sequences of imprinted genes are subject to germline-specific epigenetic modifications, the imprints, so that this class of genes is exclusively expressed from either the paternal or maternal allele in offspring. How genes are differentially marked in the germlines remains largely to be elucidated. Although the exact nature of the mark is not fully known, DNA methylation [at differentially methylated regions (DMRs)] appears to be a major, functional component. Recent data in mice indicate that Dnmt3a, an enzyme with de novo DNA methyltransferase activity, and the related protein Dnmt3L are required for methylation of imprinted loci in germ cells. Maternal methylation imprints, in particular, are strictly dependent on the presence of Dnmt3L. Here, we show that, unexpectedly, methylation imprints can be present in some progeny of Dnmt3L(-/-) females. This incomplete penetrance of the effect of Dnmt3L deficiency in oocytes is neither embryo nor locus specific, but stochastic. We establish that, when it occurs, methylation is present in both embryo and extra-embryonic tissues and results in a functional imprint. This suggests that this maternal methylation is inherited, directly or indirectly, from the gamete. Our results indicate that in the absence of Dnmt3L, factors such as Dnmt3a and possibly others can act alone to mark individual DMRs. However, establishment of appropriate maternal imprints at all loci does require a combination of all factors. This observation can provide a basis to understand mechanisms involved in some sporadic cases of imprinting-related diseases and polymorphic imprinting in human.
Collapse
Affiliation(s)
- Philippe Arnaud
- Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier-II, 1919 Route de Mende, 34090 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
107
|
|
108
|
Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 2005; 14:3911-20. [PMID: 16301218 DOI: 10.1093/hmg/ddi415] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A four-generation family was studied in which nine children had congenital cerebral palsy (CP), characterized by quadriplegia and mental retardation. All the affected children were born to healthy, related fathers, whereas the children of their healthy female relatives were unaffected. Linkage analysis attributed the condition to chromosome 9p24.3, where a 225 kb deletion was identified. The deletion spans a single gene, ANKRD15 (ankyrin repeat domain 15), which is ubiquitously expressed. In the affected children, the ANKRD15 is not expressed in lymphoblastoid cells, whereas in their healthy fathers, who harbor the same deletion, the expression of ANKRD15 did not deviate from controls. This expression pattern can be interpreted as a maternal imprinted gene that is expressed only from the paternal allele. The expression of ANKRD15 in lymphoblastoid cells from the control group was monoallelic but not imprinted. The monoallelic expression was restricted to the ANKRD15 gene, whereas biallelic expression was found in the DOCK8 gene, which resides at the telomeric side of the deletion. No correlation was found between the expression of the ANKRD15 gene and the pattern of DNA methylation in the CpG islands 5' of the gene. However, differences in methylation pattern were found in the CpG islands flanking the DMRT1 gene, which is located at the 3' side of the ANKRD15 gene. In the affected individuals, as in the control group, the CpG islands were hypo-methylated, whereas in the healthy fathers, the CpG islands were hyper-methylated in cis with the deletion. This unique family demonstrates a phenomenon of a deletion that creates imprinting-like inheritance. The implication of this family to sporadic CP is discussed.
Collapse
Affiliation(s)
- Israela Lerer
- Department of Human Genetics, Hadassah Hebrew University Hospital and Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
109
|
Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, Huso DL, Saji M, Ringel MD, Levine MA. A mouse model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology 2005; 146:4697-709. [PMID: 16099856 DOI: 10.1210/en.2005-0681] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Albright hereditary osteodystrophy is caused by heterozygous inactivating mutations in GNAS, a gene that encodes not only the alpha-chain of Gs (Galphas), but also NESP55 and XLalphas through use of alternative first exons. Patients with GNAS mutations on maternally inherited alleles are resistant to multiple hormones such as PTH, TSH, LH/FSH, GHRH, and glucagon, whose receptors are coupled to Gs. This variant of Albright hereditary osteodystrophy is termed pseudohypoparathyroidism type 1a and is due to presumed tissue-specific paternal imprinting of Galphas. Previous studies have shown that mice heterozygous for a targeted disruption of exon 2 of Gnas, the murine homolog of GNAS, showed unique phenotypes dependent on the parent of origin of the mutated allele. However, hormone resistance occurred only when the disrupted gene was maternally inherited. Because disruption of exon 2 is predicted to inactivate Galphas as well as NESP55 and XLalphas, we created transgenic mice with disruption of exon 1 to investigate the effects of isolated loss of Galphas. Heterozygous mice that inherited the disruption maternally (-m/+) exhibited PTH and TSH resistance, whereas those with paternal inheritance (+/-p) had normal hormone responsiveness. Heterozygous mice were shorter and, when the disrupted allele was inherited maternally, weighed more than wild-type littermates. Galphas protein and mRNA expression was consistent with paternal imprinting in the renal cortex and thyroid, but there was no imprinting in renal medulla, heart, or adipose. These findings confirm the tissue-specific paternal imprinting of GNAS and demonstrate that Galphas deficiency alone is sufficient to account for the hormone resistance of pseudohypoparathyroidism type 1a.
Collapse
Affiliation(s)
- Emily L Germain-Lee
- Division of Pediatric Endocrinology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Park Building, Suite 211, 600 North Wolfe Street, Baltimore, Maryland 21287-2520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. ACTA ACUST UNITED AC 2005; 75:81-97. [PMID: 16035043 DOI: 10.1002/bdrc.20039] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Imprinted genes play important roles in the regulation of growth and development, and several have been shown to influence behavior. Their allele-specific expression depends on inheritance from either the mother or the father, and is regulated by "imprinting control regions" (ICRs). ICRs are controlled by DNA methylation, which is present on one of the two parental alleles only. These allelic methylation marks are established in either the female or the male germline, following the erasure of preexisting DNA methylation in the primordial germ cells. After fertilization, the allelic DNA methylation at ICRs is maintained in all somatic cells of the developing embryo. This epigenetic "life cycle" of imprinting (germline erasure, germline establishment, and somatic maintenance) can be disrupted in several human diseases, including Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS), Angelman syndrome and Hydatidiform mole. In the neurodevelopmental Rett syndrome, the way the ICR mediates imprinted expression is perturbed. Recent studies indicate that assisted reproduction technologies (ART) can sometimes affect the epigenetic cycle of imprinting as well, and that this gives rise to imprinting disease syndromes. This finding warrants careful monitoring of the epigenetic effects, and absolute risks, of currently used and novel reproduction technologies.
Collapse
Affiliation(s)
- Philippe Arnaud
- Institute of Molecular Genetics, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier II, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.
| | | |
Collapse
|
111
|
Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L, Weinstein LS. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc Natl Acad Sci U S A 2005; 102:7386-91. [PMID: 15883378 PMCID: PMC1129092 DOI: 10.1073/pnas.0408268102] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gnas is an imprinted gene with multiple gene products resulting from alternative splicing of different first exons onto a common exon 2. These products include stimulatory G protein alpha-subunit (G(s)alpha), the G protein required for receptor-stimulated cAMP production; extralarge G(s)alpha (XLalphas), a paternally expressed G(s)alpha isoform; and neuroendocrine-specific protein (NESP55), a maternally expressed chromogranin-like protein. G(s)alpha undergoes tissue-specific imprinting, being expressed primarily from the maternal allele in certain tissues. Heterozygous mutation of exon 2 on the maternal (E2m-/+) or paternal (E2+/p-) allele results in opposite effects on energy metabolism. E2m-/+ mice are obese and hypometabolic, whereas E2+/p- mice are lean and hypermetabolic. We now studied the effects of G(s)alpha deficiency without disrupting other Gnas gene products by deleting G(s)alpha exon 1 (E1). E1+/p- mice lacked the E2+/p- phenotype and developed obesity and insulin resistance. The lean, hypermetabolic, and insulin-sensitive E2+/p- phenotype appears to result from XLalphas deficiency, whereas loss of paternal-specific G(s)alpha expression in E1+/p- mice leads to an opposite metabolic phenotype. Thus, alternative Gnas gene products have opposing effects on glucose and lipid metabolism. Like E2m-/+ mice, E1m-/+ mice had s.c. edema at birth, presumably due to loss of maternal G(s)alpha expression. However, E1m-/+ mice differed from E2m-/+ mice in other respects, raising the possibility for the presence of other maternal-specific gene products. E1m-/+ mice had more severe obesity and insulin resistance and lower metabolic rate relative to E1+/p- mice. Differences between E1m-/+ and E1+/p- mice presumably result from differential effects on G(s)alpha expression in tissues where G(s)alpha is normally imprinted.
Collapse
Affiliation(s)
- Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet 2005; 76:804-14. [PMID: 15800843 PMCID: PMC1199370 DOI: 10.1086/429932] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 02/23/2005] [Indexed: 01/06/2023] Open
Abstract
A unique heterozygous 3-kb microdeletion within STX16, a closely linked gene centromeric of GNAS, was previously identified in multiple unrelated kindreds as a cause of autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib). We now report a novel heterozygous 4.4-kb microdeletion in a large kindred with AD-PHP-Ib. Affected individuals from this kindred share an epigenetic defect that is indistinguishable from that observed in patients with AD-PHP-Ib who carry the 3-kb microdeletion in the STX16 region (i.e., an isolated loss of methylation at GNAS exon A/B). The novel 4.4-kb microdeletion overlaps with the previously identified deletion by 1,286 bp and, similar to the latter deletion, removes several exons of STX16 (encoding syntaxin-16). Because these microdeletions lead to AD-PHP-Ib only after maternal transmission, we analyzed expression of this gene in lymphoblastoid cells of affected individuals with the 3-kb or the 4.4-kb microdeletion, an individual with a NESP55 deletion, and a healthy control. We found that STX16 mRNA was expressed in all cases from both parental alleles. Thus, STX16 is apparently not imprinted, and a loss-of-function mutation in one allele is therefore unlikely to be responsible for this disorder. Instead, the region of overlap between the two microdeletions likely harbors a cis-acting imprinting control element that is necessary for establishing and/or maintaining methylation at GNAS exon A/B, thus allowing normal G alpha(s) expression in the proximal renal tubules. In the presence of either of the two microdeletions, parathyroid hormone resistance appears to develop over time, as documented in an affected individual who was diagnosed at birth with the 4.4-kb deletion of STX16 and who had normal serum parathyroid hormone levels until the age of 21 mo.
Collapse
Affiliation(s)
- Agnès Linglart
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Robert C. Gensure
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Robert C. Olney
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| |
Collapse
|
113
|
O'Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet 2005; 14 Spec No 1:R113-20. [PMID: 15809263 DOI: 10.1093/hmg/ddi108] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Current research has revealed that the influence of RNA molecules on gene expression reaches beyond the realm of protein synthesis back into the nucleus, where it not only dictates the transcriptional activity of genes, but also shapes the chromatin architecture of extensive regions of DNA. Non-coding RNA, in the context of this review, refers to transcripts expressed and processed in the nucleus much like any protein coding gene, but lacking an open reading frame and often transcribed antisense to bona fide protein coding genes. In mammals, these types of transcripts are highly coincident with allele-specific silencing of imprinted genes and have a proven role in dosage compensation via X-inactivation. The biochemistry of how non-coding RNAs regulate transcription is the subject of intense research in both prokaryotic and eukaryotic models. Mechanisms such as RNA interference may have deep phylogenetic roots, but their relevance to imprinting and X-inactivation in mammals has not been proven. The remarkable diversity of non-coding transcription associated with parent-of-origin directed gene silencing hints at an equally diverse assortment of mechanisms.
Collapse
Affiliation(s)
- Michael J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06235, USA
| |
Collapse
|
114
|
Abstract
Mice with uniparental partial or complete disomies for any one of 11 identified chromosomes show abnormal phenotypes. The abnormalities, or imprinting effects, can be attributable to an incorrect dosage of maternal or paternal copies of imprinted gene(s) located within the regions involved. Here we show that combinations of partial disomies may result in interactions between imprinting effects that seemingly independently affect fetal and/or placental growth in different ways or modify neonatal and postnatal imprinting effects. Candidate genes within the regions have been identified. The findings are generally in accord with the "conflict hypothesis" for the evolution of genomic imprinting but do not clearly demonstrate common growth axes within which imprinted genes may interact. Instead, it would seem that any gene that represses or limits embryonic/fetal growth to the advantage of the mother--by any developmental means--will have been subject to evolutionary selection for paternal allele repression. Likewise, any gene that favors embryonic/fetal development at consequent cost to the mother--by any developmental means--will have faced selection for maternal allele repression. The classical Igf2-Igf2r axis may therefore be unique. The findings involve reinterpretation of older imprinting data and consequently revision of the mouse imprinting map.
Collapse
Affiliation(s)
- Bruce M Cattanach
- Mammalian Genetics Unit, Medical Research Council, Oxfordshire OX11 0RD, United Kingdom.
| | | | | |
Collapse
|
115
|
Liu J, Chen M, Deng C, Bourc'his D, Nealon JG, Erlichman B, Bestor TH, Weinstein LS. Identification of the control region for tissue-specific imprinting of the stimulatory G protein alpha-subunit. Proc Natl Acad Sci U S A 2005; 102:5513-8. [PMID: 15811946 PMCID: PMC556240 DOI: 10.1073/pnas.0408262102] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 12/14/2022] Open
Abstract
Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein alpha-subunit (G(s)alpha) is unmethylated, although in some tissues (e.g., renal proximal tubules), G(s)alpha is poorly expressed from the paternal allele. Just upstream of the G(s)alpha promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L(-/-) mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-G(s)alpha) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in G(s)alpha overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on G(s)alpha expression in other tissues where G(s)alpha is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress G(s)alpha expression from the paternal allele in a tissue-specific manner.
Collapse
Affiliation(s)
- Jie Liu
- Metabolic Diseases Branch and Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 2005; 25:3019-26. [PMID: 15798190 PMCID: PMC1069615 DOI: 10.1128/mcb.25.8.3019-3026.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/07/2004] [Accepted: 01/18/2005] [Indexed: 12/20/2022] Open
Abstract
Genomic imprinting results in parent-of-origin-dependent monoallelic expression of selected genes. Although their importance in development and physiology is recognized, few imprinted genes have been investigated for their effects on brain function. Gnas is a complex imprinted locus whose gene products are involved in early postnatal adaptations and neuroendocrine functions. Gnas encodes the stimulatory G-protein subunit Gsalpha and two other imprinted protein-coding transcripts. Of these, the Nesp transcript, expressed exclusively from the maternal allele, codes for neuroendocrine secretory protein 55 (Nesp55), a chromogranin-like polypeptide associated with the constitutive secretory pathway but with an unknown function. Nesp is expressed in restricted brain nuclei, suggesting an involvement in specific behaviors. We have generated a knockout of Nesp55 in mice. Nesp55-deficient mice develop normally, excluding a role of this protein in the severe postnatal effects associated with imprinting of the Gnas cluster. Behavioral analysis of adult Nesp55 mutants revealed, in three separate tasks, abnormal reactivity to novel environments independent of general locomotor activity and anxiety. This phenotype may be related to prominent Nesp55 expression in the noradrenergic locus coeruleus. These results indicate a role of maternally expressed Nesp55 in controlling exploratory behavior and are the first demonstration that imprinted genes affect such a fundamental behavior.
Collapse
Affiliation(s)
- Antonius Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often present with additional hormonal resistance and show characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients affected by this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, present predominantly with renal PTH resistance and lack any features of AHO. Most of these PHP forms are caused by defects in GNAS (20q13.3), an imprinted gene locus with multiple transcriptional units. PHP-Ia and PPHP are caused by heterozygous inactivating mutations in those exons of GNAS encoding the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsalpha), and the autosomal dominant form of PHP-Ib (AD-PHP-Ib) is caused by heterozygous mutations disrupting a long-range imprinting control element of GNAS. Expressed nearly in all cells, Gsalpha plays essential roles in a multitude of physiological processes. Its expression in renal proximal tubules occurs predominantly from the maternal allele, and this tissue- and parent-specific imprinting of Gsalpha is an important determinant of hormone resistance in kindreds with PHP-Ia/PPHP and AD-PHP-Ib.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
118
|
Autran D, Huanca-Mamani W, Vielle-Calzada JP. Genomic imprinting in plants: the epigenetic version of an Oedipus complex. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:19-25. [PMID: 15653395 DOI: 10.1016/j.pbi.2004.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic imprinting is a mitotically stable epigenetic modification that results in the functional non-equivalency of both parental genomes following fertilization. In flowering plants, studies of parent-of-origin effects have mostly identified genes that are only transcribed from a maternally inherited allele. In Arabidopsis, the Polycomb group protein MEDEA regulates seed development through the expression of the MADS-box gene PHERES1. Activation of the maternal MEDEA allele requires the function of DEMETER, a plant DNA glycosylase that also controls the transcriptional activity of the maternally inherited allele of the late-flowering gene FWA. Current studies of parent-of-origin effects have mostly identified genes that are only transcribed from a maternally inherited allele. Our current understanding of parent-of-origin effects could represent a new form of an Oedipus complex in which flowering plants prefer to rely transcriptionally on their maternal rather than their paternal chromosomes to ensure normal initiation of seed development.
Collapse
Affiliation(s)
- Daphné Autran
- Laboratory of Reproductive Development and Apomixis, Department of Genetic Engineering, CINVESTAV--Unidad Irapuato, Apartado Postal 629, CP 36 500, Irapuato, Gto. México.
| | | | | |
Collapse
|
119
|
Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 2004; 37:25-7. [DOI: 10.1038/ng1487] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 11/19/2004] [Indexed: 11/09/2022]
|
120
|
Abstract
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present in various endocrine tumors and fibrous dysplasia of bone, and in a more widespread distribution in patients with McCune- Albright syndrome. Heterozygous inactivating G(s)alpha mutations lead to Albright hereditary osteodystrophy. G(s)alpha is imprinted in a tissue-specific manner, being primarily expressed from the maternal allele in renal proximal tubules, thyroid, pituitary, and ovary. Maternally inherited mutations lead to Albright hereditary osteodystrophy (AHO) plus PTH, TSH, and gonadotropin resistance (pseudohypoparathyroidism type 1A), whereas paternally inherited mutations lead to AHO alone. Pseudohypoparathyroidism type 1B, in which patients develop PTH resistance without AHO, is almost always associated with a GNAS imprinting defect in which both alleles have a paternal-specific imprinting pattern on both parental alleles. Familial forms of the disease are associated with a mutation within a closely linked gene that deletes a region that is presumably required for establishing the maternal imprint, and therefore maternal inheritance of the mutation results in the GNAS imprinting defect. Imprinting of one differentially methylated region within GNAS is virtually always lost in pseudohypoparathyroidism type 1B, and this region is probably responsible for tissue-specific G(s)alpha imprinting. Mouse knockout models show that G(s)alpha and the alternative G(s)alpha isoform XLalphas that is expressed from the paternal GNAS allele may have opposite effects on energy metabolism in mice.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
121
|
Liu J, Nealon JG, Weinstein LS. Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet 2004; 14:95-102. [PMID: 15537666 DOI: 10.1093/hmg/ddi009] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudohypoparathyroidism type IB (PHPIB) is associated with abnormal imprinting of GNAS, the gene encoding the heterotrimeric G protein Gsalpha and other alternative products. The gene contains three differentially methylated regions (DMRs) located upstream of the Gsalpha promoter (from upstream to downstream): the paternally methylated NESP55 promoter region, the maternally methylated NESP antisense (NESPAS)/XLalphas promoter region and the maternally methylated exon 1A region located just upstream of the Gsalpha promoter. We have now performed a detailed analysis of the GNAS methylation profile in 20 unrelated PHPIB probands. Consistent with prior results, all have loss of exon 1A imprinting (a paternal epigenotype on both alleles). All five probands with familial disease had a deletion mutation within the closely linked STX16 gene and a GNAS imprinting defect involving only the exon 1A region. In contrast, the STX16 mutation was absent in all sporadic cases. The majority of these patients had abnormal imprinting of the more upstream regions in addition to the exon 1A imprinting defect, with eight of 15 having a paternal epigenotype on both alleles throughout the GNAS locus. In virtually all cases, the imprinting status of the NESP55 and NESPAS/XLalphas promoters is concordant, suggesting that their imprinting is co-regulated, whereas the imprinting of the NESPAS/XLalphas promoter region and XLalphas first exon is not always concordant even though they are closely linked and lie within the same DMR. Familial and sporadic forms of PHPIB have distinct GNAS imprinting patterns that occur through different defects in the imprinting mechanism.
Collapse
Affiliation(s)
- Jie Liu
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
122
|
|
123
|
Packer A. Family feud. Nat Rev Genet 2004. [DOI: 10.1038/nrg1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|