101
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
102
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
103
|
Martin SF. Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 2014; 71:4115-30. [PMID: 24997561 PMCID: PMC11113124 DOI: 10.1007/s00018-014-1676-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023]
Abstract
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.
Collapse
Affiliation(s)
- Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104, Freiburg, Germany,
| |
Collapse
|
104
|
Szomolay B, van den Berg HA. Modulation of T-cell receptor functional sensitivity via the opposing actions of protein tyrosine kinases and phosphatases: a mathematical model. Integr Biol (Camb) 2014; 6:1183-95. [PMID: 25310311 DOI: 10.1039/c4ib00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining receptor kinetics and stochastic modelling of receptor activation, we show that a T-cell can specifically augment its functional sensitivity to one particular peptide ligand while simultaneously decreasing its sensitivity to other ligands, by coordinating the expression levels of the co-receptor CD8 and the relative activities of kinases and phosphatases in the vicinity of the T-cell receptor (TCR). We propose that this focusable degeneracy of epitope recognition allows a TCR to have a wide range of potential ligands but be specifically sensitive to only one or a few of these at any one time, which resolves the paradox of how a relatively small number of clones (∼10(6)) can maintain the potential to respond to a vast space of ligands (∼20(9)) whilst avoiding auto-immunity. We validate the model against experimental data and predict shifts in functional sensitivity following a shift in the kinase/phosphatase balance (which could in principle be induced by experimental means). Moreover, we propose that in vivo, the T-cell gauges ligand quality by monitoring changes in TCR triggering rate concomitant with shifts in this balance, for instance as the immunological synapse matures.
Collapse
|
105
|
N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca²⁺ signaling. Nat Immunol 2014; 15:1038-45. [PMID: 25263124 DOI: 10.1038/ni.3007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells. During thymocyte development, N-glycan branching varied approximately 15-fold. N-glycan branching was required for positive selection and decoupled Lck signaling from TCR-driven Ca(2+) flux to simultaneously promote low-affinity peptide-MHC responses while inhibiting high-affinity ones. Therefore, N-glycan branching imposes a sliding scale on interactions between peptide-MHC and TCR that bidirectionally expands the affinity range for positive selection.
Collapse
|
106
|
Berkley AM, Fink PJ. Cutting edge: CD8+ recent thymic emigrants exhibit increased responses to low-affinity ligands and improved access to peripheral sites of inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 193:3262-6. [PMID: 25172492 DOI: 10.4049/jimmunol.1401870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To explore the TCR sensitivity of recent thymic emigrants (RTEs), we triggered T cells with altered peptide ligands (APLs). Upon peptide stimulation in vitro, RTEs exhibited increased TCR signal transduction, and following infection in vivo with APL-expressing bacteria, CD8 RTEs expanded to a greater extent in response to low-affinity Ags than did their mature T cell counterparts. RTEs skewed to short-lived effector cells in response to all APLs but also were characterized by diminished cytokine production. RTEs responding to infection expressed increased levels of VLA-4, with consequent improved entry into inflamed tissue and pathogen clearance. These positive outcomes were offset by the capacity of RTEs to elicit autoimmunity. Overall, salient features of CD8 RTE biology should inform strategies to improve neonatal vaccination and therapies for cancer and HIV, because RTEs make up a large proportion of the T cells in lymphodepleted environments.
Collapse
Affiliation(s)
- Amy M Berkley
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
107
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
108
|
Abstract
To provide broad immunity to a vast array of foreign antigens with a limited number of T lymphocytes, each cell has to recognize many targets. By implementing a strategy to identify T cell receptor (TCR) ligands and investigating at a fine granularity their structure and sequence relationship, Birnbaum et al. demonstrate the surprisingly tight focus of such T cell cross-reactivity.
Collapse
Affiliation(s)
- Judith N Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
109
|
Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP. The ability to rearrange dual TCRs enhances positive selection, leading to increased Allo- and Autoreactive T cell repertoires. THE JOURNAL OF IMMUNOLOGY 2014; 193:1778-86. [PMID: 25015825 DOI: 10.4049/jimmunol.1400532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thymic selection is designed to ensure TCR reactivity to foreign Ags presented by self-MHC while minimizing reactivity to self-Ags. We hypothesized that the repertoire of T cells with unwanted specificities such as alloreactivity or autoreactivity are a consequence of simultaneous rearrangement of both TCRα loci. We hypothesized that this process helps maximize production of thymocytes capable of successfully completing thymic selection, but results in secondary TCRs that escape stringent selection. In T cells expressing two TCRs, one TCR can mediate positive selection and mask secondary TCR from negative selection. Examination of mice heterozygous for TRAC (TCRα(+/-)), capable of only one functional TCRα rearrangement, demonstrated a defect in generating mature T cells attributable to decreased positive selection. Elimination of secondary TCRs did not broadly alter the peripheral T cell compartment, though deep sequencing of TCRα repertoires of dual TCR T cells and TCRα(+/-) T cells demonstrated unique TCRs in the presence of secondary rearrangements. The functional impact of secondary TCRs on the naive peripheral repertoire was evidenced by reduced frequencies of T cells responding to autoantigen and alloantigen peptide-MHC tetramers in TCRα(+/-) mice. T cell populations with secondary TCRs had significantly increased ability to respond to altered peptide ligands related to their allogeneic ligand as compared with TCRα(+/-) cells, suggesting increased breadth in peptide recognition may be a mechanism for their reactivity. Our results imply that the role of secondary TCRs in forming the T cell repertoire is perhaps more significant than what has been assumed.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin Solomon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
110
|
Fu G, Rybakin V, Brzostek J, Paster W, Acuto O, Gascoigne NRJ. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 2014; 35:311-8. [PMID: 24951034 PMCID: PMC4119814 DOI: 10.1016/j.it.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/23/2023]
Abstract
T cell development from immature CD4(+)CD8(+) double-positive (DP) thymocytes to the mature CD4 or CD8 single-positive (SP) stage requires proper T cell receptor (TCR) signaling. The current working model of thymocyte development is that the strength of the TCR-mediated signal - from little-or-none, through intermediate, to strong - received by the immature cells determines whether they will undergo death by neglect, positive selection, or negative selection, respectively. In recent years, several developmentally regulated, stage-specifically expressed proteins and miRNAs have been found that act like fine-tuners for signal transduction and propagation downstream of the TCR. This allows them to govern thymocyte positive selection. Here, we summarize recent findings on these molecules and suggest new concepts of TCR positive-selection signaling.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Joanna Brzostek
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597.
| |
Collapse
|
111
|
Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. Proc Natl Acad Sci U S A 2014; 111:E2550-8. [PMID: 24927565 DOI: 10.1073/pnas.1408482111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Positive selection of CD8 T cells in the thymus is thought to be a multistep process lasting 3-4 d; however, the discrete steps involved are poorly understood. Here, we examine phenotypic changes, calcium signaling, and intrathymic migration in a synchronized cohort of MHC class I-specific thymocytes undergoing positive selection in situ. Transient elevations in intracellular calcium concentration ([Ca(2+)]i) and migratory pauses occurred throughout the first 24 h of positive selection, becoming progressively briefer and accompanied by a gradual shift in basal [Ca(2+)]i over time. Changes in chemokine-receptor expression and relocalization from the cortex to medulla occurred between 12 and 24 h after the initial encounter with positive-selecting ligands, a time frame at which the majority of thymocytes retain CD4 and CD8 expression and still require T-cell receptor (TCR) signaling to efficiently complete positive selection. Our results identify distinct phases in the positive selection of MHC class I-specific thymocytes that are distinguished by their TCR-signaling pattern and intrathymic location and provide a framework for understanding the multistep process of positive selection in the thymus.
Collapse
|
112
|
Bettini ML, Guy C, Dash P, Vignali KM, Hamm DE, Dobbins J, Gagnon E, Thomas PG, Wucherpfennig KW, Vignali DAA. Membrane association of the CD3ε signaling domain is required for optimal T cell development and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:258-67. [PMID: 24899501 DOI: 10.4049/jimmunol.1400322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - David E Hamm
- Adaptive Biotechnologies, Seattle, WA 98102; and
| | - Jessica Dobbins
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Etienne Gagnon
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105;
| |
Collapse
|
113
|
Liukko ALK, Kinnunen TT, Rytkönen-Nissinen MA, Kailaanmäki AHT, Randell JT, Maillère B, Virtanen TI. Human CD4+ T cell responses to the dog major allergen Can f 1 and its human homologue tear lipocalin resemble each other. PLoS One 2014; 9:e98461. [PMID: 24875388 PMCID: PMC4038554 DOI: 10.1371/journal.pone.0098461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/03/2014] [Indexed: 01/21/2023] Open
Abstract
Lipocalin allergens form a notable group of proteins, as they contain most of the significant respiratory allergens from mammals. The basis for the allergenic capacity of allergens in the lipocalin family, that is, the development of T-helper type 2 immunity against them, is still unresolved. As immunogenicity has been proposed to be a decisive feature of allergens, the purpose of this work was to examine human CD4+ T cell responses to the major dog allergen Can f 1 and to compare them with those to its human homologue, tear lipocalin (TL). For this, specific T cell lines were induced in vitro from the peripheral blood mononuclear cells of Can f 1-allergic and healthy dog dust-exposed subjects with peptides containing the immunodominant T cell epitopes of Can f 1 and the corresponding TL peptides. We found that the frequency of Can f 1 and TL-specific T cells in both subject groups was low and close to each other, the difference being about two-fold. Importantly, we found that the proliferative responses of both Can f 1 and TL-specific T cell lines from allergic subjects were stronger than those from healthy subjects, but that the strength of the responses within the subject groups did not differ between these two antigens. Moreover, the phenotype of the Can f 1 and TL-specific T cell lines, determined by cytokine production and expression of cell surface markers, resembled each other. The HLA system appeared to have a minimal role in explaining the allergenicity of Can f 1, as the allergic and healthy subjects' HLA background did not differ, and HLA binding was very similar between Can f 1 and TL peptides. Along with existing data on lipocalin allergens, we conclude that strong antigenicity is not decisive for the allergenicity of Can f 1.
Collapse
Affiliation(s)
- Aino L. K. Liukko
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Tuure T. Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Marja A. Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
- Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anssi H. T. Kailaanmäki
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Jukka T. Randell
- Department of Pulmonary Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Bernard Maillère
- Commissariat à l'Energie Atomique, Institut de Biologie et de Technologies, Service d'Ingénierie Moléculaire des Protéines, Gif Sur Yvette, France
| | - Tuomas I. Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
114
|
Clambey ET, Davenport B, Kappler JW, Marrack P, Homann D. Molecules in medicine mini review: the αβ T cell receptor. J Mol Med (Berl) 2014; 92:735-41. [PMID: 24848996 DOI: 10.1007/s00109-014-1145-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/01/2023]
Abstract
As an integral part of the mammalian immune system, a distributed network of tissues, cells, and extracellular factors, T lymphocytes perform and control a multitude of activities that collectively contribute to the effective establishment, maintenance, and restoration of tissue and organismal integrity. Development and function of T cells is controlled by the T cell receptor (TCR), a heterodimeric cell surface protein uniquely expressed on T cells. During T cell development, the TCR undergoes extensive somatic diversification that generates a diverse T cell repertoire capable of recognizing an extraordinary range of protein and nonprotein antigens presented in the context of major histocompatibility complex molecules (MHC). In this review, we provide an introduction to the TCR, describing underlying principles that position this molecule as a central regulator of the adaptive immune system involved in responses ranging from tissue protection and preservation to pathology and autoimmunity.
Collapse
Affiliation(s)
- Eric T Clambey
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Mail Stop B112, Research Complex 2, 12700 East 19th Avenue, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
115
|
Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Özkan E, Davis MM, Wucherpfennig KW, Garcia KC. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 2014; 157:1073-87. [PMID: 24855945 PMCID: PMC4071348 DOI: 10.1016/j.cell.2014.03.047] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 01/07/2023]
Abstract
In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.
Collapse
Affiliation(s)
- Michael E. Birnbaum
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Juan L. Mendoza
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Dhruv K. Sethi
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Shen Dong
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Jacob Glanville
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Jessica Dobbins
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115,Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - Engin Özkan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115,Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
116
|
Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES. Effect of CDR3 sequences and distal V gene residues in regulating TCR-MHC contacts and ligand specificity. THE JOURNAL OF IMMUNOLOGY 2014; 192:6071-82. [PMID: 24813203 DOI: 10.4049/jimmunol.1303209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Vα and Vβ gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3α residues can modulate the geometry in which TCRs bind peptide-MHC (pMHC), governing whether and how germline encoded TCR Vα and Vβ residues interact with MHC. In addition, a CDR1α residue that is positioned distal to the TCR-pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Peter Trenh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Brian Duke
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Guoqi Li
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
117
|
Stadinski BD, Huseby ES. Identifying environmental antigens that activate myelin-specific T cells. Trends Immunol 2014; 35:231-2. [PMID: 24820694 DOI: 10.1016/j.it.2014.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022]
Abstract
Human genetic and environmental factors underlie susceptibility to the T cell-mediated autoimmune disease, multiple sclerosis (MS). How the environment influences the pathogenesis of MS has been difficult to parse. A recent paper in Cell shows that environmental antigens that activate myelin-specific T cells can be identified with unprecedented accuracy.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
118
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
119
|
Abstract
αβ T cells are an integral part of protective immunity against pathogens. After precursor cells arise in the adult bone marrow or fetal liver, they migrate to the thymus where they rearrange their T-cell receptor genes (TCR) and undergo selection on the basis of their interactions with ligands expressed by thymic stroma and other cells. Those that survive then exit the thymus to populate the peripheral immune compartment, where they patrol the blood and lymphoid systems. The composition of this pre-immune peripheral repertoire is critically important in determining the robustness of an immune response. In both mice and humans, the magnitude and diversity of a response are directly correlated with the frequency of precursor T cells. Equally relevant are the functional characteristics of these lymphocytes. Engagement of a specific antigen to the TCR activates signaling pathways in the naive T cell that result in cellular proliferation and the acquisition of particular effector functions. A portion of these persist following the resolution of infection and become memory cells. These memory cells can mount a faster and stronger response when they encounter the same antigen at a later time. As the molecular basis for TCR ligand interaction has become better defined, it is clear that some T cells can recognize multiple distinct ligands and therefore T-cell memory developed by exposure to one ligand may play a significant role in the response to a different antigen. Thus, there is an increasing focus on understanding how exposure to related or unrelated antigens influences the T-cell repertoire and impacts subsequent immunity. In this review, we discuss the issue of TCR cross-reactivity in the development of memory phenotype CD4(+) T cells and the implications for pathogen-specific responses. We review both the human and mouse data and discuss the therapeutic implications of these findings in the contexts of infection and vaccination.
Collapse
Affiliation(s)
- Laura F Su
- The Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
120
|
Khan TA, Reddy ST. Immunological principles regulating immunomodulation with biomaterials. Acta Biomater 2014; 10:1720-7. [PMID: 24342045 DOI: 10.1016/j.actbio.2013.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/12/2013] [Accepted: 12/08/2013] [Indexed: 01/01/2023]
Abstract
The immune system has evolved to recognize and eliminate pathogens; this recognition relies on the identification of structural molecular patterns within unique tissue microenvironments. Therefore, bioengineers can harness these immunological cues to design materials that modulate innate and adaptive immunity in a controlled manner. This review acts as an immunology primer by focusing on the basic molecular and cellular immunology principles governing immunomodulation with biomaterials.
Collapse
|
121
|
Persaud SP, Parker CR, Lo WL, Weber KS, Allen PM. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat Immunol 2014; 15:266-74. [PMID: 24487322 PMCID: PMC3944141 DOI: 10.1038/ni.2822] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
Abstract
Interactions of T cell antigen receptors (TCRs) with complexes of self peptide and major histocompatibility complex (MHC) are crucial to T cell development, but their role in peripheral T cell responses remains unclear. Specific and nonspecific stimulation of LLO56 and LLO118 T cells, which transgenically express a TCR specific for the same Listeria monocytogenes epitope, elicited distinct interleukin 2 (IL-2) and phosphorylated kinase Erk responses, the strength of which was set in the thymus and maintained in the periphery in proportion to the avidity of the binding of the TCR to the self peptide-MHC complex. Deprivation of self peptide-MHC substantially compromised the population expansion of LLO56 T cells in response to L. monocytogenes in vivo. Despite their very different self-reactivity, LLO56 T cells and LLO118 T cells bound cognate peptide-MHC with an identical affinity, which challenges associations made between these parameters. Our findings highlight a crucial role for selecting ligands encountered during thymic 'education' in determining the intrinsic functionality of CD4+ T cells.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chelsea R Parker
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wan-Lin Lo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
122
|
Esser PR, Kimber I, Martin SF. Correlation of contact sensitizer potency with T cell frequency and TCR repertoire diversity. ACTA ACUST UNITED AC 2014; 104:101-14. [PMID: 24214621 DOI: 10.1007/978-3-0348-0726-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allergic contact dermatitis is a T cell-mediated skin disease. Many hundreds of organic chemicals and some metal ions are contact sensitizers. They induce an innate inflammatory immune response in the skin that results in the priming of contact sensitizer-specific T cells by dendritic cells in the draining lymph nodes. The factors that determine the strength of this T cell response and thereby define the potency of a contact sensitizer are largely unknown. This chapter highlights different variables such as precursor frequency of antigen-specific T cells, possible bystander activation, and T cell receptor diversity or avidity of the TCR/peptide-MHC interactions, which might impact the quality and strength of T cell responses to contact sensitizers. In addition, different methods available to determine both the frequency of antigen-specific T cells and T cell receptor repertoires are discussed. Identification of the factors determining potency may allow for the development of suitable in vitro assays for potency assessment of contact sensitizers.
Collapse
Affiliation(s)
- Philipp R Esser
- Allergy Research Group, Department of Dermatology and Venereology, University Medical Center Freiburg, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
123
|
Morris GP, Uy GL, Donermeyer D, Dipersio JF, Allen PM. Dual receptor T cells mediate pathologic alloreactivity in patients with acute graft-versus-host disease. Sci Transl Med 2014; 5:188ra74. [PMID: 23740900 DOI: 10.1126/scitranslmed.3005452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acute graft-versus-host disease (aGVHD) results from a robust response of donor T cells transferred during hematopoietic stem cell transplantation (HSCT) to allogeneic peptide-major histocompatibility complex antigens. Previous investigations have not identified T cell subsets that selectively mediate either protective immunity or pathogenic alloreactivity. We demonstrate that the small subset of peripheral T cells that naturally express two T cell receptors (TCRs) on the cell surface contributes disproportionately to aGVHD in patients after allogeneic HSCT. Dual TCR T cells from patients with aGVHD demonstrate an activated phenotype and produce pathogenic cytokines ex vivo. Dual receptor clones from a patient with symptomatic aGVHD responded specifically to mismatched recipient human leukocyte antigens (HLAs), demonstrating pathologic alloreactivity. Human dual TCR T cells are strongly activated and expanded by allogeneic stimulation in vitro, and disproportionately contribute to the repertoire of T cells recognizing both major (HLA) and minor histocompatibility antigens, providing a mechanism for their observed activity in vivo in patients with aGVHD. These results identify dual TCR T cells as a target for focused analysis of a T cell subset mediating GVHD and as a potential prognostic indicator.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
124
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
125
|
Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, Hoerter JAH, Paster W, Acuto O, Cheroutre H, Sauer K, Gascoigne NRJ. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 2013; 504:441-5. [PMID: 24226767 PMCID: PMC3977001 DOI: 10.1038/nature12718] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αβ-expressing 'single-positive' thymocytes from CD4(+)CD8αβ(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Javier Casas
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Stephanie Rigaud
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | - Vasily Rybakin
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]
| | - Florence Lambolez
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Joanna Brzostek
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilde Cheroutre
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Karsten Sauer
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Nicholas R J Gascoigne
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
126
|
Baaten BJG, Cooper AM, Swain SL, Bradley LM. Location, location, location: the impact of migratory heterogeneity on T cell function. Front Immunol 2013; 4:311. [PMID: 24115949 PMCID: PMC3792444 DOI: 10.3389/fimmu.2013.00311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/16/2013] [Indexed: 01/13/2023] Open
Abstract
T cell migration is crucial for an effective adaptive immune response to invading pathogens. Naive and memory T cells encounter pathogen antigens, become activated, and differentiate into effector cells in secondary lymphoid tissues, and then migrate to the site(s) of infection where they exert effector activities that control and eliminate pathogens. To achieve activation, efficient effector function, and good memory formation, T cells must traffic between lymphoid and non-lymphoid tissues within the body. This complex process is facilitated by chemokine receptors, selectins, CD44, and integrins that mediate the interactions of T cells with the environment. The expression patterns of these migration receptors (MR) dictate the tissues into which the effector T cells migrate and enable them to occupy specific niches within the tissue. While MR have been considered primarily to facilitate cell movement, we highlight how the heterogeneity of signaling through these receptors influences the function and fate of T cells in situ. We explore what drives MR expression heterogeneity, how this affects migration, and how this impacts T cell effector function and memory formation.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | | | | | | |
Collapse
|
127
|
Narayanan S, Kranz DM. The same major histocompatibility complex polymorphism involved in control of HIV influences peptide binding in the mouse H-2Ld system. J Biol Chem 2013; 288:31784-94. [PMID: 24064213 DOI: 10.1074/jbc.m113.478412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Single-site polymorphisms in human class I major histocompatibility complex (MHC) products (HLA-B) have recently been shown to correlate with HIV disease progression or control. An identical single-site polymorphism (at residue 97) in the mouse class I product H-2L(d) influences stability of the complex. To gain insight into the human polymorphisms, here we examined peptide binding, stability, and structures of the corresponding L(d) polymorphisms, Trp(97) and Arg(97). Expression of L(d)W97 and L(d)R97 genes in a cell line that is antigen-processing competent showed that L(d)R97 was expressed at higher levels than L(d)W97, consistent with enhanced stability of self-peptide·L(d)R97 complexes. To further examine peptide-binding capacities of these two allelic variants, we used a high affinity pep-L(d) specific probe to quantitatively examine a collection of self- and foreign peptides that bind to L(d). L(d)R97 bound more effectively than L(d)W97 to most peptides, although L(d)W97 bound more effectively to two peptides. The results support the view that many self-peptides in the L(d) system (or the HLA-B system) would exhibit enhanced binding to Arg(97) alleles compared with Trp(97) alleles. Accordingly, the self-peptide·MHC-Arg(97) complexes would influence T-cell selection behavior, impacting the T-cell repertoire of these individuals, and could also impact peripheral T cell activity through effects of self-peptide·L(d) interacting with TCR and/or CD8. The structures of several peptide·L(d)R97 and peptide·L(d)W97 complexes provided a framework of how this single polymorphism could impact peptide binding.
Collapse
Affiliation(s)
- Samanthi Narayanan
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | |
Collapse
|
128
|
New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases. Biochem J 2013; 453:27-35. [PMID: 23565972 DOI: 10.1042/bj20121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.
Collapse
|
129
|
Wiens KE, Swaminathan H, Copin R, Lun DS, Ernst JD. Equivalent T cell epitope promiscuity in ecologically diverse human pathogens. PLoS One 2013; 8:e73124. [PMID: 23951341 PMCID: PMC3739752 DOI: 10.1371/journal.pone.0073124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Background The HLA (human leukocyte antigen) molecules that present pathogen-derived epitopes to T cells are highly diverse. Correspondingly, many pathogens such as HIV evolve epitope variants in order to evade immune recognition. In contrast, another persistent human pathogen, Mycobacterium tuberculosis, has highly conserved epitope sequences. This raises the question whether there is also a difference in the ability of these pathogens’ epitopes to bind diverse HLA alleles, referred to as an epitope’s binding promiscuity. To address this question, we compared the in silico HLA binding promiscuity of T cell epitopes from pathogens with distinct infection strategies and outcomes of human exposure. Methods We used computer algorithms to predict the binding affinity of experimentally-verified microbial epitope peptides to diverse HLA-DR, HLA-A and HLA-B alleles. We then analyzed binding promiscuity of epitopes derived from HIV and M. tuberculosis. We also analyzed promiscuity of epitopes from Streptococcus pyogenes, which is known to exhibit epitope diversity, and epitopes of Bacillus anthracis and Clostridium tetani toxins, as these bacteria do not depend on human hosts for their survival or replication, and their toxin antigens are highly immunogenic human vaccines. Results We found that B. anthracis and C. tetani epitopes were the most promiscuous of the group that we analyzed. However, there was no consistent difference or trend in promiscuity in epitopes contained in HIV, M. tuberculosis, and S. pyogenes. Conclusions Our results show that human pathogens with distinct immune evasion strategies and epitope diversities exhibit equivalent levels of T cell epitope promiscuity. These results indicate that differences in epitope promiscuity do not account for the observed differences in epitope variation and conservation.
Collapse
Affiliation(s)
- Kirsten E. Wiens
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Harish Swaminathan
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Richard Copin
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Desmond S. Lun
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Joel D. Ernst
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Disease, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
130
|
Dooms H. Interleukin-7: Fuel for the autoimmune attack. J Autoimmun 2013; 45:40-8. [PMID: 23831438 DOI: 10.1016/j.jaut.2013.06.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023]
Abstract
Interleukin-7 (IL-7) is a critical survival factor for lymphocytes and recent studies suggest targeting the IL-7/IL-7Rα pathway holds promise for the treatment of autoimmune diseases. Several lines of evidence, genetic as well as functional, indicate an important role for this cytokine in autoimmune inflammation: polymorphisms in the IL-7Rα have been associated with increased risk for autoimmune disease and blocking IL-7/IL-7Rα with antibodies showed therapeutic efficacy in several autoimmune mouse models. Insights are starting to emerge about the mechanisms underlying IL-7's role in autoimmunity and tolerance, revealing surprising novel functions beyond its traditional activity as a T cell survival factor. In the first part of this review, the functions of IL-7 in the immune system are concisely described, providing a basis for understanding their potential role in promoting autoimmune responses. In the second part, current knowledge about the role of IL-7 in various autoimmune conditions is reviewed.
Collapse
Affiliation(s)
- Hans Dooms
- Department of Medicine, Arthritis Center/Rheumatology Section, Boston University School of Medicine, 72 East Concord Street, E519, Boston, MA 02118, USA.
| |
Collapse
|
131
|
Eckle SBG, Rossjohn J, McCluskey J. Alloreactivity. Methods Mol Biol 2013; 1034:3-39. [PMID: 23775729 DOI: 10.1007/978-1-62703-493-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The alloimmune response between individuals genetically disparate for antigens encoded within the major histocompatibility complex (MHC) remains a substantial barrier to transplantation of solid organs, tissues, and hematopoietic stem cells. Alloreactivity has been an immunological paradox because of its apparent contradiction to the requirement of MHC restriction for the induction of normal T lymphocyte mediated immune responses. Through crystallographic analyses and experimental systems utilizing murine CD8(+) cytolytic T cell clones, major advances have been achieved in understanding the molecular and structural basis of T cell receptor recognition of MHC-peptide complexes and the basis of T cell mediated alloreactivity. These studies have further provided an explanation for the relatively high frequencies of alloreactive T cells compared to the frequencies of T cells for microbial derived antigens.
Collapse
Affiliation(s)
- Sidonia B G Eckle
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
132
|
SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells. Immunol Res 2013; 55:116-24. [PMID: 22956467 DOI: 10.1007/s12026-012-8354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
How T cell receptor (TCR) avidity influences CD8(+) T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP(-/-) mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP(-/-) Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8(+) T cell development and repertoire selection. In comparing SLAP(-/-) OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP(-/-) Vβ5 mice. We have found that SLAP(-/-) OT-1 mice have fewer CD8(+) thymocytes but have increased CD5 expression. SLAP(-/-) OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8(+) splenocytes upon tetramer staining. Our data demonstrate that SLAP(-/-) Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8(+) T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8(+) T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8(+) T cell development influences repertoire selection.
Collapse
|
133
|
Garfin PM, Min D, Bryson JL, Serwold T, Edris B, Blackburn CC, Richie ER, Weinberg KI, Manley NR, Sage J, Viatour P. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. ACTA ACUST UNITED AC 2013; 210:1087-97. [PMID: 23669396 PMCID: PMC3674705 DOI: 10.1084/jem.20121716] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RB family genes control T cell production and promote thymic involution through reducing Foxn1 expression in thymic epithelial cells. Thymic involution during aging is a major cause of decreased production of T cells and reduced immunity. Here we show that inactivation of Rb family genes in young mice prevents thymic involution and results in an enlarged thymus competent for increased production of naive T cells. This phenotype originates from the expansion of functional thymic epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. Increased Foxn1 expression is required for the thymic expansion observed in Rb family mutant mice. Thus, the RB family promotes thymic involution and controls T cell production via a bone marrow–independent mechanism, identifying a novel pathway to target to increase thymic function in patients.
Collapse
Affiliation(s)
- Phillip M Garfin
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Markle TJ, Philip M, Brockman MA. HIV-1 Nef and T-cell activation: a history of contradictions. Future Virol 2013; 8. [PMID: 24187576 DOI: 10.2217/fvl.13.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HIV-1 Nef is a multifunctional viral protein that contributes to higher plasma viremia and more rapid disease progression. Nef appears to accomplish this, in part, through modulation of T-cell activation; however, the results of these studies over the past 25 years have been inconsistent. Here, the history of contradictory observations related to HIV-1 Nef and its ability to modulate T-cell activation is reviewed, and recent reports that may help to explain Net's apparent ability to both inhibit and activate T cells are highlighted.
Collapse
Affiliation(s)
- Tristan J Markle
- Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada
| | | | | |
Collapse
|
135
|
Feng LL, Wu XF, Liu HL, Guo WJ, Luo Q, Tao FF, Ge HM, Shen Y, Tan RX, Xu Q, Sun Y. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes. Toxicol Appl Pharmacol 2013; 267:167-73. [DOI: 10.1016/j.taap.2012.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
136
|
Ferrando-Martínez S, de la Fuente M, Guerrero JM, Leal M, Muñoz-Fernández MÁ. [Impact of thymic function in age-related immune deterioration]. Rev Esp Geriatr Gerontol 2013; 48:232-7. [PMID: 23453427 DOI: 10.1016/j.regg.2012.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/09/2023]
Abstract
Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratorio de Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, España; Laboratorio de Inmunovirología, Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, España.
| | | | | | | | | |
Collapse
|
137
|
Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 2013; 38:263-274. [PMID: 23290521 PMCID: PMC3785078 DOI: 10.1016/j.immuni.2012.09.011] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/28/2012] [Indexed: 01/19/2023]
Abstract
Developing T cells express diverse antigen receptors whose specificities are not prematched to the foreign antigens they eventually encounter. Past experiments have revealed that thymocytes must productively signal in response to self antigens to mature and enter the peripheral T cell pool (positive selection), but how this process enhances effective mature T cell responses to foreign antigen is not fully understood. Here we have documented an unsuspected connection between thymic recognition events and foreign antigen-driven T cell responses. We find that the strength of self-reactivity is a clone-specific property unexpectedly directly related to the strength of T cell receptor (TCR) binding to presented foreign antigen. T cells with receptors showing stronger interaction with self dominate in responses to infections and accumulate in aging individuals, revealing that positive selection contributes to effective immunity by skewing the mature TCR repertoire toward highly effective recognition of pathogens that pose a danger to the host.
Collapse
Affiliation(s)
- Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - João P. Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nienke Vrisekoop
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
138
|
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2013; 249:43-58. [PMID: 22889214 DOI: 10.1111/j.1600-065x.2012.01152.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
139
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
140
|
Abstract
The continuous production of T lymphocytes requires that hematopoietic progenitors developing in the bone marrow migrate to the thymus. Rare progenitors egress from the bone marrow into the circulation, then traffic via the blood to the thymus. It is now evident that thymic settling is tightly regulated by selectin ligands, chemokine receptors, and integrins, among other factors. Identification of these signals has enabled progress in identifying specific populations of hematopoietic progenitors that can settle the thymus. Understanding the nature of progenitor cells and the molecular mechanisms involved in thymic settling may allow for therapeutic manipulation of this process, and improve regeneration of the T lineage in patients with impaired T cell numbers.
Collapse
Affiliation(s)
- Shirley L Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 264 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, USA
| | | |
Collapse
|
141
|
Viral antigen density and confinement time regulate the reactivity pattern of CD4 T-cell responses to vaccinia virus infection. Proc Natl Acad Sci U S A 2012; 110:288-93. [PMID: 23248307 DOI: 10.1073/pnas.1208328110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
T-cell recognition of ligands is polyspecific. This translates into antiviral T-cell responses having a range of potency and specificity for viral ligands. How these ligand recognition patterns are established is not fully understood. Here, we show that an activation threshold regulates whether robust CD4 T-cell activation occurs following viral infection. The activation threshold was variable because of its dependence on the density of the viral peptide (p)MHC displayed on infected cells. Furthermore, the activation threshold was not observed to be a specific equilibrium affinity (K(D)) or half-life (t(1/2)) of the TCR-viral pMHC interaction, rather it correlated with the confinement time of TCR-pMHC interactions, i.e., the half-life (t(1/2)) of the interaction accounting for the effects of TCR-pMHC rebinding. One effect of a variable activation threshold is to allow high-density viral pMHC ligands to expand CD4 T cells with a variety of potency and peptide cross-reactivity patterns for the viral pMHC ligand, some of which are only poorly activated by infections that produce a lower density of the viral pMHC ligand. These results argue that antigen concentration is a key component in determining the pattern of K(D), t(1/2) and peptide cross-reactivity of the TCRs expressed on CD4 T cells responding to infection.
Collapse
|
142
|
Akiyama T, Shinzawa M, Akiyama N. RANKL-RANK interaction in immune regulatory systems. World J Orthop 2012; 3:142-50. [PMID: 23173110 PMCID: PMC3502610 DOI: 10.5312/wjo.v3.i9.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/21/2012] [Accepted: 09/15/2012] [Indexed: 02/06/2023] Open
Abstract
The interaction between the receptor activator of NF-κB ligand (RANKL) and its receptor RANK plays a critical role in the development and function of diverse tissues. This review summarizes the studies regarding the functions of RANKL signaling in immune regulatory systems. Previous in vitro and in vivo studies have indicated that the RANKL signal promotes the survival of dendritic cells (DCs), thereby activating the immune response. In addition, RANKL signaling to DCs in the body surface barriers controls self-tolerance and oral-tolerance through regulatory T cell functions. In addition to regulating DC functions, the RANKL and RANK interaction is critical for the development and organization of several lymphoid organs. The RANKL signal initiates the formation of clusters of lymphoid tissue inducer cells, which is crucial for lymph node organogenesis. Moreover, the RANKL-RANK interaction controls the differentiation of M cells, specialized epithelial cells in mucosal tissues, that take up and transcytose antigen particles to control the immune response to pathogens or commensal bacterium. The development of epithelial cells localized in the thymic medulla (mTECs) is also regulated by the RANKL-RANK signal. Given that the unique property of mTECs to express a wide variety of tissue-specific self-antigens is critical for the elimination of self-antigen reactive T cells in the thymus, the RANKL-RANK interaction contributes to the suppression of autoimmunity. Future studies on the roles of the RANKL-RANK system in immune regulatory functions would be informative for the development and application of inhibitors of RANKL signaling for disease treatment.
Collapse
|
143
|
A voltage-gated sodium channel is essential for the positive selection of CD4(+) T cells. Nat Immunol 2012; 13:880-7. [PMID: 22842345 PMCID: PMC3426661 DOI: 10.1038/ni.2379] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/26/2012] [Indexed: 12/15/2022]
Abstract
Sustained Ca2+ entry into CD4+CD8+ double-positive thymocytes is required for positive selection. We identified a voltage-gated Na+ channel (VGSC), essential for positive selection of CD4+ T cells. Pharmacological inhibition of VGSC activity inhibitedsustained Ca2+ influx induced by positive-selecting ligands and in vitro positive selection of CD4+ but not CD8+ T cells. In vivo shRNA knockdown of Scn5a specifically inhibited positive selection of CD4+ T cells. Ectopic expression of VGSC in peripheral AND CD4+ T cells bestowed the ability to respond to a positively selecting ligand, directly demonstrating VGSC expression was responsible for increased sensitivity. Thus active VGSCs in thymocytes provide a mechanism by which a weak positive selecting signal can induce sustained Ca2+ signals required for CD4+ T cell development.
Collapse
|
144
|
On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev Mol Med 2012; 14:e15. [PMID: 22805744 DOI: 10.1017/erm.2012.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review discusses mechanisms that link allelic variants of major histocompatibility complex (MHC) class II molecules (MHCII) to immune pathology. We focus on HLA (human leukocyte antigen)-DQ (DQ) alleles associated with celiac disease (CD) and type 1 diabetes (T1D) and the role of the murine DQ-like allele, H2-Ag7 (I-Ag7 or Ag7), in murine T1D. MHCII molecules bind peptides, and alleles vary in their peptide-binding specificity. Disease-associated alleles permit binding of disease-inducing peptides, such as gluten-derived, Glu-/Pro-rich gliadin peptides in CD and peptides from islet autoantigens, including insulin, in T1D. In addition, the CD-associated DQ2.5 and DQ8 alleles are unusual in their interactions with factors that regulate their peptide loading, invariant chain (Ii) and HLA-DM (DM). The same alleles, as well as other T1D DQ risk alleles (and Ag7), share nonpolar residues in place of Asp at β57 and prefer peptides that place acidic side chains in a pocket in the MHCII groove (P9). Antigen-presenting cells from T1D-susceptible mice and humans retain CLIP because of poor DM editing, although underlying mechanisms differ between species. We propose that these effects on peptide presentation make key contributions to CD and T1D pathogenesis.
Collapse
|
145
|
Daniel-Meshulam I, Ya'akobi S, Ankri C, Cohen CJ. How (specific) would like your T-cells today? Generating T-cell therapeutic function through TCR-gene transfer. Front Immunol 2012; 3:186. [PMID: 22783259 PMCID: PMC3390604 DOI: 10.3389/fimmu.2012.00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
T-cells are central players in the immune response against both pathogens and cancer. Their specificity is solely dictated by the T-cell receptor (TCR) they clonally express. As such, the genetic modification of T lymphocytes using pathogen- or cancer-specific TCRs represents an appealing strategy to generate a desired immune response from peripheral blood lymphocytes. Moreover, notable objective clinical responses were observed in terminally ill cancer patients treated with TCR-gene modified cells in several clinical trials conducted recently. Nevertheless, several key aspects of this approach are the object of intensive research aimed at improving the reliability and efficacy of this strategy. Herein, we will survey recent studies in the field of TCR-gene transfer dealing with the improvement of this approach and its application for the treatment of malignant, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Inbal Daniel-Meshulam
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan, Israel
| | | | | | | |
Collapse
|
146
|
Rogosch T, Kerzel S, Hoi KH, Zhang Z, Maier RF, Ippolito GC, Zemlin M. Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts. Front Immunol 2012; 3:176. [PMID: 22754554 PMCID: PMC3384897 DOI: 10.3389/fimmu.2012.00176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/10/2012] [Indexed: 11/15/2022] Open
Abstract
Sequence analysis of immunoglobulin (Ig) heavy and light chain transcripts can refine categorization of B cell subpopulations and can shed light on the selective forces that act during immune responses or immune dysregulation, such as autoimmunity, allergy, and B cell malignancy. High-throughput sequencing yields Ig transcript collections of unprecedented size. The authoritative web-based IMGT/HighV-QUEST program is capable of analyzing large collections of transcripts and provides annotated output files to describe many key properties of Ig transcripts. However, additional processing of these flat files is required to create figures, or to facilitate analysis of additional features and comparisons between sequence sets. We present an easy-to-use Microsoft® Excel® based software, named Immunoglobulin Analysis Tool (IgAT), for the summary, interrogation, and further processing of IMGT/HighV-QUEST output files. IgAT generates descriptive statistics and high-quality figures for collections of murine or human Ig heavy or light chain transcripts ranging from 1 to 150,000 sequences. In addition to traditionally studied properties of Ig transcripts – such as the usage of germline gene segments, or the length and composition of the CDR-3 region – IgAT also uses published algorithms to calculate the probability of antigen selection based on somatic mutational patterns, the average hydrophobicity of the antigen-binding sites, and predictable structural properties of the CDR-H3 loop according to Shirai’s H3-rules. These refined analyses provide in-depth information about the selective forces acting upon Ig repertoires and allow the statistical and graphical comparison of two or more sequence sets. IgAT is easy to use on any computer running Excel® 2003 or higher. Thus, IgAT is a useful tool to gain insights into the selective forces and functional properties of small to extremely large collections of Ig transcripts, thereby assisting a researcher to mine a data set to its fullest.
Collapse
Affiliation(s)
- Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
147
|
|