101
|
Di Paolo A, Garat J, Eastman G, Farias J, Dajas-Bailador F, Smircich P, Sotelo-Silveira JR. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:686722. [PMID: 34248504 PMCID: PMC8267896 DOI: 10.3389/fncel.2021.686722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Polo de Desarrollo Universitario “Espacio de Biología Vegetal del Noreste”, Centro Universitario Regional Noreste, Universidad de la República (UdelaR), Tacuarembó, Uruguay
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, Nottingham, United Kingdom
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
102
|
Alfaro JA, Bohländer P, Dai M, Filius M, Howard CJ, van Kooten XF, Ohayon S, Pomorski A, Schmid S, Aksimentiev A, Anslyn EV, Bedran G, Cao C, Chinappi M, Coyaud E, Dekker C, Dittmar G, Drachman N, Eelkema R, Goodlett D, Hentz S, Kalathiya U, Kelleher NL, Kelly RT, Kelman Z, Kim SH, Kuster B, Rodriguez-Larrea D, Lindsay S, Maglia G, Marcotte EM, Marino JP, Masselon C, Mayer M, Samaras P, Sarthak K, Sepiashvili L, Stein D, Wanunu M, Wilhelm M, Yin P, Meller A, Joo C. The emerging landscape of single-molecule protein sequencing technologies. Nat Methods 2021; 18:604-617. [PMID: 34099939 PMCID: PMC8223677 DOI: 10.1038/s41592-021-01143-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/02/2021] [Indexed: 02/04/2023]
Abstract
Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.
Collapse
Affiliation(s)
- Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland.
| | - Peggy Bohländer
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Mingjie Dai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Cecil J Howard
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Xander F van Kooten
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shilo Ohayon
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adam Pomorski
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Georges Bedran
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Rome, Italy
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France
| | - Cees Dekker
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Rienk Eelkema
- Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - David Goodlett
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | | | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Sung Hyun Kim
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - David Rodriguez-Larrea
- Department of Biochemistry and Molecular Biology, Biofisika Institute (CSIC, UPV/EHU), Leioa, Spain
| | - Stuart Lindsay
- Biodesign Institute, School of Molecular Sciences, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Kumar Sarthak
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lusia Sepiashvili
- University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Derek Stein
- Department of Physics, Brown University, Providence, RI, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Amit Meller
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
103
|
Giese SH, Sinn LR, Wegner F, Rappsilber J. Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry. Nat Commun 2021; 12:3237. [PMID: 34050149 PMCID: PMC8163845 DOI: 10.1038/s41467-021-23441-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein-protein interactions that can be confidently identified. Here, we leverage chromatographic retention time information to aid the identification of crosslinked peptides from mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E. coli lysate. Importantly, supplementing the search engine score with retention time features leads to a substantial increase in protein-protein interactions without affecting confidence. This approach is not limited to cell lysates and multi-dimensional separation but also improves considerably the analysis of crosslinked multiprotein complexes with a single chromatographic dimension. Retention times are a powerful complement to mass spectrometric information to increase the sensitivity of crosslinking mass spectrometry analyses.
Collapse
Affiliation(s)
- Sven H Giese
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Data Analytics and Computational Statistics, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
- Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| | - Ludwig R Sinn
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Fritz Wegner
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
104
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
105
|
Harwood SL, Lyngsø J, Zarantonello A, Kjøge K, Nielsen PK, Andersen GR, Pedersen JS, Enghild JJ. Structural Investigations of Human A2M Identify a Hollow Native Conformation That Underlies Its Distinctive Protease-Trapping Mechanism. Mol Cell Proteomics 2021; 20:100090. [PMID: 33964423 PMCID: PMC8167298 DOI: 10.1016/j.mcpro.2021.100090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Human α2-macroglobulin (A2M) is the most characterized protease inhibitor in the alpha-macroglobulin (αM) superfamily, but the structure of its native conformation has not been determined. Here, we combined negative stain electron microscopy (EM), small-angle X-ray scattering (SAXS), and cross-linking-mass spectrometry (XL-MS) to investigate native A2M and its collapsed conformations that are obtained through aminolysis of its thiol ester by methylamine or cleavage of its bait region by trypsin. The combined interpretation of these data resulted in a model of the native A2M tetramer and its conformational changes. Native A2M consists of two crescent-shaped disulfide-bridged subunit dimers, which face toward each other and surround a central hollow space. In native A2M, interactions across the disulfide-bridged dimers are minimal, with a single major interface between the linker (LNK) regions of oppositely positioned subunits. Bait region cleavage induces both intrasubunit domain repositioning and an altered configuration of the disulfide-bridged dimer. These changes collapse the tetramer into a more compact conformation, which encloses an interior protease-trapping cavity. A recombinant A2M with a modified bait region was used to map the bait region's position in native A2M by XL-MS. A second recombinant A2M introduced an intersubunit disulfide into the LNK region, demonstrating the predicted interactions between these regions in native A2M. Altogether, our native A2M model provides a structural foundation for understanding A2M's protease-trapping mechanism, its conformation-dependent receptor interactions, and the dissociation of native A2M into dimers due to inflammatory oxidative stress.
Collapse
Affiliation(s)
- Seandean Lykke Harwood
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Katarzyna Kjøge
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark.
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
106
|
Kit MCS, Carvalho VV, Vilseck JZ, Webb IK. Gas-Phase Ion/Ion Chemistry for Structurally Sensitive Probes of Gaseous Protein Ion Structure: Electrostatic and Electrostatic to Covalent Cross-Linking. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 463:116549. [PMID: 33716558 PMCID: PMC7946065 DOI: 10.1016/j.ijms.2021.116549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intramolecular interactions within a protein are key in maintaining protein tertiary structure and understanding how proteins function. Ion mobility-mass spectrometry (IM-MS) has become a widely used approach in structural biology since it provides rapid measurements of collision cross sections (CCS), which inform on the gas-phase conformation of the biomolecule under study. Gas-phase ion/ion reactions target amino acid residues with specific chemical properties and the modified sites can be identified by MS. In this study, electrostatically reactive, gas-phase ion/ion chemistry and IM-MS are combined to characterize the structural changes between ubiquitin electrosprayed from aqueous and denaturing conditions. The electrostatic attachment of sulfo-NHS acetate to ubiquitin via ion/ion reactions and fragmentation by electron-capture dissociation (ECD) provide the identification of the most accessible protonated sites within ubiquitin as the sulfonate group forms an electrostatic complex with accessible protonated side chains. The protonated sites identified by ECD from the different solution conditions are distinct and, in some cases, reflect the disruption of interactions such as salt bridges that maintain the native protein structure. This agrees with previously published literature demonstrating that a high methanol concentration at low pH causes the structure of ubiquitin to change from a native (N) state to a more elongated A state. Results using gas-phase, electrostatic cross-linking reagents also point to similar structural changes and further confirm the role of methanol and acid in favoring a more unfolded conformation. Since cross-linking reagents have a distance constraint for the two reactive sites, the data is valuable in guiding computational structures generated by molecular dynamics. The research presented here describes a promising strategy that can detect subtle changes in the local environment of targeted amino acid residues to inform on changes in the overall protein structure.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Veronica V. Carvalho
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ian K. Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
107
|
Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Mol Cell Proteomics 2021; 20:100084. [PMID: 33915260 PMCID: PMC8214149 DOI: 10.1016/j.mcpro.2021.100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.
Collapse
Affiliation(s)
- Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, California, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sadie F DePeter
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, California, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
108
|
Kyrilis FL, Belapure J, Kastritis PL. Detecting Protein Communities in Native Cell Extracts by Machine Learning: A Structural Biologist's Perspective. Front Mol Biosci 2021; 8:660542. [PMID: 33937337 PMCID: PMC8082361 DOI: 10.3389/fmolb.2021.660542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Native cell extracts hold great promise for understanding the molecular structure of ordered biological systems at high resolution. This is because higher-order biomolecular interactions, dubbed as protein communities, may be retained in their (near-)native state, in contrast to extensively purifying or artificially overexpressing the proteins of interest. The distinct machine-learning approaches are applied to discover protein-protein interactions within cell extracts, reconstruct dedicated biological networks, and report on protein community members from various organisms. Their validation is also important, e.g., by the cross-linking mass spectrometry or cell biology methods. In addition, the cell extracts are amenable to structural analysis by cryo-electron microscopy (cryo-EM), but due to their inherent complexity, sorting structural signatures of protein communities derived by cryo-EM comprises a formidable task. The application of image-processing workflows inspired by machine-learning techniques would provide improvements in distinguishing structural signatures, correlating proteomic and network data to structural signatures and subsequently reconstructed cryo-EM maps, and, ultimately, characterizing unidentified protein communities at high resolution. In this review article, we summarize recent literature in detecting protein communities from native cell extracts and identify the remaining challenges and opportunities. We argue that the progress in, and the integration of, machine learning, cryo-EM, and complementary structural proteomics approaches would provide the basis for a multi-scale molecular description of protein communities within native cell extracts.
Collapse
Affiliation(s)
- Fotis L. Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
109
|
Yu K, Niu M, Wang H, Li Y, Wu Z, Zhang B, Haroutunian V, Peng J. Global Profiling of Lysine Accessibility to Evaluate Protein Structure Changes in Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:936-945. [PMID: 33683887 PMCID: PMC8255072 DOI: 10.1021/jasms.0c00450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The linear sequence of amino acids in a protein folds into a 3D structure to execute protein activity and function, but it is still challenging to profile the 3D structure at the proteome scale. Here, we present a method of native protein tandem mass tag (TMT) profiling of Lys accessibility and its application to investigate structural alterations in human brain specimens of Alzheimer's disease (AD). In this method, proteins are extracted under a native condition, labeled by TMT reagents, followed by trypsin digestion and peptide analysis using two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). The method quantifies Lys labeling efficiency to evaluate its accessibility on the protein surface, which may be affected by protein conformations, protein modifications, and/or other molecular interactions. We systematically optimized the amount of TMT reagents, reaction time, and temperature and then analyzed protein samples under multiple conditions, including different labeling time (5 and 30 min), heat treatment, AD and normal human cases. The experiment profiled 15370 TMT-labeled peptides in 4475 proteins. As expected, the heat treatment led to extensive changes in protein conformations, with 17% of the detected proteome displaying differential labeling. Compared to the normal controls, AD brain showed different Lys accessibility of tau and RNA splicing complexes, which are the hallmarks of AD pathology, as well as proteins involved in transcription, mitochondrial, and synaptic functions. To eliminate the possibility that the observed differential Lys labeling was caused by protein level change, the whole proteome was quantified with standard TMT-LC/LC-MS/MS for normalization. Thus, this native protein TMT method enables the proteome-wide measurement of Lys accessibility, representing a straightforward strategy to explore protein structure in any biological system.
Collapse
Affiliation(s)
- Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multi-scale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY 10468, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
110
|
Chen ZL, Mao PZ, Zeng WF, Chi H, He SM. pDeepXL: MS/MS Spectrum Prediction for Cross-Linked Peptide Pairs by Deep Learning. J Proteome Res 2021; 20:2570-2582. [PMID: 33821641 DOI: 10.1021/acs.jproteome.0c01004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In cross-linking mass spectrometry, the identification of cross-linked peptide pairs heavily relies on the ability of a database search engine to measure the similarities between experimental and theoretical MS/MS spectra. However, the lack of accurate ion intensities in theoretical spectra impairs the performance of search engines, in particular, on proteome scales. Here we introduce pDeepXL, a deep neural network to predict MS/MS spectra of cross-linked peptide pairs. To train pDeepXL, we used the transfer-learning technique because it facilitated the training with limited benchmark data of cross-linked peptide pairs. Test results on more than ten data sets showed that pDeepXL accurately predicted the spectra of both noncleavable DSS/BS3/Leiker cross-linked peptide pairs (>80% of predicted spectra have Pearson's r values higher than 0.9) and cleavable DSSO/DSBU cross-linked peptide pairs (>75% of predicted spectra have Pearson's r values higher than 0.9). pDeepXL also achieved the accurate prediction on unseen data sets using an online fine-tuning technique. Lastly, integrating pDeepXL into a database search engine increased the number of identified cross-link spectra by 18% on average.
Collapse
Affiliation(s)
- Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Zhi Mao
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
111
|
de Jong L, Roseboom W, Kramer G. Towards low false discovery rate estimation for protein-protein interactions detected by chemical cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140655. [PMID: 33812047 DOI: 10.1016/j.bbapap.2021.140655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023]
Abstract
Chemical cross-linking (CX) of proteins in vivo or in cell free extracts followed by mass spectrometric (MS) identification of linked peptide pairs (CXMS) can reveal protein-protein interactions (PPIs) both at a proteome wide scale and the level of cross-linked amino acid residues. However, error estimation at the level of PPI remains challenging in large scale datasets. Here we discuss recent advances in the recognition of spurious inter-protein peptide pairs and in diminishing the FDR for these PPI-signaling cross-links, such as the use of chromatographic retention time prediction, in order to come to a more reliable reporting of PPIs.
Collapse
Affiliation(s)
- Luitzen de Jong
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands.
| | - Winfried Roseboom
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands
| | - Gertjan Kramer
- Swammerdam Institute for Life Sciences, Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 HX Amsterdam, the Netherlands
| |
Collapse
|
112
|
Mendes ML, Dittmar G. Analysis of the Dynamic Proteasome Structure by Cross-Linking Mass Spectrometry. Biomolecules 2021; 11:biom11040505. [PMID: 33801594 PMCID: PMC8067131 DOI: 10.3390/biom11040505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
The 26S proteasome is a macromolecular complex that degrades proteins maintaining cell homeostasis; thus, determining its structure is a priority to understand its function. Although the 20S proteasome's structure has been known for some years, the highly dynamic nature of the 19S regulatory particle has presented a challenge to structural biologists. Advances in cryo-electron microscopy (cryo-EM) made it possible to determine the structure of the 19S regulatory particle and showed at least seven different conformational states of the proteasome. However, there are still many questions to be answered. Cross-linking mass spectrometry (CLMS) is now routinely used in integrative structural biology studies, and it promises to take integrative structural biology to the next level, answering some of these questions.
Collapse
|
113
|
Proteome Discoverer-A Community Enhanced Data Processing Suite for Protein Informatics. Proteomes 2021; 9:proteomes9010015. [PMID: 33806881 PMCID: PMC8006021 DOI: 10.3390/proteomes9010015] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/01/2023] Open
Abstract
Proteomics researchers today face an interesting challenge: how to choose among the dozens of data processing and analysis pipelines available for converting tandem mass spectrometry files to protein identifications. Due to the dominance of Orbitrap technology in proteomics in recent history, many researchers have defaulted to the vendor software Proteome Discoverer. Over the fourteen years since the initial release of the software, it has evolved in parallel with the increasingly complex demands faced by proteomics researchers. Today, Proteome Discoverer exists in two distinct forms with both powerful commercial versions and fully functional free versions in use in many labs today. Throughout the 11 main versions released to date, a central theme of the software has always been the ability to easily view and verify the spectra from which identifications are made. This ability is, even today, a key differentiator from other data analysis solutions. In this review I will attempt to summarize the history and evolution of Proteome Discoverer from its first launch to the versions in use today.
Collapse
|
114
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
115
|
Seath CP, Trowbridge AD, Muir TW, MacMillan DWC. Reactive intermediates for interactome mapping. Chem Soc Rev 2021; 50:2911-2926. [PMID: 33458734 DOI: 10.1039/d0cs01366h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interactions of biomolecules underpin all cellular processes, and the understanding of their dynamic interplay can lead to significant advances in the treatment of disease through the identification of novel therapeutic strategies. Protein-protein interactions (PPIs) in particular play a vital role within this arena, providing the basis for the majority of cellular signalling pathways. Despite their great importance, the elucidation of weak or transient PPIs that cannot be identified by immunoprecipitation remains a significant challenge, particularly in a disease relevant cellular environment. Recent approaches towards this goal have utilized the in situ generation of high energy intermediates that cross-link with neighboring proteins, providing a snapshot of the biomolecular makeup of the local area or microenvironment, termed the interactome. In this tutorial review, we discuss these reactive intermediates, how they are generated, and the impact they have had on the discovery of new biology. Broadly, we believe this strategy has the potential to significantly accelerate our understanding of PPIs and how they affect cellular physiology.
Collapse
Affiliation(s)
- Ciaran P Seath
- Merck Center for Catalysis, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
116
|
Courouble VV, Dey SK, Yadav R, Timm J, Harrison JJEK, Ruiz FX, Arnold E, Griffin PR. Resolving the Dynamic Motions of SARS-CoV-2 nsp7 and nsp8 Proteins Using Structural Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.06.434214. [PMID: 33688660 PMCID: PMC7941636 DOI: 10.1101/2021.03.06.434214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronavirus (CoV) non-structural proteins (nsps) assemble to form the replication-transcription complex (RTC) responsible for viral RNA synthesis. nsp7 and nsp8 are important cofactors of the RTC, as they interact and regulate the activity of RNA-dependent RNA polymerase (RdRp) and other nsps. To date, no structure of full-length SARS-CoV-2 nsp7:nsp8 complex has been published. Current understanding of this complex is based on structures from truncated constructs or with missing electron densities and complexes from related CoV species with which SARS-CoV-2 nsp7 and nsp8 share upwards of 90% sequence identity. Despite available structures being solved using crystallography and cryo-EM representing detailed snapshots of the nsp7:nsp8 complex, it is evident that the complex has a high degree of structural plasticity. However, relatively little is known about the conformational dynamics of the complex and how it assembles to interact with other nsps. Here, the solution-based structural proteomic techniques, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and crosslinking mass spectrometry (XL-MS), illuminate the structural dynamics of the SARS-CoV-2 full-length nsp7:nsp8 complex. The results presented from the two techniques are complementary and validate the interaction surfaces identified from the published three-dimensional heterotetrameric crystal structure of SARS-CoV-2 truncated nsp7:nsp8 complex. Furthermore, mapping of XL-MS data onto higher order complexes suggests that SARS-CoV-2 nsp7 and nsp8 do not assemble into a hexadecameric structure as implied by the SARS-CoV full-length nsp7:nsp8 crystal structure. Instead our results suggest that the nsp7:nsp8 heterotetramer can dissociate into a stable dimeric unit that might bind to nsp12 in the RTC without altering nsp7-nsp8 interactions.
Collapse
Affiliation(s)
- Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sanjay Kumar Dey
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruchi Yadav
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jennifer Timm
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jerry Joe E. K. Harrison
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, Legon, Box LG 56, Legon-Accra, Ghana
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
117
|
Rey M, Dhenin J, Kong Y, Nouchikian L, Filella I, Duchateau M, Dupré M, Pellarin R, Duménil G, Chamot-Rooke J. Advanced In Vivo Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Anal Chem 2021; 93:4166-4174. [DOI: 10.1021/acs.analchem.0c04430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martial Rey
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Youxin Kong
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Lucienne Nouchikian
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Isaac Filella
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Mathieu Dupré
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
118
|
Aly KA, Moutaoufik MT, Phanse S, Zhang Q, Babu M. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience 2021; 24:102030. [PMID: 33521598 PMCID: PMC7820543 DOI: 10.1016/j.isci.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial (mt) dysfunction is linked to rare diseases (RDs) such as respiratory chain complex (RCC) deficiency, MELAS, and ARSACS. Yet, how altered mt protein networks contribute to these ailments remains understudied. In this perspective article, we identified 21 mt proteins from public repositories that associate with RCC deficiency, MELAS, or ARSACS, engaging in a relatively small number of protein-protein interactions (PPIs), underscoring the need for advanced proteomic and interactomic platforms to uncover the complete scope of mt connectivity to RDs. Accordingly, we discuss innovative untargeted label-free proteomics in identifying RD-specific mt or other macromolecular assemblies and mapping of protein networks in complex tissue, organoid, and stem cell-differentiated neurons. Furthermore, tag- and label-based proteomics, genealogical proteomics, and combinatorial affinity purification-mass spectrometry, along with advancements in detecting and integrating transient PPIs with single-cell proteomics and transcriptomics, collectively offer seminal follow-ups to enrich for RD-relevant networks, with implications in RD precision medicine.
Collapse
Affiliation(s)
- Khaled A. Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
119
|
Banerjee A, Bhakta S, Sengupta J. Integrative approaches in cryogenic electron microscopy: Recent advances in structural biology and future perspectives. iScience 2021; 24:102044. [PMID: 33532719 PMCID: PMC7829201 DOI: 10.1016/j.isci.2021.102044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular factories engage numerous highly complex "molecular machines" to perform pivotal biological functions. 3D structural visualization is an effective way to understand the functional mechanisms of these biomacromolecules. The "resolution revolution" has established cryogenic electron microscopy (cryo-EM) as a preferred structural biology tool. In parallel with the advances in cryo-EM methodologies aiming at atomic resolution, several innovative approaches have started emerging where other techniques are sensibly integrated with cryo-EM to obtain additional insights into the biological processes. For example, combining the time-resolved technique with high-resolution cryo-EM enables discerning structures of short-lived intermediates in the functional pathway of a biomolecule. Likewise, integrating mass spectrometry (MS) techniques with cryo-EM allows deciphering structural organizations of large molecular assemblies. Here, we discuss how the data generated upon combining either time resolve or MS techniques with cryo-EM supplement structural elucidations with in-depth understanding of the function of cellular macromolecules when they participate in fundamental biological processes.
Collapse
Affiliation(s)
- Aneek Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayan Bhakta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
120
|
Tang X, Wippel HH, Chavez JD, Bruce JE. Crosslinking mass spectrometry: A link between structural biology and systems biology. Protein Sci 2021; 30:773-784. [PMID: 33594738 DOI: 10.1002/pro.4045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Protein structure underpins functional roles in all biological processes; therefore, improved understanding of protein structures is of fundamental importance in nearly all biological and biomedical research areas. Traditional techniques such as X-ray crystallography and more recently, cryo-EM, can reveal structural features on isolated proteins/protein complexes at atomic resolution level and have become indispensable tools for structural biology. Crosslinking mass spectrometry (XL-MS), on the other hand, is an emerging technique capable of capturing transient and dynamic information on protein interactions and assemblies in their native environment. The combination of XL-MS with traditional techniques holds potential for bridging the gap between structural biology and systems biology approaches. Such a combination will enable visualization of protein structures and interactions within the crowded macromolecular environment in living systems that can dramatically increase understanding of biological functions. In this review, we first discuss general strategies of XL-MS and then survey recent examples to show how qualitative and quantitative XL-MS studies can be integrated with available protein structural data to better understand biological function at systems level.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
121
|
Singh J, Ponnaiyan S, Gieselmann V, Winter D. Generation of Antibodies Targeting Cleavable Cross-Linkers. Anal Chem 2021; 93:3762-3769. [DOI: 10.1021/acs.analchem.0c04043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
122
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
123
|
Beard HA, Korovesis D, Chen S, Verhelst SHL. Cleavable linkers and their application in MS-based target identification. Mol Omics 2021; 17:197-209. [PMID: 33507200 DOI: 10.1039/d0mo00181c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent chemical probes are important tools in chemical biology. They range from post-translational modification (PTM)-derived metabolic probes, to activity-based probes and photoaffinity labels. Identification of the probe targets is often performed by tandem mass spectrometry-based proteomics methods. In the past fifteen years, cleavable linker technologies have been implemented in these workflows in order to identify probe targets with lower background and higher confidence. In addition, the linkers have enabled identification of modification sites. Overall, this has led to an increased knowledge of PTMs, enzyme function and drug action. This review gives an overview of the different types of cleavable linkers, and their benefits and limitations. Their applicability in target identification is also illustrated by several specific examples.
Collapse
Affiliation(s)
- Hester A Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 box 802, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
124
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
125
|
Khakzad H, Happonen L, Tran Van Nhieu G, Malmström J, Malmström L. In vivo Cross-Linking MS of the Complement System MAC Assembled on Live Gram-Positive Bacteria. Front Genet 2021; 11:612475. [PMID: 33488677 PMCID: PMC7820895 DOI: 10.3389/fgene.2020.612475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
Protein–protein interactions are central in many biological processes, but they are challenging to characterize, especially in complex samples. Protein cross-linking combined with mass spectrometry (MS) and computational modeling is gaining increased recognition as a viable tool in protein interaction studies. Here, we provide insights into the structure of the multicomponent human complement system membrane attack complex (MAC) using in vivo cross-linking MS combined with computational macromolecular modeling. We developed an affinity procedure followed by chemical cross-linking on human blood plasma using live Streptococcus pyogenes to enrich for native MAC associated with the bacterial surface. In this highly complex sample, we identified over 100 cross-linked lysine–lysine pairs between different MAC components that enabled us to present a quaternary model of the assembled MAC in its native environment. Demonstrating the validity of our approach, this MAC model is supported by existing X-ray crystallographic and electron cryo-microscopic models. This approach allows the study of protein–protein interactions in native environment mimicking their natural milieu. Its high potential in assisting and refining data interpretation in electron cryo-tomographic experiments will be discussed.
Collapse
Affiliation(s)
- Hamed Khakzad
- Equipe Signalisation Calcique et Infections Microbiennes, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale U1282, Gif-sur-Yvette, France
| | - Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Guy Tran Van Nhieu
- Equipe Signalisation Calcique et Infections Microbiennes, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France.,Institut National de la Santé et de la Recherche Médicale U1282, Gif-sur-Yvette, France
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
126
|
Mosure SA, Strutzenberg TS, Shang J, Munoz-Tello P, Solt LA, Griffin PR, Kojetin DJ. Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ. SCIENCE ADVANCES 2021; 7:7/5/eabc6479. [PMID: 33571111 PMCID: PMC7840129 DOI: 10.1126/sciadv.abc6479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/09/2020] [Indexed: 05/12/2023]
Abstract
Heme is the endogenous ligand for the constitutively repressive REV-ERB nuclear receptors, REV-ERBα (NR1D1) and REV-ERBβ (NR1D2), but how heme regulates REV-ERB activity remains unclear. Cellular studies indicate that heme is required for the REV-ERBs to bind the corepressor NCoR and repress transcription. However, fluorescence-based biochemical assays suggest that heme displaces NCoR; here, we show that this is due to a heme-dependent artifact. Using ITC and NMR spectroscopy, we show that heme binding remodels the thermodynamic interaction profile of NCoR receptor interaction domain (RID) binding to REV-ERBβ ligand-binding domain (LBD). We solved two crystal structures of REV-ERBβ LBD cobound to heme and NCoR peptides, revealing the heme-dependent NCoR binding mode. ITC and chemical cross-linking mass spectrometry reveals a 2:1 LBD:RID stoichiometry, consistent with cellular studies showing that NCoR-dependent repression of REV-ERB transcription occurs on dimeric DNA response elements. Our findings should facilitate renewed progress toward understanding heme-dependent REV-ERB activity.
Collapse
Affiliation(s)
- Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Timothy S Strutzenberg
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
127
|
Biological Applications for LC-MS-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:17-29. [PMID: 34628625 DOI: 10.1007/978-3-030-77252-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Since its inception, liquid chromatography-mass spectrometry (LC-MS) has been continuously improved upon in many aspects, including instrument capabilities, sensitivity, and resolution. Moreover, the costs to purchase and operate mass spectrometers and liquid chromatography systems have decreased, thus increasing affordability and availability in sectors outside of academic and industrial research. Processing power has also grown immensely, cutting the time required to analyze samples, allowing more data to be feasibly processed, and allowing for standardized processing pipelines. As a result, proteomics via LC-MS has become popular in many areas of biological sciences, forging an important seat for itself in targeted and untargeted assays, pure and applied science, the laboratory, and the clinic. In this chapter, many of these applications of LC-MS-based proteomics and an outline of how they can be executed will be covered. Since the field of personalized medicine has matured alongside proteomics, it has also come to rely on various mass spectrometry methods and will be elaborated upon as well. As time goes on and mass spectrometry evolves, there is no doubt that its presence in these areas, and others, will only continue to grow.
Collapse
|
128
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
129
|
Matzinger M, Mechtler K. Cleavable Cross-Linkers and Mass Spectrometry for the Ultimate Task of Profiling Protein-Protein Interaction Networks in Vivo. J Proteome Res 2021; 20:78-93. [PMID: 33151691 PMCID: PMC7786381 DOI: 10.1021/acs.jproteome.0c00583] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) has matured into a potent tool to identify protein-protein interactions or to uncover protein structures in living cells, tissues, or organelles. The unique ability to investigate the interplay of proteins within their native environment delivers valuable complementary information to other advanced structural biology techniques. This Review gives a comprehensive overview of the current possible applications as well as the remaining limitations of the technique, focusing on cross-linking in highly complex biological systems like cells, organelles, or tissues. Thanks to the commercial availability of most reagents and advances in user-friendly data analysis, validation, and visualization tools, studies using XL-MS can, in theory, now also be utilized by nonexpert laboratories.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Karl Mechtler
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| |
Collapse
|
130
|
Abstract
Cross-linking, in general, involves the covalent linkage of two amino acid residues of proteins or protein complexes in close proximity. Mass spectrometry and computational analysis are then applied to identify the formed linkage and deduce structural information such as distance restraints. Quantitative cross-linking coupled with mass spectrometry is well suited to study protein dynamics and conformations of protein complexes. The quantitative cross-linking workflow described here is based on the application of isotope labelled cross-linkers. Proteins or protein complexes present in different structural states are differentially cross-linked using a "light" and a "heavy" cross-linker. The intensity ratios of cross-links (i.e., light/heavy or heavy/light) indicate structural changes or interactions that are maintained in the different states. These structural insights lead to a better understanding of the function of the proteins or protein complexes investigated. The described workflow is applicable to a wide range of research questions including, for instance, protein dynamics or structural changes upon ligand binding.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
131
|
Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 2020; 184:545-559.e22. [PMID: 33357446 PMCID: PMC7836100 DOI: 10.1016/j.cell.2020.12.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. Dynamic structural proteomic screens detect functional changes at high resolution Detect enzyme activity, phosphorylation, and molecular interactions in situ Generate new molecular hypotheses and increase functional proteomics coverage Enabled discovery of a regulatory mechanism of glucose uptake in E. coli
Collapse
|
132
|
Cardon T, Fournier I, Salzet M. SARS-Cov-2 Interactome with Human Ghost Proteome: A Neglected World Encompassing a Wealth of Biological Data. Microorganisms 2020; 8:E2036. [PMID: 33352703 PMCID: PMC7766365 DOI: 10.3390/microorganisms8122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Conventionally, eukaryotic mRNAs were thought to be monocistronic, leading to the translation of a single protein. However, large-scale proteomics have led to a massive identification of proteins translated from mRNAs of alternative ORF (AltORFs), in addition to the predicted proteins issued from the reference ORF or from ncRNAs. These alternative proteins (AltProts) are not represented in the conventional protein databases and this "ghost proteome" was not considered until recently. Some of these proteins are functional and there is growing evidence that they are involved in central functions in physiological and physiopathological context. Based on our experience with AltProts, we were interested in finding out their interaction with the viral protein coming from the SARS-CoV-2 virus, responsible for the 2020 COVID-19 outbreak. Thus, we have scrutinized the recently published data by Krogan and coworkers (2020) on the SARS-CoV-2 interactome with host cells by affinity purification in co-immunoprecipitation (co-IP) in the perspective of drug repurposing. The initial work revealed the interaction between 332 human cellular reference proteins (RefProts) with the 27 viral proteins. Re-interrogation of this data using 23 viral targets and including AltProts, followed by enrichment of the interaction networks, leads to identify 218 RefProts (in common to initial study), plus 56 AltProts involved in 93 interactions. This demonstrates the necessity to take into account the ghost proteome for discovering new therapeutic targets, and establish new therapeutic strategies. Missing the ghost proteome in the drug metabolism and pharmacokinetic (DMPK) drug development pipeline will certainly be a major limitation to the establishment of efficient therapies.
Collapse
Affiliation(s)
- Tristan Cardon
- Inserm U1192, University Lille, CHU Lille, Laboratory Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Isabelle Fournier
- Inserm U1192, University Lille, CHU Lille, Laboratory Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
- Institut Universitaire de France, 75000 Paris, France
| | - Michel Salzet
- Inserm U1192, University Lille, CHU Lille, Laboratory Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
- Institut Universitaire de France, 75000 Paris, France
| |
Collapse
|
133
|
Ouni E, Ruys SPD, Dolmans MM, Herinckx G, Vertommen D, Amorim CA. Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization. Int J Mol Sci 2020; 21:E9141. [PMID: 33266304 PMCID: PMC7730167 DOI: 10.3390/ijms21239141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
Currently, the extracellular matrix (ECM) is considered a pivotal complex meshwork of macromolecules playing a plethora of biomolecular functions in health and disease beyond its commonly known mechanical role. Only by unraveling its composition can we leverage related tissue engineering and pharmacological efforts. Nevertheless, its unbiased proteomic identification still encounters some limitations mainly due to partial ECM enrichment by precipitation, sequential fractionation using unfriendly-mass spectrometry (MS) detergents, and resuspension with harsh reagents that need to be entirely removed prior to analysis. These methods can be technically challenging and labor-intensive, which affects the reproducibility of ECM identification and induces protein loss. Here, we present a simple new method applicable to tissue fragments of 10 mg and more. The technique has been validated on human ovarian tissue and involves a standardized procedure for sample processing with an MS-compatible detergent and combined centrifugation. This two-step protocol eliminates the need for laborious sample clarification and divides our samples into 2 fractions, soluble and insoluble, successively enriched with matrisome-associated (ECM-interacting) and core matrisome (structural ECM) proteins.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| | - Sébastien Pyr dit Ruys
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
- Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Gaëtan Herinckx
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.P.d.R.); (G.H.); (D.V.)
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (E.O.); (M.-M.D.)
| |
Collapse
|
134
|
Cardon T, Fournier I, Salzet M. Shedding Light on the Ghost Proteome. Trends Biochem Sci 2020; 46:239-250. [PMID: 33246829 DOI: 10.1016/j.tibs.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/19/2023]
Abstract
Conventionally, eukaryotic mRNAs were thought to be monocistronic, leading to the translation of a single protein. However, large-scale proteomics has led to the identification of proteins translated from alternative open reading frames (AltORFs) in mRNAs. AltORFs are found in addition to predicted reference ORFs and noncoding RNA. Alternative proteins are not represented in the conventional protein databases, and this 'Ghost proteome' was not considered until recently. Some of these proteins are functional, and there is growing evidence that they are involved in central functions in physiological and physiopathological contexts. Here, we review how this Ghost proteome fills the gap in our understanding of signaling pathways, establishes new markers of pathologies, and highlights therapeutic targets.
Collapse
Affiliation(s)
- Tristan Cardon
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France.
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France; Institut Universitaire de France, Paris, France.
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
135
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
136
|
Koshiba T, Kosako H. Mass spectrometry-based methods for analysing the mitochondrial interactome in mammalian cells. J Biochem 2020; 167:225-231. [PMID: 31647556 PMCID: PMC7048079 DOI: 10.1093/jb/mvz090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/19/2019] [Indexed: 11/12/2022] Open
Abstract
Protein-protein interactions are essential biologic processes that occur at inter- and intracellular levels. To gain insight into the various complex cellular functions of these interactions, it is necessary to assess them under physiologic conditions. Recent advances in various proteomic technologies allow to investigate protein-protein interaction networks in living cells. The combination of proximity-dependent labelling and chemical cross-linking will greatly enhance our understanding of multi-protein complexes that are difficult to prepare, such as organelle-bound membrane proteins. In this review, we describe our current understanding of mass spectrometry-based proteomics mapping methods for elucidating organelle-bound membrane protein complexes in living cells, with a focus on protein-protein interactions in mitochondrial subcellular compartments.
Collapse
Affiliation(s)
- Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
137
|
Khan K, Baleanu-Gogonea C, Willard B, Gogonea V, Fox PL. 3-Dimensional architecture of the human multi-tRNA synthetase complex. Nucleic Acids Res 2020; 48:8740-8754. [PMID: 32644155 PMCID: PMC7470956 DOI: 10.1093/nar/gkaa569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
In mammalian cells, eight cytoplasmic aminoacyl-tRNA synthetases (AARS), and three non-synthetase proteins, reside in a large multi-tRNA synthetase complex (MSC). AARSs have critical roles in interpretation of the genetic code during protein synthesis, and in non-canonical functions unrelated to translation. Nonetheless, the structure and function of the MSC remain unclear. Partial or complete crystal structures of all MSC constituents have been reported; however, the structure of the holo-MSC has not been resolved. We have taken advantage of cross-linking mass spectrometry (XL-MS) and molecular docking to interrogate the three-dimensional architecture of the MSC in human HEK293T cells. The XL-MS approach uniquely provides structural information on flexibly appended domains, characteristic of nearly all MSC constituents. Using the MS-cleavable cross-linker, disuccinimidyl sulfoxide, inter-protein cross-links spanning all MSC constituents were observed, including cross-links between eight protein pairs not previously known to interact. Intra-protein cross-links defined new structural relationships between domains in several constituents. Unexpectedly, an asymmetric AARS distribution was observed featuring a clustering of tRNA anti-codon binding domains on one MSC face. Possibly, the non-uniform localization improves efficiency of delivery of charged tRNA’s to an interacting ribosome during translation. In summary, we show a highly compact, 3D structural model of the human holo-MSC.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
138
|
Steigenberger B, van den Toorn HWP, Bijl E, Greisch JF, Räther O, Lubeck M, Pieters RJ, Heck AJR, Scheltema RA. Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry. Mol Cell Proteomics 2020; 19:1677-1687. [PMID: 32694122 PMCID: PMC8015012 DOI: 10.1074/mcp.ra120.002094] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Indexed: 12/05/2022] Open
Abstract
Ion mobility separates molecules in the gas-phase based on their physico-chemical properties, providing information about their size as collisional cross-sections. The timsTOF Pro combines trapped ion mobility with a quadrupole, collision cell and a TOF mass analyzer, to probe ions at high speeds with on-the-fly fragmentation. Here, we show that on this platform ion mobility is beneficial for cross-linking MS (XL-MS). Cross-linking reagents covalently link amino acids in proximity, resulting in peptide pairs after proteolytic digestion. These cross-linked peptides are typically present at low abundance in the background of normal peptides, which can partially be resolved by using enrichable cross-linking reagents. Even with a very efficient enrichable cross-linking reagent, like PhoX, the analysis of cross-linked peptides is still hampered by the co-enrichment of peptides connected to a partially hydrolyzed reagent - termed mono-linked peptides. For experiments aiming to uncover protein-protein interactions these are unwanted byproducts. Here, we demonstrate that gas-phase separation by ion mobility enables the separation of mono-linked peptides from cross-linked peptide pairs. A clear partition between these two classes is observed at a CCS of 500 Å2 and a monoisotopic mass of 2 kDa, which can be used for targeted precursor selection. A total of 50-70% of the mono-linked peptides are prevented from sequencing, allowing the analysis to focus on sequencing the relevant cross-linked peptide pairs. In applications to both simple proteins and protein mixtures and a complete highly complex lysate this approach provides a substantial increase in detected cross-linked peptides.
Collapse
Affiliation(s)
- Barbara Steigenberger
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Emiel Bijl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands.
| |
Collapse
|
139
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
140
|
Cardon T, Franck J, Coyaud E, Laurent EMN, Damato M, Maffia M, Vergara D, Fournier I, Salzet M. Alternative proteins are functional regulators in cell reprogramming by PKA activation. Nucleic Acids Res 2020; 48:7864-7882. [PMID: 32324228 PMCID: PMC7641301 DOI: 10.1093/nar/gkaa277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial–mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.
Collapse
Affiliation(s)
- Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Estelle M N Laurent
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marina Damato
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| |
Collapse
|
141
|
Huang R, Gao X, Xu Z, Zhu W, Wei D, Jiang B, Chen H, Chen W. Decision Tree Searching Strategy to Boost the Identification of Cross-Linked Peptides. Anal Chem 2020; 92:13702-13710. [DOI: 10.1021/acs.analchem.0c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiuxia Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
142
|
Iacobucci I, Monaco V, Cozzolino F, Monti M. From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. J Proteomics 2020; 230:103990. [PMID: 32961344 DOI: 10.1016/j.jprot.2020.103990] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Functional Proteomics aims to the identification of in vivo protein-protein interaction (PPI) in order to piece together protein complexes, and therefore, cell pathways involved in biological processes of interest. Over the years, proteomic approaches used for protein-protein interaction investigation have relied on classical biochemical protocols adapted to a global overview of protein-protein interactions, within so-called "interactomics" investigation. In particular, their coupling with advanced mass spectrometry instruments and innovative analytical methods led to make great strides in the PPIs investigation in proteomics. In this review, an overview of protein complexes purification strategies, from affinity purification approaches, including proximity-dependent labeling techniques and cross-linking strategy for the identification of transient interactions, to Blue Native Gel Electrophoresis (BN-PAGE) and Size Exclusion Chromatography (SEC) employed in the "complexome profiling", has been reported, giving a look to their developments, strengths and weakness and providing to readers several recent applications of each strategy. Moreover, a section dedicated to bioinformatic databases and platforms employed for protein networks analyses was also included.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
143
|
de Jong L, Roseboom W, Kramer G. A composite filter for low FDR of protein-protein interactions detected by in vivo cross-linking. J Proteomics 2020; 230:103987. [PMID: 32949815 DOI: 10.1016/j.jprot.2020.103987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
In vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at proteome-wide scale and at peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 to identify cross-links induced in exponentially growing Bacillus subtilis cells treated in culture with bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). Cross-linked peptide pairs were identified by pLink 2 in very short time at an overall FDR of <5%. To also obtain a FDR <5% for non-redundant inter-protein cross-linked peptide pairs additional threshold values were applied for matched fragment intensity and for the numbers of unambiguous y and b ions assigned to both composite peptides. Also the mass- and charge-dependent retention times of target peptides purified by diagonal strong cation exchange chromatography were used as a criterion to distinguish true from false positives. After application of the composite filter new protein-protein interactions were revealed among others between the global transcriptional repressor AbrB and elongation factor Tu and between the essential protein YlaN of unknown function and the ferric uptake repressor Fur. SIGNIFICANCE: Important for reliable identification of PPIs by chemical cross-linking in vivo is a low FDR of non-redundant inter-protein peptide pairs. Here we describe how to recognize the presence of spurious interactions in a dataset of cross-linked peptide pairs enriched by 2D strong cation exchange chromatography and identified by LCMSMS by taking into account chromatographic behavior of cross-linked peptide pairs and protein abundance of corresponding peptides. Based on these criteria we assessed that the FDR of the fraction of non-redundant inter-protein cross-linked peptide pairs was approx. 20-25% by interrogating an entire species specific database at an overall FDR of 5% or 0.1% with a search engine that otherwise scores best in sensitivity among other search engines. We have defined a composite filter to decrease this high FDR of inter-protein cross-linked peptide pairs to only about 2%.
Collapse
Affiliation(s)
- Luitzen de Jong
- Mass spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Winfried Roseboom
- Mass spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Mass spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
144
|
Belsom A, Rappsilber J. Anatomy of a crosslinker. Curr Opin Chem Biol 2020; 60:39-46. [PMID: 32829152 DOI: 10.1016/j.cbpa.2020.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Crosslinking mass spectrometry has become a core technology in structural biology and is expanding its reach towards systems biology. Its appeal lies in a rapid workflow, high sensitivity and the ability to provide data on proteins in complex systems, even in whole cells. The technology depends heavily on crosslinking reagents. The anatomy of crosslinkers can be modular, sometimes comprising combinations of functional groups. These groups are defined by concepts including: reaction selectivity to increase information density, enrichability to improve detection, cleavability to enhance the identification process and isotope-labelling for quantification. Here, we argue that both concepts and functional groups need more thorough experimental evaluation, so that we can show exactly how and where they are useful when applied to crosslinkers. Crosslinker design should be driven by data, not only concepts. We focus on two crosslinker concepts with large consequences for the technology, namely reactive group reaction kinetics and enrichment groups.
Collapse
Affiliation(s)
- Adam Belsom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
145
|
Kohl B, Brüderlin M, Ritz D, Schmidt A, Hiller S. Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli. J Proteome Res 2020; 19:3100-3108. [PMID: 32412763 DOI: 10.1021/acs.jproteome.0c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV-cross-linking mass spectrometry is an emerging technique to obtain structural information of biomacromolecules and their complexes in vivo and in vitro. In particular, certain photo-reactive amino acids (pA) such as photo-leucine (pLeu) and photo-methionine can provide unique short-distance information on the structural core regions of proteins. Here, we present a protocol for high-yield incorporation of pLeu in proteins recombinantly expressed in Escherichia coli. The protein of interest is expressed at high cell densities, which reduces the required amount of the pA by a factor of 10, as compared to the standard protocols, while maintaining high incorporation rates. For the two chaperones, trigger factor and SecB, up to 3 mg of pLeu-labeled protein were thus obtained from 100 mL of cell culture, with label incorporation rates of up to 34%. For trigger factor, UV-induced cross-linking leads to the identification of 12 cross-links that are in agreement with the published three-dimensional structures. The accessibility of milligram amounts of pLeu-labeled proteins at low costs will be highly useful to address structural biology questions.
Collapse
Affiliation(s)
- Bastian Kohl
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Mitchell Brüderlin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
146
|
Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Sci Rep 2020; 10:12618. [PMID: 32724211 PMCID: PMC7387497 DOI: 10.1038/s41598-020-69313-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The ribosome is not only a highly complex molecular machine that translates the genetic information into proteins, but also an exceptional specimen for testing and optimizing cross-linking/mass spectrometry (XL-MS) workflows. Due to its high abundance, ribosomal proteins are frequently identified in proteome-wide XL-MS studies of cells or cell extracts. Here, we performed in-depth cross-linking of the E. coli ribosome using the amine-reactive cross-linker disuccinimidyl diacetic urea (DSAU). We analyzed 143 E. coli ribosomal structures, mapping a total of 10,771 intramolecular distances for 126 cross-link-pairs and 3,405 intermolecular distances for 97 protein pairs. Remarkably, 44% of intermolecular cross-links covered regions that have not been resolved in any high-resolution E. coli ribosome structure and point to a plasticity of cross-linked regions. We systematically characterized all cross-links and discovered flexible regions, conformational changes, and stoichiometric variations in bound ribosomal proteins, and ultimately remodeled 2,057 residues (15,794 atoms) in total. Our working model explains more than 95% of all cross-links, resulting in an optimized E. coli ribosome structure based on the cross-linking data obtained. Our study might serve as benchmark for conducting biochemical experiments on newly modeled protein regions, guided by XL-MS. Data are available via ProteomeXchange with identifier PXD018935.
Collapse
Affiliation(s)
- Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Corporate Preclinical R&D, Analytics and Early Formulations Department, CHIESI FARMACEUTICI S.P.A., Via Palermo 26/A, 43122, Parma, Italy
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
| |
Collapse
|
147
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
148
|
Schnirch L, Nadler-Holly M, Siao SW, Frese CK, Viner R, Liu F. Expanding the Depth and Sensitivity of Cross-Link Identification by Differential Ion Mobility Using High-Field Asymmetric Waveform Ion Mobility Spectrometry. Anal Chem 2020; 92:10495-10503. [PMID: 32643919 DOI: 10.1021/acs.analchem.0c01273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cross-linking mass spectrometry (XL-MS), the depth and sensitivity of cross-link detection is often limited by the low abundance of cross-links compared to non-cross-linked peptides in the digestion mixture. To improve the identification efficiency of cross-links, here, we present a gas-phase separation strategy using high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to the Orbitrap Tribrid mass spectrometers. By enabling an additional peptide separation step in the gas phase using the FAIMS device, we increase the number of cross-link identifications by 22% for a medium complex sample and 59% for strong cation exchange-fractionated HEK293T cell lysate in XL-MS experiments using disuccinimidyl sulfoxide (DSSO) cross-linker. When disuccinimidyl suberate (DSS) cross-linker is in use, we are able to boost cross-link identification by 89% for the medium and 100% for the high complex sample compared to the analyses without FAIMS. Furthermore, we show that, for medium complex samples, FAIMS enables the collection of single-shot XL-MS data with a comparable depth to the corresponding sample fractionated by chromatography-based approaches. Altogether, we demonstrate FAIMS is highly beneficial for XL-MS studies by expanding the proteome coverage of cross-links while improving the efficiency and confidence of cross-link identification.
Collapse
Affiliation(s)
- Lennart Schnirch
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Siang-Wun Siao
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany.,Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian K Frese
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy., San Jose, California 95134, United States
| | - Fan Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
149
|
Hauseman ZJ, Harvey EP, Newman CE, Wales TE, Bucci JC, Mintseris J, Schweppe DK, David L, Fan L, Cohen DT, Herce HD, Mourtada R, Ben-Nun Y, Bloch NB, Hansen SB, Wu H, Gygi SP, Engen JR, Walensky LD. Homogeneous Oligomers of Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Mol Cell 2020; 79:68-83.e7. [PMID: 32533918 PMCID: PMC7472837 DOI: 10.1016/j.molcel.2020.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/13/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
BAX is a pro-apoptotic protein that transforms from a cytosolic monomer into a toxic oligomer that permeabilizes the mitochondrial outer membrane. How BAX monomers assemble into a higher-order conformation, and the structural determinants essential to membrane permeabilization, remain a mechanistic mystery. A key hurdle has been the inability to generate a homogeneous BAX oligomer (BAXO) for analysis. Here, we report the production and characterization of a full-length BAXO that recapitulates physiologic BAX activation. Multidisciplinary studies revealed striking conformational consequences of oligomerization and insight into the macromolecular structure of oligomeric BAX. Importantly, BAXO enabled the assignment of specific roles to particular residues and α helices that mediate individual steps of the BAX activation pathway, including unexpected functionalities of BAX α6 and α9 in driving membrane disruption. Our results provide the first glimpse of a full-length and functional BAXO, revealing structural requirements for the elusive execution phase of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zachary J Hauseman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Edward P Harvey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Catherine E Newman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Joel C Bucci
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lixin Fan
- Small Angle X-ray Scattering Core, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Henry D Herce
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Rida Mourtada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Yael Ben-Nun
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Noah B Bloch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Scott B Hansen
- The Scripps Research Institute-Florida, Jupiter, FL 33458, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
150
|
Linden A, Deckers M, Parfentev I, Pflanz R, Homberg B, Neumann P, Ficner R, Rehling P, Urlaub H. A Cross-linking Mass Spectrometry Approach Defines Protein Interactions in Yeast Mitochondria. Mol Cell Proteomics 2020; 19:1161-1178. [PMID: 32332106 PMCID: PMC7338081 DOI: 10.1074/mcp.ra120.002028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins, but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labeling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labeled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly because of the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8Δ mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.
Collapse
Affiliation(s)
- Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Pflanz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|