101
|
Kaltsas A, Zachariou A, Markou E, Dimitriadis F, Sofikitis N, Pournaras S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J Pers Med 2023; 13:1491. [PMID: 37888102 PMCID: PMC10608462 DOI: 10.3390/jpm13101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The human microbiota in the genital tract is pivotal for maintaining fertility, but its disruption can lead to male infertility. This study examines the relationship between microbial dysbiosis and male infertility, underscoring the promise of precision medicine in this field. Through a comprehensive review, this research indicates microbial signatures associated with male infertility, such as altered bacterial diversity, the dominance of pathogenic species, and imbalances in the genital microbiome. Key mechanisms linking microbial dysbiosis to infertility include inflammation, oxidative stress, and sperm structural deterioration. Emerging strategies like targeted antimicrobial therapies, probiotics, prebiotics, and fecal microbiota transplantation have shown potential in adjusting the genital microbiota to enhance male fertility. Notably, the application of precision medicine, which customizes treatments based on individual microbial profiles and specific causes of infertility, emerges as a promising approach to enhance treatment outcomes. Ultimately, microbial dysbiosis is intricately linked to male infertility, and embracing personalized treatment strategies rooted in precision medicine principles could be the way forward in addressing infertility associated with microbial factors.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
102
|
Gu CH, Khatib LA, Fitzgerald AS, Graham-Wooten J, Ittner CA, Sherrill-Mix S, Chuang Y, Glaser LJ, Meyer NJ, Bushman FD, Collman RG. Tracking gut microbiome and bloodstream infection in critically ill adults. PLoS One 2023; 18:e0289923. [PMID: 37816004 PMCID: PMC10564172 DOI: 10.1371/journal.pone.0289923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The gut microbiome is believed to contribute to bloodstream infection (BSI) via translocation of dominant gut bacteria in vulnerable patient populations. However, conclusively linking gut and blood organisms requires stringent approaches to establish strain-level identity. METHODS We enrolled a convenience cohort of critically ill patients and investigated 86 bloodstream infection episodes that occurred in 57 patients. Shotgun metagenomic sequencing was used to define constituents of their gut microbiomes, and whole genome sequencing and assembly was done on 23 unique bloodstream isolates that were available from 21 patients. Whole genome sequences were downloaded from public databases and used to establish sequence-identity distribution and define thresholds for unrelated genomes of BSI species. Gut microbiome reads were then aligned to whole genome sequences of the cognate bloodstream isolate and unrelated database isolates to assess identity. RESULTS Gut microbiome constituents matching the bloodstream infection species were present in half of BSI episodes, and represented >30% relative abundance of gut sequences in 10% of episodes. Among the 23 unique bloodstream organisms that were available for whole genome sequencing, 14 were present in gut at the species level. Sequence alignment applying defined thresholds for identity revealed that 6 met criteria for identical strains in blood and gut, but 8 did not. Sequence identity between BSI isolates and gut microbiome reads was more likely when the species was present at higher relative abundance in gut. CONCLUSION In assessing potential gut source for BSI, stringent sequence-based approaches are essential to determine if organisms responsible for BSI are identical to those in gut: of 14 evaluable patients in which the same species was present in both sites, they were identical in 6/14, but were non-identical in 8/14 and thus inconsistent with gut source. This report demonstrates application of sequencing as a key tool to investigate infection tracking within patients.
Collapse
Affiliation(s)
- Christopher H. Gu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Layla A. Khatib
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Ayannah S. Fitzgerald
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Jevon Graham-Wooten
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Caroline A. Ittner
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - YuChung Chuang
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Laurel J. Glaser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Nuala J. Meyer
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- Department of Medicine, Pulmonary and Critical Care Division and the Center for Translational Lung Biology / Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| |
Collapse
|
103
|
Shen J, Wang S, Huang Y, Wu Z, Han S, Xia H, Chen H, Li L. Lactobacillus reuteri Ameliorates Lipopolysaccharide-Induced Acute Lung Injury by Modulating the Gut Microbiota in Mice. Nutrients 2023; 15:4256. [PMID: 37836540 PMCID: PMC10574429 DOI: 10.3390/nu15194256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Acute lung injury (ALI) causes lung inflammation and edema as well as resulting in gut microbiota disorder. Probiotics, however, can improve the gut microbiota composition and modulate its immune response, playing an important role in ALI pathogenesis. Therefore, our study aims to investigate the effect of Lactobacillus reuteri on Lipopolysaccharide (LPS)-induced ALI in mice and to probe the mechanism of its synergistic modulatory effect on the lungs and intestines. We assessed the therapeutic effects of L. reuteri in the ALI mouse model by histopathology, alveolar lavage fluid and serum inflammatory factor analysis and explored microbiome and transcriptome alterations. L. reuteri intervention effectively attenuated lung tissue injury and significantly reduced the LPS-induced inflammatory response and macrophage and neutrophil infiltration. Additionally, L. reuteri improved the intestinal barrier function and remodeled the disordered microbiota. In conclusion, our study showed that L. reuteri attenuated the inflammatory response, ameliorated the pulmonary edema, repaired the intestinal barrier, and remodeled the gut microbiota in ALI mice. This study provides new perspectives on the clinical treatment of ALI.
Collapse
Affiliation(s)
- Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shuting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yong Huang
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310022, China
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
104
|
Yang RZ, Liang M, Lin S, Weng J, Hu JM, Lin SZ, Wu XD, Zeng K. General anesthesia alters the diversity and composition of the lung microbiota in rat. Biomed Pharmacother 2023; 166:115381. [PMID: 37639744 DOI: 10.1016/j.biopha.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The lung microbiome plays a crucial role in human health and disease. Extensive studies have demonstrated that the disturbance of the lung microbiome influences immune response, cognition, and behavior. The goal of this study was to investigate the effect of general anesthetics on lung microbiome. METHODS Eight-week-old male SD rats received a continuous intravenous infusion of propofol or inhalation of isoflurane for 4 h. 16S rRNA gene amplification from BALF samples was used to investigate the changes in the lung microbiome after interventions. We further performed neurobehavioral assessments to find the differential strains' association with behavior disorder after isoflurane anesthesia. RESULTS The absolute and relative quantitation of 16S rRNA sequencing data showed that isoflurane altered the diversity and abundance of the lung microbiome in rats more than propofol. Elusimicrobia increased significantly in the isoflurane group. Both EPM and OFT results showed that rats exhibited depression-like behaviors after inhalation of isoflurane. In addition, significant differences were found in the COG/KO/MetaCyc/KEGG pathway enrichment analyses among the groups. CONCLUSION Continuous inhalation of isoflurane changed the diversity and composition of the lung microbiota in rats, resulting in post-anesthesia depression.
Collapse
Affiliation(s)
- Rui-Zhi Yang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Song Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Weng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shi-Zhu Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
105
|
Lim EY, Song EJ, Shin HS. Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2023; 33:1111-1118. [PMID: 37164760 PMCID: PMC10580882 DOI: 10.4014/jmb.2301.01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Ji Song
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
106
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23296086. [PMID: 37808745 PMCID: PMC10557814 DOI: 10.1101/2023.09.25.23296086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
107
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Cruz CD, Okin DA, Huang CY, van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. RESEARCH SQUARE 2023:rs.3.rs-3338762. [PMID: 37841841 PMCID: PMC10571606 DOI: 10.21203/rs.3.rs-3338762/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
108
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
109
|
Wu J, Li C, Gao P, Zhang C, Zhang P, Zhang L, Dai C, Zhang K, Shi B, Liu M, Zheng J, Pan B, Chen Z, Zhang C, Liao W, Pan W, Fang W, Chen C. Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study. Signal Transduct Target Ther 2023; 8:326. [PMID: 37652953 PMCID: PMC10471611 DOI: 10.1038/s41392-023-01515-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 09/02/2023] Open
Abstract
Whether the alternated microbiota in the gut contribute to the risk of allograft rejection (AR) and pulmonary infection (PI) in the setting of lung transplant recipients (LTRs) remains unexplored. A prospective multicenter cohort of LTRs was identified in the four lung transplant centers. Paired fecal and serum specimens were collected and divided into AR, PI, and event-free (EF) groups according to the diagnosis at sampling. Fecal samples were determined by metagenomic sequencing. And metabolites and cytokines were detected in the paired serum to analyze the potential effect of the altered microbiota community. In total, we analyzed 146 paired samples (AR = 25, PI = 43, and EF = 78). Notably, we found that the gut microbiome of AR followed a major depletion pattern with decreased 487 species and compositional diversity. Further multi-omics analysis showed depleted serum metabolites and increased inflammatory cytokines in AR and PI. Bacteroides uniformis, which declined in AR (2.4% vs 0.6%) and was negatively associated with serum IL-1β and IL-12, was identified as a driven specie in the network of gut microbiome of EF. Functionally, the EF specimens were abundant in probiotics related to mannose and cationic antimicrobial peptide metabolism. Furthermore, a support-vector machine classifier based on microbiome, metabolome, and clinical parameters highly predicted AR (AUPRC = 0.801) and PI (AUPRC = 0.855), whereby the microbiome dataset showed a particularly high diagnostic power. In conclusion, a disruptive gut microbiota showed a significant association with allograft rejection and infection and with systemic cytokines and metabolites in LTRs.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chongwu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Peigen Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengyang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Chen
- Adfontes (Shanghai) Bio-technology Co., Ltd, Shanghai, China
| | - Chao Zhang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China.
| |
Collapse
|
110
|
Pérez-Cobas AE, Rodríguez-Beltrán J, Baquero F, Coque TM. Ecology of the respiratory tract microbiome. Trends Microbiol 2023; 31:972-984. [PMID: 37173205 DOI: 10.1016/j.tim.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
A thriving multi-kingdom microbial ecosystem inhabits the respiratory tract: the respiratory tract microbiome (RTM). In recent years, the contribution of the RTM to human health has become a crucial research aspect. However, research into the key ecological processes, such as robustness, resilience, and microbial interaction networks, has only recently started. This review leans on an ecological framework to interpret the human RTM and determine how the ecosystem functions and assembles. Specifically, the review illustrates the ecological RTM models and discusses microbiome establishment, community structure, diversity stability, and critical microbial interactions. Lastly, the review outlines the RTM responses to ecological disturbances, as well as the promising approaches for restoring ecological balance.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain.
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
111
|
Xu YS, Wang YH, Zhong W, Zhang CP, Xiong ZF, Chen R, Mao T. Fecal microbial biomarkers in older adults with autoimmune diseases. Future Microbiol 2023; 18:949-957. [PMID: 37477509 DOI: 10.2217/fmb-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Aim: To analyze the alterations in the fecal microbiota of older adults with autoimmune disease and determine the diagnostic capabilities of microbial biomarkers. Methods: The raw data of fecal samples from 444 older adults from the publicly available American Gut Project database was analyzed. Results: It was found that there were no significant differences in the microbiota richness and evenness between older adults with autoimmune disease and healthy controls. However, significant differences were observed in the microbiota composition and structure. The subject operating characteristic curve of the eight key microbiota was obtained, and the area under curve value was 70.0%. Conclusion: Older adults with autoimmune disease showed changes in intestinal microbiota composition, which can be used as microbial biomarkers.
Collapse
Affiliation(s)
- Yu-Shuang Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-Hua Wang
- School of Mathematics, Shandong University, Jinan, China
| | - Wen Zhong
- Department of General Practice, The Third People's Hospital of Chengdu, Chengdu, China
| | - Cui-Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430077, China
| | - Rui Chen
- Department of General Practice, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
112
|
Miao Y, Zhao X, Lei J, Ding J, Feng H, Wu K, Liu J, Wang C, Ye D, Wang X, Wang J, Yang Z. Characterization of Lung Microbiomes in Pneumonic Hu Sheep Using Culture Technique and 16S rRNA Gene Sequencing. Animals (Basel) 2023; 13:2763. [PMID: 37685027 PMCID: PMC10486422 DOI: 10.3390/ani13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hu sheep, a locally bred species in China known for its high productivity, is currently suffering from pneumonia. Here, we combine high-throughput 16SrRNA gene sequencing and bacterial culturing to examine the bacterial community in pneumonic Hu Sheep lungs (p < 0.05). The results showed that the abundance and diversity of lung bacteria in healthy sheep were significantly higher than those in pneumonia sheep (p = 0.139), while there was no significant difference between moderate and severe pneumonia. Furthermore, the composition of the lung microbiota community underwent significant alterations between different levels of pneumonia severity. The application of LEfSe analysis revealed a notable enrichment of Mannheimiae within the lungs of sheep afflicted with moderate pneumonia (p < 0.01), surpassing the levels observed in their healthy counterparts. Additionally, Fusobacterium emerged as the prevailing bacterial group within the lungs of sheep suffering from severe pneumonia. Integrating the results of bacterial isolation and identification, we conclusively determined that Mannheimia haemolytica was the primary pathogenic bacterium within the lungs of sheep afflicted with moderate pneumonia. Furthermore, the exacerbation of pneumonia may be attributed to the synergistic interplay between Fusobacterium spp. and other bacterial species. Our results provide new insights for guiding preventive and therapeutic measures for pneumonia of different severities in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (X.Z.); (J.L.); (J.D.); (H.F.); (K.W.); (C.W.); (X.W.); (J.W.)
| |
Collapse
|
113
|
Huang S, Li J, Zhu Z, Liu X, Shen T, Wang Y, Ma Q, Wang X, Yang G, Guo G, Zhu F. Gut Microbiota and Respiratory Infections: Insights from Mendelian Randomization. Microorganisms 2023; 11:2108. [PMID: 37630668 PMCID: PMC10458510 DOI: 10.3390/microorganisms11082108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The role of the gut microbiota in modulating the risk of respiratory infections has garnered increasing attention. However, conventional clinical trials have faced challenges in establishing the precise relationship between the two. In this study, we conducted a Mendelian randomization analysis with single nucleotide polymorphisms employed as instrumental variables to assess the causal links between the gut microbiota and respiratory infections. Two categories of bacteria, family Lactobacillaceae and genus Family XIII AD3011, were causally associated with the occurrence of upper respiratory tract infections (URTIs). Four categories of gut microbiota existed that were causally associated with lower respiratory tract infections (LRTIs), with order Bacillales and genus Paraprevotella showing a positive association and genus Alistipes and genus Ruminococcaceae UCG009 showing a negative association. The metabolites and metabolic pathways only played a role in the development of LRTIs, with the metabolite deoxycholine acting negatively and menaquinol 8 biosynthesis acting positively. The identification of specific bacterial populations, metabolites, and pathways may provide new clues for mechanism research concerning therapeutic interventions for respiratory infections. Future research should focus on elucidating the potential mechanisms regulating the gut microbiota and developing effective strategies to reduce the incidence of respiratory infections. These findings have the potential to significantly improve global respiratory health.
Collapse
Affiliation(s)
- Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Jiaqi Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Zhihao Zhu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Xiaobin Liu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Tuo Shen
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Yusong Wang
- ICU of Burn and Trauma, Changhai Hospital, Shanghai 200433, China;
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Guangping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
- ICU of Burn and Trauma, Changhai Hospital, Shanghai 200433, China;
| |
Collapse
|
114
|
Huang W, Chen H, He Q, Xie W, Peng Z, Ma Q, Huang Q, Chen Z, Liu Y. Nobiletin protects against ferroptosis to alleviate sepsis-associated acute liver injury by modulating the gut microbiota. Food Funct 2023; 14:7692-7704. [PMID: 37545398 DOI: 10.1039/d3fo01684f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Nobiletin (NOB), a plant-based polymethoxyflavone, is a promising protective agent against sepsis; yet the mechanisms were not fully elucidated. The gut microbiota is found to be strongly associated with sepsis-associated acute liver injury (SALI). Here, our study aimed to evaluate the protective effect of NOB on SALI and explore the underlying molecular mechanisms. Cecal ligation and puncture (CLP) was used to induce SALI in mice. NOB was administered by gavage for 7 days before CLP induction. The 16S rRNA gene sequencing and fecal microbiota transplantation (FMT) were performed to verify the function of the gut microbiota. The markers of ferroptosis, inflammation, gut microbiota composition, and liver injury were determined. NOB administration significantly alleviated hepatic ferroptosis and inflammation in septic mice. Meanwhile, NOB upregulated the expression levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 (HO-1). The protective effect of NOB administration against ferroptosis in SALI mice was reversed by the Nrf2 inhibitor ML385. Additionally, increased abundances of Ligilactobacillus, Akkermansia, and Lactobacillus, and decreased abundances of Dubosiella and Bacteroides in the gut were observed under NOB administration, suggesting that NOB might modulate the gut microbiota composition of septic mice. Furthermore, gut microbiota ablation by antibiotic treatment partly reversed the protective effects of NOB on sepsis. FMT also confirmed that NOB inhibited ferroptosis and activated Nrf2 signalling in SALI mice by modulating the gut microbiota. These results revealed that, by modulating the gut microbiota, NOB attenuated ferroptosis in septic liver injury through upregulating Nrf2-Gpx4. Our findings provide novel insights into microbiome-based therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qi He
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zanlin Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
115
|
Xie B, Zhang Y, Han M, Wang M, Yu Y, Chen X, Wu Y, Hashimoto K, Yuan S, Shang Y, Zhang J. Reversal of the detrimental effects of social isolation on ischemic cerebral injury and stroke-associated pneumonia by inhibiting small intestinal γδ T-cell migration into the brain and lung. J Cereb Blood Flow Metab 2023; 43:1267-1284. [PMID: 37017434 PMCID: PMC10369145 DOI: 10.1177/0271678x231167946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Social isolation (ISO) is associated with an increased risk and poor outcomes of ischemic stroke. However, the roles and mechanisms of ISO in stroke-associated pneumonia (SAP) remain unclear. Adult male mice were single- or pair-housed with an ovariectomized female mouse and then subjected to transient middle cerebral artery occlusion. Isolated mice were treated with the natriuretic peptide receptor A antagonist A71915 or anti-gamma-delta (γδ) TCR monoclonal antibody, whereas pair-housed mice were treated with recombinant human atrial natriuretic peptide (rhANP). Subdiaphragmatic vagotomy (SDV) was performed 14 days before single- or pair-housed conditions. We found that ISO significantly worsened brain and lung injuries relative to pair housing, which was partially mediated by elevated interleukin (IL)-17A levels and the migration of small intestine-derived inflammatory γδ T-cells into the brain and lung. However, rhANP treatment or SDV could ameliorate ISO-exacerbated post-stroke brain and lung damage by reducing IL-17A levels and inhibiting the migration of inflammatory γδ T-cells into the brain and lung. Our results suggest that rhANP mitigated ISO-induced exacerbation of SAP and ischemic cerebral injury by inhibiting small intestine-derived γδ T-cell migration into the lung and brain, which could be mediated by the subdiaphragmatic vagus nerve.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengqi Han
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengyuan Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaoyan Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
116
|
Han B, Chao K, Wang D, Sun Y, Ding X, Zhang X, Liu S, Du J, Luo Y, Wang H, Duan X, Zhao H, Sun T. A purified membrane protein from Akkermansia muciniphila blunted the sepsis-induced acute lung injury by modulation of gut microbiota in rats. Int Immunopharmacol 2023; 121:110432. [PMID: 37290320 DOI: 10.1016/j.intimp.2023.110432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
The gut microbiota has been implicated in the pathogenesis and progression of sepsis. Akkermansia muciniphila is considered to be a promising probiotic with reduced abundance in cecal ligation and puncture (CLP)-induced sepsis model, and its specific outer membrane protein (Amuc_1100) can partially recapitulate the probiotic function of Akkermansia muciniphila. However, its role in sepsis is unclear. This study aimed to investigate the effect of Amuc_1100 on the gut microbiota of septic rats, thereby improving the prognosis of septic acute lung injury (ALI). A total of 42 adult Sprague-Dawley (SD) rats were randomly divided into three groups: the sham control (SC group), the septic ALI induced by CLP method (CLP group), and administered Amuc_1100 by oral gavage (3 µg/d) for 7 d before the CLP procedure (AMUC group). The survival of the three groups was recorded and the feces and lung tissues of rats were collected 24 h after treatment for 16S rRNA sequencing and histopathological evaluation. Oral administration of Amuc_1100 improved the survival rate and alleviated lung histopathological damage induced by sepsis. Serum levels of pro-inflammatory cytokines and chemokines were substantially attenuated. Amuc_1100 significantly increased the abundance of some beneficial bacteria in septic rats. Additionally, the Firmicutes/Bacteroidetes ratio was low in septic rats, which was partially corrected by increasing Firmicutes and decreasing Bacteroidetes after oral administration of Amuc_1100 (p < 0.05). In addition, Escherichia-Shigella, Bacteroides, and Parabacteroides were relatively enriched in septic rats, while in the AMUC group, their abundance was restored to levels similar to that of the healthy group. Amuc_1100 protects against sepsis by enhancing beneficial bacteria and reducing potential pathogenic bacteria. These findings indicate that Amuc_1100 can blunt CLP-induced ALI through the modulation of gut microbiota, thereby providing a new promising therapeutic target in sepsis.
Collapse
Affiliation(s)
- Bing Han
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Ke Chao
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Dong Wang
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Yali Sun
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Xianfei Ding
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Xiaojuan Zhang
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Shaohua Liu
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Jiaxin Du
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Yonggang Luo
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Haixu Wang
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Xiaoguang Duan
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China
| | - Huan Zhao
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Tongwen Sun
- General Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Key Laboratory for Critical Care Medicine of Henan Province, Zhengzhou, Henan 450052, PR China; Key Laboratory for Sepsis of Zhengzhou, Zhengzhou, Henan 450052, PR China; Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, PR China.
| |
Collapse
|
117
|
Ling L, Lai CK, Lui G, Yeung ACM, Chan HC, Cheuk CHS, Cheung AN, Chang L, Chiu LCS, Zhang J, Wong WT, Hui DSC, Wong CK, Chan PKS, Chen Z. Characterization of upper airway microbiome across severity of COVID-19 during hospitalization and treatment. Front Cell Infect Microbiol 2023; 13:1205401. [PMID: 37469595 PMCID: PMC10352853 DOI: 10.3389/fcimb.2023.1205401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Longitudinal studies on upper respiratory tract microbiome in coronavirus disease 2019 (COVID-19) without potential confounders such as antimicrobial therapy are limited. The objective of this study is to assess for longitudinal changes in the upper respiratory microbiome, its association with disease severity, and potential confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing from adults hospitalized for COVID-19. Alpha and beta diversity was assessed between different groups. Principal coordinate analysis was used to assess beta diversity between groups. Linear discriminant analysis was used to identify discriminative bacterial taxa in NPSTS taken early during hospitalization on need for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197 subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51 patients with COVID-19; non-COVID-19 mechanically ventilated ICU patients = 11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic treatment had the largest effect on upper airway microbiota. When samples taken after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and evenness) was similar across severity of COVID-19, whereas beta diversity (weighted GUniFrac and Bray-Curtis distance) remained different. Thirteen bacterial genera from NPSTS taken within the first week of hospitalization were associated with a need for ICU admission (area under the receiver operating characteristic curve, 0.96; 95% CI, 0.91-0.99). Longitudinal analysis showed that the upper respiratory microbiota alpha and beta diversity was unchanged during hospitalization in the absence of antimicrobial therapy.
Collapse
Affiliation(s)
- Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher K.C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Apple Chung Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Hon Shawn Cheuk
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adonia Nicole Cheung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Chang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Sandra Chiu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Zhenhe Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Tat Wong
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David S. C. Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
118
|
Zhao D, Qin Y, Liu J, Tang K, Lu S, Liu Z, Lin Y, Zhang C, Huang F, Chang J, Li C, Tian M, Ma Y, Li X, Zhou C, Li X, Peng X, Jin N, Jiang C. Orally administered BZL-sRNA-20 oligonucleotide targeting TLR4 effectively ameliorates acute lung injury in mice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1589-1599. [PMID: 36808291 PMCID: PMC9938506 DOI: 10.1007/s11427-022-2219-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/22/2022] [Indexed: 02/21/2023]
Abstract
The global COVID-19 pandemic emerged at the end of December 2019. Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are common lethal outcomes of bacterial lipopolysaccharide (LPS), avian influenza virus, and SARS-CoV-2. Toll-like receptor 4 (TLR4) is a key target in the pathological pathway of ARDS and ALI. Previous studies have reported that herbal small RNAs (sRNAs) are a functional medical component. BZL-sRNA-20 (Accession number: B59471456; Family ID: F2201.Q001979.B11) is a potent inhibitor of Toll-like receptor 4 (TLR4) and pro-inflammatory cytokines. Furthermore, BZL-sRNA-20 reduces intracellular levels of cytokines induced by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (poly (I:C)). We found that BZL-sRNA-20 rescued the viability of cells infected with avian influenza H5N1, SARS-CoV-2, and several of its variants of concern (VOCs). Acute lung injury induced by LPS and SARS-CoV-2 in mice was significantly ameliorated by the oral medical decoctosome mimic (bencaosome; sphinganine (d22:0)+BZL-sRNA-20). Our findings suggest that BZL-sRNA-20 could be a pan-anti-ARDS ALI drug.
Collapse
Affiliation(s)
- Dandan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Yuhao Qin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Jiaqi Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Kegong Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650031, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yexuan Lin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Cong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fengming Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Jiahui Chang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yiming Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650031, China.
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
119
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
120
|
Dankhara N, Holla I, Ramarao S, Kalikkot Thekkeveedu R. Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology. J Clin Med 2023; 12:4207. [PMID: 37445242 DOI: 10.3390/jcm12134207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is the most common respiratory morbidity in preterm infants. "Old" or "classic" BPD, as per the original description, is less common now. "New BPD", which presents with distinct clinical and pathological features, is more frequently observed in the current era of advanced neonatal care, where extremely premature infants are surviving because of medical advancements. The pathogenesis of BPD is complex and multifactorial and involves both genetic and environmental factors. This review provides an overview of the pathology of BPD and discusses the influence of several prenatal and postnatal factors on its pathogenesis, such as maternal factors, genetic susceptibility, ventilator-associated lung injury, oxygen toxicity, sepsis, patent ductus arteriosus (PDA), and nutritional deficiencies. This in-depth review draws on existing literature to explore these factors and their potential contribution to the development of BPD.
Collapse
Affiliation(s)
- Nilesh Dankhara
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ira Holla
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sumana Ramarao
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
121
|
Roson-Calero N, Ballesté-Delpierre C, Fernández J, Vila J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics (Basel) 2023; 12:1074. [PMID: 37370393 DOI: 10.3390/antibiotics12061074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decades, we have witnessed a steady increase in infections caused by multidrug-resistant (MDR) bacteria. These infections are associated with higher morbidity and mortality. Several interventions should be taken to reduce the emergence and spread of MDR bacteria. The eradication of resistant pathogens colonizing specific human body sites that would likely cause further infection in other sites is one of the most conventional strategies. The objective of this narrative mini-review is to compile and discuss different strategies for the eradication of MDR bacteria from gut microbiota. Here, we analyse the prevalence of MDR bacteria in the community and the hospital and the clinical impact of gut microbiota colonisation with MDR bacteria. Then, several strategies to eliminate MDR bacteria from gut microbiota are described and include: (i) selective decontamination of the digestive tract (SDD) using a cocktail of antibiotics; (ii) the use of pre and probiotics; (iii) fecal microbiota transplantation; (iv) the use of specific phages; (v) engineered CRISPR-Cas Systems. This review intends to provide a state-of-the-art of the most relevant strategies to eradicate MDR bacteria from gut microbiota currently being investigated.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, 08036 Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure (EF-Clif), 08021 Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
122
|
Bozan G, Pérez-Brocal V, Aslan K, Kiral E, Sevketoglu E, Uysal Yazici M, Azapagasi E, Kendirli T, Emeksiz S, Dursun O, Yildizdas D, Anil AB, Akcay N, Kihtir HS, Havan M, Ulgen Tekerek N, Ekinci F, Kilic O, Moya A, Dinleyici EC. Analysis of Intestinal and Nasopharyngeal Microbiota of Children with Meningococcemia in Pediatric Intensive Care Unit: INMACS-PICU Study. Diagnostics (Basel) 2023; 13:1984. [PMID: 37370879 DOI: 10.3390/diagnostics13121984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Microbiota composition might play a role in the pathophysiology and course of sepsis, and understanding its dynamics is of clinical interest. Invasive meningococcal disease (IMD) is an important cause of community-acquired serious infection, and there is no information regarding microbiota composition in children with meningococcemia. In this study, we aimed to evaluate the intestinal and nasopharyngeal microbiota composition of children with IMD. Materials and Methods: In this prospective, multi-center study, 10 children with meningococcemia and 10 age-matched healthy controls were included. Nasopharyngeal and fecal samples were obtained at admission to the intensive care unit and on the tenth day of their hospital stay. The V3 and V4 regions of the 16S rRNA gene were amplified following the 16S Metagenomic Sequencing Library Preparation. Results: Regarding the alpha diversity on the day of admission and on the tenth day at the PICU, the Shannon index was significantly lower in the IMD group compared to the control group (p = 0.002 at admission and p = 0.001, on the tenth day of PICU). A statistical difference in the stool samples was found between the IMD group at Day 0 vs. the controls in the results of the Bray-Curtis and Jaccard analyses (p = 0.005 and p = 0.001, respectively). There were differences in the intestinal microbiota composition between the children with IMD at admission and Day 10 and the healthy controls. Regarding the nasopharyngeal microbiota analysis, in the children with IMD at admission, at the genus level, Neisseria was significantly more abundant compared to the healthy children (p < 0.001). In the children with IMD at Day 10, genera Moraxella and Neisseria were decreased compared to the healthy children. In the children with IMD on Day 0, for paired samples, Moraxella, Neisseria, and Haemophilus were significantly more abundant compared to the children with IMD at Day 10. In the children with IMD at Day 10, the Moraxella and Neisseria genera were decreased, and 20 different genera were more abundant compared to Day 0. Conclusions: We first found alterations in the intestinal and nasopharyngeal microbiota composition in the children with IMD. The infection itself or the other care interventions also caused changes to the microbiota composition during the follow-up period. Understanding the interaction of microbiota with pathogens, e.g., N. meningitidis, could give us the opportunity to understand the disease's dynamics.
Collapse
Affiliation(s)
- Gurkan Bozan
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Kaan Aslan
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Eylem Kiral
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Esra Sevketoglu
- Pediatric Intensive Care Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul 34147, Turkey
| | - Mutlu Uysal Yazici
- Pediatric Intensive Care Unit, Faculty of Medicine, Gazi University, Ankara 06500, Turkey
| | - Ebru Azapagasi
- Pediatric Intensive Care Unit, Faculty of Medicine, Gazi University, Ankara 06500, Turkey
| | - Tanil Kendirli
- Pediatric Intensive Care Unit, Faculty of Medicine, Ankara University, Ankara 06590, Turkey
| | - Serhat Emeksiz
- Pediatric Intensive Care Unit, Ankara City Hospital, Ankara 06800, Turkey
| | - Oguz Dursun
- Pediatric Intensive Care Unit, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Dincer Yildizdas
- Pediatric Intensive Care Unit, Faculty of Medicine, Cukurova University, Adana 01790, Turkey
| | - Ayse Berna Anil
- Pediatric Intensive Care Unit, Faculty of Medicine, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Nihal Akcay
- Pediatric Intensive Care Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul 34147, Turkey
| | - Hasan Serdar Kihtir
- Department of Pediatric Critical Care, Antalya Training and Research Hospital, University of Health Sciences, Antalya 07100, Turkey
| | - Merve Havan
- Pediatric Intensive Care Unit, Faculty of Medicine, Ankara University, Ankara 06590, Turkey
| | - Nazan Ulgen Tekerek
- Pediatric Intensive Care Unit, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Faruk Ekinci
- Pediatric Intensive Care Unit, Faculty of Medicine, Cukurova University, Adana 01790, Turkey
| | - Omer Kilic
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Andres Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), 46010 Valencia, Spain
| | - Ener Cagri Dinleyici
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
123
|
Chung CJ, Hermes BM, Gupta Y, Ibrahim S, Belheouane M, Baines JF. Genome-wide mapping of gene-microbe interactions in the murine lung microbiota based on quantitative microbial profiling. Anim Microbiome 2023; 5:31. [PMID: 37264412 DOI: 10.1186/s42523-023-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.
Collapse
Affiliation(s)
- C J Chung
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - B M Hermes
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Y Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Research Center Borstel, Evolution of the Resistome, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
124
|
Alashkar Alhamwe B, López JF, Zhernov Y, von Strandmann EP, Karaulov A, Kolahian S, Geßner R, Renz H. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol 2023; 34:e13976. [PMID: 37366206 DOI: 10.1111/pai.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
The homogeneous impact of local dysbiosis on the development of allergic diseases in the same organ has been thoroughly studied. However, much less is known about the heterogeneous influence of dysbiosis within one organ on allergic diseases in other organs. A comprehensive analysis of the current scientific literature revealed that most of the relevant publications focus on only three organs: gut, airways, and skin. Moreover, the interactions appear to be mainly unidirectional, that is, dysbiotic conditions of the gut being associated with allergic diseases of the airways and the skin. Similar to homogeneous interactions, early life appears to be not only a crucial period for the formation of the microbiota in one organ but also for the later development of allergic diseases in other organs. In particular, we were able to identify a number of specific bacterial and fungal species/genera in the intestine that were repeatedly associated in the literature with either increased or decreased allergic diseases of the skin, like atopic dermatitis, or the airways, like allergic rhinitis and asthma. The reported studies indicate that in addition to the composition of the microbiome, also the relative abundance of certain microbial species and the overall diversity are associated with allergic diseases of the corresponding organs. As anticipated for human association studies, the underlying mechanisms of the organ-organ crosstalk could not be clearly resolved yet. Thus, further work, in particular experimental animal studies are required to elucidate the mechanisms linking dysbiotic conditions of one organ to allergic diseases in other organs.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria
| | - Juan-Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Yury Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Saeed Kolahian
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
125
|
Britton N, Yang H, Fitch A, Li K, Seyed K, Guo R, Qin S, Zhang Y, Bain W, Shah F, Biswas P, Choi W, Finkelman M, Zhang Y, Haggerty CL, Benos PV, Brooks MM, McVerry BJ, Methe B, Kitsios GD, Morris A. Respiratory Fungal Communities are Associated with Systemic Inflammation and Predict Survival in Patients with Acute Respiratory Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.11.23289861. [PMID: 37292915 PMCID: PMC10246035 DOI: 10.1101/2023.05.11.23289861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rationale Disruption of respiratory bacterial communities predicts poor clinical outcomes in critical illness; however, the role of respiratory fungal communities (mycobiome) is poorly understood. Objectives We investigated whether mycobiota variation in the respiratory tract is associated with host-response and clinical outcomes in critically ill patients. Methods To characterize the upper and lower respiratory tract mycobiota, we performed rRNA gene sequencing (internal transcribed spacer) of oral swabs and endotracheal aspirates (ETA) from 316 mechanically-ventilated patients. We examined associations of mycobiome profiles (diversity and composition) with clinical variables, host-response biomarkers, and outcomes. Measurements and Main Results ETA samples with >50% relative abundance for C. albicans (51%) were associated with elevated plasma IL-8 and pentraxin-3 (p=0.05), longer time-to-liberation from mechanical ventilation (p=0.04) and worse 30-day survival (adjusted hazards ratio (adjHR): 1.96 [1.04-3.81], p=0.05). Using unsupervised clustering, we derived two clusters in ETA samples, with Cluster 2 (39%) showing lower alpha diversity (p<0.001) and higher abundance of C. albicans (p<0.001). Cluster 2 was significantly associated with the prognostically adverse hyperinflammatory subphenotype (odds ratio 2.07 [1.03-4.18], p=0.04) and predicted worse survival (adjHR: 1.81 [1.03-3.19], p=0.03). C. albicans abundance in oral swabs was also associated with the hyperinflammatory subphenotype and mortality. Conclusions Variation in respiratory mycobiota was significantly associated with systemic inflammation and clinical outcomes. C. albicans abundance emerged as a negative predictor in both the upper and lower respiratory tract. The lung mycobiome may play an important role in the biological and clinical heterogeneity among critically ill patients and represent a potential therapeutic target for lung injury in critical illness.
Collapse
Affiliation(s)
- Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Adam Fitch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Khaled Seyed
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Rui Guo
- Department of Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, China
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Partha Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Wonseok Choi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Yonglong Zhang
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, USA
| | - Catherine L. Haggerty
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Panayiotis V. Benos
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria M. Brooks
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Barbara Methe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Medicine and the Microbiome, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
126
|
Effah CY, Ding L, Tan L, He S, Li X, Yuan H, Li Y, Liu S, Sun T, Wu Y. A SERS bioassay based on vancomycin-modified PEI-interlayered nanocomposite and aptamer-functionalized SERS tags for synchronous detection of Acinetobacter baumannii and Klebsiella pneumoniae. Food Chem 2023; 423:136242. [PMID: 37196408 DOI: 10.1016/j.foodchem.2023.136242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Klebsiella pneumoniae (KP) and Acinetobacter baumannii (AB) are two important gram-negative bacteria that cause pneumonia and have been recently known to be associated with food. The rapid detection of these pathogens in food is important to minimize their colonization of the gut and stop new threats of the disease from spreading across the food chain. Herein, a double-edged sword aptasensor was developed for the synchronous detection of KP and AB in food and clinical samples. A highly sensitive, selective, specific, and synchronous detection of the target bacteria was achieved, and the limit of detection (LOD) was 10 cells/mL with a liner range of 50 to 105 cells/mL. The total assay time was 1.5 h. This study does not only provide a new tool for the detection of the target bacteria, but also serves as a promising tool for food safety and pneumonia diagnosis.
Collapse
Affiliation(s)
- Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Longlong Tan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Li
- Department of Laboratory, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
127
|
Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. J Pers Med 2023; 13:jpm13050804. [PMID: 37240974 DOI: 10.3390/jpm13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. The association between lung and gut microbiomes in the pathogenesis of COPD has been recently uncovered. The goal of this study was to discuss the role of the lung and gut microbiomes in COPD pathophysiology. A systematic search of the PubMed database for relevant articles submitted up to June 2022 was performed. We examined the association between the lung and gut microbiome dysbiosis, reflected in bronchoalveolar lavage (BAL), lung tissue, sputum, and feces samples, and the pathogenesis and progression of COPD. It is evident that the lung and gut microbiomes affect each other and both play a vital role in the pathogenesis of COPD. However, more research needs to be carried out to find the exact associations between microbiome diversity and COPD pathophysiology and exacerbation genesis. Another field that research should focus on is the impact of treatment interventions targeting the human microbiome in preventing COPD genesis and progression.
Collapse
Affiliation(s)
- Efstathios Karakasidis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Department of Human Pathophysiology, Faculty of Nursing, School of Health Science, University of Thessaly, Gaiopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
128
|
Liu Y, Xu L, Yang Z, Wang D, Li T, Yang F, Li Z, Bai X, Wang Y. Gut-muscle axis and sepsis-induced myopathy: The potential role of gut microbiota. Biomed Pharmacother 2023; 163:114837. [PMID: 37156115 DOI: 10.1016/j.biopha.2023.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Sepsis is described as an immune response disorder of the host to infection in which microorganisms play a non-negligible role. Most survivors of sepsis experience ICU-acquired weakness, also known as septic myopathy, characterized by skeletal muscle atrophy, weakness, and irreparable damage/regenerated or dysfunctional. The mechanism of sepsis-induced myopathy is currently unclear. It has been believed that this state is triggered by circulating pathogens and their related harmful factors, leading to impaired muscle metabolism. Sepsis and its resulting alterations in the intestinal microbiota are associated with sepsis-related organ dysfunction, including skeletal muscle wasting. There are also some studies on interventions targeting the flora, including fecal microbiota transplants, the addition of dietary fiber and probiotics in enteral feeding products, etc., aiming to improve sepsis-related myopathy. In this review, we critically assess the potential mechanisms and therapeutic prospects of intestinal flora in the development of septic myopathy.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhaohui Yang
- Department of Orthopaedics, the Affiliated Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fan Yang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
129
|
Ramji HF, Hafiz M, Altaq HH, Hussain ST, Chaudry F. Acute Respiratory Distress Syndrome; A Review of Recent Updates and a Glance into the Future. Diagnostics (Basel) 2023; 13:diagnostics13091528. [PMID: 37174920 PMCID: PMC10177247 DOI: 10.3390/diagnostics13091528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a rapidly progressive form of respiratory failure that accounts for 10% of admissions to the ICU and is associated with approximately 40% mortality in severe cases. Despite significant mortality and healthcare burden, the mainstay of management remains supportive care. The recent pandemic of SARS-CoV-2 has re-ignited a worldwide interest in exploring the pathophysiology of ARDS, looking for innovative ideas to treat this disease. Recently, many trials have been published utilizing different pharmacotherapy targets; however, the long-term benefits of these agents remain unknown. Metabolomics profiling and stem cell transplantation offer strong enthusiasm and may completely change the outlook of ARDS management in the near future.
Collapse
Affiliation(s)
- Husayn F Ramji
- University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Maida Hafiz
- Department of Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hiba Hammad Altaq
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Syed Talal Hussain
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fawad Chaudry
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
130
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
131
|
Bao K, Wang M, Liu L, Zhang D, Jin C, Zhang J, Shi L. Jinhong decoction protects sepsis-associated acute lung injury by reducing intestinal bacterial translocation and improving gut microbial homeostasis. Front Pharmacol 2023; 14:1079482. [PMID: 37081964 PMCID: PMC10110981 DOI: 10.3389/fphar.2023.1079482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Currently no specific treatments are available for sepsis and the associated syndromes including acute lung injury (ALI). Jinhong Decoction (JHD) is a traditional Chinese prescription, and it has been applied clinically as an efficient and safe treatment for sepsis, but the underlying mechanism remains unknown. The aim of the study was to explore the potential mechanisms of JHD ameliorating sepsis and concurrent ALI.Methods: The cecum ligation puncture (CLP)- induced murine sepsis model was established for determining the efficacy of JHD protecting CLP and ALI. The role of gut microbiota involved in the efficacy of JHD was evaluated by 16S rRNA sequencing and fecal microbiota transplantation (FMT). Translocation of intestinal Escherichia coli (E. coli) to lungs after CLP was verified by qPCR and in vivo-imaging. Intestinal permeability was analyzed by detecting FITC-dextran leakness. Junction proteins were evaluated by Western blotting and immunofluorescence.Results: JHD treatment remarkably increased survival rate of septic mice and alleviated sepsis-associated lung inflammation and injury. FMT suggested that the protective role for JHD was mediated through the regulation of gut microbiota. We further revealed that JHD administration partially restored the diversity and configuration of microbiome that was distorted by CLP operation. Of interest, the intestinal bacteria, E. coli particularly, was found to translocate into the lungs upon CLP via disrupting the intestinal mucosal barrier, leading to the inflammatory response and tissue damage in lungs. JHD impeded the migration and hence lung accumulation of intestinal E. coli, and thereby prevented severe ALI associated with sepsis. This effect is causatively related with the ability of JHD to restore intestinal barrier by up-regulating tight junctions.Conclusion: Our study unveils a mechanism whereby the migration of gut bacteria leads to sepsis-associated ALI, and we demonstrate the potential of JHD as an effective strategy to block this bacterial migration for treating sepsis and the associated immunopathology in the distal organs.
Collapse
Affiliation(s)
- Kaifan Bao
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meiling Wang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Liu
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongya Zhang
- Department of Medical Microbiology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liyun Shi
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- *Correspondence: Liyun Shi,
| |
Collapse
|
132
|
Abstract
The human microbiome is vast and is present in spaces previously thought to be sterile such as the lungs. A healthy microbiome is diverse and functions in an adaptive way to support local as well as organism health and function. Furthermore, a normal microbiome is essential for normal immune system development rendering the array of microbes that live in and on the human body key components of homeostasis. A wide array of clinical conditions and interventions including anesthesia, analgesia, and surgical intervention may derange the human microbiome in a maladaptive fashion with bacterial responses spanning decreased diversity to transformation to a pathogenic phenotype. Herein, we explore the normal microbiome of the skin, gastrointestinal tract, and the lungs as prototype sites to describe the influence of the microbiomes in each of those locations on health, and how care may derange those relations.
Collapse
|
133
|
Biemond JJ, McDonald B, Haak BW. Leveraging the microbiome in the treatment of sepsis: potential pitfalls and new perspectives. Curr Opin Crit Care 2023; 29:123-129. [PMID: 36762681 DOI: 10.1097/mcc.0000000000001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of the current knowledge about microbiota-targeted therapies in sepsis, and calls out - despite recent negative studies - not to halt our efforts of translating these tools into regular medical practice. RECENT FINDINGS The intestinal microbiome has an important role in shaping our immune system, and microbiota-derived metabolites prime innate and adaptive inflammatory responses to infectious pathogens. Microbiota composition is severely disrupted during sepsis, which has been linked to increased risk of mortality and secondary infections. However, efforts of using these microbes as a tool for prognostic or therapeutic purposes have been unsuccessful so far, and recent trials studying the impact of probiotics in critical illness did not improve patient outcomes. Despite these negative results, researchers must continue their attempts of harnessing the microbiome to improve sepsis survival in patients with a high risk of clinical deterioration. Promising research avenues that could potentially benefit sepsis patients include the development of next-generation probiotics, use of the microbiome as a theranostic tool to direct therapy, and addressing the restoration of microbial communities following ICU discharge. SUMMARY Although research focused on microbiome-mediated therapy in critically ill patients has not yielded the results that were anticipated, we should not abandon our efforts to translate promising preclinical findings into clinical practice.
Collapse
Affiliation(s)
- Jason J Biemond
- Center for Experimental and Molecular Medicine (CEMM)
- Microbiota Center Amsterdam, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Braedon McDonald
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM)
- Microbiota Center Amsterdam, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
134
|
Abstract
New methods and technologies within the field of lung biology are beginning to shed new light into the microbial world of the respiratory tract. Long considered to be a sterile environment, it is now clear that the human lungs are frequently exposed to live microbes and their by-products. The nature of the lung microbiome is quite distinct from other microbial communities inhabiting our bodies such as those in the gut. Notably, the microbiome of the lung exhibits a low biomass and is dominated by dynamic fluxes of microbial immigration and clearance, resulting in a bacterial burden and microbiome composition that is fluid in nature rather than fixed. As our understanding of the microbial ecology of the lung improves, it is becoming increasingly apparent that certain disease states can disrupt the microbial-host interface and ultimately affect disease pathogenesis. In this Review, we provide an overview of lower airway microbial dynamics in health and disease and discuss future work that is required to uncover novel therapeutic targets to improve lung health.
Collapse
|
135
|
Abstract
PURPOSE OF REVIEW Study of organ crosstalk in critical illness has uncovered complex biological communication between different organ systems, but the role of microbiota in organ crosstalk has received limited attention. We highlight the emerging understanding of the gut-lung axis, and how the largest biomass of the human body in the gut may affect lung physiology in critical illness. RECENT FINDINGS Disruption of healthy gut microbial communities and replacement by disease-promoting pathogens (pathobiome) generates a maladaptive transmitter of messages from the gut to the lungs, connected via the portal venous and the mesenteric lymphatic systems. Gut barrier impairment allows for microbial translocation (living organisms or cellular fragments) to the lungs. Host-microbiota interactions in the gut mucosa can also impact lung physiology through microbial metabolite secretion or host-derived messengers (hormones, cytokines or immune cells). Clinical examples like the prevention of ventilator-associated pneumonia by selective decontamination of the digestive tract show that the gut-lung axis can be manipulated therapeutically. SUMMARY A growing body of evidence supports the pathophysiological relevance of the gut-lung axis, yet we are only at the brink of understanding the therapeutic and prognostic relevance of the gut microbiome, metabolites and host-microbe interactions in critical illness.
Collapse
Affiliation(s)
- Sridesh Nath
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Acute Lung Injury Center of Excellence
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lieuwe D J Bos
- Intensive Care
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
136
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
137
|
D'Alessandro VF, D'Alessandro-Gabazza CN, Yasuma T, Toda M, Takeshita A, Tomaru A, Tharavecharak S, Lasisi IO, Hess RY, Nishihama K, Fujimoto H, Kobayashi T, Cann I, Gabazza EC. Inhibition of a Microbiota-derived Peptide Ameliorates Established Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00113-X. [PMID: 36965776 PMCID: PMC10035802 DOI: 10.1016/j.ajpath.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Acute lung injury is a clinical syndrome characterized by a diffuse lung inflammation that commonly evolves into acute respiratory distress syndrome and respiratory failure. The lung microbiota is involved in the pathogenesis of acute lung injury. Corisin, a proapoptotic peptide derived from the lung microbiota, plays a role in acute lung injury and acute exacerbation of pulmonary fibrosis. Preventive therapeutic intervention with a monoclonal anticorisin antibody inhibits acute lung injury in mice. However, whether inhibition of corisin with the antibody ameliorates established acute lung injury is unknown. Here, the therapeutic effectiveness of the anticorisin antibody in already established acute lung injury in mice was assessed. Lipopolysaccharide was used to induce acute lung injury in mice. After causing acute lung injury, the mice were treated with a neutralizing anticorisin antibody. Mice treated with the antibody showed significant improvement in lung radiological and histopathological findings, decreased lung infiltration of inflammatory cells, reduced markers of lung tissue damage, and inflammatory cytokines in bronchoalveolar lavage fluid compared to untreated mice. In addition, the mice treated with anticorisin antibody showed significantly increased expression of antiapoptotic proteins with decreased caspase-3 activation in the lungs compared to control mice treated with an irrelevant antibody. In conclusion, these observations suggest that the inhibition of corisin is a novel and promising approach for treating established acute lung injury.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaiah O Lasisi
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca Y Hess
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaac Cann
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Science, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
138
|
Neyton LPA, Langelier CR, Calfee CS. Metagenomic Sequencing in the ICU for Precision Diagnosis of Critical Infectious Illnesses. Crit Care 2023; 27:90. [PMID: 36941644 PMCID: PMC10027598 DOI: 10.1186/s13054-023-04365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
139
|
Deng Q, Wang Z, Wu P, Liang H, Wu H, Zhang L, Ying J. 16S rRNA gene sequencing reveals an altered composition of gut microbiota in children with Mycoplasma pneumoniae pneumonia treated with azithromycin. J GEN APPL MICROBIOL 2023; 68:253-261. [PMID: 35811116 DOI: 10.2323/jgam.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Zhu Wang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Pengmei Wu
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Haixia Wu
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Lirong Zhang
- Department of Gynaecology, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| | - Jing Ying
- Department of Paediatrics, The People's Hospital of Longhua, Shenzhen, The affiliated Hospital of Southern Medical University
| |
Collapse
|
140
|
Alagna L, Mancabelli L, Magni F, Chatenoud L, Bassi G, Del Bianco S, Fumagalli R, Turroni F, Mangioni D, Migliorino GM, Milani C, Muscatello A, Nattino G, Picetti E, Pinciroli R, Rossi S, Tonetti T, Vargiolu A, Bandera A, Ventura M, Citerio G, Gori A. Changes in upper airways microbiota in ventilator-associated pneumonia. Intensive Care Med Exp 2023; 11:17. [PMID: 36862343 PMCID: PMC9981834 DOI: 10.1186/s40635-023-00496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The role of upper airways microbiota and its association with ventilator-associated pneumonia (VAP) development in mechanically ventilated (MV) patients is unclear. Taking advantage of data collected in a prospective study aimed to assess the composition and over-time variation of upper airway microbiota in patients MV for non-pulmonary reasons, we describe upper airway microbiota characteristics among VAP and NO-VAP patients. METHODS Exploratory analysis of data collected in a prospective observational study on patients intubated for non-pulmonary conditions. Microbiota analysis (trough 16S-rRNA gene profiling) was performed on endotracheal aspirates (at intubation, T0, and after 72 h, T3) of patients with VAP (cases cohort) and a subgroup of NO-VAP patients (control cohort, matched according to total intubation time). RESULTS Samples from 13 VAP patients and 22 NO-VAP matched controls were analyzed. At intubation (T0), patients with VAP revealed a significantly lower microbial complexity of the microbiota of the upper airways compared to NO-VAP controls (alpha diversity index of 84 ± 37 and 160 ± 102, in VAP and NO_VAP group, respectively, p-value < 0.012). Furthermore, an overall decrease in microbial diversity was observed in both groups at T3 as compared to T0. At T3, a loss of some genera (Prevotella 7, Fusobacterium, Neisseria, Escherichia-Shigella and Haemophilus) was found in VAP patients. In contrast, eight genera belonging to the Bacteroidetes, Firmicutes and Fusobacteria phyla was predominant in this group. However, it is unclear whether VAP caused dysbiosis or dysbiosis caused VAP. CONCLUSIONS In a small sample size of intubated patients, microbial diversity at intubation was less in patients with VAP compared to patients without VAP.
Collapse
Affiliation(s)
- Laura Alagna
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Leonardo Mancabelli
- grid.10383.390000 0004 1758 0937Department of Medicine and Surgery, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Federico Magni
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Liliane Chatenoud
- grid.4527.40000000106678902Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Silvia Del Bianco
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Roberto Fumagalli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Francesca Turroni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Davide Mangioni
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Guglielmo M. Migliorino
- grid.415025.70000 0004 1756 8604Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Christian Milani
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Antonio Muscatello
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Nattino
- grid.4527.40000000106678902Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Picetti
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Riccardo Pinciroli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sandra Rossi
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Tommaso Tonetti
- grid.411482.aDepartment of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Alessia Vargiolu
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy ,grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Bandera
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Ventura
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy ,grid.10383.390000 0004 1758 0937Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giuseppe Citerio
- grid.415025.70000 0004 1756 8604Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy ,grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrea Gori
- grid.414818.00000 0004 1757 8749Present Address: Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
141
|
Wang YH, Yan ZZ, Luo SD, Hu JJ, Wu M, Zhao J, Liu WF, Li C, Liu KX. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. Eur Respir J 2023; 61:13993003.00840-2022. [PMID: 36229053 DOI: 10.1183/13993003.00840-2022] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) is a major cause of morbidity and mortality after intestinal ischaemia/reperfusion (I/R). The gut microbiota and its metabolic byproducts act as important modulators of the gut-lung axis. This study aimed to define the role of succinate, a key microbiota metabolite, in intestinal I/R-induced ALI progression. METHODS Gut and lung microbiota of mice subjected to intestinal I/R were analysed using 16S rRNA gene sequencing. Succinate level alterations were measured in germ-free mice or conventional mice treated with antibiotics. Succinate-induced alveolar macrophage polarisation and its effects on alveolar epithelial apoptosis were evaluated in succinate receptor 1 (Sucnr1)-deficient mice and in murine alveolar macrophages transfected with Sucnr1-short interfering RNA. Succinate levels were measured in patients undergoing cardiopulmonary bypass, including intestinal I/R. RESULTS Succinate accumulated in lungs after intestinal I/R, and this was associated with an imbalance of succinate-producing and succinate-consuming bacteria in the gut, but not the lungs. Succinate accumulation was absent in germ-free mice and was reversed by gut microbiota depletion with antibiotics, indicating that the gut microbiota is a source of lung succinate. Moreover, succinate promoted alveolar macrophage polarisation, alveolar epithelial apoptosis and lung injury during intestinal I/R. Conversely, knockdown of Sucnr1 or blockage of SUCNR1 in vitro and in vivo reversed the effects of succinate by modulating the phosphoinositide 3-kinase-AKT/hypoxia-inducible factor-1α pathway. Plasma succinate levels significantly correlated with intestinal I/R-related lung injury after cardiopulmonary bypass. CONCLUSION Gut microbiota-derived succinate exacerbates intestinal I/R-induced ALI through SUCNR1-dependent alveolar macrophage polarisation, identifying succinate as a novel target for gut-derived ALI in critically ill patients.
Collapse
Affiliation(s)
- Yi-Heng Wang
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Anaesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Yi-Heng Wang and Zheng-Zheng Yan contributed equally
| | - Zheng-Zheng Yan
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Yi-Heng Wang and Zheng-Zheng Yan contributed equally
| | - Si-Dan Luo
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Juan Hu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Wu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cai Li and Ke-Xuan Liu contributed equally to this article as lead authors and supervised the work
| | - Ke-Xuan Liu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cai Li and Ke-Xuan Liu contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
142
|
Bongers KS, Stringer KA, Dickson RP. The gut microbiome in ARDS: from the "whether" and "what" to the "how". Eur Respir J 2023; 61:2202233. [PMID: 36796848 DOI: 10.1183/13993003.02233-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/07/2023] [Indexed: 02/18/2023]
Affiliation(s)
- Kale S Bongers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
143
|
Mańkowska-Wierzbicka D, Zuraszek J, Wierzbicka A, Gabryel M, Mahadea D, Baturo A, Zakerska-Banaszak O, Slomski R, Skrzypczak-Zielinska M, Dobrowolska A. Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines 2023; 11:biomedicines11020367. [PMID: 36830905 PMCID: PMC9953267 DOI: 10.3390/biomedicines11020367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
It is crucial to consider the importance of the microbiome and the gut-lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients' cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota's ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery.
Collapse
Affiliation(s)
- Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence: (D.M.-W.); (M.S.-Z.)
| | - Joanna Zuraszek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Adrianna Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dagmara Mahadea
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alina Baturo
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | | | - Ryszard Slomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Marzena Skrzypczak-Zielinska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (D.M.-W.); (M.S.-Z.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
144
|
Zyoud SH, Shakhshir M, Abushanab AS, Koni A, Shahwan M, Jairoun AA, Al-Jabi SW. Mapping the output of the global literature on the links between gut microbiota and COVID-19. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:3. [PMID: 36653831 PMCID: PMC9847460 DOI: 10.1186/s41043-023-00346-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND The term "human microbiota" refers to populations of microorganisms that live harmoniously in co-existence with humans. They contribute significantly to the host's immunological response when confronted with a respiratory viral infection. However, little is known about the relationship between the human microbiome and COVID-19. Therefore, our objective is to perform a bibliometric analysis to explore the overall structure and hotspots of research activity on the links between microbiota and COVID-19 at the global level. METHODS The research literature on the microbiota and COVID-19 published between 2020 and 2022 was obtained from the Scopus database. Bibliometric analysis and network visualization were performed with VOSviewer. RESULTS Of the 701 publications selected, the USA contributed the most (n = 157, 22.40%), followed by China (n = 118, 16.83%) and Italy (n = 82, 11.70%). Hotspots in this field were "COVID-19 is associated with an altered upper respiratory tract microbiome," "the effect of antibiotics on the gut microbiome," as well as "patient nutrition and probiotic therapy in COVID-19." CONCLUSIONS The links between microbiota and COVID-19 remain an urgent concern at present, and the use of probiotics or/and antibiotics during the pandemic needs to be further improved. This landscape analysis of the links between the microbiota and COVID-19 will provide a basis for future research.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- grid.11942.3f0000 0004 0631 5695Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- grid.11942.3f0000 0004 0631 5695Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- grid.11942.3f0000 0004 0631 5695Clinical Research Centre, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Muna Shakhshir
- grid.11942.3f0000 0004 0631 5695Department of Nutrition, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Amani S. Abushanab
- grid.11942.3f0000 0004 0631 5695Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Amer Koni
- grid.11942.3f0000 0004 0631 5695Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- grid.11942.3f0000 0004 0631 5695Division of Clinical Pharmacy, Hematology and Oncology Pharmacy Department, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Moyad Shahwan
- grid.444470.70000 0000 8672 9927College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar A. Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
| | - Samah W. Al-Jabi
- grid.11942.3f0000 0004 0631 5695Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| |
Collapse
|
145
|
Hu T, Zhu Y, Zhu J, Yang M, Wang Y, Zheng Q. Wine-processed radix scutellariae alleviates ARDS by regulating tryptophan metabolism through gut microbiota. Front Pharmacol 2023; 13:1104280. [PMID: 36686672 PMCID: PMC9849372 DOI: 10.3389/fphar.2022.1104280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse pulmonary inflammation, characterized by severe hypoxic respiratory failure caused by inflammatory tissue damage, which is a common cause of respiratory failure. Currently, there is no treatment available that can prevent or reverse the devastating effects caused by these conditions. The purpose of this study was to determine the effects of WRS on gut microbiota and the potential effect of gut microbiota on the treatment of lung disease by using a staphylococcal enterotoxin B (SEB)-induced ARDS model. The results showed that WRS could significantly reduce the pathological damage to lung and colon tissues and improve the lung and intestinal functions of ARDS mice. WRS was able to improve the level of cytokines in serum and lung tissue. Additionally, WRS could reverse the gut microbiota dysbiosis caused by SEB in ARDS mice. WRS increases the production of short-chain fatty acids (SCFAs) in the gut. This increase in SCFAs may lead to increased migration of SCFAs to the lungs and activation of free fatty acid receptors (FFAR) three and FFAR2 in lung epithelial cells, alleviating the symptoms of ARDS. Interestingly, WRS improves the faecal metabolite profiles in SEB-induced ARDS mice via tryptophan metabolism. On the basis of the component-target-metabolism strategy, baicalin, oroxylin A-7-O-glucuronide and skullcapflavon II were identified as the potential bioactive markers in WRS for the treatment of ARDS. Our study showed that WRS could ameliorate SEB-induced ARDS by regulating the structure of gut microbiota, increasing the production of SCFAs and modifying the faecal metabolite profiles through the lung-gut axis, and providing alternative treatment strategies for lung disease.
Collapse
Affiliation(s)
- Tingting Hu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Zhu
- Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jing Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaqi Wang
- Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Yaqi Wang,
| | - Qin Zheng
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
146
|
Hu X, Han Z, Zhou R, Su W, Gong L, Yang Z, Song X, Zhang S, Shu H, Wu D. Altered gut microbiota in the early stage of acute pancreatitis were related to the occurrence of acute respiratory distress syndrome. Front Cell Infect Microbiol 2023; 13:1127369. [PMID: 36949815 PMCID: PMC10025409 DOI: 10.3389/fcimb.2023.1127369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is the most common cause of organ failure in acute pancreatitis (AP) patients, which associated with high mortality. Specific changes in the gut microbiota have been shown to influence progression of acute pancreatitis. We aimed to determine whether early alterations in the gut microbiota is related to and could predict ARDS occurrence in AP patients. Methods In this study, we performed 16S rRNA sequencing analysis in 65 AP patients and 20 healthy volunteers. The AP patients were further divided into two groups: 26 AP-ARDS patients and 39 AP-nonARDS patients based on ARDS occurrence during hospitalization. Results Our results showed that the AP-ARDS patients exhibited specific changes in gut microbiota composition and function as compared to subjects of AP-nonARDS group. Higher abundances of Proteobacteria phylum, Enterobacteriaceae family, Escherichia-Shigella genus, and Klebsiella pneumoniae, but lower abundances of Bifidobacterium genus were found in AP-ARDS group compared with AP-nonARDS groups. Random forest modelling analysis revealed that the Escherichia-shigella genus was effective to distinguish AP-ARDS from AP-nonARDS, which could predict ARDS occurrence in AP patients. Conclusions Our study revealed that alterations of gut microbiota in AP patients on admission were associated with ARDS occurrence after hospitalization, indicating a potential predictive and pathogenic role of gut microbiota in the development of ARDS in AP patients.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruilin Zhou
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Su
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Gong
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihan Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Song
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijun Shu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Huijun Shu, ; Dong Wu,
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Huijun Shu, ; Dong Wu,
| |
Collapse
|
147
|
S A, K G, A AM. Intermodulation of gut-lung axis microbiome and the implications of biotics to combat COVID-19. J Biomol Struct Dyn 2022; 40:14262-14278. [PMID: 34699326 DOI: 10.1080/07391102.2021.1994875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The novel coronavirus disease pandemic caused by the COVID-19 virus has infected millions of people around the world with a surge in transmission and mortality rates. Although it is a respiratory viral infection that affects airway epithelial cells, a diverse set of complications, including cytokine storm, gastrointestinal disorders, neurological distress, and hyperactive immune responses have been reported. However, growing evidence indicates that the bidirectional crosstalk of the gut-lung axis can decipher the complexity of the disease. Though not much research has been focused on the gut-lung axis microbiome, there is a translocation of COVID-19 infection from the lung to the gut through the lymphatic system resulting in disruption of gut permeability and its integrity. It is believed that detailed elucidation of the gut-lung axis crosstalk and the role of microbiota can unravel the most significant insights on the discovery of diagnosis using microbiome-based-therapeutics for COVID-19. This review calls attention to relate the influence of dysbiosis caused by COVID-19 and the involvement of the gut-lung axis. It presents first of its kind details that concentrate on the momentousness of biotics in disease progression and restoration. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya S
- Department of Bioinformatics, Stella Maris College, Chennai, India.,Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gunasekaran K
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Anita Margret A
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
148
|
Wu L, Lei Q, Gao Z, Zhang W. Research Progress on Phenotypic Classification of Acute Respiratory Distress Syndrome: A Narrative Review. Int J Gen Med 2022; 15:8767-8774. [PMID: 36601648 PMCID: PMC9807128 DOI: 10.2147/ijgm.s391969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome that is characterized by an acute onset and refractory hypoxemia. It remains an important contributor to high mortality in critically ill patients, and the majority of clinical randomized controlled trials on ARDS provide underwhelming findings, which is attributed in large part to its pathophysiological and clinical heterogeneity, among other aspects. It is now widely accepted that ARDS is highly heterogeneous, growing evidences support this. ARDS phenotypic and subphenotypic studies aim to further differentiate and identify ARDS heterogeneity in the hope that clinicians can benefit from it, then can diagnose ARDS faster and more accurately and provide targeted treatments. This review collates and evaluates the major phenotype-related research advances of recent years, with a specific focus on ARDS biomarkers and clinical factors.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Lei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Zirong Gao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China,Correspondence: Wei Zhang, Email
| |
Collapse
|
149
|
Shostak E, Schiller O, Amir G, Georgy F, Shochat T, Livni G, Ben-Zvi H, Manor O, Dagan O. Preceding Clinical Events in High-risk, Postoperative, Pediatric Cardiac Patients- A Novel Association With Bacteremia. J Intensive Care Med 2022; 38:457-463. [PMID: 36562148 DOI: 10.1177/08850666221147824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Blood stream infections (BSIs) are well described in pediatric cardiac intensive care units (PCICU). We noted that postoperative high-risk patients may develop BSI after a preceding clinical event (PCE). The study aim was to investigate whether high-risk patients who developed bacteremia experienced more PCEs than a similar group of high-risk patients. Design: Retrospective case-control study. Setting: Referral pediatric center. Patients: We enrolled patients who developed bacteremia from March 2010 to November 2019, after undergoing open-heart surgery at a pediatric center. The control group was comprised of case-matched patients with immediate consecutive same surgery. Interventions: None. Measurements: We recorded operative data, common risk factors, postoperative indicators of organ dysfunction, mortality, and PCEs 72 to 24 h before bacteremia emerged. Main results: A total of 200 patients were included (100 with bacteremia and 100 controls). Key demographic and operative parameters were matched. Bacteremia emerged on average on postoperative day 12.8. Skin-associated Gram-positive bacteria were cultured in 10% and Gram-negative bacteria in 84% of the patients. Average central-venous lines (CVL) duration was 9.5 ± 8.4 days. Postoperatively (72 h), indicators of organ dysfunction were significantly worse in patients with bacteremia, with a higher rate of postoperative complications during PCICU length-of-stay (LOS). In the bacteremia group, 72 to 24 h prior to the development of bacteremia, 92 (92%) PCEs were recorded, as compared to 21 (21%) in controls during their entire LOS (odds ratio [OR] 43.3, confidence interval [CI] 18.2-103.1, P < .0001). Conclusions: We propose a 3-hit model demonstrating that high-risk patients undergoing open-heart surgery have significantly higher risk for bacteremia after a PCE.
Collapse
Affiliation(s)
- Eran Shostak
- Pediatric Cardiac Intensive Care Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel
| | - Ofer Schiller
- Pediatric Cardiac Intensive Care Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Amir
- Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel.,Pediatric Cardiothoracic Surgery Unit, 36739Schneider Children's Medical Center, Petach Tikva, Israel
| | - Frenkel Georgy
- Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel.,Pediatric Cardiothoracic Surgery Unit, 36739Schneider Children's Medical Center, Petach Tikva, Israel
| | - Tzippy Shochat
- Statistical Consultant, 36632Rabin Medical Center, Petach Tikva, Israel
| | - Gilat Livni
- Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel.,Pediatric Infectious Diseases Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Haim Ben-Zvi
- Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel.,Clinical Microbiology Laboratories, 36632Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Orit Manor
- Pediatric Cardiac Intensive Care Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel
| | - Ovadia Dagan
- Pediatric Cardiac Intensive Care Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, 58408Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
150
|
Wang S, Fu W, Zhao X, Chang X, Liu H, Zhou L, Li J, Cheng R, Wu X, Li X, Sun C. Zearalenone disturbs the reproductive-immune axis in pigs: the role of gut microbial metabolites. MICROBIOME 2022; 10:234. [PMID: 36536466 PMCID: PMC9762105 DOI: 10.1186/s40168-022-01397-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/20/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to zearalenone (ZEN, a widespread Fusarium mycotoxin) causes reproductive toxicity and immunotoxicity in farm animals, and it then poses potential threats to human health through the food chain. A systematic understanding of underlying mechanisms on mycotoxin-induced toxicity is necessary for overcoming potential threats to farm animals and humans. The gastrointestinal tract is a first-line defense against harmful mycotoxins; however, it remains unknown whether mycotoxin (e.g., ZEN)-induced toxicity on the reproductive-immune axis is linked to altered gut microbial metabolites. In this study, using pigs (during the three phases) as an important large animal model, we investigated whether ZEN-induced toxicity on immune defense in the reproductive-immune axis was involved in altered gut microbial-derived metabolites. Moreover, we observed whether the regulation of gut microbial-derived metabolites through engineering ZEN-degrading enzymes counteracted ZEN-induced toxicity on the gut-reproductive-immune axis. RESULTS Here, we showed ZEN exposure impaired immune defense in the reproductive-immune axis of pigs during phase 1/2. This impairment was accompanied by altered gut microbial-derived metabolites [e.g., decreased butyrate production, and increased lipopolysaccharides (LPS) production]. Reduction of butyrate production impaired the intestinal barrier via a GPR109A-dependent manner, and together with increased LPS in plasma then aggravated the systemic inflammation, thus directly and/or indirectly disturbing immune defense in the reproductive-immune axis. To validate these findings, we further generated recombinant Bacillus subtilis 168-expressing ZEN-degrading enzyme ZLHY-6 (the Bs-Z6 strain) as a tool to test the feasibility of enzymatic removal of ZEN from mycotoxin-contaminated food. Notably, modified gut microbial metabolites (e.g., butyrate, LPS) through the recombinant Bs-Z6 strain counteracted ZEN-induced toxicity on the intestinal barrier, thus enhancing immune defense in the reproductive-immune axis of pigs during phase-3. Also, butyrate supplementation restored ZEN-induced abnormalities in the porcine small intestinal epithelial cell. CONCLUSIONS Altogether, these results highlight the role of gut microbial-derived metabolites in ZEN-induced toxicity on the gut-reproductive-immune axis. Importantly, targeting these gut microbial-derived metabolites opens a new window for novel preventative strategies or therapeutic interventions for mycotoxicosis associated to ZEN.
Collapse
Affiliation(s)
- Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Xueya Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xiaojiao Chang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China
| | - Lin Zhou
- Shenzhen Premix INVE Nutrition, Co., LTD., Shenzhen, 518100, The People's Republic of China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610000, The People's Republic of China
| | - Rui Cheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, The People's Republic of China.
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, The People's Republic of China.
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, The People's Republic of China.
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, The People's Republic of China.
| |
Collapse
|