101
|
Unekawa M, Tomita Y, Toriumi H, Osada T, Masamoto K, Kawaguchi H, Izawa Y, Itoh Y, Kanno I, Suzuki N, Nakahara J. Spatiotemporal dynamics of red blood cells in capillaries in layer I of the cerebral cortex and changes in arterial diameter during cortical spreading depression and response to hypercapnia in anesthetized mice. Microcirculation 2019; 26:e12552. [PMID: 31050358 DOI: 10.1111/micc.12552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Control of red blood cell velocity in capillaries is essential to meet local neuronal metabolic requirements, although changes of capillary diameter are limited. To further understand the microcirculatory response during cortical spreading depression, we analyzed the spatiotemporal changes of red blood cell velocity in intraparenchymal capillaries. METHODS In urethane-anesthetized Tie2-green fluorescent protein transgenic mice, the velocity of fluorescence-labeled red blood cells flowing in capillaries in layer I of the cerebral cortex was automatically measured with our Matlab domain software (KEIO-IS2) in sequential images obtained with a high-speed camera laser-scanning confocal fluorescence microscope system. RESULTS Cortical spreading depression repeatedly increased the red blood cell velocity prior to arterial constriction/dilation. During the first cortical spreading depression, red blood cell velocity significantly decreased, and sluggishly moving or retrograde-moving red blood cells were observed, concomitantly with marked arterial constriction. The velocity subsequently returned to around the basal level, while oligemia after cortical spreading depression with slight vasoconstriction remained. After several passages of cortical spreading depression, hypercapnia-induced increase of red blood cell velocity, regional cerebral blood flow and arterial diameter were all significantly reduced, and the correlations among them became extremely weak. CONCLUSIONS Taken together with our previous findings, these simultaneous measurements of red blood cell velocity in multiple capillaries, arterial diameter and regional cerebral blood flow support the idea that red blood cell flow might be altered independently, at least in part, from arterial regulation, that neuro-capillary coupling plays a role in rapidly meeting local neural demand.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Kawaguchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Shonan Keiiku Hospital, Fujisawa, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
102
|
Wang D, Li X, Jiang Y, Jiang Y, Ma W, Yu P, Mao L. Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chem Neurosci 2019; 10:2576-2583. [PMID: 30883085 DOI: 10.1021/acschemneuro.9b00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a promising therapeutic treatment, ischemic postconditioning has recently received considerable attention. Although the neuroprotection effect of postconditioning has been observed, a reliable approach that can evaluate the neuroprotective efficiency of postconditioning treatment during the acute period after ischemia remains to be developed. This study investigates the dynamics of cortex ascorbic acid during the acute period of cerebral ischemia before and after ischemic postconditioning with an online electrochemical system (OECS). The cerebral ischemia/reperfusion injury and the neuronal functional outcome are evaluated with triphenyltetrazolium chloride staining, immunohistochemistry, and electrophysiological recording techniques. Electrochemical recording results show that cortex ascorbic acid sharply increases 10 min after middle cerebral artery occlusion and then reaches a plateau. After direct reperfusion following ischemia (i.e., without ischemic postconditioning), the cortex ascorbic acid further increases and then starts to decrease slowly at a time point of about 40 min after reperfusion. In striking contrast, the cortex ascorbic acid drops and recovers to its basal level after ischemic postconditioning followed by reperfusion. With the recovery of cortex ascorbic acid, ischemic postconditioning concomitantly promotes the recovery of neural function and reduces the oxidative damage. These results demonstrate that our OECS for monitoring cortex ascorbic acid can be used as a platform for evaluating the neuroprotective efficiency of ischemic postconditioning in the acute phase of cerebral ischemia, which is of great importance for screening proper postconditioning parameters for preventing ischemic damages.
Collapse
Affiliation(s)
- Dalei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
103
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019; 58:6616-6619. [DOI: 10.1002/anie.201901035] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
104
|
Harriott AM, Takizawa T, Chung DY, Chen SP. Spreading depression as a preclinical model of migraine. J Headache Pain 2019; 20:45. [PMID: 31046659 PMCID: PMC6734429 DOI: 10.1186/s10194-019-1001-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of near-complete depolarization of neurons and glial cells across the cortex. SD is thought to contribute to the underlying pathophysiology of migraine aura, and possibly also an intrinsic brain activity causing migraine headache. Experimental models of SD have recapitulated multiple migraine-related phenomena and are considered highly translational. In this review, we summarize conventional and novel methods to trigger SD, with specific focus on optogenetic methods. We outline physiological triggers that might affect SD susceptibility, review a multitude of physiological, biochemical, and behavioral consequences of SD, and elaborate their relevance to migraine pathophysiology. The possibility of constructing a recurrent episodic or chronic migraine model using SD is also discussed.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Shih-Pin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
105
|
Zhao HH, Du H, Cai Y, Liu C, Xie Z, Chen KC. Time-resolved quantification of the dynamic extracellular space in the brain: study of cortical spreading depression. J Neurophysiol 2019; 121:1735-1747. [PMID: 30786223 DOI: 10.1152/jn.00348.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α(t) and λ(t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α(t) and λ(t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α(t) decreases and λ(t) increases. In rare occasions, SD induced sole decreases of α(t) with no changes in λ(t). The independent modulation of α(t) and λ(t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α(t) and λ(t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α(t) and λ(t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α(t) and tortuosity λ(t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.
Collapse
Affiliation(s)
- Hui-Hui Zhao
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Hong Du
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Yujie Cai
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Chao Liu
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Zeyu Xie
- Neurosurgery Division, Second Affiliated Hospital of the School of Medicine, Shantou University , Shantou, Guangdong , China
| | - Kevin C Chen
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China.,Department of Biomedical Engineering, Shantou University , Shantou, Guangdong , China
| |
Collapse
|
106
|
Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D. Potential Protective Mechanisms of Ketone Bodies in Migraine Prevention. Nutrients 2019; 11:E811. [PMID: 30974836 PMCID: PMC6520671 DOI: 10.3390/nu11040811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that migraines are a response to a cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity. The ketogenic diet (KD), a diet mimicking fasting that leads to the elevation of ketone bodies (KBs), is a therapeutic intervention targeting cerebral metabolism that has recently shown great promise in the prevention of migraines. KBs are an alternative fuel source for the brain, and are thus likely able to circumvent some of the abnormalities in glucose metabolism and transport found in migraines. Recent research has shown that KBs-D-β-hydroxybutyrate in particular-are more than metabolites. As signalling molecules, they have the potential to positively influence other pathways commonly believed to be part of migraine pathophysiology, namely: mitochondrial functioning, oxidative stress, cerebral excitability, inflammation and the gut microbiome. This review will describe the mechanisms by which the presence of KBs, D-BHB in particular, could influence those migraine pathophysiological mechanisms. To this end, common abnormalities in migraines are summarised with a particular focus on clinical data, including phenotypic, biochemical, genetic and therapeutic studies. Experimental animal data will be discussed to elaborate on the potential therapeutic mechanisms of elevated KBs in migraine pathophysiology, with a particular focus on the actions of D-BHB. In complex diseases such as migraines, a therapy that can target multiple possible pathogenic pathways seems advantageous. Further research is needed to establish whether the absence/restriction of dietary carbohydrates, the presence of KBs, or both, are of primary importance for the migraine protective effects of the KD.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422 Schweinfurt, Germany.
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Dept of Neurology-Citadelle Hospital, 4000 Liège, Belgium.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA.
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
107
|
Xiao T, Wang Y, Wei H, Yu P, Jiang Y, Mao L. Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Huan Wei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of Chemistry, theChinese Academy of Sciences (CAS)CAS Research/Education Center for Excellence in Molecular Science Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
108
|
Arngrim N, Hougaard A, Schytz HW, Vestergaard MB, Britze J, Amin FM, Olsen KS, Larsson HB, Olesen J, Ashina M. Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients. J Cereb Blood Flow Metab 2019; 39:680-689. [PMID: 28686073 PMCID: PMC6446416 DOI: 10.1177/0271678x17719430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Experimentally induced hypoxia triggers migraine and aura attacks in patients suffering from migraine with aura (MA). We investigated the blood oxygenation level-dependent (BOLD) signal response to visual stimulation during hypoxia in MA patients and healthy volunteers. In a randomized double-blind crossover study design, 15 MA patients were allocated to 180 min of normobaric poikilocapnic hypoxia (capillary oxygen saturation 70-75%) or sham (normoxia) on two separate days and 14 healthy volunteers were exposed to hypoxia. The BOLD functional MRI (fMRI) signal response to visual stimulation was measured in the visual cortex ROIs V1-V5. Total cerebral blood flow (CBF) was calculated by measuring the blood velocity in the internal carotid arteries and the basilar artery using phase-contrast mapping (PCM) MRI. Hypoxia induced a greater decrease in BOLD response to visual stimulation in V1-V4 in MA patients compared to controls. There was no group difference in hypoxia-induced total CBF increase. In conclusion, the study demonstrated a greater hypoxia-induced decrease in BOLD response to visual stimulation in MA patients. We suggest this may represent a hypoxia-induced change in neuronal excitability or abnormal vascular response to visual stimulation, which may explain the increased sensibility to hypoxia in these patients leading to migraine attacks.
Collapse
Affiliation(s)
- Nanna Arngrim
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik W Schytz
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Mark B Vestergaard
- 2 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Britze
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Karsten S Olsen
- 3 Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bw Larsson
- 2 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- 1 Danish Headache Center and Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
109
|
Simultaneous Determination of Glutamate and Calcium Ion in Rat Brain during Spreading Depression and Ischemia Processes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
110
|
Mikhailov N, Leskinen J, Fagerlund I, Poguzhelskaya E, Giniatullina R, Gafurov O, Malm T, Karjalainen T, Gröhn O, Giniatullin R. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology 2019; 149:113-123. [PMID: 30768945 DOI: 10.1016/j.neuropharm.2019.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent discovery of mechanosensitive Piezo receptors in trigeminal ganglia suggested the novel molecular candidate for generation of migraine pain. However, the contribution of Piezo channels in migraine pathology was not tested yet. Therefore, in this study, we explored a potential involvement of Piezo channels in peripheral trigeminal nociception implicated in generation of migraine pain. METHODS We used immunohistochemistry, calcium imaging, calcitonin gene related peptide (CGRP) release assay and electrophysiology in mouse and rat isolated trigeminal neurons and rat hemiskulls to study action of various stimulants of Piezo receptors on migraine-related peripheral nociception. RESULTS We found that essential (35%) fraction of isolated rat trigeminal neurons responded to chemical Piezo1 agonist Yoda1 and about a half of Yoda1 positive neurons responded to hypo-osmotic solution (HOS) and a quarter to mechanical stimulation by focused ultrasound (US). In ex vivo hemiskull preparation, Yoda1 and HOS largely activated persistent nociceptive firing in meningeal branches of trigeminal nerve. By using our novel cluster analysis of pain spikes, we demonstrated that 42% of fibers responded to Piezo1 agonist and 20% of trigeminal fibers were activated by Yoda1 and by capsaicin, suggesting expression of Piezo receptors in TRPV1 positive peptidergic nociceptive nerve fibers. Consistent with this, Yoda1 promoted the release of the key migraine mediator CGRP from hemiskull preparation. CONCLUSION Taken together, our data suggest the involvement of mechanosensitive Piezo receptors, in particular, Piezo1 subtype in peripheral trigeminal nociception, which provides a new view on mechanotransduction in migraine pathology and suggests novel molecular targets for anti-migraine medicine.
Collapse
Affiliation(s)
- Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jarkko Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ilkka Fagerlund
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ekaterina Poguzhelskaya
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Raisa Giniatullina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Tarja Malm
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Tero Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia.
| |
Collapse
|
111
|
Vila-Pueyo M, Strother LC, Kefel M, Goadsby PJ, Holland PR. Divergent influences of the locus coeruleus on migraine pathophysiology. Pain 2019; 160:385-394. [PMID: 30371556 PMCID: PMC6343946 DOI: 10.1097/j.pain.0000000000001421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is a common disabling neurological condition that is associated with several premonitory symptoms that can occur days before the headache onset. The most commonly reported premonitory symptom is marked fatigue that has been shown to be highly predictive of an ensuing migraine attack. The locus coeruleus (LC) is a key nucleus involved in arousal that has also been shown to impact pain processing. It provides one of the major sources of noradrenaline to the dorsal horn of the spinal cord and neocortex. Given the clinical association between migraine, sleep-wake regulation, and fatigue, we sought to determine whether LC modulation could impact migraine-related phenotypes in several validated preclinical models of migraine. To determine its role in migraine-related pain, we recorded dural nociceptive-evoked responses of neurons in the trigeminocervical complex, which receives trigeminal primary afferents from the durovascular complex. In addition, we explored the susceptibility to cortical spreading depression initiation, the presumed underlying phenomenon of migraine aura. Our experiments reveal a potent role for LC disruption in the differential modulation of migraine-related phenotypes, inhibiting dural-evoked activation of wide dynamic neurons in the trigeminocervical complex while increasing cortical spreading depression susceptibility. This highlights the potential divergent impact of LC disruption in migraine physiology, which may help explain the complex interactions between dysfunctional arousal mechanisms and migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Malak Kefel
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, United Kingdom
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
112
|
Park KJ, Seyal M. Tonic electromyographic activity following bilateral tonic–clonic seizures is associated with periictal respiratory dysfunction and postictal generalized EEG suppression. Epilepsia 2019; 60:268-274. [DOI: 10.1111/epi.14632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Katherine J. Park
- Department of Neurology University of California Davis Davis California
| | - Masud Seyal
- Department of Neurology University of California Davis Davis California
| |
Collapse
|
113
|
Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance. Curr Neuropharmacol 2019; 17:151-164. [PMID: 28925885 PMCID: PMC6343201 DOI: 10.2174/1570159x15666170915160707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
Collapse
Affiliation(s)
| | | | - Yasemin Gürsoy-Özdemir
- Address correspondence to these authors at the Department of Neurosurgery, School of Medicine, Koç University, İstanbul, Turkey; Tel: +90 850 250 8250; E-mails: ,
| |
Collapse
|
114
|
Hobbs CN, Johnson JA, Verber MD, Mark Wightman R. An implantable multimodal sensor for oxygen, neurotransmitters, and electrophysiology during spreading depolarization in the deep brain. Analyst 2018; 142:2912-2920. [PMID: 28715004 DOI: 10.1039/c7an00508c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brain tissue injury is often accompanied by spreading depolarization (SD) events, marked by widespread cellular depolarization and cessation of neuronal firing. SD recruits viable tissue into the lesion, making it a focus for intervention. During SD, drastic fluctuations occur in ion gradients, extracellular neurotransmitter concentrations, cellular metabolism, and cerebral blood flow. Measuring SD requires a multimodal approach to capture the array of changes. However, the use of multiple sensors can inflict tissue damage. Here, we use carbon-fiber microelectrodes to characterize several aspects of SD with a single, minimally invasive sensor in the deep brain region of the nucleus accumbens. Fast-scan cyclic voltammetry detects large changes in oxygen, which reflect the balance between cerebral blood flow and energy consumption, and also supraphysiological release of electroactive neurotransmitters (i.e., dopamine). We verify waves of SD with concurrent single-unit or DC potential electrophysiological recordings. The single-unit recordings reveal bursts of action potentials followed by inactivity. The DC potentials exhibit a slow negative voltage shift in the extracellular space indicative of wide-spread cellular depolarization. Here, we characterize the multiple modalities of our sensor and demonstrate its utility for improved SD recordings.
Collapse
Affiliation(s)
- Caddy N Hobbs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
115
|
Xiao T, Li X, Wei H, Ji W, Yue Q, Yu P, Mao L. In Vivo Monitoring of Oxygen Fluctuation Simultaneously at Multiple Sites of Rat Cortex during Spreading Depression. Anal Chem 2018; 90:13783-13789. [DOI: 10.1021/acs.analchem.8b04348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tongfang Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Qingwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
116
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
117
|
Sadeghian H, Lacoste B, Qin T, Toussay X, Rosa R, Oka F, Chung DY, Takizawa T, Gu C, Ayata C. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann Neurol 2018; 84:409-423. [PMID: 30014540 PMCID: PMC6153037 DOI: 10.1002/ana.25298] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain barrier (BBB), but the mechanisms are unknown. METHODS A total of six CSDs were evoked over 1 hour by topical application of 300 mM of KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized mice (C57BL/6 J wild type, Thy1-ChR2-YFP line 18, and cav-1-/- ). BBB disruption was assessed by Evans blue (2% EB, 3 ml/kg, intra-arterial) or dextran (200 mg/kg, fluorescein, 70,000 MW, intra-arterial) extravasation in parietotemporal cortex at 3 to 24 hours after CSD. Endothelial cell ultrastructure was examined using transmission electron microscopy 0 to 24 hours after the same CSD protocol in order to assess vesicular trafficking, endothelial tight junctions, and pericyte integrity. Mice were treated with vehicle, isoform nonselective rho-associated kinase (ROCK) inhibitor fasudil (10 mg/kg, intraperitoneally 30 minutes before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, per oral twice-daily for 5 doses before CSD). RESULTS We show that CSD-induced BBB opening to water and large molecules is mediated by increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 hours. Endothelial tight junctions, pericytes, and basement membrane remain preserved after CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent and requires rho-kinase 2 activity. Importantly, hyperoxia failed to prevent CSD-induced BBB breakdown, suggesting that the latter is independent of tissue hypoxia. INTERPRETATION Our data elucidate the mechanisms by which CSDs lead to transient BBB disruption, with diagnostic and therapeutic implications for migraine and brain injury.
Collapse
Affiliation(s)
- Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Baptiste Lacoste
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xavier Toussay
- The Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
| | - Roberto Rosa
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fumiaki Oka
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
118
|
Large-conductance Ca 2+-activated potassium channels are potently involved in the inverse neurovascular response to spreading depolarization. Neurobiol Dis 2018; 119:41-52. [PMID: 30053571 DOI: 10.1016/j.nbd.2018.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/03/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Recurrent spreading depolarizations occur in the cerebral cortex from minutes up to weeks following acute brain injury. Clinical evidence suggests that the immediate reduction of cerebral blood flow in response to spreading depolarization importantly contributes to lesion progression as the wave propagates over vulnerable tissue zones, characterized by potassium concentration already elevated prior to the passage of spreading depolarization. Here we demonstrate with two-photon microscopy in anesthetized mice that initial vasoconstriction in response to SD triggered experimentally with 1 M KCl is coincident in space and time with the large extracellular accumulation of potassium, as shown with a potassium indicator fluorescent dye. Moreover, pharmacological manipulations in combination with the use of potassium-sensitive microelectrodes suggest that large-conductance Ca2+-activated potassium (BK) channels and L-type voltage-gated calcium channels play significant roles in the marked initial vasoconstriction under elevated baseline potassium. We propose that potassium efflux through BK channels is a central component in the devastating neurovascular effects of spreading depolarizations in tissue at risk.
Collapse
|
119
|
Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, Major S, Winkler MKL, Kang EJ, Schoknecht K, Martus P, Hartings JA, Woitzik J, Dreier JP. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 2018; 141:1734-1752. [PMID: 29668855 PMCID: PMC5972557 DOI: 10.1093/brain/awy102] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022] Open
Abstract
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Collapse
Affiliation(s)
- Janos Lückl
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uldus Khojasteh
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Johannes Woitzik
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
120
|
Dissociation between CSD-Evoked Metabolic Perturbations and Meningeal Afferent Activation and Sensitization: Implications for Mechanisms of Migraine Headache Onset. J Neurosci 2018; 38:5053-5066. [PMID: 29703787 DOI: 10.1523/jneurosci.0115-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/15/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
The onset of the headache phase during attacks of migraine with aura, which occur in ∼30% of migraineurs, is believed to involve cortical spreading depression (CSD) and the ensuing activation and sensitization of primary afferent neurons that innervate the intracranial meninges, and their related large vessels. The mechanism by which CSD enhances the activity and mechanosensitivity of meningeal afferents remains poorly understood, but may involve cortical metabolic perturbations. We used extracellular single-unit recording of meningeal afferent activity and monitored changes in cortical blood flow and tissue partial pressure of oxygen (tpO2) in anesthetized male rats to test whether the prolonged cortical hypoperfusion and reduction in tissue oxygenation that occur in the wake of CSD contribute to meningeal nociception. Suppression of CSD-evoked cortical hypoperfusion with the cyclooxygenase inhibitor naproxen blocked the reduction in cortical tpO2, but had no effect on the activation of meningeal afferents. Naproxen, however, distinctly prevented CSD-induced afferent mechanical sensitization. Counteracting the CSD-evoked persistent hypoperfusion and reduced tpO2 by preemptively increasing cortical blood flow using the ATP-sensitive potassium [K(ATP)] channel opener levcromakalim did not inhibit the sensitization of meningeal afferents, but prevented their activation. Our data show that the cortical hypoperfusion and reduction in tpO2 that occur in the wake of CSD can be dissociated from the activation and mechanical sensitization of meningeal afferent responses, suggesting that the metabolic changes do not contribute directly to these neuronal nociceptive responses.SIGNIFICANCE STATEMENT Cortical spreading depression (CSD)-evoked activation and mechanical sensitization of meningeal afferents is thought to mediate the headache phase in migraine with aura. We report that blocking the CSD-evoked cortical hypoperfusion and reduced tissue partial pressure of oxygen by cyclooxygenase inhibition is associated with the inhibition of the afferent sensitization, but not their activation. Normalization of these CSD-evoked metabolic perturbations by activating K(ATP) channels is, however, associated with the inhibition of afferent activation but not sensitization. These results question the contribution of cortical metabolic perturbations to the triggering mechanism underlying meningeal nociception and the ensuing headache in migraine with aura, further point to distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for an effective migraine therapy.
Collapse
|
121
|
Close LN, Eftekhari S, Wang M, Charles AC, Russo AF. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia 2018; 39:428-434. [PMID: 29695168 DOI: 10.1177/0333102418774299] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PREMISE Migraine is a complex neurologic disorder that leads to significant disability, yet remains poorly understood. PROBLEM One potential triggering mechanism in migraine with aura is cortical spreading depression, which can activate the trigeminal nociceptive system both peripherally and centrally in animal models. A primary neuropeptide of the trigeminal system is calcitonin gene-related peptide, which is a potent vasodilatory peptide and is currently a major therapeutic target for migraine treatment. Despite the importance of both cortical spreading depression and calcitonin gene-related peptide in migraine, the relationship between these two players has been relatively unexplored. However, recent data suggest several potential vascular and neural connections between calcitonin gene-related peptide and cortical spreading depression. CONCLUSION This review will outline calcitonin gene-related peptide-cortical spreading depression connections and propose a model in which cortical spreading depression and calcitonin gene-related peptide act at the intersection of the vasculature and cortical neurons, and thus contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Liesl N Close
- 1 Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sajedeh Eftekhari
- 2 UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Minyan Wang
- 3 Centre for Neuroscience, Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), SIP, Suzhou, China
| | - Andrew C Charles
- 2 UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrew F Russo
- 4 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Department of Neurology, University of Iowa, Iowa City, IA, USA.,6 Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
122
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
123
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|
124
|
Kucharz K, Lauritzen M. CaMKII-dependent endoplasmic reticulum fission by whisker stimulation and during cortical spreading depolarization. Brain 2018. [DOI: 10.1093/brain/awy036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Krzysztof Kucharz
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Maersk Tower, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Center for Healthy Aging, University of Copenhagen, Maersk Tower, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, Nordre Ringvej 57, 2600 Glostrup, Denmark
| |
Collapse
|
125
|
Cozzolino O, Marchese M, Trovato F, Pracucci E, Ratto GM, Buzzi MG, Sicca F, Santorelli FM. Understanding Spreading Depression from Headache to Sudden Unexpected Death. Front Neurol 2018; 9:19. [PMID: 29449828 PMCID: PMC5799941 DOI: 10.3389/fneur.2018.00019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Spreading depression (SD) is a neurophysiological phenomenon characterized by abrupt changes in intracellular ion gradients and sustained depolarization of neurons. It leads to loss of electrical activity, changes in the synaptic architecture, and an altered vascular response. Although SD is often described as a unique phenomenon with homogeneous characteristics, it may be strongly affected by the particular triggering event and by genetic background. Furthermore, SD may contribute differently to the pathogenesis of widely heterogeneous clinical conditions. Indeed, clinical disorders related to SD vary in their presentation and severity, ranging from benign headache conditions (migraine syndromes) to severely disabling events, such as cerebral ischemia, or even death in people with epilepsy. Although the characteristics and mechanisms of SD have been dissected using a variety of approaches, ranging from cells to human models, this phenomenon remains only partially understood because of its complexity and the difficulty of obtaining direct experimental data. Currently, clinical monitoring of SD is limited to patients who require neurosurgical interventions and the placement of subdural electrode strips. Significantly, SD events recorded in humans display electrophysiological features that are essentially the same as those observed in animal models. Further research using existing and new experimental models of SD may allow a better understanding of its core mechanisms, and of their differences in different clinical conditions, fostering opportunities to identify and develop targeted therapies for SD-related disorders and their worst consequences.
Collapse
Affiliation(s)
- Olga Cozzolino
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Francesco Trovato
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Gian Michele Ratto
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Federico Sicca
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
126
|
Kawauchi S, Nishidate I, Nawashiro H, Sato S. Near-infrared diffuse reflectance signals for monitoring spreading depolarizations and progression of the lesion in a male rat focal cerebral ischemia model. J Neurosci Res 2017; 96:875-888. [PMID: 29150867 DOI: 10.1002/jnr.24201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/08/2017] [Indexed: 11/07/2022]
Abstract
In ischemic stroke research, a better understanding of the pathophysiology and development of neuroprotection methods are crucial, for which in vivo imaging to monitor spreading depolarizations (SDs) and evolution of tissue damage is desired. Since these events are accompanied by cellular morphological changes, light-scattering signals, which are sensitive to cellular and subcellular morphology, can be used for monitoring them. In this study, we performed transcranial imaging of near-infrared (NIR) diffuse reflectance at ∼800 nm, which sensitively reflects light-scattering change, and examined how NIR reflectance is correlated with simultaneously measured cerebral blood flow (CBF) for a rat middle cerebral artery occlusion (MCAO) model. After MCAO, wavelike NIR reflectance changes indicating occurrence of SDs were generated and propagated around the ischemic core for ∼90 min, during which time NIR reflectance increased not only within the ischemic core but also in the peripheral region. The area with increased reflectance expanded with increase in the number of SD occurrences, the correlation coefficient being 0.7686 (n = 5). The area with increased reflectance had become infarcted at 24 hr after MCAO. The infarct region was found to be associated with hypoperfusion or no-flow response to SD, but hyperemia or hypoperfusion followed by hyperemia response to SD was also observed, and the regional heterogeneity seemed to be connected with the rat cerebrovasculature and hence existence/absence of collateral flow. The results suggest that NIR reflectance signals depicted early evolution of tissue damage, which was not seen by CBF changes, and enabled lesion progression monitoring in the present stroke model.
Collapse
Affiliation(s)
- Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Izumi Nishidate
- Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Hiroshi Nawashiro
- Division of Neurosurgery, Tokorozawa Central Hospital, Tokorozawa, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
127
|
Tripathi GM, Kalita J, Misra UK. A study of oxidative stress in migraine with special reference to prophylactic therapy. Int J Neurosci 2017; 128:318-324. [PMID: 28903615 DOI: 10.1080/00207454.2017.1374959] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The role of oxidative stress markers in migraine and effect of treatment on these has been reported. SUBJECTS AND METHODS One hundred and fifty patients having > four attacks of migraine headache/month were included. Headache severity, Migraine Index (MI) and frequency of headache were noted. 120 patients received repetitive transcranial magnetic stimulation (rTMS) therapy and 30 patients received Amitriptyline (AMT). Recovery was defined by 50% improvement in frequency, severity or reduction in MI. Oxidative stress and antioxidant markers have been estimated in patients before and after treatment and correlate the clinical and outcome parameters. RESULTS Glutathione (GSH) (P < 0.001), glutathione-S-transferase (GST) (P = 0.049) and total antioxidant activity (TAC) (P < 0.001) level were significantly reduced in migraine patients. GSH (P = 0.02), GST (P = 0.05) and TAC (P < 0.001) were reduced in ictal migraineurs compared to controls. GSH (P < 0.001) and TAC (P = 0.003) levels increased after treatment compared to the base line. There is an increase in GSH levels in the patients who had improved following rTMS (P = 0.003); placebo (P = 0.001) and AMT (P = 0.013). TAC levels were also increased following rTMS (P = 0.009) and AMT (P = 0.020). CONCLUSION There is evidence of oxidative stress in migraine pathophysiology. Following treatment, oxidative stress declined following both pharmacological and rTMS.
Collapse
Affiliation(s)
- Gyanesh M Tripathi
- a Department of Neurology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Jayantee Kalita
- a Department of Neurology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Usha K Misra
- a Department of Neurology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
128
|
Hobbs CN, Holzberg G, Min AS, Wightman RM. Comparison of Spreading Depolarizations in the Motor Cortex and Nucleus Accumbens: Similar Patterns of Oxygen Responses and the Role of Dopamine. ACS Chem Neurosci 2017; 8:2512-2521. [PMID: 28820571 PMCID: PMC5691918 DOI: 10.1021/acschemneuro.7b00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spreading depolarizations (SD) are pathophysiological phenomena that spontaneously arise in traumatized neural tissue and can promote cellular death. Most investigations of SD are performed in the cortex, a brain region that is susceptible to these depolarizing waves and accessible via a variety of monitoring techniques. Here, we describe SD responses in the cortex and the deep brain region of the nucleus accumbens (NAc) of the anesthetized rat with a minimally invasive, implantable sensor. With high temporal resolution, we characterize the time course of oxygen responses to SD in relation to the electrophysiological depolarization signal. The predominant oxygen pattern consists of four phases: (1) a small initial decrease, (2) a large increase during the SD, (3) a delayed increase, and (4) a persistent decrease from baseline after the SD. Oxygen decreases during SD were also recorded. The latter response occurred more often in the NAc than the cortex (56% vs 20% of locations, respectively), which correlates to denser cortical vascularization. We also find that SDs travel more quickly in the cortex than NAc, likely affected by regional differences in cell type populations. Finally, we investigate the previously uncharacterized effects of dopamine release during SD in the NAc with dopamine receptor blockade. Our results support an inhibitory role of the D2 receptor on SD. As such, the data presented here expands the current understanding of within- and between-region variance in responses to SD.
Collapse
Affiliation(s)
- Caddy N. Hobbs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gordon Holzberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Akira S. Min
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
129
|
Liu YH, Chan SJ, Pan HC, Bandla A, King NKK, Wong PTH, Chen YY, Ng WH, Thakor NV, Liao LD. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. NEUROPHOTONICS 2017; 4:045002. [PMID: 29021986 PMCID: PMC5627795 DOI: 10.1117/1.nph.4.4.045002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/12/2017] [Indexed: 05/03/2023]
Abstract
Cathodal-transcranial direct current stimulation induces therapeutic effects in animal ischemia models by preventing the expansion of ischemic injury during the hyperacute phase of ischemia. However, its efficacy is limited by an accompanying decrease in cerebral blood flow. On the other hand, peripheral sensory stimulation can increase blood flow to specific brain areas resulting in rescue of neurovascular functions from ischemic damage. Therefore, the two modalities appear to complement each other to form an integrated treatment modality. Our results showed that hemodynamics was improved in a photothrombotic ischemia model, as cerebral blood volume and hemoglobin oxygen saturation ([Formula: see text]) recovered to 71% and 76% of the baseline values, respectively. Furthermore, neural activities, including somatosensory-evoked potentials (110% increase), the alpha-to-delta ratio (27% increase), and the [Formula: see text] ratio (27% decrease), were also restored. Infarct volume was reduced by 50% with a 2-fold preservation in the number of neurons and a 6-fold reduction in the number of active microglia in the infarct region compared with the untreated group. Grip strength was also better preserved (28% higher) compared with the untreated group. Overall, this nonpharmacological, nonintrusive approach could be prospectively developed into a clinical treatment modality.
Collapse
Affiliation(s)
- Yu-Hang Liu
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
| | - Su Jing Chan
- Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Han-Chi Pan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Aishwarya Bandla
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
| | - Nicolas K. K. King
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Peter Tsun Hon Wong
- National University of Singapore, Department of Pharmacology, Singapore, Singapore
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Wai Hoe Ng
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Nitish V. Thakor
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Lun-De Liao
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
- Address all correspondence to: Lun-De Liao, E-mail:
| |
Collapse
|
130
|
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2017; 134:189-207. [PMID: 28941738 DOI: 10.1016/j.neuropharm.2017.09.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Departments of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
131
|
Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NEUROIMAGE-CLINICAL 2017; 16:524-538. [PMID: 28948141 PMCID: PMC5602748 DOI: 10.1016/j.nicl.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
Abstract
In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury. An algorithm has been developed to estimate spreading depolarization (SD) velocities in neurocritical care. The algorithm is based on reconstructing SD trajectories of the wave-front's curvature center. It utilizes MRI scans and time-of-SD-arrival-differences between subdural electrode pairs. Variables indicating SD susceptibility correlated with algorithm-estimated SD velocities. The findings establish the opportunity to exploit the SD velocity as part of the multimodal assessment in neurocritical care.
Collapse
Key Words
- 3D, three dimensional
- AC, alternating current
- ADC, apparent diffusion coefficient
- COSBID, Co-Operative Studies on Brain Injury Depolarizations
- CT, computed tomography
- Cytotoxic edema
- DC, direct current
- DWI, diffusion-weighted imaging
- E, electrode
- ECoG, electrocorticography
- FLAIR, fluid-attenuated inversion recovery
- HU, Hounsfield units
- ICH, intracerebral hemorrhage
- IOS, intrinsic optical signal
- Ischemia
- MCA, middle cerebral artery
- MHS, malignant hemispheric stroke
- MPRAGE, magnetization prepared rapid gradient echo
- MRI, magnetic resonance imaging
- NO, nitric oxide
- PTDDD, peak total SD-induced depression duration of a recording day
- R_diff, radius difference
- SAH, subarachnoid hemorrhage
- SD, spreading depolarization
- SPC, slow potential change
- Spreading depression
- Stroke
- Subarachnoid hemorrhage
- TBI, traumatic brain injury
- TOAD, time-of-SD-arrival-difference
- Traumatic brain injury
- V_diff, velocity difference
- WFNS, World Federation of Neurosurgical Societies
- aSAH, aneurysmal subarachnoid hemorrhage
Collapse
|
132
|
Role of astrocyte connexin hemichannels in cortical spreading depression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:216-223. [PMID: 28864364 DOI: 10.1016/j.bbamem.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in >50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2+], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through "spatial buffering". However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
133
|
Tamaki R, Orie SI, Alessandri B, Kempski O, Heimann A. Spreading depression and focal venous cerebral ischemia enhance cortical neurogenesis. Neural Regen Res 2017; 12:1278-1286. [PMID: 28966642 PMCID: PMC5607822 DOI: 10.4103/1673-5374.213547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 11/29/2022] Open
Abstract
Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or "enriched environment" as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression (CSD) induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation (Sham), induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs (CSD + 2-VO). As an additional control, 15 naïve rats received no intervention except 5-bromo-2'-deoxyuridine (BrdU) treatment for 7 days. Sagittal brain slices (40 μm thick) were co-stained for BrdU and doublecortin (DCX; new immature neuronal cells) on day 9 or NeuN (new mature neuronal cells) on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in naïve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.
Collapse
Affiliation(s)
- Ryo Tamaki
- Department of Neurosurgery, Nara Medical University, Nara, Japan
| | - Samuel Ige Orie
- University Medical Center of the Johannes Gutenberg-University of Mainz, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Beat Alessandri
- University Medical Center of the Johannes Gutenberg-University of Mainz, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Oliver Kempski
- University Medical Center of the Johannes Gutenberg-University of Mainz, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Axel Heimann
- University Medical Center of the Johannes Gutenberg-University of Mainz, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| |
Collapse
|
134
|
Solomon AJ, Watts R, Dewey BE, Reich DS. MRI evaluation of thalamic volume differentiates MS from common mimics. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e387. [PMID: 28761906 PMCID: PMC5515603 DOI: 10.1212/nxi.0000000000000387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
Objective: To determine whether MRI evaluation of thalamic volume differentiates MS from other disorders that cause MRI white matter abnormalities. Methods: There were 40 study participants: 10 participants with MS without additional comorbidities for white matter abnormalities (MS − c); 10 participants with MS with additional comorbidities for white matter abnormalities (MS + c); 10 participants with migraine, MRI white matter abnormalities, and no additional comorbidities for white matter abnormalities (Mig − c); and 10 participants previously incorrectly diagnosed with MS (Misdx). T1-magnetization-prepared rapid gradient-echo and T2-weighted three-dimensional fluid attenuation inversion recovery sequences were acquired on a Phillips Achieva d-Stream 3T MRI, and scans were randomly ordered and de-identified for a blinded reviewer who performed MRI segmentation using LesionTOADS. Results: Mean normalized thalamic volume differed among the 4 cohorts (analysis of variance, p = 0.005) and was smaller in the 20 MS participants compared with the 20 non-MS participants (p < 0.001), smaller in MS − c compared with Mig − c (p = 0.03), and smaller in MS + c compared with Misdx (p = 0.006). The sensitivity and specificity were both 0.75 for diagnosis of MS with a thalamic volume <0.0077. Conclusions: MRI volumetric evaluation of the thalamus, but not other deep gray-matter structures, differentiated MS from other diseases that cause white matter abnormalities and are often mistaken for MS. Evaluation for thalamic atrophy may improve accuracy for diagnosis of MS as an adjunct to additional radiologic criteria. Thalamic volumetric assessment by MRI in larger cohorts of patients undergoing evaluation for MS is needed, along with the development of automated and easily applied volumetric assessment tools for future clinical application. Classification of evidence: This study provides Class III evidence that MRI evaluation of thalamic volume differentiates MS from other diseases that cause white matter abnormalities.
Collapse
Affiliation(s)
- Andrew J Solomon
- Department of Neurological Sciences (A.J.S.) and Department of Radiology (R.W.), University of Vermont College of Medicine, Burlington; Department of Electrical and Computer Engineering (B.E.D.), Johns Hopkins University; and Translational Neuroradiology Section (B.E.D., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Richard Watts
- Department of Neurological Sciences (A.J.S.) and Department of Radiology (R.W.), University of Vermont College of Medicine, Burlington; Department of Electrical and Computer Engineering (B.E.D.), Johns Hopkins University; and Translational Neuroradiology Section (B.E.D., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Blake E Dewey
- Department of Neurological Sciences (A.J.S.) and Department of Radiology (R.W.), University of Vermont College of Medicine, Burlington; Department of Electrical and Computer Engineering (B.E.D.), Johns Hopkins University; and Translational Neuroradiology Section (B.E.D., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Daniel S Reich
- Department of Neurological Sciences (A.J.S.) and Department of Radiology (R.W.), University of Vermont College of Medicine, Burlington; Department of Electrical and Computer Engineering (B.E.D.), Johns Hopkins University; and Translational Neuroradiology Section (B.E.D., D.S.R.), Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| |
Collapse
|
135
|
Dynamic Cerebrovascular and Intracranial Pressure Reactivity Assessment of Impaired Cerebrovascular Autoregulation in Intracranial Hypertension. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 122:255-60. [PMID: 27165917 DOI: 10.1007/978-3-319-22533-3_51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously suggested that the discrepancy between a critical cerebral perfusion pressure (CPP) of 30 mmHg, obtained by increasing intracranial pressure (ICP), and 60 mmHg, obtained by decreasing arterial pressure, was due to pathological microvascular shunting at high ICP [1], and that the determination of the critical CPP by the static cerebral blood flow (CBF) autoregulation curve is not valid with intracranial hypertension. Here, we demonstrated that induced dynamic ICP reactivity (iPRx), and cerebrovascular reactivity (CVRx) tests accurately identify the critical CPP in the hypertensive rat brain, which differs from that obtained by the static autoregulation curve. Step changes in CPP from 70 to 50 and 30 mmHg were made by increasing ICP using an artificial cerebrospinal fluid reservoir connected to the cisterna magna. At each CPP, a transient 10-mmHg increase in arterial pressure was induced by bolus intravenous dopamine. iPRx and iCVRx were calculated as ΔICP/Δ mean arterial pressure (MAP) and as ΔCBF/ΔMAP, respectively. The critical CPP at high ICP, obtained by iPRx and iCVRx, is 50 mmHg, where compromised capillary flow, transition of blood flow to nonnutritive microvascular shunts, tissue hypoxia, and brain-blood barrier leakage begin to occur, which is higher than the 30 mmHg determined by static autoregulation.
Collapse
|
136
|
Urbach A, Baum E, Braun F, Witte OW. Cortical spreading depolarization increases adult neurogenesis, and alters behavior and hippocampus-dependent memory in mice. J Cereb Blood Flow Metab 2017; 37:1776-1790. [PMID: 27189903 PMCID: PMC5435280 DOI: 10.1177/0271678x16643736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cortical spreading depolarizations are an epiphenomenon of human brain pathologies and associated with extensive but transient changes in ion homeostasis, metabolism, and blood flow. Previously, we have shown that cortical spreading depolarization have long-lasting consequences on the brains transcriptome and structure. In particular, we found that cortical spreading depolarization stimulate hippocampal cell proliferation resulting in a sustained increase in adult neurogenesis. Since the hippocampus is responsible for explicit memory and adult-born dentate granule neurons contribute to this function, cortical spreading depolarization might influence hippocampus-dependent cognition. To address this question, we induced cortical spreading depolarization in C57Bl/6 J mice by epidural application of 1.5 mol/L KCl and evaluated neurogenesis and behavior at two, four, or six weeks thereafter. Congruent with our previous findings in rats, we found that cortical spreading depolarization increases numbers of newborn dentate granule neurons. Moreover, exploratory behavior and object location memory were consistently enhanced. Reference memory in the water maze was virtually unaffected, whereas memory formation in the Barnes maze was impaired with a delay of two weeks and facilitated after four weeks. These data show that cortical spreading depolarization produces lasting changes in psychomotor behavior and complex, delay- and task-dependent changes in spatial memory, and suggest that cortical spreading depolarization-like events affect the emotional and cognitive outcomes of associated brain pathologies.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Eileen Baum
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Falko Braun
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
137
|
Balança B, Meiller A, Bezin L, Dreier JP, Marinesco S, Lieutaud T. Altered hypermetabolic response to cortical spreading depolarizations after traumatic brain injury in rats. J Cereb Blood Flow Metab 2017; 37:1670-1686. [PMID: 27356551 PMCID: PMC5435292 DOI: 10.1177/0271678x16657571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/11/2023]
Abstract
Spreading depolarizations are waves of near-complete breakdown of neuronal transmembrane ion gradients, free energy starving, and mass depolarization. Spreading depolarizations in electrically inactive tissue are associated with poor outcome in patients with traumatic brain injury. Here, we studied changes in regional cerebral blood flow and brain oxygen (PbtO2), glucose ([Glc]b), and lactate ([Lac]b) concentrations in rats, using minimally invasive real-time sensors. Rats underwent either spreading depolarizations chemically triggered by KCl in naïve cortex in absence of traumatic brain injury or spontaneous spreading depolarizations in the traumatic penumbra after traumatic brain injury, or a cluster of spreading depolarizations triggered chemically by KCl in a remote window from which spreading depolarizations invaded penumbral tissue. Spreading depolarizations in noninjured cortex induced a hypermetabolic response characterized by a decline in [Glc]b and monophasic increases in regional cerebral blood flow, PbtO2, and [Lac]b, indicating transient hyperglycolysis. Following traumatic brain injury, spontaneous spreading depolarizations occurred, causing further decline in [Glc]b and reducing the increase in regional cerebral blood flow and biphasic responses of PbtO2 and [Lac]b, followed by prolonged decline. Recovery of PbtO2 and [Lac]b was significantly delayed in traumatized animals. Prespreading depolarization [Glc]b levels determined the metabolic response to clusters. The results suggest a compromised hypermetabolic response to spreading depolarizations and slower return to physiological conditions following traumatic brain injury-induced spreading depolarizations.
Collapse
Affiliation(s)
- Baptiste Balança
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Centre hospitalier universitaire de Lyon, France
| | - Anne Meiller
- Université Claude Bernard Lyon I, Lyon Neuroscience Research Center, AniRA-Neurochem Technological platform, Lyon, France
| | - Laurent Bezin
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology and Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Stéphane Marinesco
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard Lyon I, Lyon Neuroscience Research Center, AniRA-Neurochem Technological platform, Lyon, France
| | - Thomas Lieutaud
- Inserm U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| |
Collapse
|
138
|
Winkler MKL, Dengler N, Hecht N, Hartings JA, Kang EJ, Major S, Martus P, Vajkoczy P, Woitzik J, Dreier JP. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2017; 37:1841-1856. [PMID: 27025768 PMCID: PMC5435278 DOI: 10.1177/0271678x16641424] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.
Collapse
Affiliation(s)
- Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Nora Dengler
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Eun J Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
139
|
Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C, Graf R, Vajkoczy P, Helbok R, Suzuki M, Schiefecker AJ, Major S, Winkler MKL, Kang EJ, Milakara D, Oliveira-Ferreira AI, Reiffurth C, Revankar GS, Sugimoto K, Dengler NF, Hecht N, Foreman B, Feyen B, Kondziella D, Friberg CK, Piilgaard H, Rosenthal ES, Westover MB, Maslarova A, Santos E, Hertle D, Sánchez-Porras R, Jewell SL, Balança B, Platz J, Hinzman JM, Lückl J, Schoknecht K, Schöll M, Drenckhahn C, Feuerstein D, Eriksen N, Horst V, Bretz JS, Jahnke P, Scheel M, Bohner G, Rostrup E, Pakkenberg B, Heinemann U, Claassen J, Carlson AP, Kowoll CM, Lublinsky S, Chassidim Y, Shelef I, Friedman A, Brinker G, Reiner M, Kirov SA, Andrew RD, Farkas E, Güresir E, Vatter H, Chung LS, Brennan KC, Lieutaud T, Marinesco S, Maas AIR, Sahuquillo J, Dahlem MA, Richter F, Herreras O, Boutelle MG, Okonkwo DO, Bullock MR, Witte OW, Martus P, van den Maagdenberg AMJM, Ferrari MD, Dijkhuizen RM, Shutter LA, Andaluz N, Schulte AP, MacVicar B, Watanabe T, Woitzik J, Lauritzen M, Strong AJ, Hartings JA. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 2017; 37:1595-1625. [PMID: 27317657 PMCID: PMC5435289 DOI: 10.1177/0271678x16654496] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023]
Abstract
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian Dohmen
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Alois J Schiefecker
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Gajanan S Revankar
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nora F Dengler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Neurocritical Care Division, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bart Feyen
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | | | | | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Daniel Hertle
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Baptiste Balança
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Janos Lückl
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schöll
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Nina Eriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Julia S Bretz
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Heinemann
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Claassen
- Neurocritical Care, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Svetlana Lublinsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael Reiner
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Sergei A Kirov
- Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Lee S Chung
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - KC Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Thomas Lieutaud
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Stephane Marinesco
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- AniRA-Neurochem Technological Platform, Lyon, France
| | - Andrew IR Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juan Sahuquillo
- Department of Neurosurgery, Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lori A Shutter
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine and Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - André P Schulte
- Department of Spinal Surgery, St. Franziskus Hospital Cologne, Cologne, Germany
| | - Brian MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
140
|
Sword J, Croom D, Wang PL, Thompson RJ, Kirov SA. Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading. J Cereb Blood Flow Metab 2017; 37:1626-1633. [PMID: 26994044 PMCID: PMC5435276 DOI: 10.1177/0271678x16639328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spreading depolarization-induced focal dendritic swelling (beading) is an early hallmark of neuronal cytotoxic edema. Pyramidal neurons lack membrane-bound aquaporins posing a question of how water enters neurons during spreading depolarization. Recently, we have identified chloride-coupled transport mechanisms that can, at least in part, participate in dendritic beading. Yet transporter-mediated ion and water fluxes could be paralleled by water entry through additional pathways such as large-pore pannexin-1 channels opened by spreading depolarization. Using real-time in vivo two-photon imaging in mice with pharmacological inhibition or conditional genetic deletion of pannexin-1, we showed that pannexin-1 channels are not required for spreading depolarization-induced focal dendritic swelling.
Collapse
Affiliation(s)
- Jeremy Sword
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Deborah Croom
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Phil L Wang
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Roger J Thompson
- 2 Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Sergei A Kirov
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA.,3 Department of Neurosurgery, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
141
|
Richter F, Eitner A, Leuchtweis J, Bauer R, Lehmenkühler A, Schaible HG. Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature. J Cereb Blood Flow Metab 2017; 37:1791-1802. [PMID: 27037093 PMCID: PMC5435277 DOI: 10.1177/0271678x16641127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl. Interleukin-1ß, the IL-1 receptor 1 antagonist, the GABAA receptor blocker bicuculline, and lipopolysaccharide were administered either alone or combined (interleukin-1ß + IL-1 receptor 1 antagonist; interleukin-1ß + bicuculline; lipopolysaccharide + IL-1 receptor 1 antagonist) into a local cortical treatment area. Using microelectrodes, cortical spreading depolarizations were recorded in a non-treatment and in the treatment area. Plasma extravasation in cortical grey matter was assessed with Evans blue. Local application of interleukin-1ß reduced cortical spreading depolarization amplitudes in the treatment area, but not at a high dose. This reduction was prevented by IL-1 receptor 1 antagonist and by bicuculline. However, interleukin-1ß induced pronounced plasma extravasation independently on cortical spreading depolarizations. Application of lipopolysaccharide reduced cortical spreading depolarization amplitudes but prolonged their duration; EEG activity was still present. These effects were also blocked by IL-1 receptor 1 antagonist. Interleukin-1ß evokes changes of neuronal activity and of vascular functions. Thus, although the reduction of cortical spreading depolarization amplitudes at lower doses of interleukin-1ß may reduce deleterious effects of cortical spreading depolarizations, the sum of interleukin-1ß effects on excitability and on the vasculature rather promote brain damaging mechanisms.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Annett Eitner
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Johannes Leuchtweis
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | | | - Hans-Georg Schaible
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
142
|
Lindquist BE, Shuttleworth CW. Evidence that adenosine contributes to Leao's spreading depression in vivo. J Cereb Blood Flow Metab 2017; 37:1656-1669. [PMID: 27217381 PMCID: PMC5435284 DOI: 10.1177/0271678x16650696] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Leao's spreading depression of cortical activity is a propagating silencing of neuronal activity resulting from spreading depolarization (SD). We evaluated the contributions of action potential (AP) failure and adenosine A1 receptor (A1R) activation to the depression of evoked and spontaneous electrocorticographic (ECoG) activity after SD in vivo, in anesthetized mice. We compared depression with SD-induced effects on AP-dependent transmission, and synaptic potentials in the transcallosal and thalamocortical pathways. After SD, APs recovered rapidly, within 1-2 min, as demonstrated by evoked activity in distant projection targets. Evoked corticocortical postsynaptic potentials recovered next, within ∼5 min. Spontaneous ECoG and evoked thalamocortical postsynaptic potentials recovered together, after ∼10-15 min. The duration of ECoG depression was shortened 20% by systemic (10 mg/kg) or focal (30 µM) administration of A1R competitive antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). ECoG depression was also shortened by focal application of exogenous adenosine deaminase (ADA; 100 U/mL), and conversely, was prolonged 50% by the non-competitive ADA inhibitor deoxycoformycin (DCF; 100 µM). We concluded that while initial depolarization block is brief, adenosine A1R activation, in part, contributes to the persistent secondary phase of Leao's cortical spreading depression.
Collapse
Affiliation(s)
- Britta E Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
143
|
Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B, Andrew RD, Boutelle MG, Brennan KC, Carlson AP, Dahlem MA, Drenckhahn C, Dohmen C, Fabricius M, Farkas E, Feuerstein D, Graf R, Helbok R, Lauritzen M, Major S, Oliveira-Ferreira AI, Richter F, Rosenthal ES, Sakowitz OW, Sánchez-Porras R, Santos E, Schöll M, Strong AJ, Urbach A, Westover MB, Winkler MK, Witte OW, Woitzik J, Dreier JP. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. J Cereb Blood Flow Metab 2017; 37:1571-1594. [PMID: 27328690 PMCID: PMC5435288 DOI: 10.1177/0271678x16654495] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.
Collapse
Affiliation(s)
- Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,2 Mayfield Clinic, Cincinnati, OH, USA
| | - C William Shuttleworth
- 3 Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sergei A Kirov
- 4 Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Cenk Ayata
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandon Foreman
- 6 Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R David Andrew
- 7 Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Martyn G Boutelle
- 8 Department of Bioengineering, Imperial College London, London, United Kingdom
| | - K C Brennan
- 9 Department of Neurology, University of Utah, Salt Lake City, UT, USA.,10 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Carlson
- 11 Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Markus A Dahlem
- 12 Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | | | - Christian Dohmen
- 14 Department of Neurology, University of Cologne, Cologne, Germany
| | - Martin Fabricius
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Eszter Farkas
- 16 Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Delphine Feuerstein
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Raimund Helbok
- 18 Medical University of Innsbruck, Department of Neurology, Neurocritical Care Unit, Innsbruck, Austria
| | - Martin Lauritzen
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,19 Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Major
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Frank Richter
- 22 Institute of Physiology/Neurophysiology, Jena University Hospital, Jena, Germany
| | - Eric S Rosenthal
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- 23 Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany.,24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Renán Sánchez-Porras
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Edgar Santos
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schöll
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony J Strong
- 25 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Anja Urbach
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Brandon Westover
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maren Kl Winkler
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany
| | - Otto W Witte
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,27 Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Johannes Woitzik
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,28 Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Jens P Dreier
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
144
|
Menyhárt Á, Zölei-Szénási D, Puskás T, Makra P, Orsolya MT, Szepes BÉ, Tóth R, Ivánkovits-Kiss O, Obrenovitch TP, Bari F, Farkas E. Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci Rep 2017; 7:1154. [PMID: 28442781 PMCID: PMC5430878 DOI: 10.1038/s41598-017-01284-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Spreading depolarizations (SDs) occur spontaneously in the cerebral cortex of subarachnoid hemorrhage, stroke or traumatic brain injury patients. Accumulating evidence prove that SDs exacerbate focal ischemic injury by converting zones of the viable but non-functional ischemic penumbra to the core region beyond rescue. Yet the SD-related mechanisms to mediate neurodegeneration remain poorly understood. Here we show in the cerebral cortex of isoflurane-anesthetized, young and old laboratory rats, that SDs propagating under ischemic penumbra-like conditions decrease intra and- extracellular tissue pH transiently to levels, which have been recognized to cause tissue damage. Further, tissue pH after the passage of each spontaneous SD event remains acidic for over 10 minutes. Finally, the recovery from SD-related tissue acidosis is hampered further by age. We propose that accumulating acid load is an effective mechanism for SD to cause delayed cell death in the ischemic nervous tissue, particularly in the aged brain.
Collapse
Affiliation(s)
- Ákos Menyhárt
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Dániel Zölei-Szénási
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Tamás Puskás
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Péter Makra
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - M Tóth Orsolya
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Borbála É Szepes
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Réka Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Orsolya Ivánkovits-Kiss
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Tihomir P Obrenovitch
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Korányi fasor 9, Hungary.
| |
Collapse
|
145
|
Schain AJ, Melo-Carrillo A, Strassman AM, Burstein R. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. J Neurosci 2017; 37:2904-2915. [PMID: 28193695 PMCID: PMC5354333 DOI: 10.1523/jneurosci.3390-16.2017] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/03/2023] Open
Abstract
Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow.SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain.
Collapse
Affiliation(s)
- Aaron J Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
146
|
Bragin DE, Kameneva MV, Bragina OA, Thomson S, Statom GL, Lara DA, Yang Y, Nemoto EM. Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats. J Cereb Blood Flow Metab 2017; 37:762-775. [PMID: 28155574 PMCID: PMC5363490 DOI: 10.1177/0271678x16684153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.
Collapse
Affiliation(s)
- Denis E Bragin
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Marina V Kameneva
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,4 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olga A Bragina
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Susan Thomson
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Gloria L Statom
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Devon A Lara
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Yirong Yang
- 5 College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Edwin M Nemoto
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
147
|
van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK, Kamp MA. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2017; 41:917-930. [PMID: 28215029 DOI: 10.1007/s10143-017-0827-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Pathophysiological processes following subarachnoid hemorrhage (SAH) present survivors of the initial bleeding with a high risk of morbidity and mortality during the course of the disease. As angiographic vasospasm is strongly associated with delayed cerebral ischemia (DCI) and clinical outcome, clinical trials in the last few decades focused on prevention of these angiographic spasms. Despite all efforts, no new pharmacological agents have shown to improve patient outcome. As such, it has become clear that our understanding of the pathophysiology of SAH is incomplete and we need to reevaluate our concepts on the complex pathophysiological process following SAH. Angiographic vasospasm is probably important. However, a unifying theory for the pathophysiological changes following SAH has yet not been described. Some of these changes may be causally connected or present themselves as an epiphenomenon of an associated process. A causal connection between DCI and early brain injury (EBI) would mean that future therapies should address EBI more specifically. If the mechanisms following SAH display no causal pathophysiological connection but are rather evoked by the subarachnoid blood and its degradation production, multiple treatment strategies addressing the different pathophysiological mechanisms are required. The discrepancy between experimental and clinical SAH could be one reason for unsuccessful translational results.
Collapse
Affiliation(s)
- Jasper H van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Maxine Dibué-Adjei
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Toni Schneider
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931, Köln, Germany
| | - Tanja Restin
- Zurich Centre for Integrative Human Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Anesthesiology, Medical Faculty, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Medical Faculty, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Athanasios K Petridis
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
148
|
Abstract
PURPOSE OF REVIEW Spreading depression (SD) is a wave of simultaneous and near-complete depolarization of virtually all cells in brain tissue associated with a transient "depression" of all spontaneous or evoked electrical activity in the brain. SD is widely accepted as the pathophysiological event underlying migraine aura and may play a role in headache pathogenesis in secondary headache disorders such as ischemic stroke, subarachnoid or intracerebral hemorrhage, traumatic brain injury, and epilepsy. Here, we provide an overview of the pathogenic mechanisms and propose plausible hypotheses on the involvement of SD in primary and secondary headache disorders. RECENT FINDINGS SD can activate downstream trigeminovascular nociceptive pathways to explain the cephalgia in migraine, and possibly in secondary headache disorders as well. In healthy, well-nourished tissue (such as migraine), the intense transmembrane ionic shifts, the cell swelling, and the metabolic and hemodynamic responses associated with SD do not cause tissue injury; however, when SD occurs in metabolically compromised tissue (e.g., in ischemic stroke, intracranial hemorrhage, or traumatic brain injury), it can lead to irreversible depolarization, injury, and neuronal death. Recent non-invasive technologies to detect SDs in human brain injury may aid in the investigation of SD in headache disorders in which invasive recordings are not possible. SD explains migraine aura and progression of neurological deficits associated with other neurological disorders. Studying the nature of SD in headache disorders might provide pathophysiological insights for disease and lead to targeted therapies in the era of precision medicine.
Collapse
|
149
|
Unekawa M, Tomita Y, Masamoto K, Toriumi H, Osada T, Kanno I, Suzuki N. Dynamic diameter response of intraparenchymal penetrating arteries during cortical spreading depression and elimination of vasoreactivity to hypercapnia in anesthetized mice. J Cereb Blood Flow Metab 2017; 37:657-670. [PMID: 26935936 PMCID: PMC5381456 DOI: 10.1177/0271678x16636396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Cortical spreading depression (CSD) induces marked hyperemia with a transient decrease of regional cerebral blood flow (rCBF), followed by sustained oligemia. To further understand the microcirculatory mechanisms associated with CSD, we examined the temporal changes of diameter of intraparenchymal penetrating arteries during CSD. In urethane-anesthetized mice, the diameter of single penetrating arteries at three depths was measured using two-photon microscopy during passage of repeated CSD, with continuous recordings of direct current potential and rCBF. The first CSD elicited marked constriction superimposed on the upstrokes of profound dilation throughout each depth of the penetrating artery, and the vasoreaction temporally corresponded to the change of rCBF. Second or later CSD elicited marked dilation with little or no constriction phase throughout each depth, and the vasodilation also temporally corresponded to the increase of rCBF. Furthermore, the peak dilation showed good negative correlations with basal diameter and increase of rCBF. Vasodilation induced by 5% CO2 inhalation was significantly suppressed after CSD passage at any depth as well as hyperperfusion. These results may indicate that CSD-induced rCBF changes mainly reflect the diametric changes of the intraparenchymal arteries, despite the elimination of responsiveness to hypercapnia.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Haruki Toriumi
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
150
|
Sawant-Pokam PM, Suryavanshi P, Mendez JM, Dudek FE, Brennan KC. Mechanisms of Neuronal Silencing After Cortical Spreading Depression. Cereb Cortex 2017; 27:1311-1325. [PMID: 26733536 PMCID: PMC6317285 DOI: 10.1093/cercor/bhv328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cortical spreading depression (CSD) is associated with migraine, stroke, and traumatic brain injury, but its mechanisms remain poorly understood. One of the major features of CSD is an hour-long silencing of neuronal activity. Though this silencing has clear ramifications for CSD-associated disease, it has not been fully explained. We used in vivo whole-cell recordings to examine the effects of CSD on layer 2/3 pyramidal neurons in mouse somatosensory cortex and used in vitro recordings to examine their mechanism. We found that CSD caused a reduction in spontaneous synaptic activity and action potential (AP) firing that lasted over an hour. Both pre- and postsynaptic mechanisms contributed to this silencing. Reductions in frequency of postsynaptic potentials were due to a reduction in presynaptic transmitter release probability as well as reduced AP activity. Decreases in postsynaptic potential amplitude were due to an inhibitory shift in the ratio of excitatory and inhibitory postsynaptic currents. This inhibitory shift in turn contributed to the reduced frequency of APs. Thus, distinct but complementary mechanisms generate the long neuronal silence that follows CSD. These cellular changes could contribute to wider network dysfunction in CSD-associated disease, while the pre- and postsynaptic mechanisms offer separate targets for therapy.
Collapse
Affiliation(s)
| | | | | | - F. E. Dudek
- Department of Neurosurgery
,
University of Utah School of Medicine
,
Salt Lake City, UT
,
USA
| | | |
Collapse
|