101
|
Zhang T, Zhang L, Wu X, Xu H, Hao P, Huang W, Zhang Y, Zan X. Hexahistidine-Metal Assemblies: A Facile and Effective Codelivery System of Subunit Vaccines for Potent Humoral and Cellular Immune Responses. Mol Pharm 2020; 17:2487-2498. [PMID: 32469222 DOI: 10.1021/acs.molpharmaceut.0c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fully effective vaccines must induce both potent humoral and cellular immunities. Nanoparticles coencapsulating antigens and adjuvants have shown promising advantages as subunit vaccines in many aspects. However, the low loading efficiency and complicated synthesis process of these nanomaterials need to be improved. Here, we utilized hexahistidine (His6)-metal assembly (HmA) particles as carriers to codeliver ovalbumin peptides and cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs). We found that antigen/adjuvant-carrying HmA can efficiently enter into antigen-presenting cells and help the antigens escape from lysosomes to induce the maturation of these cells in vitro, characterized by increasing expression levels of costimulatory molecules and cytokines. More importantly, the vaccines with high biocompatibility can elicit strong humoral and cellular immunities by improving secretion of specific antibodies and cytokines, enhancing activation of DCs and T cells in vivo. Our results suggest that HmA provides a new approach for subunit vaccines by codelivery of antigens and adjuvants.
Collapse
Affiliation(s)
- Tinghong Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Long Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, P. R. China.,Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325001, P. R. China
| |
Collapse
|
102
|
Koo C, Hong H, Im PW, Kim H, Lee C, Jin X, Yan B, Lee W, Im HJ, Paek SH, Piao Y. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe 3O 4 core-shell nanoparticles. NANO CONVERGENCE 2020; 7:20. [PMID: 32514813 PMCID: PMC7280462 DOI: 10.1186/s40580-020-00229-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
Among the number of hyperthermia materials, magnetic nanoparticles have received much attention. In this work, we studied the heating characteristics of uniform Fe@Fe3O4 core-shell nanoparticle under near-infrared laser irradiation and external AC magnetic field applying. The Fe@Fe3O4 core-shell nanoparticles were prepared by thermal decomposition of iron pentacarbonyl and followed by controlled oxidation. The prepared uniform particles were further coated with dimercaptosuccinic acid to make them well dispersed in water. Near-infrared derived photothermal study of solutions containing a different concentration of the core-shell nanoparticles was made by using 808 nm laser Source. Additionally, magnetic hyperthermia ability of the Fe@Fe3O4 nanoparticle at 150 kHz and various oersted (140-180 Oe) condition was systemically characterized. The Fe@Fe3O4 nanoparticles which exhibited effective photo and magnetic hyperthermia are expected to be used in biomedical application.
Collapse
Affiliation(s)
- Changhyuk Koo
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Hwichan Hong
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Pyung Won Im
- Department of Neurosurgery, Clinical Research Institute, Seoul National University Hospital, Daehak-Ro 101, Seoul, 110-744, South Korea
- Cancer Research Institute Ischemia/Hypoxia Disease Institute Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hoonsub Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Chaedong Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Xuanzhen Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Bingyi Yan
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Wooseung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Hyung-Jun Im
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Clinical Research Institute, Seoul National University Hospital, Daehak-Ro 101, Seoul, 110-744, South Korea.
- Cancer Research Institute Ischemia/Hypoxia Disease Institute Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea.
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16229, South Korea.
| |
Collapse
|
103
|
Hu Y, Tang Y, Zhang XJ, Yang XT, Tang YY, Li S, Hu L, Chen P, Zhu D. Dendritic cells reprogrammed by CEA messenger RNA loaded multi-functional silica nanospheres for imaging-guided cancer immunotherapy. Biomater Sci 2020; 8:3026-3031. [PMID: 32347238 DOI: 10.1039/d0bm00395f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application and understanding of dendritic cell (DC) based immune cancer therapy are largely hindered by insufficient or improper presentation of antigens and the inability to track the homing of reprogrammed DCs to draining lymph nodes in real-time. To tackle these challenges, multi-functional and hierarchically structured silica nanospheres are rationally designed and fabricated, which encapsulate quantum dots to permit near infrared deep tissue imaging and are loaded with carcinoembryonic antigen messenger RNA (CEAmRNA) to enable stable and abundant antigen expression in DCs. After being injected into animals and inducing an antigen-specific immune response, the homing process of reprogrammed labelled DCs from peripheral tissues to draining lymph nodes can be simultaneously and precisely tracked. Significant inhibition of tumor growth is achieved via strong antigen-specific immune responses including induced DC maturation, enhanced T cell proliferation and cytotoxic T lymphocyte (CTL)-mediated responses. Both in vitro and in vivo experiments demonstrate the high effectiveness of this new strategy of imaging-guided cancer immunotherapy by using reprogrammed DCs as immunotherapeutic and tracking agents.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Chen S, Zhang Y, Qing J, Han Y, McClements DJ, Gao Y. Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
105
|
The Effect of Oligomerization on A Solid-Binding Peptide Binding to Silica-Based Materials. NANOMATERIALS 2020; 10:nano10061070. [PMID: 32486317 PMCID: PMC7353425 DOI: 10.3390/nano10061070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
The bifunctional linker-protein G (LPG) fusion protein comprises a peptide (linker) sequence and a truncated form of Streptococcus strain G148 protein G (protein G). The linker represents a multimeric solid-binding peptide (SBP) comprising 4 × 21-amino acid sequence repeats that display high binding affinity towards silica-based materials. In this study, several truncated derivatives were investigated to determine the effect of the SBP oligomerization on the silica binding function of LPG (for the sake of clarity, LPG will be referred from here on as 4 × LPG). Various biophysical characterization techniques were used to quantify and compare the truncated derivatives against 4 × LPG and protein G without linker (PG). The derivative containing two sequence repeats (2 × LPG) showed minimal binding to silica, while the truncated derivative with only a single sequence (1 × LPG) displayed no binding. The derivative containing three sequence repeats (3 × LPG) was able to bind to silica with a binding affinity of KD = 53.23 ± 4.5 nM, which is 1.5 times lower than that obtained for 4 × LPG under similar experimental conditions. Circular dichroism (CD) spectroscopy and fluorescence spectroscopy studies indicated that the SBP degree of oligomerization has only a small effect on the secondary structure (the linker unravels the beginning of the protein G sequence) and chemical stability of the parent protein G. However, based on quartz crystal microbalance with dissipation monitoring (QCM-D), oligomerization is an important parameter for a strong and stable binding to silica. The replacement of three sequence repeats by a (GGGGS)12 glycine-rich spacer indicated that the overall length rather than the SBP oligomerization mediated the effective binding to silica.
Collapse
|
106
|
Liu C, Zhang T, Chen L, Chen Y. The choice of anti-tumor strategies based on micromolecules or drug loading function of biomaterials. Cancer Lett 2020; 487:45-52. [PMID: 32474154 DOI: 10.1016/j.canlet.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023]
Abstract
With advances in modern medicine, diverse tumor therapies have been developed. However, because of a lack of effective methods, the delivery of drugs or micromolecules in the human body has many limitations. Biomaterials are natural or synthetic functional materials that are prone to contact or interact with living systems. Therefore, the application of biomaterials provides innovative anti-tumor strategies, especially in tumor targeting, chemotherapy sensitization, tumor immunotherapy. The combination of biomaterials and drugs provides a promising strategy to overcome the biological barriers of drug delivery. Nanomaterials can target specific tumor sites to enhance the efficiency of tumor therapies and decrease the toxicity of drug through passive targeting, active targeting and direct targeting. Additionally, biomaterials can be used to enhance the sensitivity of tumor cells to chemotherapy drugs. Furthermore, modifiable biomaterials can induce effective anti-tumor immune response. Currently, the developmental trend of biomaterial for drug delivery is motivated by the combination and diversification of different therapies. With interdisciplinary development, a variety of anti-tumor strategies will emerge in an endless stream to bring great hope for tumor therapy. In this review, we will discuss the anti-tumor strategies based on nanoparticles and injectable scaffolds.
Collapse
Affiliation(s)
- Chengyi Liu
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Urology, Lu'an Affiliated Hospital of Anhui Medical University, 237000, Anhui, China
| | - Tianke Zhang
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Anorectal Surgery, Tianjin Union Medical Center, 300121, Tianjin, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| | - Yue Chen
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
107
|
Luminescent anticancer Ru(II)-arenebipyridine and phenanthroline complexes: Synthesis, characterization, DFT studies, biological interactions and cellular imaging application. J Inorg Biochem 2020; 208:111099. [PMID: 32460056 DOI: 10.1016/j.jinorgbio.2020.111099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
A series of ruthenium(II)-arene complexes of several bipyridine and phenanthroline derivatives have been synthesized by employing a green and efficient protocol involving water as a solvent under sonication. The structures of all the complexes were elucidated by the spectroscopic analysis. The geometry of the chlorido and PTA (1,3,5-Triaza-7-phosphaadamantane) complexes were further confirmed by DFT and single crystal XRD. The stability study in various solvents, specifically in the intracellular one was conducted. Most of the compounds exhibited significant potency and selectivity against MCF7 and HeLa cell lines with respect to normal HEK-293 cells compared to cisplatin and RAPTA-C (Ruthenium(II)-arene PTA complex). Complex [(η6-hexamethylbenzene)RuCl(κ2-N,N-4,4'-di-n-nonyl-2,2'-bpy)]Cl (3e) presented best anticancer profiles against all the human cancer cells. Interestingly, few complexes turned up to be highly fluorescent depicted by the quantum yield values. Remarkably, [(η6-p-cymene)RuCl(κ2-N,N-bpy)]Cl (3i) was identified as most significant anticancer theranostic agent interms of potency, selectivity and fluorescence quantum yield. This complex also represented itself as significant cellular imaging agent in live U-87 MG cells which was monitored by confocal microscope. Absorption and emission spectral studies of bypyridine and phenanthroline complex series revealed that the complexes interacted with calf thymus DNA through groove binding as well as intercalative mode. In addition to this, strong binding efficacy of these scaffolds wih BSA (Bovin Serum Albumin) also enhanced their transportation property inside the cells.
Collapse
|
108
|
Kang Y, Yu X, Fan X, Zhao S, Tu C, Yan Z, Wang R, Li W, Qiu H. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS NANO 2020; 14:4336-4351. [PMID: 32275394 DOI: 10.1021/acsnano.9b09858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abundant species of functional nanomaterials have attracted tremendous interests as components to construct multifunctional composites for cancer theranostics. However, their distinct chemical properties substantially require a specific strategy to integrate them in harmony. Here, we report the preparation of a distinctive multifunctional composite by encapsulating small-sized semiconducting copper bismuth sulfide (CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles, followed by loading an anticancer drug, doxorubicin (DOX). Such composites can be used for tetramodal imaging, including traditional computed tomography and magnetic resonance imaging and, recently, for photoacoustic imaging and fluorescence imaging. With a pH-responsive release of the encapsulated components, synergistic radio-chemotherapy with a high (87.6%) tumor inhibition efficiency is achieved at moderate doses of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This promising strategy highlights the extending capacity of zeolitic imidazolate frameworks to encapsulate multiple distinct components for enhanced cancer imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Xinyang Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengzhe Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlai Tu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Yan
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
109
|
Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol 2020; 69:307-324. [PMID: 32259643 DOI: 10.1016/j.semcancer.2020.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The versatility and nanoscale size have helped nanoparticles (NPs) improve the efficacy of conventional cancer immunotherapy and opened up exciting approaches to combat cancer. This review first outlines the tumor immune evasion and the defensive tumor microenvironment (TME) that hinders the activity of host immune system against tumor. Then, a detailed description on how the NP based strategies have helped improve the efficacy of conventional cancer vaccines and overcome the obstacles led by TME. Sustained and controlled drug delivery, enhanced cross presentation by immune cells, co-encapsulation of adjuvants, inhibition of immune checkpoints and intrinsic adjuvant like properties have aided NPs to improve the therapeutic efficacy of cancer vaccines. Also, NPs have been efficient modulators of TME. In this context, NPs facilitate better penetration of the chemotherapeutic drug by dissolution of the inhibitory meshwork formed by tumor associated cells, blood vessels, soluble mediators and extra cellular matrix in TME. NPs achieve this by suppression, modulation, or reprogramming of the immune cells and other mediators localised in TME. This review further summarizes the applications of NPs used to enhance the efficacy of cancer vaccines and modulate the TME to improve cancer immunotherapy. Finally, the hurdles faced in commercialization and translation to clinic have been discussed and intriguingly, NPs owe great potential to emerge as clinical formulations for cancer immunotherapy in near future.
Collapse
|
110
|
Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901255. [PMID: 31206841 PMCID: PMC6918015 DOI: 10.1002/adma.201901255] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/07/2019] [Indexed: 04/14/2023]
Abstract
While traditional approaches for disease management in the era of modern medicine have saved countless lives and enhanced patient well-being, it is clear that there is significant room to improve upon the current status quo. For infectious diseases, the steady rise of antibiotic resistance has resulted in super pathogens that do not respond to most approved drugs. In the field of cancer treatment, the idea of a cure-all silver bullet has long been abandoned. As a result of the challenges facing current treatment and prevention paradigms in the clinic, there is an increasing push for personalized therapeutics, where plans for medical care are established on a patient-by-patient basis. Along these lines, vaccines, both against bacteria and tumors, are a clinical modality that could benefit significantly from personalization. Effective vaccination strategies could help to address many challenging disease conditions, but current vaccines are limited by factors such as a lack of potency and antigenic breadth. Recently, researchers have turned toward the use of biomimetic nanotechnology as a means of addressing these hurdles. Recent progress in the development of biomimetic nanovaccines for antibacterial and anticancer applications is discussed, with an emphasis on their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
111
|
Cancer Immunoimaging with Smart Nanoparticles. Trends Biotechnol 2020; 38:388-403. [DOI: 10.1016/j.tibtech.2019.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022]
|
112
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
113
|
Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020; 83:106446. [PMID: 32244048 DOI: 10.1016/j.intimp.2020.106446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has shown impressive outcomes, including the development of the first FDA-approved anti-cancer vaccine. However, the clinical application of DC-based cancer immunotherapy is associated with various challenges. Promising novel tools for the administration of cancer vaccines has emerged from recent developments in nanoscale biomaterials. One current strategy to enhance targeted drug delivery, while minimizing drug-related toxicities, is the use of nanoparticles (NPs). These can be utilized for antigen delivery into DCs, which have been shown to provide potent T cell-stimulating effects. Therefore, NP delivery represents one promising approach for creating an effective and stable immune response without toxic side effects. The current review surveys cancer immunotherapy with particular attention toward NP-based delivery methods that target DCs.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ali Masjedi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Amir Ajjoolabady
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
114
|
Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. NANOSCALE HORIZONS 2020; 5:628-653. [PMID: 32226975 DOI: 10.1039/c9nh00514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunoimaging is a rapidly growing field stoked in large part by the intriguing triumphs of immunotherapy. On the heels of immunotherapy's successes, there exists a growing need to evaluate tumor response to therapy particularly immunotherapy, stratify patients into responders vs. non-responders, identify inflammation, and better understand the fundamental roles of immune system components to improve both immunoimaging and immunotherapy. Innovative nanomaterials have begun to provide novel opportunities for immunoimaging, in part due to their sensitivity, modularity, capacity for many potentially varied ligands (high avidity), and potential for multifunctionality/multimodality imaging. This review strives to comprehensively summarize the integration of nanotechnology and immunoimaging, and the field's potential for clinical applications.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA
| | - Taeho Kim
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 488824, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Chemistry, Michigan State University, East Lansing, MI 488824, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Radiology, Stanford University, Stanford, CA 94306, USA
| |
Collapse
|
115
|
Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dendritic cell-targeted theranostic nanomedicine: advanced cancer nanotechnology for diagnosis and therapy. Nanomedicine (Lond) 2020; 15:947-949. [PMID: 32216573 DOI: 10.2217/nnm-2020-0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
116
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
117
|
Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. NANOSCALE 2020; 12:5746-5763. [PMID: 32124894 DOI: 10.1039/c9nr08958f] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vaccines harness the inherent properties of the immune system to prevent diseases or treat existing ones. Continuous efforts have been devoted to both gaining a mechanistic understanding of how the immune system operates and designing vaccines with high efficacies and effectiveness. Advancements in nanotechnology in recent years have generated unique opportunities to meet the daunting challenges associated with immunology and vaccine development. Firstly, nanoparticle formulated systems provide ideal model systems for studying the operation of the immune system, making it possible to systematically identify key factors and understand their roles in specific immune responses. Also, the versatile compositions/architectures of nanoparticle systems enable new strategies/novel platforms for developing vaccines with high efficacies and effectiveness. In this review, we discuss the advantages of nanoparticles and the challenges faced during vaccine development, through the framework of the immunological mechanisms of vaccination, with the aim of bridging the gap between immunology and materials science, which are both involved in vaccine design. The knowledge obtained provides general guidelines for future vaccine development.
Collapse
Affiliation(s)
- Pingsai Lung
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | |
Collapse
|
118
|
Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, Xiong S, Zhao Y. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020; 126:110046. [PMID: 32145586 DOI: 10.1016/j.biopha.2020.110046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer vaccine is widely considered as a powerful tool in immunotherapy. In particular, the effective antigen processing and presentation natures of dendritic cell (DC) have made it a promising target for the development of therapeutic vaccine for cancer treatment. Here in our study, a versatile cancer cell membrane (CCM) coated calcium carbonate (CC) nanoparticles (MC) that capable of generating in situ tumor-associated antigens (TAAs) for DC vaccination is developed. Low-dose doxorubicin hydrochloride (Dox) could be encapsulated in the CC core of MC to trigger immunogenic cell death (ICD) while chlorins e6 (Ce6), a commonly adopted photosensitizer, was loaded in the CCM of MC for effective photodynamic therapy (PDT) through the generation of reactive oxygen species (ROS) to finally construct the vaccine (MC/Dox/Ce6). Most importantly, our in-depth study revealed the treatment of MC/Dox/Ce6 was able to elicit TAAs population and DC recruitment, triggering the following immune response cascade. In particular, the recruited DC cells could be stimulated in situ for effective vaccinations. Both in vitro and in vivo experiments suggested the capability of this all-in-one DDS to enhance DCs maturation to finally result in effective inhibition of both primary and distant growth of breast cancer upon single administration of low dose Dox and Ce6.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Jinfang Song
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Bei Wang
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Haiying Hua
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Huanhuan Zhu
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Xiaoqiang Guo
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Shuming Xiong
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China
| | - Yiqing Zhao
- Department of Pharmacy, The Affiliated Hospital of Jiangnan University (Original Area of Wuxi Third People's Hospital), China.
| |
Collapse
|
119
|
Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, Niu G, Su T, Zhu G, Lu G, Zhang L, Chen X. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. SCIENCE ADVANCES 2020; 6:eaaw6071. [PMID: 32206706 PMCID: PMC7080439 DOI: 10.1126/sciadv.aaw6071] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/19/2019] [Indexed: 05/09/2023]
Abstract
Neoantigen vaccines have been enthusiastically pursued for personalized cancer immunotherapy while vast majority of neoantigens have no or low immunogenicity. Here, a bi-adjuvant neoantigen nanovaccine (banNV) that codelivered a peptide neoantigen (Adpgk) with two adjuvants [Toll-like receptor (TLR) 7/8 agonist R848 and TLR9 agonist CpG] was developed for potent cancer immunotherapy. Specifically, banNVs were prepared by a nanotemplated synthesis of concatemer CpG, nanocondensation with cationic polypeptides, and then physical loading with hydrophobic R848 and Adpgk. The immunogenicity of the neoantigen was profoundly potentiated by efficient codelivery of neoantigen and dual synergistic adjuvants, which is accompanied by reduced acute systemic toxicity. BanNVs sensitized immune checkpoint programmed death receptor 1 (PD-1) on T cells, therefore, a combination of banNVs with aPD-1 conspicuously induced the therapy response and led to complete regression of 70% neoantigen-specific tumors without recurrence. We conclude that banNVs are promising to optimize personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Brian Liang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
| | - Ting Su
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy; Massey Cancer Center; Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy; Massey Cancer Center; Virginia Commonwealth University, Richmond, VA, 23219, USA
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892, USA
- Corresponding author. (X.C.); (L.Z.); (G.L.); (G.Z.)
| |
Collapse
|
120
|
Mukherjee S, Liang L, Veiseh O. Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12020147. [PMID: 32053995 PMCID: PMC7076668 DOI: 10.3390/pharmaceutics12020147] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic nanomaterials belong to a class of highly-functionalizable tools for cancer therapy owing to their intrinsic magnetic properties and multifunctional design that provides a multimodal theranostics platform for cancer diagnosis, monitoring, and therapy. In this review article, we have provided an overview of the various applications of magnetic nanomaterials and recent advances in the development of these nanomaterials as cancer therapeutics. Moreover, the cancer targeting, potential toxicity, and degradability of these nanomaterials has been briefly addressed. Finally, the challenges for clinical translation and the future scope of magnetic nanoparticles in cancer therapy are discussed.
Collapse
|
121
|
Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Am J Cancer Res 2020; 10:3099-3117. [PMID: 32194857 PMCID: PMC7053194 DOI: 10.7150/thno.42998] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent advances in the field of immunotherapy have profoundly opened up the potential for improved cancer therapy and reduced side effects. However, the tumor microenvironment (TME) is highly immunosuppressive, therefore, clinical outcomes of currently available cancer immunotherapy are still poor. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. In this review, the immunoregulatory cell types (cells relating to the regulation of immune responses) inside the TME in terms of stimulatory and suppressive roles are described, and the technologies used to identify and quantify these cells are provided. In addition, recent examples of nanomaterial-based cancer immunotherapy are discussed, with particular emphasis on those designed to overcome barriers caused by the complexity and diversity of TME.
Collapse
|
122
|
Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, Sebastian M, Mendez-Gomez H, Padala S, Grubb M, Fillingim M, Monsalve A, Sayour EJ, Dobson J, Mitchell DA. Dendritic Cell-Activating Magnetic Nanoparticles Enable Early Prediction of Antitumor Response with Magnetic Resonance Imaging. ACS NANO 2019; 13:13884-13898. [PMID: 31730332 PMCID: PMC7182054 DOI: 10.1021/acsnano.9b05037] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted "responders" identified 2 days after vaccination had significantly smaller tumors 2-5 weeks after treatment and lived 73% longer than MRI-predicted "nonresponders". These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.
Collapse
Affiliation(s)
- Adam J. Grippin
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, 1275 Center Dr, University of Florida, Gainesville, FL, USA 32611-7011
| | - Brandon Wummer
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Tyler Wildes
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Kyle Dyson
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Vrunda Trivedi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Changlin Yang
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Mathew Sebastian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Hector Mendez-Gomez
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Suraj Padala
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Mackenzie Grubb
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, 1275 Center Dr, University of Florida, Gainesville, FL, USA 32611-7011
| | - Matthew Fillingim
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Adam Monsalve
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, 1275 Center Dr, University of Florida, Gainesville, FL, USA 32611-7011
| | - Elias J. Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, 1275 Center Dr, University of Florida, Gainesville, FL, USA 32611-7011
- Department of Materials Science & Engineering, 100 Rhines Hall, University of Florida, Gainesville, FL, USA 32610
| | - Duane A. Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, 1149 Newell Drive PO Box 10026, University of Florida, Gainesville, FL, USA 32610
| |
Collapse
|
123
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|
124
|
Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
125
|
Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1590. [PMID: 31696664 DOI: 10.1002/wnan.1590] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle-based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. This review thus focuses on nanoparticle-based platforms (especially naturally derived nanoparticles and synthetic nanoparticles) utilized in recent advances; summarizes delivery systems that incorporate various immune-modulating agents, including peptides and nucleic acids, immune checkpoint inhibitors, and other small immunostimulating agents; and introduces combinational cancer immunotherapy with nanoparticles, especially nanoparticle-based photo-immunotherapy and nanoparticle-based chemo-immunotherapy. Undoubtedly, the recent studies introduced in this review prove that nanoparticle-incorporated cancer immunotherapy is a highly promising treatment modality for patients with cancer. Nonetheless further research is needed to solve safety concerns and improve efficacy of nanoplatform-based cancer immunotherapy for future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Hai Zhao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
126
|
Wang XF, Ren J, He HQ, Liang L, Xie X, Li ZX, Zhao JG, Yu JM. Self-assembled nanoparticles of reduction-sensitive poly (lactic-co-glycolic acid)-conjugated chondroitin sulfate A for doxorubicin delivery: preparation, characterization and evaluation. Pharm Dev Technol 2019; 24:794-802. [PMID: 30907676 DOI: 10.1080/10837450.2019.1599914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, reduction-sensitive self-assembled polymer nanoparticles based on poly (lactic-co-glycolic acid) (PLGA) and chondroitin sulfate A (CSA) were developed and characterized. PLGA was conjugated with CSA via a disulfide linkage (PLGA-ss-CSA). The critical micelle concentration (CMC) of PLGA-ss-CSA conjugate is 3.5 µg/mL. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the nanoparticles (PLGA-ss-CSA/DOX) with high loading efficiency of 15.1%. The cumulative release of DOX from reduction-sensitive nanoparticles was only 34.8% over 96 h in phosphate buffered saline (PBS, pH 7.4). However, in the presence of 20 mM glutathione-containing PBS environment, DOX release was notably accelerated and almost complete from the reduction-sensitive nanoparticles up to 96 h. Moreover, efficient intracellular DOX release of PLGA-ss-CSA/DOX nanoparticles was confirmed by CLSM assay in A549 cells. In vitro cytotoxicity study showed that the half inhibitory concentrations of PLGA-ss-CSA/DOX nanoparticles and free DOX against A549 cells were 1.141 and 1.825 µg/mL, respectively. Therefore, PLGA-ss-CSA/DOX nanoparticles enhanced the cytotoxicity of DOX in vitro. These results suggested that PLGA-ss-CSA nanoparticles could be a promising carrier for drug delivery.
Collapse
Affiliation(s)
- Xu-Feng Wang
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| | - Jin Ren
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| | - Hai-Qing He
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| | - Liang Liang
- b Analytical and Testing Center , Jiujiang University , Jiujiang , China
| | - Xin Xie
- c College of Basic Medical Science , Jiujiang University , Jiujiang , China
| | - Zi-Xin Li
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| | - Jian-Guo Zhao
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| | - Jing-Mou Yu
- a School of Pharmacy and Life Sciences , Jiujiang University , Jiujiang , China
| |
Collapse
|
127
|
Corroboration and efficacy of Magneto-Fluorescent (NiZnFe/CdS) Nanostructures Prepared using Differently Processed Core. Sci Rep 2019; 9:15138. [PMID: 31641177 PMCID: PMC6805930 DOI: 10.1038/s41598-019-51631-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/04/2019] [Indexed: 11/11/2022] Open
Abstract
The selected and controlled preparation of core@shell nanostructures, which unite the multiple functions of ferromagnetic Ni-Zn ferrite core and CdS shell in a single material with tuneable fluorescence and magnetic properties, have been proposed by the seed mediated aqueous growth process. The shell particle thickness and core of nanostructures were precisely tuned. Current work exhibits the comparative study of core@shell multifunctional nanostructures where core being annealed at two different temperatures. The core@shell nanostructure formation was confirmed by complementary structural, elemental, optical, magnetic and IR measurements. Optical and magnetic characterizations were performed to study elaborative effects of different structural combinations of core@shell nanostructures to achieve best configuration with high-luminescence and magnetic outcomes. The interface of magnetic/nonmagnetic NiZnFe2O4/CdS nanostructures was inspected. Unexpectedly, in some of the core@shell nanostructures presence of substantial exchange-bias was observed in spite of the non-magnetic nature of CdS QDs which is clearly an “optically-active” and “magnetically-inactive” material. Presence of “exchange-bias” was confirmed by the change in “magnetic-anisotropy” as well as shift in susceptibility derivative. Finally, successful formulation of stable and efficient core@shell nanostructures achieved, which shows no exchange-bias and shift. Current findings suggest that these magneto-fluorescent nanostructures can be used in spintronics; and drug delivery-diagnosis-imaging applications in nanomedicine field.
Collapse
|
128
|
Saeed M, Gao J, Shi Y, Lammers T, Yu H. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Am J Cancer Res 2019; 9:7981-8000. [PMID: 31754376 PMCID: PMC6857062 DOI: 10.7150/thno.37568] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is rapidly maturing towards extensive clinical use. However, it does not work well in large patient populations because of an immunosuppressed microenvironment and limited reinvigoration of antitumor immunity. The tumor microenvironment is a complex milieu in which the principles of physiology and anatomy are defied and which is considered an immune-privileged site promoting T cell exhaustion. Tremendous research interest exists in developing nanoparticle-based approaches to modulate antitumor immune responses. The increasing use of immunotherapies in the clinic requires robust programming of immune cells to boost antitumor immunity. This review summarizes recent advances in the engineering of nanoparticles for improved anticancer immunotherapy. It discusses emerging nanoparticle-based approaches for the modulation of tumor cells and immune cells, such as dendritic cells, T cells and tumor-associated macrophages, with the intention to overcome challenges currently faced in the clinic. Furthermore, this review describes potentially curative combination therapeutic approaches to provoke effective tumor antigen-specific immune responses. We foresee a future in which improvement in patient's surveillance will become a mainstream practice.
Collapse
|
129
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
130
|
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. NANOSCALE 2019; 11:17157-17178. [PMID: 31531445 PMCID: PMC6778734 DOI: 10.1039/c9nr05371a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy is emerging as a promising treatment modality that suppresses and eliminates tumors by re-activating and maintaining the tumor-immune cycle, and further enhancing the body's anti-tumor immune response. Despite the impressive therapeutic potential of immunotherapy approaches such as immune checkpoint inhibitors and tumor vaccines in pre-clinical and clinical applications, the effective response is limited by insufficient accumulation in tumor tissues and severe side-effects. Recent years have witnessed the rise of nanotechnology as a solution to improve these technical weaknesses due to its inherent biophysical properties and multifunctional modifying potential. In this review, we summarized and discussed the current status of nanoparticle-enhanced cancer immunotherapy strategies, including intensified delivery of tumor vaccines and immune adjuvants, immune checkpoint inhibitor vehicles, targeting capacity to tumor-draining lymph nodes and immune cells, triggered releasing and regulating specific tumor microenvironments, and adoptive cell therapy enhancement effects.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ciceron Ayala-Orozco
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Pradipta Ranjan Rauta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
131
|
Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, Madankumar A, Arunachalam P, Maiyalagan T, Kim HS. A review on ZnO nanostructured materials: energy, environmental and biological applications. NANOTECHNOLOGY 2019; 30:392001. [PMID: 31158832 DOI: 10.1088/1361-6528/ab268a] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Zinc oxide (ZnO) is an adaptable material that has distinctive properties, such as high-sensitivity, large specific area, non-toxicity, good compatibility and a high isoelectric point, which favours it to be considered with a few exceptions. It is the most desirable group of nanostructure as far as both structure and properties. The unique and tuneable properties of nanostructured ZnO shows excellent stability in chemically as well as thermally stable n-type semiconducting material with wide applications such as in luminescent material, supercapacitors, battery, solar cells, photocatalysis, biosensors, biomedical and biological applications in the form of bulk crystal, thin film and pellets. The nanosized materials exhibit higher dissolution rates as well as higher solubility when compared to the bulk materials. This review significantly focused on the current improvement in ZnO-based nanomaterials/composites/doped materials for the application in the field of energy storage and conversion devices and biological applications. Special deliberation has been paid on supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, biomedical and biological applications. Finally, the benefits of ZnO-based materials for the utilizations in the field of energy and biological sciences are moreover consistently analysed.
Collapse
Affiliation(s)
- J Theerthagiri
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600119, India
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Sharma P, Jang NY, Lee JW, Park BC, Kim YK, Cho NH. Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy. Pharmaceutics 2019; 11:E493. [PMID: 31561470 PMCID: PMC6835776 DOI: 10.3390/pharmaceutics11100493] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Na-Yoon Jang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jae-Won Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Bum Chul Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
- Research Institute of Engineering and Technology, Korea University, Seoul 02481, Korea.
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
- Research Institute of Engineering and Technology, Korea University, Seoul 02481, Korea.
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul 03080, Korea.
| |
Collapse
|
133
|
Ou W, Byeon JH, Soe ZC, Kim BK, Thapa RK, Gupta B, Poudel BK, Ku SK, Yong CS, Kim JO. Tailored Black Phosphorus for Erythrocyte Membrane Nanocloaking with Interleukin-1 α siRNA and Paclitaxel for Targeted, Durable, and Mild Combination Cancer Therapy. Am J Cancer Res 2019; 9:6780-6796. [PMID: 31660068 PMCID: PMC6815959 DOI: 10.7150/thno.37123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several therapeutic nanosystems have been engineered to remedy the shortcomings of cancer monotherapies, including immunotherapy (stimulating the host immune system to eradicate cancer), to improve therapeutic efficacy with minimizing off-target effects and tumor-induced immunosuppression. Light-activated components in nanosystems confer additional phototherapeutic effects as combinatorial modalities; however, systemic and thermal toxicities with unfavorable accumulation and excretion of nanoystem components now hamper their practical applications. Thus, there remains a need for optimal multifunctional nanosystems to enhance targeted, durable, and mild combination therapies for efficient cancer treatment without notable side effects. Methods: A nanosystem constructed with a base core (poly-L-histidine [H]-grafted black phosphorus [BP]) and a shell (erythrocyte membrane [EM]) is developed to offer a mild photoresponsive (near-infrared) activity with erythrocyte mimicry. In-flight electrostatic tailoring to extract uniform BP nanoparticles maintains a hydrodynamic size of <200 nm (enabling enhanced permeability and retention) after EM cloaking and enhances their biocompatibility. Results: Ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells), interleukin-1α silencing small interfering RNA (ILsi, restricting regulatory T cell trafficking), and paclitaxel (X, inducing durable chemotherapeutics) are incorporated within the base core@shell constructs to create BP-H-ILsi-X@EM-YSA architectures, which provide a more intelligent nanosystem for combination cancer therapies. Conclusion: The in-flight tailoring of BP particles provides a promising base core for fabricating <200 nm EM-mimicking multifunctional nanosystems, which could be beneficial for constructing smarter nanoarchitectures to use in combination cancer therapies.
Collapse
|
134
|
Luo L, Iqbal MZ, Liu C, Xing J, Akakuru OU, Fang Q, Li Z, Dai Y, Li A, Guan Y, Wu A. Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials 2019; 223:119464. [PMID: 31525691 DOI: 10.1016/j.biomaterials.2019.119464] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
Malignant melanoma, one of the most aggressive types of cancer easily metastasizes, making it extremely difficult to treat and unresponsive to current therapies. Recent breakthroughs in nanomaterials-based cancer immunotherapy have provided potential specific strategy for tumor and metastasis inhibition. With the development of nanotechnology, inorganic nanomaterials have been increasingly studied for their potential cancer therapeutic and molecular imaging functions. However, only iron-based nanomaterials have been approved by the Food and Drug Administration (FDA) in inorganic nanomedicines. For promising clinical application, a new type of nanocomposite is engineered by combining ultra-small iron oxide nanoparticles (Fe3O4 NPs) and ovalbumin (OVA), denoted as Fe3O4-OVA nanocomposites in this study. Interestingly, this is the first time that Fe3O4 NPs are found as nano-immunopotentiators helping nanocomposites efficiently stimulate dendritic cell-based immunotherapy and potentially-activate macrophages. These nanocomposites efficiently stimulate the maturation level of bone marrow derived dendritic cell (BMDCs) and corresponding activation of T cells and also potentially-activate macrophages. With the help of the Fe3O4 nano-immunopotentiators (Fe3O4 NPs), this therapeutic and prophylactic Fe3O4-OVA vaccine can not only efficiently inhibit the subcutaneous and metastatic B16-OVA tumor growth but also successfully prevent the formation of subcutaneous and metastatic tumor, providing a promising strategy for expanding the clinical use of Fe-based nanomaterials.
Collapse
Affiliation(s)
- Lijia Luo
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Muhammad Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianlan Fang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, PR China
| | - Aiguo Li
- Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences, Shanghai, 201204, PR China
| | - Yong Guan
- National Synchrotron Radiation Laboratory in Hefei, University of Science & Technology of China, Hefei, 230026, PR China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
135
|
Wang J, Meng J, Ran W, Lee RJ, Teng L, Zhang P, Li Y. Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. NANO LETTERS 2019; 19:5266-5276. [PMID: 31361965 DOI: 10.1021/acs.nanolett.9b01717] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The long progression-free survival (PFS) of patients with inoperable hepatocellular carcinoma (HCC) tumors is an unmet clinical need. Imaging-guided in situ ablation and vaccination with nanoplatforms could be a promising way to achieve durable disease control and long PFS. In the present work, we show that a biomimetic nanoplatform, namely, synthetic high-density lipoprotein (sHDL), can transport photothermal agent DiR and other drugs preferentially into the cytosol of HCC cells, enabling imaging-guided combination therapy for HCC in vivo. With a single injection, the sHDLs reduced the tumor burden, triggered immunogenic cell death (ICD), promoted dendritic cell (DC) maturation, and induced CD8+ T cell responses, which together sensitized the tumors to PD-1 blockade. Tumor remission and immune protection were achieved using sHDL loaded with DiR and a stimulator of interferon genes agonist vadimezan, in conjunction with a PD-1 blockade. The replacement of vadimezan with the chemotherapeutic mertansine potentiated ICD of HCC cells, but the drug interfered with DC maturation and subsequent CD8+ T cell priming, resulting in unsatisfactory disease control. Our work provides a generalizable nanoplatform for the combined photothermal ablation and immunotherapy of HCC and highlights the importance of cancer-cell-specific ICD induction and simultaneous DC activation during in situ vaccination.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- School of Life Sciences , Jilin University , Changchun 130012 , China
| | - Jia Meng
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Robert J Lee
- School of Life Sciences , Jilin University , Changchun 130012 , China
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lesheng Teng
- School of Life Sciences , Jilin University , Changchun 130012 , China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
136
|
Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond) 2019; 14:2067-2082. [DOI: 10.2217/nnm-2019-0155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the limitations of conventional therapies, there has been an increasing need for nanomedicines for real-time diagnosis and effective treatment of life-threatening diseases. Despite the conceptual and technological success achieved by researchers worldwide, the complexities of biological systems, efficient engineering and formulation of monodispersed nanomedicines, inadequate information on bio–nano interactions, issues on health hazards, clinical trials and commercialization have set new challenges in biomedical research. This review highlights how the biological membrane improves the performance of nanomedicines in drug delivery. With the list of nanomedicines getting longer gradually to overcome the drawbacks of conventional therapeutics, it is important to concentrate on the interactions between nanostructures and living systems in order to improve the biocompatibility and therapeutic efficacy of functional nanomedicines.
Collapse
Affiliation(s)
- Suparna Ghosh
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| |
Collapse
|
137
|
Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J Control Release 2019; 307:108-138. [DOI: 10.1016/j.jconrel.2019.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022]
|
138
|
Liaw K, Zhang Z, Kannan S. Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 2019; 148:3-18. [PMID: 31668648 DOI: 10.1016/j.addr.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
Identifying and harnessing regenerative pathways while suppressing the growth-inhibiting processes of the biological response to injury is the central goal of stimulating neurogenesis after central nervous system (CNS) injury. However, due to the complexity of the mature CNS involving a plethora of cellular pathways and extracellular cues, as well as difficulties in accessibility without highly invasive procedures, clinical successes of regenerative medicine for CNS injuries have been extremely limited. Current interventions primarily focus on stabilization and mitigation of further neuronal death rather than direct stimulation of neurogenesis. In the past few decades, nanotechnology has offered substantial innovations to the field of regenerative medicine. Their nanoscale features allow for the fine tuning of biological interactions for enhancing drug delivery and stimulating cellular processes. This review gives an overview of nanotechnology applications in CNS regeneration organized according to cellular and extracellular targets and discuss future directions for the field.
Collapse
|
139
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
140
|
Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering Magnetosomes for High-Performance Cancer Vaccination. ACS CENTRAL SCIENCE 2019; 5:796-807. [PMID: 31139716 PMCID: PMC6535768 DOI: 10.1021/acscentsci.9b00060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/18/2023]
Abstract
A novel cancer vaccine is developed by using Fe3O4 magnetic nanoclusters (MNCs) as the core and cancer cell membranes decorated with anti-CD205 as the cloak. Because of the superparamagnetism and magnetization of MNCs, it is first achieved for the magnetic retention of vaccine in the lymph nodes with a magnetic resonance imaging (MRI) guide, which opened the time window for antigen uptake by dendritic cells (DCs). Meanwhile, the camouflaged cancer cell membranes serve as a reservoir of various antigens, enabling subsequent multiantigenic response. Additionally, the decorated anti-CD205 direct more vaccine into CD8+ DCs, facilitating the major histocompatibility complex (MHC) I cross-presentation. These unique advantages together lead to a great proliferation of T cells with superior clonal diversity and cytotoxic activity. As a result, potent prophylactic and therapeutic effects with few abnormalities are observed on five different tumor models. Therefore, such a cancer-derived magnetosome with the integration of various recent nanotechnologies successfully demonstrates its promise for safe and high-performance cancer vaccination.
Collapse
Affiliation(s)
- Feng Li
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weidong Nie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fan Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guihong Lu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chengliang Lv
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanlin Lv
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Lijun Zhang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Shuang Wang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoyong Gao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Wei
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- E-mail:
| | - Hai-Yan Xie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- E-mail:
| |
Collapse
|
141
|
Meka RR, Mukherjee S, Patra CR, Chaudhuri A. Shikimoyl-ligand decorated gold nanoparticles for use in ex vivo engineered dendritic cell based DNA vaccination. NANOSCALE 2019; 11:7931-7943. [PMID: 30964937 DOI: 10.1039/c8nr10293g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since mannose receptors (MRs) are expressed on the surfaces of dendritic cells (DCs), the most professional antigen presenting cells in our body, DNA vaccine carriers containing either covalently grafted mannosyl- or mannose-mimicking shikimoyl-ligands are being increasingly used in ex vivo DC-transfection based DNA vaccination. To this end, we have recently demonstrated that ex vivo immunization of mice with liposomes of shikimoylated cationic amphiphiles containing a 6-amino hexanoic acid spacer group in the head-group region in complexation with melanoma antigen (MART1) encoded DNA vaccine (pCMV-MART1) induces long lasting anti-melanoma immune responses (C. Voshavar, et al., J. Med. Chem., 2017, 60, 1605-1610). This finding prompted us to examine, in the present investigation, the efficacies of gold nanoparticles conjugated to the mannose-mimicking shikimoyl ligand (SL) via a 6-amino hexane thiol spacer (AuNPs-SL) for use in ex vivo DC-transfection based genetic immunization. Herein, we report on the design, synthesis, physico-chemical characterization and bioactivities of AuNPs-SL. Dynamic light scattering and transmission electron microscopy studies revealed the hydrodynamic diameters of theAuNPs-SL nanoconjugates to be within the range of 23-44 nm and their surface potentials within the range of 9-28 mV. MTT-assay showed the non-cytotoxic nature of AuNPs-SL and the findings in the electrophoretic gel retardation assays revealed strong DNA binding properties of the AuNPs-SL. Importantly, subcutaneous immunization of C57BL/6J mice with DCs ex vivo transfected with an electrostatic complex of AuNPs-SL & melanoma antigen (MART1) encoded DNA vaccine (p-CMV-MART1) induced a long lasting (100 days) anti-tumor immune response in immunized mice upon subsequent challenge with a lethal dose of melanoma. Notably, mice immunized with either autologous mbmDCs ex vivo pre-transfected with nanoplexes of shikimoylated AuNPs-SL & an irrelevant pCMV-SPORT-β-gal plasmid (without having encoded melanoma antigen) or untransfected DCs showed no lasting protection against subsequent tumor challenge. The presently described shikimoyl-decorated gold nanoparticles (AuNPs-SL) are expected to find future use in ex vivo DC-transfection based genetic immunization against cancer and other infectious diseases.
Collapse
Affiliation(s)
- Rakeshchandra R Meka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | | | | | |
Collapse
|
142
|
Bansal R, Care A, Lord MS, Walsh TR, Sunna A. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. N Biotechnol 2019; 52:9-18. [PMID: 30954671 DOI: 10.1016/j.nbt.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The interactions between biomolecules and solid surfaces play an important role in designing new materials and applications which mimic nature. Recently, solid-binding peptides (SBPs) have emerged as potential molecular building blocks in nanobiotechnology. SBPs exhibit high selectivity and binding affinity towards a wide range of inorganic and organic materials. Although these peptides have been widely used in various applications, there is a need to understand the interaction mechanism between the peptide and its material substrate, which is challenging both experimentally and theoretically. This review describes the main characterisation techniques currently available to study SBP-surface interactions and their contribution to gain a better insight for designing new peptides for tailored binding.
Collapse
Affiliation(s)
- Rachit Bansal
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
143
|
Hu B, Han L, Ma R, Phillips GO, Nishinari K, Fang Y. All-Natural Food-Grade Hydrophilic-Hydrophobic Core-Shell Microparticles: Facile Fabrication Based on Gel-Network-Restricted Antisolvent Method. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11936-11946. [PMID: 30843685 DOI: 10.1021/acsami.9b00980] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrophilic-hydrophobic core-shell microparticles are highly appealing for a variety of industrial applications (foods, pharmaceutics, cosmetics, biomedicines, etc.) owing to their unique properties of moisture resistance and controlled release. However, the fabrication of such structured microparticles proves to be nontrivial due to the difficulty in assembling two materials of distinctly different hydrophilicities and hydrophobicities. This paper reports a facile method to fabricate hydrophilic-hydrophobic core-shell microparticles using all-natural food-grade polysaccharides and proteins, based on a novel principle of gel-network-restricted antisolvent precipitation. Immersion of microgel beads prepared from hydrophilic polysaccharides (i.e., alginates, κ-carrageenan, agarose) into a hydrophobic protein solution (i.e., zein in 70% aqueous ethanol) enables slow and controllable antisolvent precipitation of a protein layer around the microbead surface, leading to the formation of a hydrophilic-hydrophobic core-shell structure. The method applies to various gelling systems and can easily tailor the particle size and shell thickness. The resulting freeze-dried microparticles demonstrate restricted swelling in water, improved moisture resistance, and sustained release of encapsulants, with great potential in applications such as protection of unstable and/or hygroscopic compounds and delivery and controlled release of drugs, bioactives, flavors, etc. The method is rather universal and can be extended to prepare more versatile core-shell structures using a large variety of hydrophilic and hydrophobic materials.
Collapse
Affiliation(s)
- Bing Hu
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Lingyu Han
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Ruixiang Ma
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Glyn O Phillips
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Katsuyoshi Nishinari
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering , Hubei University of Technology , Wuhan 430068 , China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
144
|
Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, Jia L, Gao Y. Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Curr Cancer Drug Targets 2019; 19:257-276. [DOI: 10.2174/1568009618666180628160211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Background:Effective cancer therapy is still a great challenge for modern medical research due to the complex underlying mechanisms of tumorigenesis and tumor metastasis, and the limitations commonly associated with currently used cancer therapeutic options. Nanotechnology has been implemented in cancer therapeutics with immense potential for improving cancer treatment.Objective:Through information about the recent advances regarding cancer hallmarks, we could comprehensively understand the pharmacological effects and explore the mechanisms of the interaction between the nanomaterials, which could provide opportunities to develop mechanism-based nanomedicine to treat human cancers.Methods:We collected related information and data from articles.Results:In this review, we discussed the characteristics of cancer including tumor angiogenesis, abnormalities in tumor blood vessels, uncontrolled cell proliferation markers, multidrug resistance, tumor metastasis, cancer cell metabolism, and tumor immune system that provide opportunities and challenges for nanomedicine to be directed to specific cancer cells and portray the progress that has been accomplished in application of nanotechnology for cancer treatment.Conclusion:The information presented in this review can provide useful references for further studies on developing effective nanomedicine for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yingying Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Tingting Lv
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
145
|
Mi Y, Hagan CT, Vincent BG, Wang AZ. Emerging Nano-/Microapproaches for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801847. [PMID: 30937265 PMCID: PMC6425500 DOI: 10.1002/advs.201801847] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Indexed: 05/15/2023]
Abstract
Cancer immunotherapy has achieved remarkable clinical efficacy through recent advances such as chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB) therapy, and neoantigen vaccines. However, application of immunotherapy in a clinical setting has been limited by low durable response rates and immune-related adverse events. The rapid development of nano-/microtechnologies in the past decade provides potential strategies to improve cancer immunotherapy. Advances of nano-/microparticles such as virus-like size, high surface to volume ratio, and modifiable surfaces for precise targeting of specific cell types can be exploited in the design of cancer vaccines and delivery of immunomodulators. Here, the emerging nano-/microapproaches in the field of cancer vaccines, immune checkpoint blockade, and adoptive or indirect immunotherapies are summarized. How nano-/microparticles improve the efficacy of these therapies, relevant immunological mechanisms, and how nano-/microparticle methods are able to accelerate the clinical translation of cancer immunotherapy are explored.
Collapse
Affiliation(s)
- Yu Mi
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - C. Tilden Hagan
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer CenterDepartment of Microbiology & ImmunologyCurriculum in Bioinformatics and Computational BiologyDivision of Hematology/OncologyDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Andrew Z. Wang
- Laboratory of Nano‐ and Translational MedicineCarolina Center for Cancer Nanotechnology ExcellenceCarolina Institute of NanomedicineLineberger Comprehensive Cancer CenterDepartment of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
146
|
Sharma P, Shin JB, Park BC, Lee JW, Byun SW, Jang NY, Kim YJ, Kim Y, Kim YK, Cho NH. Application of radially grown ZnO nanowires on poly-l-lactide microfibers complexed with a tumor antigen for cancer immunotherapy. NANOSCALE 2019; 11:4591-4600. [PMID: 30809611 DOI: 10.1039/c8nr08704k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zinc oxide (ZnO)-based nanocomposites have shown promising potential for various biomedical applications, including vaccine development, owing to their multifunctionality and biocompatibility. Here, we synthesized radially grown ZnO nanowires (NWs) on poly-l-lactic acid (PLLA) microfibers with unique 3-dimensional structure and applied them as therapeutic cancer vaccines. This inorganic-organic hybrid nanocomposite has mild cellular toxicity but efficiently delivers a tumor antigen into dendritic cells, cellular bridges between innate and adaptive immunity, to stimulate them to express inflammatory cytokines and activation surface markers. We also demonstrated that the hybrid nanocomposites successfully induce tumor antigen-specific cellular immunity and significantly inhibit tumor growth in vivo. ZnO NWs on PLLA fibers systemically reduced immune suppressive TReg cells and enhanced the infiltration of T cells into tumor tissues, compared to mice immunized with PLLA fibers coated with the antigen. Our current findings open a new avenue in extending the biomedical application of inorganic metal oxide-inert organic hybrid nanocomposites as a novel vaccine platform.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
García-García S, López-Ortega A, Zheng Y, Nie Y, Cho K, Chuvilin A, Knez M. Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO 2-coated magnetite nanoparticles. Chem Sci 2019; 10:2171-2178. [PMID: 30881641 PMCID: PMC6385483 DOI: 10.1039/c8sc04474k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/16/2018] [Indexed: 11/21/2022] Open
Abstract
Atomic layer deposition is a chemical deposition technology that provides ultimate control over the conformality of films and their thickness, even down to Ångström-scale precision. Based on the marked superficial character and gas phase process of the technique, metal sources and their ligands shall ideally be highly volatile. However, in numerous cases those ligands corrode the substrate or compete for adsorption sites, well-known as side reactions of these processes. Therefore, the ability to control such side reactions might be of great interest, since it could achieve synchronous coating and alteration of a substrate in one process, saving time and energy otherwise needed for a post-treatment of the sample. Consequently, advances in this way must require understanding and control of the chemical processes that occur during the coating. In this work, we show how choosing an appropriate ligand of the metal source can unveil a novel approach to concertedly coat and reduce γ-Fe2O3 nanoparticles to form a final product composed of Fe3O4/TiO2 core/shell nanoparticles. To this aim, we envisage that appropriate design of precursors and selection of substrates will pave the way for numerous new compositions, while the ALD process itself allows for easy upscaling to large amounts of coated and reduced particles for industrial use.
Collapse
Affiliation(s)
- Sarai García-García
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastián , Spain . ;
| | | | - Yongping Zheng
- Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , USA
| | - Yifan Nie
- Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , USA
| | - Kyeongjae Cho
- Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , USA
| | - Andrey Chuvilin
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastián , Spain . ;
- IKERBASQUE , Basque Foundation for Science , Maria Diaz de Haro 3 , 48013 Bilbao , Spain
| | - Mato Knez
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastián , Spain . ;
- IKERBASQUE , Basque Foundation for Science , Maria Diaz de Haro 3 , 48013 Bilbao , Spain
| |
Collapse
|
148
|
Nabil G, Bhise K, Sau S, Atef M, El-Banna HA, Iyer AK. Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discov Today 2019; 24:462-491. [PMID: 30121330 PMCID: PMC6839688 DOI: 10.1016/j.drudis.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer is the second highest cause of death worldwide. Several therapeutic approaches, such as conventional chemotherapy, antibodies and small molecule inhibitors and nanotherapeutics have been employed in battling cancer. Amongst them, nanotheranostics is an example of successful personalized medicine bearing dual role of early diagnosis and therapy to cancer patients. In this review, we have focused on various types of theranostic polymer and metal nanoparticles for their role in cancer therapy and imaging concerning their limitation, future application such as dendritic cell cancer vaccination, gene delivery, T-cell activation and immune modulation. Also, some of the recorded patent applications and clinical trials have been illustrated. The impact of the biological microenvironment on the biodistribution and accumulation of nanoparticles have been discussed.
Collapse
Affiliation(s)
- Ghazal Nabil
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Mohamed Atef
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny A El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
149
|
Cheng CT, Castro G, Liu CH, Lau P. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta 2019; 492:12-19. [PMID: 30711524 DOI: 10.1016/j.cca.2019.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Cancer remains a major disease process with considerable healthcare and socioeconomic impact worldwide. Unfortunately, standard treatments using chemotherapy often do not effectively control cancer progression or prevent relapse. Over the past decades, the development of targeted therapies has substantially improved outcomes. Recently, immunotherapy has emerged as a new alternative for more effective cancer treatment and may even bring hope of a cure. Cancer immunotherapy functions by reinforcing a patient's immune defense system to fight the disease. Clinically, promising immunotherapy approaches have, however, been limited by unpredictable response and strong adverse effects. A drug delivery system (DDS) that effectively targets tumor and reduces drug exposure to normal tissue would mitigate these limitations. In this regard, nanotechnology has been intensively studied as a DDS for targeting tumors with various oncologic drugs. Several have resulted in improved treatment and outcome. Research has shown that nanoparticle drug delivery technologies can also be applied to immunotherapy. In this review, the current state of nanotechnology will be discussed. Because most cancer immunotherapies approved in recent years are protein drugs, this article will focus on a micellar nanocomplex (MNC) technology, a DDS platform especially suited for targeted delivery of these therapeutics to solid tumors.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Gabriel Castro
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Chun-Hsin Liu
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Pauline Lau
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan; Suntec Medical, Inc, 4008 Blair Ridge Drive, Chino Hills, CA 91709, USA.
| |
Collapse
|
150
|
Affiliation(s)
- Jenny Lou
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| | - Li Zhang
- Toronto General Hospital Research InstituteUniversity Health Network Toronto M5G 2C4 Canada
- Department of ImmunologyUniversity of Toronto Toronto M5S 1A8 Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Gang Zheng
- Department of Medical BiophysicsUniversity of Toronto Toronto M5G 1L7 Canada
- Princess Margaret Cancer CenterUniversity Health Network Toronto M5G 2C1 Canada
- Centre for Pharmaceutical OncologyUniversity of Toronto Toronto M5S 3M2 Canada
| |
Collapse
|