101
|
Hsieh CC, Hsu SC, Yao M, Huang DM. CD9 Upregulation-Decreased CCL21 Secretion in Mesenchymal Stem Cells Reduces Cancer Cell Migration. Int J Mol Sci 2021; 22:ijms22041738. [PMID: 33572290 PMCID: PMC7915477 DOI: 10.3390/ijms22041738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Ming Yao
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: ; Tel.: +886-37-246-166 (ext. 38105)
| |
Collapse
|
102
|
Moreira-Costa L, Barros AS, Lourenço AP, Leite-Moreira AF, Nogueira-Ferreira R, Thongboonkerd V, Vitorino R. Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes 2021; 9:proteomes9010008. [PMID: 33535467 PMCID: PMC7930981 DOI: 10.3390/proteomes9010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are widely recognized as the leading cause of mortality worldwide. Despite the advances in clinical management over the past decades, the underlying pathological mechanisms remain largely unknown. Exosomes have drawn the attention of researchers for their relevance in intercellular communication under both physiological and pathological conditions. These vesicles are suggested as complementary prospective biomarkers of CVDs; however, the role of exosomes in CVDs is still not fully elucidated. Here, we performed a literature search on exosomal biogenesis, characteristics, and functions, as well as the different available exosomal isolation techniques. Moreover, aiming to give new insights into the interaction between exosomes and CVDs, network analysis on the role of exosome-derived mediators in coronary artery disease (CAD) and heart failure (HF) was also performed to incorporate the different sources of information. The upregulated exosomal miRNAs miR-133a, miR-208a, miR-1, miR-499-5p, and miR-30a were described for the early diagnosis of acute myocardial infarction, while the exosome-derived miR-192, miR-194, miR-146a, and miR-92b-5p were considered as potential biomarkers for HF development. In CAD patients, upregulated exosomal proteins, including fibrinogen beta/gamma chain, inter-alpha-trypsin inhibitor heavy chain, and alpha-1 antichymotrypsin, were assessed as putative protein biomarkers. From downregulated proteins in CAD patients, albumin, clusterin, and vitamin D-binding protein were considered relevant to assess prognosis. The Vesiclepedia database included miR-133a of exosomal origin upregulated in patients with CAD and the exosomal miR-192, miR-194, and miR-146a upregulated in patients with HF. Additionally, Vesiclepedia included 5 upregulated and 13 downregulated exosomal proteins in patients in CAD. The non-included miRNAs and proteins have not yet been identified in exosomes and can be proposed for further research. This report highlights the need for further studies focusing on the identification and validation of miRNAs and proteins of exosomal origin as biomarkers of CAD and HF, which will enable, using exosomal biomarkers, the guiding of diagnosis/prognosis in CVDs.
Collapse
Affiliation(s)
- Liliana Moreira-Costa
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Correspondence: (L.M.-C.); (R.V.)
| | - António S. Barros
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - André P. Lourenço
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Nogueira-Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Rui Vitorino
- Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; (A.S.B.); (A.P.L.); (A.F.L.-M.); (R.N.-F.)
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus Universitário de Santiago, Agra do Crasto, 3810-193 Aveiro, Portugal
- Correspondence: (L.M.-C.); (R.V.)
| |
Collapse
|
103
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
104
|
Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells 2021; 10:cells10010109. [PMID: 33430152 PMCID: PMC7827205 DOI: 10.3390/cells10010109] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.
Collapse
Affiliation(s)
- Álvaro M. Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Cátia C. Ramos
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| | - Celso A. Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| |
Collapse
|
105
|
Muhammad SA. Are extracellular vesicles new hope in clinical drug delivery for neurological disorders? Neurochem Int 2021; 144:104955. [PMID: 33412233 DOI: 10.1016/j.neuint.2021.104955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Cells secrete extracellular vesicles (EVs) for intercellular communication. EVs are natural nanovesicles that are surrounded by lipid bilayer for delivery of assorted cargoes for therapeutic purposes. In addition to their therapeutic roles, these vesicles are potential drug delivery systems. Exosomes are the most studied EVs as the delivery carriers that can cross the blood-brain barrier (BBB) because of their nanosize. BBB is a diffusion barrier that is selective for small molecules to transit from blood to the brain. This barrier has been an obstacle for the delivery of drugs to the brain for the treatment of neurological disorders (NDs). For efficient drug delivery, synthetic vesicles such as liposomes have been employed as carriers for delivery of therapeutic molecules in clinical practice. However, these delivery systems are not without drawbacks. Among the limitations of these drug carriers include recognition by the body as foreign particles that encounter multiple defence systems that could recognize, neutralize and eliminate them. EVs are natural vesicles that may circumvent the body defence system to remain in systemic circulation for a long time. This unique property made them excellent drug delivery vehicles for clinical application. Here I discuss the progress, challenges and future directions of EVs (especially exosomes) as vehicles for targeted delivery of drug and at the same time deliver their cargoes for regenerative purposes in NDs. Recent developments in bioengineering and microfluidic technologies, which hold promise for clinical-grade production of EVs as drug delivery systems for NDs are also highlighted.
Collapse
Affiliation(s)
- S A Muhammad
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
| |
Collapse
|
106
|
Xu W, Gao C, Wu J. CD151 Alleviates Early Blood-Brain Barrier Dysfunction After Experimental Focal Brain Ischemia in Rats. Cell Mol Neurobiol 2021; 41:151-162. [PMID: 32285246 DOI: 10.1007/s10571-020-00842-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Preservation of the blood-brain barrier (BBB) function is a potential protective strategy against cerebral ischemic injuries. CD151 has a beneficial effect in maintaining vascular stability and plays a role in pro-angiogenesis. Both vascular stability and angiogenesis can affect BBB function. Therefore, we aimed to examine the action of CD151 in regulating BBB permeability after cerebral ischemic injury in the present study. Using a transient focal cerebral ischemia (tFCI) rat model, we established that CD151 overexpression in the brain mitigated the leakage of endogenous IgG at 6-24 h after tFCI in vivo. Moreover, we found that CD151 can decrease the diffusion of macromolecules through monolayer brain microvessel endothelial cells (BMVECs) after glucose and oxygen deprivation (OGD)-reoxygenation in vitro. Furthermore, overexpression of CD151 in BMVECs suppressed OGD-reoxygenation-induced F-actin formation and RhoA activity. However, while preserving BBB integrity after tFCI, CD151 overexpression did not affect the post-stroke outcomes. Taken together, the present study demonstrated that CD151 overexpression in the brain protects BBB permeability at early phase after tFCI. CD151 may be a potential target for early BBB protection in ischemic stroke.
Collapse
Affiliation(s)
- Wendeng Xu
- Department of Neurology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ceshu Gao
- Department of Neurology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jian Wu
- Department of Neurology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
107
|
Yu S, Chen J, Quan M, Li L, Li Y, Gao Y. CD63 negatively regulates hepatocellular carcinoma development through suppression of inflammatory cytokine-induced STAT3 activation. J Cell Mol Med 2021; 25:1024-1034. [PMID: 33277798 PMCID: PMC7812266 DOI: 10.1111/jcmm.16167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Tetraspanin CD63 has been widely implicated in tumour progression of human malignancies. However, its role in the tumorigenesis and metastasis of hepatocellular carcinoma (HCC) remains unclear yet. In the present study, we aimed to investigate the specific function and underlying mechanisms of CD63 in HCC progression. CD63 expression in HCC tissues was detected using immunohistochemistry and quantitative real-time PCR analyses; effects of CD63 on HCC cell proliferation and migration were investigated by CCK-8 assay, colony formation assay, transwell assay and a xenograft model of nude mice. RNA-sequencing, bioinformatics analysis, dual-luciferase reporter assay and Western blot analysis were performed to explore the underlying molecular mechanisms. Results of our experiments showed that CD63 expression was frequently reduced in HCC tissues compared with adjacent normal tissues, and decreased CD63 expression was significantly associated with larger tumour size, distant site metastasis and higher tumour stages of HCC. Overexpression of CD63 inhibited HCC cell proliferation and migration, whereas knockdown of CD63 promoted these phenotypes. IL-6, IL-27 and STAT3 activity was regulated by CD63, and blockade of STAT3 activation impaired the promotive effects of CD63 knockdown on HCC cell growth and migration. Our findings identified a novel CD63-IL-6/IL-27-STAT3 axis in the development of HCC and provided a potential target for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Shijun Yu
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jingde Chen
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ming Quan
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Li Li
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yandong Li
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yong Gao
- Department of OncologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
108
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
109
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
110
|
Pashazadeh M. The role of tumor-isolated exosomes on suppression of immune reactions and cancer progression: A systematic review. Med J Islam Repub Iran 2020; 34:91. [PMID: 33306056 PMCID: PMC7713497 DOI: 10.34171/mjiri.34.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Exosomes are extracellular cells (EVs) emancipated by various cell types and are involved in cell-to-cell transmission. In cancer diseases, exosomes emerge as local and systemic cells to cell mediators of oncogenic information and play a significant role in the advancement of cancer through the horizontal transfer of various molecules, such as proteins and miRNAs.
Methods: In this study, 66 articles from PubMed, MEDLINE, Science Direct, Cochrane, EMBASE, and Scopus were used as English sources.
Results: The biological distribution of cancer cell-derived exosomes in tumor tissue is an important factor in detecting their role in tumor increase; on the other hand, a limited number of studies have examined the biodistribution of exosomes in tumor tissues. While exosomes function as cancer biomarkers and support cancer treatment, we have a long way to improve the antitumor treatment of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Conclusion: This review describes the science and significance of cancer pathogenesis and exosomes relative to cancer treatment resistance.
Collapse
Affiliation(s)
- Mehrdad Pashazadeh
- Immunology Division, Department of Microbiology, Health Science Institute, Bursa Uludag University, Bursa, Turkey.,Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
111
|
Dodla P, Bhoopalan V, Khoo SK, Miranti C, Sridhar S. Gene expression analysis of human prostate cell lines with and without tumor metastasis suppressor CD82. BMC Cancer 2020; 20:1211. [PMID: 33298014 PMCID: PMC7724878 DOI: 10.1186/s12885-020-07675-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tetraspanin CD82 is a tumor metastasis suppressor that is known to down regulate in various metastatic cancers. However, the exact mechanism by which CD82 prevents cancer metastasis is unclear. This study aims to identify genes that are regulated by CD82 in human prostate cell lines. METHODS We used whole human genome microarray to obtain gene expression profiles in a normal prostate epithelial cell line that expressed CD82 (PrEC-31) and a metastatic prostate cell line that does not express CD82 (PC3). Then, siRNA silencing was used to knock down CD82 expression in PrEC-31 while CD82 was re-expressed in PC3 to acquire differentially-expressed genes in the respective cell line. RESULTS Differentially-expressed genes with a P < 0.05 were identified in 3 data sets: PrEC-31 (+CD82) vs PrEC-31(-CD82), PC3-57 (+CD82) vs. PC3-5 V (-CD82), and PC3-29 (+CD82) vs. PC3-5 V (-CD82). Top 25 gene lists did not show overlap within the data sets, except (CALB1) the calcium binding protein calbindin 1 which was significantly up-regulated (2.8 log fold change) in PrEC-31 and PC3-29 cells that expressed CD82. Other most significantly up-regulated genes included serine peptidase inhibitor kazal type 1 (SPINK1) and polypeptide N-acetyl galactosaminyl transferase 14 (GALNT14) and most down-regulated genes included C-X-C motif chemokine ligand 14 (CXCL14), urotensin 2 (UTS2D), and fibroblast growth factor 13 (FGF13). Pathways related with cell proliferation and angiogenesis, migration and invasion, cell death, cell cycle, signal transduction, and metabolism were highly enriched in cells that lack CD82 expression. Expression of two mutually inclusive genes in top 100 gene lists of all data sets, runt-related transcription factor (RUNX3) and trefoil factor 3 (TFF3), could be validated with qRT-PCR. CONCLUSION Identification of genes and pathways regulated by CD82 in this study may provide additional insights into the role that CD82 plays in prostate tumor progression and metastasis, as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pushpaja Dodla
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Vanitha Bhoopalan
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Cindy Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Suganthi Sridhar
- Department of Integrative Biology, University of South Florida, 140, 7Th Avenue S, University of South Florida, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
112
|
Pashova A, Work LM, Nicklin SA. The role of extracellular vesicles in neointima formation post vascular injury. Cell Signal 2020; 76:109783. [PMID: 32956789 DOI: 10.1016/j.cellsig.2020.109783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Pathological neointimal growth can develop in patients as a result of vascular injury following percutaneous coronary intervention and coronary artery bypass grafting using autologous saphenous vein, leading to arterial or vein graft occlusion. Neointima formation driven by intimal hyperplasia occurs as a result of a complex interplay between molecular and cellular processes involving different cell types including endothelial cells, vascular smooth muscle cells and various inflammatory cells. Therefore, understanding the intercellular communication mechanisms underlying this process remains of fundamental importance in order to develop therapeutic strategies to preserve endothelial integrity and vascular health post coronary interventions. Extracellular vesicles (EVs), including microvesicles and exosomes, are membrane-bound particles secreted by cells which mediate intercellular signalling in physiological and pathophysiological states, however their role in neointima formation is not fully understood. The purification and characterization techniques currently used in the field are associated with many limitations which significantly hinder the ability to comprehensively study the role of specific EV types and make direct functional comparisons between EV subpopulations. In this review, the current knowledge focusing on EV signalling in neointima formation post vascular injury is discussed.
Collapse
Affiliation(s)
- A Pashova
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - L M Work
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - S A Nicklin
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
113
|
Niu Y, Wang X, Li M, Niu B. Exosomes from human umbilical cord Mesenchymal stem cells attenuates stress-induced hippocampal dysfunctions. Metab Brain Dis 2020; 35:1329-1340. [PMID: 32761493 DOI: 10.1007/s11011-019-00514-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Human Mesenchymal Stem Cells (MSCs) especially human umbilical cord MSCs is the novel regenerative cell resource for regenerative therapy. However, the biological underpinning of MSCs in neuroprotections requires deep understanding. Exosomes is an important biological factor due to its multiple types of contents with various biological function. In current study, we collected the exosome from umbilical cord mesenchymal stem cells (hUC-MSCs) and tested the neuroprotective effects to brain stress. Proteomic analysis indicates significant enriched protein components display the functions in metabolic regulation. We then injected the exosome (MSC-Ex) to adult mice by i.v injection. On physiological level, treatment of MSC-Ex increased the adiponectin level in peripheral central nervous system (CNS). Moreover, MSC-Ex significantly accelerated the differentiation of adult neural stem cells but did not benefit the related cognitive behavior. We then created acute brain disorder model with STZ intra-hippocampal injection. Compared with STZ group, treatment of MSC-Ex improved cognitive function. Moreover, MSC-Ex promotes hippocampal neurogenesis that was suppressed by STZ injection. In conclusion, hUC-MSCs derived exosome would exert the neural regenerative effects associating with its metabolism regulatory capacity.
Collapse
Affiliation(s)
- Yuhu Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56, Xinjian South Rd., Taiyuan, China
| | - Xiuwei Wang
- Department of Biotechnology, Capital Institute of Pediatric, Beijing, China
| | - Meining Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56, Xinjian South Rd., Taiyuan, China
| | - Bo Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56, Xinjian South Rd., Taiyuan, China.
- Department of Biotechnology, Capital Institute of Pediatric, Beijing, China.
| |
Collapse
|
114
|
uPAR-expressing melanoma exosomes promote angiogenesis by VE-Cadherin, EGFR and uPAR overexpression and rise of ERK1,2 signaling in endothelial cells. Cell Mol Life Sci 2020; 78:3057-3072. [PMID: 33237352 PMCID: PMC8004497 DOI: 10.1007/s00018-020-03707-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Exosomes (Exos) have been reported to promote pre-metastatic niche formation, proliferation, angiogenesis and metastasis. We have investigated the role of uPAR in melanoma cell lines-derived Exos and their pro-angiogenic effects on human microvascular endothelial cells (HMVECs) and endothelial colony-forming cells (ECFCs). Melanoma Exos were isolated from conditioned media of A375 and M6 cells by differential centrifugation and filtration. Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle tracking analysis were performed to analyze dimension and concentration of Exos. The CRISPR–Cas 9 technology was exploited to obtain a robust uPAR knockout. uPAR is expressed in melanoma Exos that are internalized by HMVECs and ECFCs, enhancing VE-Cadherin, EGFR and uPAR expression in endothelial cells that undergo a complete angiogenic program, including proliferation, migration and tube formation. uPAR loss reduced the pro-angiogenic effects of melanoma Exos in vitro and in vivo by inhibition of VE-Cadherin, EGFR and uPAR expression and of ERK1,2 signaling in endothelial cells. A similar effect was obtained with a peptide that inhibits uPAR–EGFR interaction and with the EGFR inhibitor Gefitinib, which also inhibited melanoma Exos-dependent EGFR phosphorylation. This study suggests that uPAR is required for the pro-angiogenic activity of melanoma Exos. We propose the identification of uPAR-expressing Exos as a potentially useful biomarker for assessing pro-angiogenic propensity and eventually monitoring the response to treatment in metastatic melanoma patients.
Collapse
|
115
|
Lavado-García J, González-Domínguez I, Cervera L, Jorge I, Vázquez J, Gòdia F. Molecular Characterization of the Coproduced Extracellular Vesicles in HEK293 during Virus-Like Particle Production. J Proteome Res 2020; 19:4516-4532. [PMID: 32975947 PMCID: PMC7640977 DOI: 10.1021/acs.jproteome.0c00581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Irene González-Domínguez
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
116
|
Pouille CL, Jegou D, Dugardin C, Cudennec B, Ravallec R, Hance P, Rambaud C, Hilbert JL, Lucau-Danila A. Chicory root flour – A functional food with potential multiple health benefits evaluated in a mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
117
|
Nordmeier S, Ke W, Afonin KA, Portnoy V. Exosome mediated delivery of functional nucleic acid nanoparticles (NANPs). NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 30:102285. [PMID: 32781137 PMCID: PMC7680442 DOI: 10.1016/j.nano.2020.102285] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
RNAi-based technologies have shown biomedical potential; however, safe and efficient delivery of RNA remains a barrier for their broader clinical applications. Nucleic acid nanoparticles (NANPs) programmed to self-assemble and organize multiple therapeutic nucleic acids (TNAs) also became attractive candidates for diverse therapeutic options. Various synthetic nanocarriers are used to deliver TNAs and NANPs, but their clinical translation is limited due to immunotoxicity. Exosomes are cell-derived nanovesicles involved in cellular communication. Due to their ability to deliver biomolecules, exosomes are a novel delivery choice. In this study, we explored the exosome-mediated delivery of NANPs designed to target GFP. We assessed the intracellular uptake, gene silencing efficiency, and immunostimulation of exosomes loaded with NANPs. We also confirmed that interdependent RNA/DNA fibers upon recognition of each other after delivery, can conditionally activate NF-kB decoys and prevent pro-inflammatory cytokines. Our study overcomes challenges in TNA delivery and demonstrates future studies in drug delivery systems.
Collapse
Affiliation(s)
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | | |
Collapse
|
118
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
119
|
Arasi MB, Pedini F, Valentini S, Felli N, Felicetti F. Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis. Cancers (Basel) 2020; 12:cancers12102893. [PMID: 33050185 PMCID: PMC7601614 DOI: 10.3390/cancers12102893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced melanoma is still a major challenge in oncology. In the early stages, melanoma can be treated successfully with surgery and the survival rate is high, nevertheless the survival rate drops drastically after metastasis dissemination. The identification of parameters predictive of the prognosis to support clinical decisions and of new efficacious therapies are important to ensure patients the best possible prognosis. Recent progress in nanotechnology allowed the development of nanoparticles able to protect drugs from degradation and to deliver the drug to the tumor. Modification of the nanoparticle surface by specific molecules improves retention and accumulation in the target tissue. In this review, we describe the potential role of nanoparticles in advanced melanoma treatment and discuss the current efforts of designing polymeric nanoparticles for controlled drug release at the site upon injection. In addition, we highlight the advances as well as the challenges of exosome-based nanocarriers as drug vehicles. We place special focus on the advantages of these natural nanocarriers in delivering various cargoes in advanced melanoma treatment. We also describe the current advances in knowledge of melanoma-related exosomes, including their biogenesis, molecular contents and biological functions, focusing our attention on their utilization for early diagnosis and prognosis in melanoma disease.
Collapse
|
120
|
Barros I, Marcelo A, Silva TP, Barata J, Rufino-Ramos D, Pereira de Almeida L, Miranda CO. Mesenchymal Stromal Cells' Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go? Front Cell Neurosci 2020; 14:584277. [PMID: 33132851 PMCID: PMC7573388 DOI: 10.3389/fncel.2020.584277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.
Collapse
Affiliation(s)
- Inês Barros
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Adriana Marcelo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa P Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João Barata
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Viravector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Catarina O Miranda
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,III-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
121
|
Effect of Mesenchymal Stem Cell-Derived Exosomes on Retinal Injury: A Review of Current Findings. Stem Cells Int 2020; 2020:8883616. [PMID: 33082789 PMCID: PMC7556062 DOI: 10.1155/2020/8883616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
In recent years, various studies have followed in the literature on the therapeutic effects of mesenchymal stem cells (MSC) on damage in retinal cells. The evidence that MSCs exert their regenerative and damage reduction effect in a paracrine way, through the release of soluble factors and exosomes, is now consolidated. Exosomes are microvesicles formed by a double layer of phospholipid membrane and carry proteins and RNA, through which they play a therapeutic role on target cells. Scientific research has recently focused on the use of exosomes derived from MSC in various models of retinal damage in vitro and in vivo as they, compared to MSCs, have similar functions and at the same time have different advantages such as greater stability and handling, a lower chance of immunological rejection and no risk of malignant transformation. The purpose of this review is to summarize current knowledge on the therapeutic use of exosomes derived from MSCs in retinal damage and to stimulate new clinical perspectives regarding their use.
Collapse
|
122
|
Xing C, Xu W, Shi Y, Zhou B, Wu D, Liang B, Zhou Y, Gao S, Feng J. CD9 knockdown suppresses cell proliferation, adhesion, migration and invasion, while promoting apoptosis and the efficacy of chemotherapeutic drugs and imatinib in Ph+ ALL SUP‑B15 cells. Mol Med Rep 2020; 22:2791-2800. [PMID: 32945456 PMCID: PMC7453647 DOI: 10.3892/mmr.2020.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Philadelphia chromosome‑positive acute lymphoblastic leukemia (Ph+ ALL) is regarded as a prognostically unfavorable subgroup, as this ALL subgroup has an increased risk of relapse/refractory disease. CD9, which belongs to the tetraspanin membrane proteins, is implicated in several pathological processes, including tumor progression. However, the role of CD9 in the pathogenesis of Ph+ ALL and the potential benefit of applying CD9‑targeted RNA interference strategies for treatment of Ph+ ALL require further investigation. The aim of the present study was to determine the effects of CD9 on leukemic cell progression and the efficacy of therapeutic agents in Ph+ ALL cells, in addition to assessing the in vitro anti‑leukemia activity of CD9‑targeted RNA interference in Ph+ ALL cells. In the present study, a lentiviral short hairpin RNA (shRNA) expression vector targeting CD9 gene in Ph+ ALL SUP‑B15 cells was constructed. The present results demonstrated that treatment of SUP‑B15 cells with lentiviral‑mediated shRNA against CD9 decreased CD9 mRNA and protein expression compared with the shControl cells transduced with a blank vector. In addition, CD9 knockdown could suppress cell proliferation, adhesion, migration and invasion, and promote apoptosis and the efficacy of chemotherapeutic drugs (such as vincristine, daunorubicin, cyclophosphamide and dexamethasone) and the tyrosine kinase inhibitor imatinib in SUP‑B15 cells. Furthermore, CD9 knockdown suppressed cell proliferation and promoted apoptosis in SUP‑B15 cells via a p53‑dependent pathway. These findings suggested that gene silencing of CD9 using a shRNA‑expressing lentivirus vector may provide a promising treatment for Ph+ ALL.
Collapse
Affiliation(s)
- Chongyun Xing
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wanling Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianhua Feng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Department of Pediatric Hematology-Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
123
|
Exosomes in multidrug-resistant cancer. Curr Opin Pharmacol 2020; 54:109-120. [DOI: 10.1016/j.coph.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
124
|
Armacki M, Polaschek S, Waldenmaier M, Morawe M, Ruhland C, Schmid R, Lechel A, Tharehalli U, Steup C, Bektas Y, Li H, Kraus JM, Kestler HA, Kruger S, Ormanns S, Walther P, Eiseler T, Seufferlein T. Protein Kinase D1, Reduced in Human Pancreatic Tumors, Increases Secretion of Small Extracellular Vesicles From Cancer Cells That Promote Metastasis to Lung in Mice. Gastroenterology 2020; 159:1019-1035.e22. [PMID: 32446697 DOI: 10.1053/j.gastro.2020.05.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Pancreatic tumor cells release small extracellular vesicles (sEVs, exosomes) that contain lipids and proteins, RNA, and DNA molecules that might promote formation of metastases. It is not clear what cargo these vesicles contain and how they are released. Protein kinase D1 (PRKD1) inhibits cell motility and is believed to be dysregulated in pancreatic ductal adenocarcinomas. We investigated whether it regulates production of sEVs in pancreatic cancer cells and their ability to form premetastatic niches for pancreatic cancer cells in mice. METHODS We analyzed data from UALCAN and human pancreatic tissue microarrays to compare levels of PRKD1 between tumor and nontumor tissues. We studied mice with pancreas-specific disruption of Prkd1 (PRKD1KO mice), mice that express oncogenic KRAS (KC mice), and KC mice with disruption of Prkd1 (PRKD1KO-KC mice). Subcutaneous xenograft tumors were grown in NSG mice from Panc1 cells; some mice were then given injections of sEVs. Pancreata and lung tissues from mice were analyzed by histology, immunohistochemistry, and/or quantitative polymerase chain reaction; we performed nanoparticle tracking analysis of plasma sEVs. The Prkd1 gene was disrupted in Panc1 cells using CRISPR-Cas9 or knocked down with small hairpin RNAs, or PRKD1 activity was inhibited with the selective inhibitor CRT0066101. Pancreatic cancer cell lines were analyzed by gene-expression microarray, quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. sEVs secreted by Panc1 cell lines were analyzed by flow cytometry, transmission electron microscopy, and mass spectrometry. RESULTS Levels of PRKD1 were reduced in human pancreatic ductal adenocarcinoma tissues compared with nontumor tissues. PRKD1KO-KC mice developed more pancreatic intraepithelial neoplasia, at a faster rate, than KC mice, and had more lung metastases and significantly shorter average survival time. Serum from PRKD1KO-KC mice had increased levels of sEVs compared with KC mice. Pancreatic cancer cells with loss or inhibition of PRKD1 increased secretion of sEVs; loss of PRKD1 reduced phosphorylation of its substrate, cortactin, resulting in increased F-actin levels at the plasma membrane. sEVs from cells with loss or reduced expression of PRKD1 had altered content, and injection of these sEVs into mice increased metastasis of xenograft tumors to lung, compared with sEVs from pancreatic cells that expressed PRKD1. PRKD1-deficient pancreatic cancer cells showed increased loading of integrin α6β4 into sEVs-a process that required CD82. CONCLUSIONS Human pancreatic ductal adenocarcinoma has reduced levels of PRKD1 compared with nontumor pancreatic tissues. Loss of PRKD1 results in reduced phosphorylation of cortactin in pancreatic cancer cell lines, resulting in increased in F-actin at the plasma membrane and increased release of sEVs, with altered content. These sEVs promote metastasis of xenograft and pancreatic tumors to lung in mice.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Sandra Polaschek
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Mareen Morawe
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Claudia Ruhland
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Schmid
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christoph Steup
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Yasin Bektas
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Hongxia Li
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Stephan Kruger
- Department of Medicine III, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
125
|
Investigation of Changes in Exosomes Profile During Storage Period of Erythrocyte Suspensions. Indian J Hematol Blood Transfus 2020. [DOI: 10.1007/s12288-020-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
126
|
Corbeil D, Santos MF, Karbanová J, Kurth T, Rappa G, Lorico A. Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells 2020; 9:cells9091931. [PMID: 32825578 PMCID: PMC7563309 DOI: 10.3390/cells9091931] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to explain their release from donor cells and the initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular routes and subcellular fate of EV content upon internalization remain poorly characterized. This is particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells. In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+ late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex composed of (VAMP)-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3), and Rab7 is essential for the transfer of EV-derived components to the nuclear compartment by orchestrating the particular localization of late endosomes in the nucleoplasmic reticulum.
Collapse
Affiliation(s)
- Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| | - Mark F. Santos
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden and CMCB, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; (T.K.)
| | - Germana Rappa
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
- Mediterranean Institute of Oncology, Via Penninazzo, 11, 95029 Viagrande, Italy
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| |
Collapse
|
127
|
Horiguchi K, Yoshida S, Tsukada T, Nakakura T, Fujiwara K, Hasegawa R, Takigami S, Ohsako S. Expression and functions of cluster of differentiation 9 and 81 in rat mammary epithelial cells. J Reprod Dev 2020; 66:515-522. [PMID: 32830152 PMCID: PMC7768173 DOI: 10.1262/jrd.2020-082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cluster of differentiation (CD) 9 and CD81 are closely-related members of the tetraspanin family that consist of four-transmembrane domain proteins.
Cd9 and Cd81 are highly expressed in breast cancer cells; however, their expression in healthy mammary glands is unclear. In
this study, we performed quantitative real-time PCR to analyze the expression levels of Cd9 and Cd81. Histological techniques
were employed to identify Cd9- and Cd81-expressing cells in rat mammary glands during pregnancy and lactation. It was observed
that Cd9 and Cd81 were expressed in the mammary glands, and their expression levels correlated with mammary gland development.
To identify cells expressing Cd9 and Cd81 in the mammary glands, we performed double immunohistochemical staining for CD9 and
CD81, prolactin receptor long form, estrogen receptor alpha, or Ki67. The results showed that CD9 and CD81 were co-expressed in proliferating mammary epithelial
cells. Next, we attempted to isolate CD9-positive epithelial cells from the mammary gland using pluriBead cell-separation technology based on antibody-mediated
binding of cells to beads of different sizes, followed by isolation using sieves with different mesh sizes. We successfully isolated CD9-positive epithelial
cells with 96.8% purity. In addition, we observed that small-interfering RNAs against Cd9 and Cd81 inhibited estrogen-induced
proliferation of CD9-positive mammary epithelial cells. Our current findings may provide novel insights into the proliferation of mammary epithelial cells
during pregnancy and lactation as well as in pathological processes associated with breast cancer.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Ken Fujiwara
- Department of Biological Science, Kanagwa University, Kanagawa 259-1293, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shunji Ohsako
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| |
Collapse
|
128
|
Akella M, Malla R. Molecular modeling and in vitro study on pyrocatechol as potential pharmacophore of CD151 inhibitor. J Mol Graph Model 2020; 100:107681. [PMID: 32738620 DOI: 10.1016/j.jmgm.2020.107681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
CD151 has been recognized as a prognostic marker, the therapeutic target of breast cancers, but less explored for small molecule inhibitors due to lack of a validated model. The 3-D structure of CD151 large extracellular loop (LEL) was modeled using the LOMETS server and validated by the Ramachandran plot. The validated structure was employed for molecular docking and structure-based pharmacophore analysis. Druglikeness was evaluated by the ADMET description protocol. Antiproliferative activity was evaluated by MTT, BrdU incorporation, flow cytometry, and cell death ELISAPLUS assay. This study predicted the best model for CD151-LEL with 94.1% residues in favored regions and Z score -2.79 kcal/mol using the threading method. The web-based receptor cavity method identified one functional target site, which was suitable for the binding of aromatic and heterocyclic compounds. Molecular docking study identified pyrocatechol (PCL) and 5-fluorouracil (FU) as potential leads of CD151-LEL. The pharmacophore model identified interaction points of modeled CD151-LEL with PCL and FU. Also, the analysis of ADMET properties revealed the drug-likeness of PCL and FU. The viability of MDA-MB 231 cells was significantly reduced with PCL and FU but less affected MCF-12A, normal healthy breast epithelial cell line. With 50% toxic concentration, both PCL and FU significantly inhibited 82.46 and 87.12% proliferation, respectively, of MDA-MB 231 cells by altering morphology and inducing G1 cell cycle arrest and apoptosis. In addition, PCL and FU inhibited the CD151 expression by 4.5-and 4.8-folds, respectively. This study suggests the further assessment of pyrocatechol as a potential lead of CD151 in breast cancer at the molecular level.
Collapse
Affiliation(s)
- Manasa Akella
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology Lab, Dept. of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to Be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
129
|
A promising approach toward efficient isolation of the exosomes by core-shell PCL-gelatin electrospun nanofibers. Bioprocess Biosyst Eng 2020; 43:1961-1971. [PMID: 32607862 DOI: 10.1007/s00449-020-02385-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Exosomes as cell-derived vesicles are promising biomarkers for noninvasive and early detection of different types of cancer. However, a straightforward and cost-effective technique for isolation of exosomes in routine clinical settings is still challenging. Herein, we present for the first time, a novel coaxial nanofiber structure for the exosome isolation from body fluids with high efficiency. Coaxial nanofiber structure is composed of polycaprolactone polymer as core and a thin layer of gelatin (below 10 nm) as the shell. The thermo-sensitive thin layer of gelatin can efficiently release the captured exosome by specific antibody namely, CD63, whenever its temperature raised to the physiological temperature of 37 °C. Moreover, the thin layer of gelatin induces less contamination to separated exosomes. The interconnected micro-pores of electrospun nanofibrous membrane insurances large surface area for immobilization of specific antibody for efficient exosome capturing. The efficacy of exosome isolation is determined by direct ELISA and compared with ultracentrifugation technique. For the exosome isolation, it was observed that over 87% of exosomes existed in the culture medium can be effectively isolated by coaxial electrospun nanofibers with the average thickness of 50 µm. Therefore, this promising technique can be substituted for the traditional techniques for exosome isolation which are mostly suffering from low efficacy, high cost, and troublesome process.
Collapse
|
130
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
131
|
Zhang Y, Wang J, Ding Y, Zhang J, Xu Y, Xu J, Zheng S, Yang H. Migrasome and Tetraspanins in Vascular Homeostasis: Concept, Present, and Future. Front Cell Dev Biol 2020; 8:438. [PMID: 32612990 PMCID: PMC7308473 DOI: 10.3389/fcell.2020.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cell migration plays a critical role in vascular homeostasis. Under noxious stimuli, endothelial cells (ECs) migration always contributes to vascular repair, while enhanced migration of vascular smooth muscle cells (VSMCs) will lead to pathological vascular remodeling. Moreover, vascular activities are involved in communication between ECs and VSMCs, between ECs and immune cells, et al. Recently, Ma et al. (2015) discovered a novel migration-dependent organelle “migrasome,” which mediated release of cytoplasmic contents, and this process was defined as “migracytosis.” The formation of migrasome is precisely regulated by tetraspanins (TSPANs), cholesterol and integrins. Migrasomes can be taken up by neighboring cells, and migrasomes are distributed in many kinds of cells and tissues, such as in blood vessel, human serum, and in ischemic brain of human and mouse. In addition, the migrasome elements TSPANs are wildly expressed in cardiovascular system. Therefore, TSPANs, migrasomes and migracytosis might play essential roles in regulating vascular homeostasis. In this review, we will discuss the discoveries of migration-dependent migrasome and migracytosis, migrasome formation, the basic differences between migrasomes and exosomes, the distributions and functions of migrasome, the functions of migrasome elements TSPANs in vascular biology, and discuss the possible roles of migrasomes and migracytosis in vascular homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Department of Ophthalmology, Qingdao Fubai Eye Hospital, Qingdao, China
| | - Yungang Ding
- Department of Ophthalmology, Qingdao Ludong Eye Hospital, Qingdao, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Department of Gastrointestinal Endoscopy, Guangzhou Cadre Health Management Center/Guangzhou Eleventh People's Hospital, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
132
|
Shedding Light on the Role of Extracellular Vesicles in HIV Infection and Wound Healing. Viruses 2020; 12:v12060584. [PMID: 32471020 PMCID: PMC7354510 DOI: 10.3390/v12060584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication. They are naturally released from cells into the extracellular environment. Based on their biogenesis, release pathways, size, content, and function, EVs are classified into exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Previous research has documented that EVs, specifically exosomes and MVs, play an important role in HIV infection, either by promoting HIV infection and pathogenesis or by inhibiting HIV-1 to a certain extent. We have also previously reported that EVs (particularly exosomes) from vaginal fluids inhibit HIV at the post-entry step (i.e., reverse transcription, integration). Besides the role that EVs play in HIV, they are also known to regulate the process of wound healing by regulating both the immune and inflammatory responses. It is noted that during the advanced stages of HIV infection, patients are at greater risk of wound-healing and wound-related complications. Despite ongoing research, the data on the actual effects of EVs in HIV infection and wound healing are still premature. This review aimed to update the current knowledge about the roles of EVs in regulating HIV pathogenesis and wound healing. Additionally, we highlighted several avenues of EV involvement in the process of wound healing, including coagulation, inflammation, proliferation, and extracellular matrix remodeling. Understanding the role of EVs in HIV infection and wound healing could significantly contribute to the development of new and potent antiviral therapeutic strategies and approaches to resolve impaired wounds in HIV patients.
Collapse
|
133
|
El Kharbili M, Cario M, Béchetoille N, Pain C, Boucheix C, Degoul F, Masse I, Berthier-Vergnes O. Tspan8 Drives Melanoma Dermal Invasion by Promoting ProMMP-9 Activation and Basement Membrane Proteolysis in a Keratinocyte-Dependent Manner. Cancers (Basel) 2020; 12:cancers12051297. [PMID: 32455575 PMCID: PMC7281247 DOI: 10.3390/cancers12051297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive skin cancer with an extremely challenging therapy. The dermal-epidermal junction (DEJ) degradation and subsequent dermal invasion are the earliest steps of melanoma dissemination, but the mechanisms remain elusive. We previously identified Tspan8 as a key actor in melanoma invasiveness. Here, we investigated Tspan8 mechanisms of action during dermal invasion, using a validated skin-reconstruct-model that recapitulates melanoma dermal penetration through an authentic DEJ. We demonstrate that Tspan8 is sufficient to induce melanoma cells’ translocation to the dermis. Mechanistically, Tspan8+ melanoma cells cooperate with surrounding keratinocytes within the epidermis to promote keratinocyte-originated proMMP-9 activation process, collagen IV degradation and dermal colonization. This concurs with elevated active MMP-3 and low TIMP-1 levels, known to promote MMP-9 activity. Finally, a specific Tspan8-antibody reduces proMMP-9 activation and dermal invasion. Overall, our results provide new insights into the role of keratinocytes in melanoma dermal colonization through a cooperative mechanism never reported before, and establish for the first time the pro-invasive role of a tetraspanin family member in a cell non-autonomous manner. This work also displays solid arguments for the use of Tspan8-blocking antibodies to impede early melanoma spreading and therefore metastasis.
Collapse
Affiliation(s)
- Manale El Kharbili
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Muriel Cario
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, F-33000 Bordeaux, France; (M.C.); (C.P.)
- AquiDerm, University Bordeaux, F-33076 Bordeaux, France
| | | | - Catherine Pain
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, F-33000 Bordeaux, France; (M.C.); (C.P.)
| | - Claude Boucheix
- INSERM U935, Université Paris-Sud, F-94800 Villejuif, France;
| | - Françoise Degoul
- INSERM U1240, Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France;
| | - Ingrid Masse
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSERM U1052, Université de Lyon, F-69008 Lyon, France
- Correspondence:
| | - Odile Berthier-Vergnes
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- US7INSERM /UMS3453 UCBL SFR Santé Lyon-Est, F-69372 Lyon, France
| |
Collapse
|
134
|
CD9 induces cellular senescence and aggravates atherosclerotic plaque formation. Cell Death Differ 2020; 27:2681-2696. [PMID: 32346137 DOI: 10.1038/s41418-020-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
CD9, a 24 kDa tetraspanin membrane protein, is known to regulate cell adhesion and migration, cancer progression and metastasis, immune and allergic responses, and viral infection. CD9 is upregulated in senescent endothelial cells, neointima hyperplasia, and atherosclerotic plaques. However, its role in cellular senescence and atherosclerosis remains undefined. We investigated the potential mechanism for CD9-mediated cellular senescence and its role in atherosclerotic plaque formation. CD9 knockdown in senescent human umbilical vein endothelial cells significantly rescued senescence phenotypes, while CD9 upregulation in young cells accelerated senescence. CD9 regulated cellular senescence through a phosphatidylinositide 3 kinase-AKT-mTOR-p53 signal pathway. CD9 expression increased in arterial tissues from humans and rats with age, and in atherosclerotic plaques in humans and mice. Anti-mouse CD9 antibody noticeably prevented the formation of atherosclerotic lesions in ApoE-/- mice and Ldlr-/- mice. Furthermore, CD9 ablation in ApoE-/- mice decreased atherosclerotic lesions in aorta and aortic sinus. These results suggest that CD9 plays critical roles in endothelial cell senescence and consequently the pathogenesis of atherosclerosis, implying that CD9 is a novel target for prevention and treatment of vascular aging and atherosclerosis.
Collapse
|
135
|
Xu R, Greening DW, Chen M, Rai A, Ji H, Takahashi N, Simpson RJ. Surfaceome of Exosomes Secreted from the Colorectal Cancer Cell Line SW480: Peripheral and Integral Membrane Proteins Analyzed by Proteolysis and TX114. Proteomics 2020; 19:e1700453. [PMID: 30865381 DOI: 10.1002/pmic.201700453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Exosomes are important bidirectional cell-cell communicators in normal and pathological physiology. Although exosomal surface membrane proteins (surfaceome) enable target cell recognition and are an attractive source of disease marker, they are poorly understood. Here, a comprehensive surfaceome analysis of exosomes secreted by the colorectal cancer cell line SW480 is described. Sodium carbonate extraction/Triton X-114 phase separation and mild proteolysis (proteinase K, PK) of intact exosomes is used in combination with label-free quantitative mass spectrometry to identify 1025 exosomal proteins of which 208 are predicted to be integral membrane proteins (IMPs) according to TOPCONS and GRAVY scores. Interrogation of UniProt database-annotated proteins reveals 124 predicted peripherally-associated membrane proteins (PMPs). Surprisingly, 108 RNA-binding proteins (RBPs)/RNA nucleoproteins (RNPs) are found in the carbonate/Triton X-114 insoluble fraction. Mild PK treatment of SW480-GFP labeled exosomes reveal 58 proteolytically cleaved IMPs and 14 exoplasmic PMPs (e.g., CLU/GANAB/LGALS3BP). Interestingly, 18 RBPs/RNPs (e.g., EIF3L/RPL6) appear bound to the outer exosome surface since they are sensitive to PK proteolysis. The finding that outer surface-localized miRNA Let-7a-5p is RNase A-resistant, but degraded by a combination of RNase A/PK treatment suggests exosomal miRNA species also reside on the outer surface of exosomes bound to RBPs/RNPs.
Collapse
Affiliation(s)
- Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8509, Japan.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| |
Collapse
|
136
|
Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers (Basel) 2020; 12:cancers12040795. [PMID: 32224917 PMCID: PMC7226392 DOI: 10.3390/cancers12040795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most commonly diagnosed and the second leading cause of cancer-related mortality among women worldwide. miR-518f-5p has been shown to modulate the expression of the metastasis suppressor CD9 in prostate cancer. However, the role of miR-518f-5p and CD9 in breast cancer is unknown. Therefore, this study aimed to elucidate the role of miR-518f-5p and the mechanisms responsible for decreased CD9 expression in breast cancer, as well as the role of CD9 in de novo tumor formation and metastasis. miR-518f-5p function was assessed using migration, adhesion, and proliferation assays. miR-518f-5p was overexpressed in breast cancer cell lines that displayed significantly lower CD9 expression as well as less endogenous CD9 3'UTR activity, as assessed using qPCR and dual luciferase assays. Transfection of miR-518f-5p significantly decreased CD9 protein expression and increased breast cell migration in vitro. Cd9 deletion in the MMTV/PyMT mouse model impaired tumor growth, but had no effect on tumor initiation or metastasis. Therefore, inhibition of miR-518f-5p may restore CD9 expression and aid in the treatment of breast cancer metastasis.
Collapse
|
137
|
Hayward S, Gachehiladze M, Badr N, Andrijes R, Molostvov G, Paniushkina L, Sopikova B, Slobodová Z, Mgebrishvili G, Sharma N, Horimoto Y, Burg D, Robertson G, Hanby A, Hoar F, Rea D, Eckhardt BL, Ueno NT, Nazarenko I, Long HM, van Laere S, Shaaban AM, Berditchevski F. The CD151-midkine pathway regulates the immune microenvironment in inflammatory breast cancer. J Pathol 2020; 251:63-73. [PMID: 32129471 DOI: 10.1002/path.5415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The immune microenvironment in inflammatory breast cancer (IBC) is poorly characterised, and molecular and cellular pathways that control accumulation of various immune cells in IBC tissues remain largely unknown. Here, we discovered a novel pathway linking the expression of the tetraspanin protein CD151 in tumour cells with increased accumulation of macrophages in cancerous tissues. It is notable that elevated expression of CD151 and a higher number of tumour-infiltrating macrophages correlated with better patient responses to chemotherapy. Accordingly, CD151-expressing IBC xenografts were characterised by the increased infiltration of macrophages. In vitro migration experiments demonstrated that CD151 stimulates the chemoattractive potential of IBC cells for monocytes via mechanisms involving midkine (a heparin-binding growth factor), integrin α6β1, and production of extracellular vesicles (EVs). Profiling of chemokines secreted by IBC cells demonstrated that CD151 increases production of midkine. Purified midkine specifically stimulated migration of monocytes, but not other immune cells. Further experiments demonstrated that the chemoattractive potential of IBC-derived EVs is blocked by anti-midkine antibodies. These results demonstrate for the first time that changes in the expression of a tetraspanin protein by tumour cells can affect the formation of the immune microenvironment by modulating recruitment of effector cells to cancerous tissues. Therefore, a CD151-midkine pathway can be considered as a novel target for controlled changes of the immune landscape in IBC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Steven Hayward
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Mariam Gachehiladze
- Department of Clinical and Molecular Pathology, Palacký Univerzity, Olomouc, Czech Republic
| | - Nahla Badr
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK.,Department of Pathology, Menoufia University School of Medicine, Menoufia, Egypt
| | - Regina Andrijes
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Guerman Molostvov
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Liliia Paniushkina
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Barbora Sopikova
- Department of Clinical and Molecular Pathology, Palacký Univerzity, Olomouc, Czech Republic
| | - Zuzana Slobodová
- Department of Clinical and Molecular Pathology, Palacký Univerzity, Olomouc, Czech Republic
| | - Giorgi Mgebrishvili
- Department of Clinical and Molecular Pathology, Palacký Univerzity, Olomouc, Czech Republic
| | - Nisha Sharma
- Breast Unit, St James Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Yoshiya Horimoto
- Department of Breast Surgical Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Andrew Hanby
- University of Leeds, Leeds Institute of Cancer and Pathology (LICAP) Leeds, Leeds, UK
| | - Fiona Hoar
- Hospital, Sandwell and West Birmingham Hospitals, Department of General and Breast Surgery, Birmingham, UK
| | - Daniel Rea
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Bedrich L Eckhardt
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, TX, USA
| | - Irina Nazarenko
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heather M Long
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Steven van Laere
- Translational Cancer Research Unit Center for Oncological Research, University Antwerp, Antwerp, Belgium
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
138
|
Xia Y, Deng Y, Zhou Y, Li D, Sun X, Gu L, Chen Z, Zhao Q. TSPAN31 suppresses cell proliferation in human cervical cancer through down-regulation of its antisense pairing with CDK4. Cell Biochem Funct 2020; 38:660-668. [PMID: 32207169 DOI: 10.1002/cbf.3526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Natural antisense transcripts (NAT) are prevalent phenomena in the mammalian genome and play significant regulatory roles in gene expression. While new insights into NAT continue to be revealed, their exact function and their underlying mechanisms in human cancer remain largely unclear. We identified a NAT of CDK4, referred to TSPAN31, which inhibits CDK4 mRNA and protein expression in human cervical cancer by targeting the 3'-untranslated region (3'-UTR) of the CDK4 mRNA. Furthermore, silencing the expression of the TSPAN31 mRNA rescued the TSPAN31 3'-UTR- or the TSPAN31 full-length-induced decrease in CDK4 expression. Noteworthy, we discovered that TSPAN31, as a member of the tetraspanin family, suppressed cell proliferation by down-regulating its antisense pairing with CDK4 and decreasing retinoblastoma protein phosphorylation in human cervical cancer. Therefore, the results of the present study suggest that TSPAN31 may serve as a potential molecular target for the development of novel anti-cancer agents. SIGNIFICANCE OF THE STUDY: Natural antisense transcripts are widely found in the genome and play an important role in the growth and development of cells. TSPAN31 is natural antisense transcript, and CDK4 is an important gene in the regulation of the cell cycle. Therefore, TSPAN31 and CDK4 have great significance in the study of tumour therapeutic targets.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuanfei Deng
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuting Zhou
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xuemeng Sun
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Gu
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Zipeng Chen
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
139
|
The Role of Bone Marrow Mesenchymal Stem Cell Derived Extracellular Vesicles (MSC-EVs) in Normal and Abnormal Hematopoiesis and Their Therapeutic Potential. J Clin Med 2020; 9:jcm9030856. [PMID: 32245055 PMCID: PMC7141498 DOI: 10.3390/jcm9030856] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a heterogeneous cellular population responsible for the support, maintenance, and regulation of normal hematopoietic stem cells (HSCs). In many hematological malignancies, however, MSCs are deregulated and may create an inhibitory microenvironment able to induce the disease initiation and/or progression. MSCs secrete soluble factors including extracellular vesicles (EVs), which may influence the bone marrow (BM) microenvironment via paracrine mechanisms. MSC-derived EVs (MSC-EVs) may even mimic the effects of MSCs from which they originate. Therefore, MSC-EVs contribute to the BM homeostasis but may also display multiple roles in the induction and maintenance of abnormal hematopoiesis. Compared to MSCs, MSC-EVs have been considered a more promising tool for therapeutic purposes including the prevention and treatment of Graft Versus Host Disease (GVHD) following allogenic HSC transplantation (HSCT). There are, however, still unanswered questions such as the molecular and cellular mechanisms associated with the supportive effect of MSC-EVs, the impact of the isolation, purification, large-scale production, storage conditions, MSC source, and donor characteristics on MSC-EV biological effects as well as the optimal dose and safety for clinical usage. This review summarizes the role of MSC-EVs in normal and malignant hematopoiesis and their potential contribution in treating GVHD.
Collapse
|
140
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1139] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
141
|
Lorencova L, Bertok T, Bertokova A, Gajdosova V, Hroncekova S, Vikartovska A, Kasak P, Tkac J. Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lenka Lorencova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Aniko Bertokova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Veronika Gajdosova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Stefania Hroncekova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University P.O. Box 2713 Doha Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
142
|
TSPAN8 as a Novel Emerging Therapeutic Target in Cancer for Monoclonal Antibody Therapy. Biomolecules 2020; 10:biom10030388. [PMID: 32138170 PMCID: PMC7175299 DOI: 10.3390/biom10030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.
Collapse
|
143
|
Yang C, Chen N, Li X, Lu D, Hou Z, Li Y, Jin Y, Gu J, Yin Y. Mutations in the coat complex II component SEC23B promote colorectal cancer metastasis. Cell Death Dis 2020; 11:157. [PMID: 32123160 PMCID: PMC7052170 DOI: 10.1038/s41419-020-2358-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of death for colorectal cancer (CRC). However, the protein transport process involved in CRC metastasis remains unclear. In this report, we use whole-exome sequencing and bioinformatics analysis to identify somatic mutations in CRC samples and found mutations of the protein transport gene Sec23 homolog B (SEC23B) in patients with metachronous liver metastasis. We show that deletion of SEC23B suppresses the membrane localization of adhesion proteins and augments cell mobility. SEC23B mutations either cause a premature stop (C649T) or impair its protein transport activity (C1467G and T488C + G791A + G2153A). Furthermore, SEC23B mutations inhibit the transport of epithelial cell adhesion molecule (EPCAM) and CD9 molecule, thereby attenuating cell adhesion and promoting invasiveness both in vitro and in vivo. Taken together, these data demonstrate the important impact of SEC23B mutations on metastasis, and we propose that SEC23B is a potential suppressor of CRC metastasis.
Collapse
Affiliation(s)
- Chunyuan Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Nan Chen
- Department of Gastrointestinal Center, Peking University Cancer Hospital and Institute, 100142, Beijing, P. R. China
| | - Xiang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Yuhua Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Yan Jin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China
| | - Jin Gu
- Department of Gastrointestinal Center, Peking University Cancer Hospital and Institute, 100142, Beijing, P. R. China.
| | - Yuxin Yin
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China. .,Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, 100191, Beijing, P. R. China.
| |
Collapse
|
144
|
Liu Y, Fan J, Xu T, Ahmadinejad N, Hess K, Lin SH, Zhang J, Liu X, Liu L, Ning B, Liao Z, Hu TY. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. SCIENCE ADVANCES 2020; 6:eaaz6162. [PMID: 32195353 PMCID: PMC7065889 DOI: 10.1126/sciadv.aaz6162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/13/2019] [Indexed: 05/11/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. More than half of patients with NSCLC die after developing distant metastases, so rapid, minimally invasive prognostic biomarkers are needed to reduce mortality. We used proteomics to identify proteins differentially expressed on extracellular vesicles (EVs) of nonmetastatic 393P and metastatic 344SQ NSCLC cell lines and found that tetraspanin-8 (Tspan8) was selectively enriched on 344SQ EVs. NSCLC cell lines treated with EVs overexpressing Tspan8 also exhibited increased Matrigel invasion. Elevated Tspan8 expression on serum EVs of individuals with stage III premetastatic NSCLC tumors was also associated with reduced distant metastasis-free survival, suggesting that Tspan8 levels on serum EVs may predict future metastasis. This result suggests that a minimally invasive blood test to analyze EV expression of Tspan8 may be of potential value to guide therapeutic decisions for patients with NSCLC and merits further study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tony Y. Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
145
|
Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, Wang H. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 2020; 477:41-48. [PMID: 32112905 DOI: 10.1016/j.canlet.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, despite improvements in the clinical trial and diagnosis, HCC still remains high mortality due to the 70% recurrence and lung metastasis after surgical resection. Exosomes are small membrane vesicles, which are shuttled from donor cells to recipient cells, contributing to the recruitment and reprogramming of constituents via an autocrine or paracrine fashion. HCC derived exosomes could redirect metastasis of tumor cells which lack the capacity to metastasize to a specific organ via generating pre-metastatic niche. These findings emphasize a practical and potentially feasible role of exosomes in the treatment of patients with HCC, both as a target and a vehicle for drug design. We herein summarize recent findings that implicate oncogenes and non-canonical signaling of HCC exosomes, as well as the impact of exosomal bioactive molecules in high recurrence induced by organ-specific metastasis. The aim of review is to illustrate the underlying mechanism of exosomes in tumor metastasis, immune evasion, and the potential application of prognostic biomarker in HCC process.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiguo Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiang Xia
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
146
|
Kaprio T, Hagström J, Andersson LC, Haglund C. Tetraspanin CD63 independently predicts poor prognosis in colorectal cancer. Histol Histopathol 2020; 35:887-892. [PMID: 32073129 DOI: 10.14670/hh-18-209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD63, a member of the tetraspanin family, is expressed in endosomes and enriched in exosomes. Tetraspanins participate in a variety of physiological processes, including cellular differentiation, cell-cell fusion, and cell migration. CD63 reportedly carries both protumorigenic and tumor suppressor properties, and appears to be upregulated in breast cancer, astrocytoma, and melanoma. Yet, the effect of CD63 on cancer prognosis remains unclear, and no previous reports examined it in colorectal cancer (CRC). Identifying novel biomarkers will allow us to better differentiate patients with an increased risk of recurrence and who might benefit from adjuvant therapy. We applied immunohistochemistry with antibodies to human CD63 on 620 consecutive CRC patients treated at the Helsinki University Hospital. We evaluated the associations between CD63 expression and clinicopathological parameters and patient prognosis. We found that CD63 expression associated with an advanced stage, poor differentiation, and mucinous histology. We found no association between CD63 expression and age, sex or tumor location. CD63 expression predicted an unfavorable prognosis in CRC (p=0.00001, log-rank test) and in a subgroup of patients with metastasized CRC (p=0.011). Cox's multivariate analysis identified CD63 as an independent factor predicting an unfavorable prognosis in CRC and in the subgroup with metastasized disease. We show for the first time that CD63 immunohistochemistry expression represents an independent marker of an unfavorable prognosis in CRC and associates with unfavorable clinicopathological parameters. Our results support the hypothesis that a higher tissue expression of CD63 in CRC, indicating an epithelial-to-mesenchymal transition (EMT)-associated secretory phenotype, associated with an adverse outcome.
Collapse
Affiliation(s)
- Tuomas Kaprio
- Department of Surgery, Helsinki University Central Hospital, HUS, Helsinki, Finland. .,Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Surgery, Helsinki University Central Hospital, HUS, Helsinki, Finland
| |
Collapse
|
147
|
Tetraspanins TSP-12 and TSP-14 function redundantly to regulate the trafficking of the type II BMP receptor in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:2968-2977. [PMID: 31988138 DOI: 10.1073/pnas.1918807117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetraspanins are a unique family of 4-pass transmembrane proteins that play important roles in a variety of cell biological processes. We have previously shown that 2 paralogous tetraspanins in Caenorhabditis elegans, TSP-12 and TSP-14, function redundantly to promote bone morphogenetic protein (BMP) signaling. The underlying molecular mechanisms, however, are not fully understood. In this study, we examined the expression and subcellular localization patterns of endogenously tagged TSP-12 and TSP-14 proteins. We found that TSP-12 and TSP-14 share overlapping expression patterns in multiple cell types, and that both proteins are localized on the cell surface and in various types of endosomes, including early, late, and recycling endosomes. Animals lacking both TSP-12 and TSP-14 exhibit reduced cell-surface levels of the BMP type II receptor DAF-4/BMPRII, along with impaired endosome morphology and mislocalization of DAF-4/BMPRII to late endosomes and lysosomes. These findings indicate that TSP-12 and TSP-14 are required for the recycling of DAF-4/BMPRII. Together with previous findings that the type I receptor SMA-6 is recycled via the retromer complex, our work demonstrates the involvement of distinct recycling pathways for the type I and type II BMP receptors and highlights the importance of tetraspanin-mediated intracellular trafficking in the regulation of BMP signaling in vivo. As TSP-12 and TSP-14 are conserved in mammals, our findings suggest that the mammalian TSP-12 and TSP-14 homologs may also function in regulating transmembrane protein recycling and BMP signaling.
Collapse
|
148
|
Ke J, Tian J, Mei S, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Wang Z, Gong J, Zhong R, Chang J, Miao X. Genetic Predisposition to Colon and Rectal Adenocarcinoma Is Mediated by a Super-enhancer Polymorphism Coactivating CD9 and PLEKHG6. Cancer Epidemiol Biomarkers Prev 2020; 29:850-859. [PMID: 31988071 DOI: 10.1158/1055-9965.epi-19-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified dozens of loci associated with colon and rectal adenocarcinoma risk. As tissue-specific super-enhancers (SE) play important roles in tumorigenesis, we systematically investigate SEs and inner variants in established GWAS loci to decipher the underlying biological mechanisms. METHODS Through a comprehensive bioinformatics analysis on multi-omics data, we screen potential single-nucleotide polymorphisms (SNP) in cancer-specific SEs, and then subject them to a two-stage case-control study containing 4,929 cases and 7,083 controls from the Chinese population. A series of functional assays, including reporter gene assays, electrophoretic mobility shift assays (EMSA), CRISPR-Cas9 genome editing, chromosome conformation capture (3C) assays, and cell proliferation experiments, are performed to characterize the variant's molecular consequence and target genes. RESULTS The SNP rs11064124 in 12p13.31 is found significantly associated with the risk of colon and rectal adenocarcinoma with an odds ratio (OR) of 0.87 [95% confidence interval (CI), 0.82-0.92, P = 8.67E-06]. The protective rs11064124-G weakens the binding affinity with vitamin D receptor (VDR) and increases the enhancer's activity and interactions with two target genes' promoters, thus coactivating the transcription of CD9 and PLEKHG6, which are both putative tumor suppressor genes for colon and rectal adenocarcinoma. CONCLUSIONS Our integrative study highlights an SE polymorphism rs11064124 and two susceptibility genes CD9 and PLEKHG6 in 12p13.31 for colon and rectal adenocarcinoma. IMPACT These findings suggest a novel insight for genetic pathogenesis of colon and rectal adenocarcinoma, involving transcriptional coactivation of diverse susceptibility genes via the SE element as a gene regulation hub.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
149
|
Baramiya MG, Baranov E. From cancer to rejuvenation: incomplete regeneration as the missing link (Part I: the same origin, different outcomes). Future Sci OA 2020; 6:FSO450. [PMID: 32140249 PMCID: PMC7050604 DOI: 10.2144/fsoa-2019-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Here, we interpret malignant tissue transformation from the aging point of view, that is, as a result of insufficient cell adaptation to the needs of regeneration/repair and proliferation. A consequence of the aging (senescence) process is gradual loss of self-renewal potential. It limits lifespan and leads to death due to the decline of tissue/organ functions, failure of regulatory mechanisms, disruption of endogenous processes and increased susceptibility to exogenous factors. Recapitulation of the embryonic pathway of self-renewal/rejuvenation in adulthood is epigenetically determined. At the postembryonic stage, in the absence of immune privilege, this recapitulation is transformed into cancer (potency expansion of single structures composing the organism to the detriment of the whole organism or disintegrating growth). We suggest that the process of rebirth occurs in the same way as embryonic tissue growth. Thus, the idea to use the potential of the transformed cells to stop the aging process has been proposed.
Collapse
|
150
|
Zhang HS, Liu HY, Zhou Z, Sun HL, Liu MY. TSPAN8 promotes colorectal cancer cell growth and migration in LSD1-dependent manner. Life Sci 2020; 241:117114. [DOI: 10.1016/j.lfs.2019.117114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|