101
|
Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions. Chin Med J (Engl) 2021; 134:699-707. [PMID: 33605598 PMCID: PMC7989993 DOI: 10.1097/cm9.0000000000001133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism. Methods We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditions in vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Results The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20 vs. 0.44 ± 0.08, t = 6.67, P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04 vs. 0.95 ± 0.10, t = 2.90, P < 0.05), and PI3K (0.40 ± 0.06 vs. 0.63 ± 0.10, t = 3.42, P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02 vs. 0.58 ± 0.03, t = 9.13, P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14 vs. 1.27 ± 0.20, t = 4.12, P < 0.05), up-regulated p62 expression (1.10 ± 0.20 vs. 0.77 ± 0.04, t = 2.80, P < 0.05), and up-regulated PI3K (0.54 ± 0.05 vs. 0.40 ± 0.06, t = 3.11, P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05 vs. 0.39 ± 0.02, t = 9.13, P < 0.05). A whole-genome microarray assay screened the differentially expressed gene HO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration of HO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway. Conclusions Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstances in vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
Collapse
|
102
|
Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov 2021; 20:287-307. [PMID: 33589815 DOI: 10.1038/s41573-020-00109-w] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The circadian clock evolved in diverse organisms to integrate external environmental changes and internal physiology. The clock endows the host with temporal precision and robust adaptation to the surrounding environment. When circadian rhythms are perturbed or misaligned, as a result of jet lag, shiftwork or other lifestyle factors, adverse health consequences arise, and the risks of diseases such as cancer, cardiovascular diseases or metabolic disorders increase. Although the negative impact of circadian rhythm disruption is now well established, it remains underappreciated how to take advantage of biological timing, or correct it, for health benefits. In this Review, we provide an updated account of the circadian system and highlight several key disease areas with altered circadian signalling. We discuss environmental and lifestyle modifications of circadian rhythm and clock-based therapeutic strategies, including chronotherapy, in which dosing time is deliberately optimized for maximum therapeutic index, and pharmacological agents that target core clock components and proximal regulators. Promising progress in research, disease models and clinical applications should encourage a concerted effort towards a new era of circadian medicine.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
103
|
Dmitrieva NI, Walts AD, Nguyen DP, Grubb A, Zhang X, Wang X, Ping X, Jin H, Yu Z, Yu ZX, Yang D, Schwartzbeck R, Dalgard CL, Kozel BA, Levin MD, Knutsen RH, Liu D, Milner JD, López DB, O'Connell MP, Lee CCR, Myles IA, Hsu AP, Freeman AF, Holland SM, Chen G, Boehm M. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest 2021; 130:4167-4181. [PMID: 32369445 DOI: 10.1172/jci135490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, also known as Job's syndrome) is caused by mutations in STAT3. These patients present with immunodeficiency accompanied by severe nonimmunological features, including skeletal, connective tissue, and vascular abnormalities, poor postinfection lung healing, and subsequent pulmonary failure. No specific therapies are available for these abnormalities. Here, we investigated underlying mechanisms in order to identify therapeutic targets. Histological analysis of skin wounds demonstrated delayed granulation tissue formation and vascularization during skin-wound healing in AD-HIES patients. Global gene expression analysis in AD-HIES patient skin fibroblasts identified deficiencies in a STAT3-controlled transcriptional network regulating extracellular matrix (ECM) remodeling and angiogenesis, with hypoxia-inducible factor 1α (HIF-1α) being a major contributor. Consistent with this, histological analysis of skin wounds and coronary arteries from AD-HIES patients showed decreased HIF-1α expression and revealed abnormal organization of the ECM and altered formation of the coronary vasa vasorum. Disease modeling using cell culture and mouse models of angiogenesis and wound healing confirmed these predicted deficiencies and demonstrated therapeutic benefit of HIF-1α-stabilizing drugs. The study provides mechanistic insights into AD-HIES pathophysiology and suggests potential treatment options for this rare disease.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Avram D Walts
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Dai Phuong Nguyen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Alex Grubb
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Xue Zhang
- Bioinformatics and Systems Biology Core, and
| | - Xujing Wang
- Bioinformatics and Systems Biology Core, and
| | - Xianfeng Ping
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Hui Jin
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Zhen Yu
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Dan Yang
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Robin Schwartzbeck
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics.,The American Genome Center, and.,Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | - Mark D Levin
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | | | - Delong Liu
- Laboratory of Vascular and Matrix Genetics, NHLBI
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Diego B López
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), and
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch
| |
Collapse
|
104
|
Wei Y, Chen J, Cai GE, Lu W, Xu W, Wang R, Lin Y, Yang C. Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation 2021; 44:129-147. [PMID: 32940818 DOI: 10.1007/s10753-020-01314-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia are resident macrophage-like cells in the central nervous system (CNS). The induction of microglial activation dampens neuroinflammation-related diseases by promoting microglial (re)polarization to the anti-inflammatory (M2) phenotype and can serve as a potential therapeutic approach. Mitochondrial respiration and metabolic reprogramming are required for the anti-inflammatory response of M2 macrophages. However, whether these mitochondrial-dependent pathways are involved in microglial (re)polarization to the anti-inflammatory (M2) phenotype under conditions of lipopolysaccharide (LPS)-induced neuroinflammation remains unclear. Moreover, the mechanisms that coordinate mitochondrial respiration and the functional reprogramming of microglial cells have not been fully elucidated. Rosmarinic acid (RA) possesses antioxidative and anti-inflammatory activities, and we previously reported that RA markedly suppresses LPS-stimulated M1 microglial activation in mice. In this study, we found that RA suppresses M1 microglial polarization and promotes microglial polarization to the M2 phenotype under conditions of neuroinflammation. We identified an increase in mitochondrial respiration and found that metabolic reprogramming is required for the RA-mediated promotion of microglial polarization to the M2 phenotype under LPS-induced neuroinflammation conditions. Hypoxia-inducible factor (HIF) subunits are the key effector molecules responsible for the effects of RA on the restoration of mitochondrial function, metabolic reprogramming, and phenotypic polarization to M2 microglia. The phosphoinositide-dependent protein kinase 1 (PDPK1)/Akt/mTOR pathway is involved in the RA-mediated regulation of HIF expression and increase in M2 marker expression. We propose that the inhibition of PDPK1/Akt/HIFs by RA might be a potential therapeutic approach for inhibiting neuroinflammation through the regulation of microglial M1/M2 polarization. Graphical abstract Schematic of the mechanism through which RA suppresses LPS-induced neuroinflammation by promoting microglial polarization to the M2 phenotype via PDPK1/Akt/HIFs. The bold arrows indicate the direction of the effects of RA (i.e., inhibitory or promoting effects on cytokines or mediators).
Collapse
Affiliation(s)
- Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianxiong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guo-En Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Lu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Ruiguo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
105
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
106
|
Raza MZ, Cadassou O, Dumontet C, Cros-Perrial E, Jordheim LP. CD73 and cN-II regulate the cellular response to chemotherapeutic and hypoxic stress in lung adenocarcinoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129842. [PMID: 33434633 DOI: 10.1016/j.bbagen.2021.129842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cytosolic 5'-nucleotidase II (cN-II) and ecto-5'-nucleotidase (CD73) are enzymes involved in the nucleotide metabolism by dephosphorylating nucleoside monophosphates. Both enzymes are involved in cancer by modifying anticancer drug activity, cancer cell biology and immune modulation. METHODS We have modified lung cancer cells (NCI-H292) to become deficient for either or both enzymes using the CRISPR/Cas9 technique, and studied the implication of the two enzymes in the cellular response to different stress condition i.e. chemotherapeutic agents, hypoxia and nucleotide stress. RESULTS Our results show that there is no significant role of these enzymes in cell proliferation under hypoxic stress. Similarly, cN-II and CD73 are not involved in wound healing ability under CoCl2-mediated HIF-1α stabilization. Furthermore, our results show that CD73-deficiency is associated with increased apoptosis in response to 1600 μM adenosine, decreased sensitivity to mitomycin and enhanced sensitivity to vincristine. cN-II deficiency increased in vivo tumor growth and sensitivity to vincristine and mitomycin C. CONCLUSIONS Our study gives new insights into the biological roles of cN-II and CD73 under stress conditions in this particular cancer cell line. Further experiments will help deciphering the molecular mechanisms underlying the observed differences.
Collapse
Affiliation(s)
- Muhammad-Zawwad Raza
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Octavia Cadassou
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, F-69495 Pierre Bénite, France
| | - Emeline Cros-Perrial
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France.
| |
Collapse
|
107
|
Hsu J, Krishnan A, Lee SA, Dodd-O JM, Kim BS, Illei P, Yarnoff K, Hamad AA, Rabb H, Bush EL. CD3 +CD4 -CD8 - Double-negative αβ T cells attenuate lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2021; 161:e81-e90. [PMID: 31864698 PMCID: PMC7195225 DOI: 10.1016/j.jtcvs.2019.09.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Lung ischemia-reperfusion injury (IRI) is a common complication after lung transplantation, and immune cells have been implicated in modulating outcomes. We hypothesized that a newly described subset of αβ T-cell receptor positive cells; that is, CD4-CD8- (double negative [DN]) T cells, are found in lungs and can protect against lung IRI. METHODS Ischemia was induced in C57BL/6 mice by left pulmonary artery and vein occlusion for 30 minutes followed by 180 minutes of reperfusion. These mice were paired with sham hilar dissected surgical controls. In mice undergoing IRI, adoptive transfer of DN T cells or conventional T cells was performed 12 hours before occlusion. Flow cytometry was used to quantify T cells and inflammatory cytokines, and apoptotic signaling pathways were evaluated with immunoblotting. Lung injury was assessed with Evans blue dye extravasation. RESULTS DN T cells were significantly higher (5.29% ± 1% vs 2.21% ± 3%; P < .01) in IRI lungs and secreted higher levels of interleukin-10 (30% ± 5% vs 6% ± 1%; P < .01) compared with surgical sham controls. Immunoblotting, hematoxylin and eosin staining and Evans blue dye demonstrated that adoptive transfer of DN T cells significantly decreased interstitial edema (P < .01) and attenuated apoptosis/cleaved caspase-3 expression in the lungs following lung IRI (P < .01). CONCLUSIONS DN T cells traffic into lungs during IRI, and have tissue protective functions regulating inflammation and apoptosis. We propose a potential novel immunoregulatory function of DN T cells during lung IRI.
Collapse
Affiliation(s)
- Joshua Hsu
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Aravind Krishnan
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Sul A Lee
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Jefferey M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bo S Kim
- Divisions of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Peter Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Kristine Yarnoff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Abdel A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Errol L Bush
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
108
|
Zhang Z, Fan J, Du J, Peng X. Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213575] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
109
|
Wang RX, Henen MA, Lee JS, Vögeli B, Colgan SP. Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes 2021; 13:1938380. [PMID: 34190032 PMCID: PMC8253137 DOI: 10.1080/19490976.2021.1938380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota is essential for human health. Microbial supply of short-chain fatty acids (SCFAs), particularly butyrate, is a well-established contributor to gut homeostasis and disease resistance. Reaching millimolar luminal concentrations, butyrate is sequestered and utilized in the colon as the favored energy source for intestinal epithelia. Given the steep oxygen gradient across the anoxic lumen and the highly oxygenated lamina propria, the colon provides a particularly interesting environment to study oxygen sensing. Previous studies have shown that the transcription factor hypoxia-inducible factor (HIF) is stabilized in healthy colonic epithelia. Here we show that butyrate directly inhibits HIF prolyl hydroxylases (PHDs) to stabilize HIF. We find that butyrate stabilizes HIF in vitro despite eliminating β-oxidation and resultant oxygen consumption. Using recombinant PHD protein in combination with nuclear magnetic resonance and enzymatic biochemical assays, we identify butyrate to bind and function as a unique, noncompetitive inhibitor of PHDs relative to other SCFAs. Butyrate inhibited PHD with a noncompetitive Ki of 5.3 ± 0.5 mM, a physiologically relevant concentration. We also confirm that microbiota-derived butyrate is necessary to stabilize HIF in mice colonic tissue through antibiotic-induced butyrate depletion and reconstitution experiments. Our results suggest that the co-evolution of mammals and mutualistic microbiota has selected for butyrate to impact a critical gene regulation pathway that can be extended beyond the mammalian gut. As PHDs are a major target for drug development in the stabilization of HIF, butyrate holds great potential as a well-tolerated endogenous inhibitor with far-reaching therapeutic impact.
Collapse
Affiliation(s)
- Ruth X. Wang
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Medical Scientist Training Program, University of Colorado, Aurora, CO, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - J. Scott Lee
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P. Colgan
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
110
|
Endo Y, Baldino K, Li B, Zhang Y, Sakthivel D, MacArthur M, Panayi AC, Kip P, Spencer DJ, Jasuja R, Bagchi D, Bhasin S, Nuutila K, Neppl RL, Wagers AJ, Sinha I. Loss of ARNT in skeletal muscle limits muscle regeneration in aging. FASEB J 2020; 34:16086-16104. [PMID: 33064329 PMCID: PMC7756517 DOI: 10.1096/fj.202000761rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Kodi Baldino
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bin Li
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuteng Zhang
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Michael MacArthur
- Department of Genetics and Complex DiseasesHarvard School of Public HealthBostonMAUSA
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | - Adriana C. Panayi
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Peter Kip
- Division of Vascular and Endovascular SurgeryBrigham and Women's HospitalBostonMAUSA
| | | | - Ravi Jasuja
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Debalina Bagchi
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shalender Bhasin
- Division of EndocrinologyBrigham and Women's HospitalBostonMAUSA
| | - Kristo Nuutila
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Ronald L. Neppl
- Department of Orthopedic SurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Amy J. Wagers
- Joslin Diabetes CenterBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
- Paul F. Glenn Center for the Biology of AgingHarvard Medical SchoolBostonMAUSA
| | - Indranil Sinha
- Division of Plastic SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
- Harvard Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
111
|
Bengoa AA, Errea AJ, Rumbo M, Abraham AG, Garrote GL. Modulatory properties of Lactobacillus paracasei fermented milks on gastric inflammatory conditions. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
112
|
Reyes A, Corrales N, Gálvez NMS, Bueno SM, Kalergis AM, González PA. Contribution of hypoxia inducible factor-1 during viral infections. Virulence 2020; 11:1482-1500. [PMID: 33135539 PMCID: PMC7605355 DOI: 10.1080/21505594.2020.1836904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento De Endocrinología, Facultad De Medicina, Escuela De Medicina, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
113
|
Zhu L, Zhang Y, Zhang Z, Ding X, Gong C, Qian Y. Activation of PI3K/Akt/HIF-1α Signaling is Involved in Lung Protection of Dexmedetomidine in Patients Undergoing Video-Assisted Thoracoscopic Surgery: A Pilot Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5155-5166. [PMID: 33262576 PMCID: PMC7699453 DOI: 10.2147/dddt.s276005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Background Lung resection and one lung ventilation (OLV) during video-assisted thoracoscopic surgery (VATS) may lead to acute lung injury. Dexmedetomidine (DEX), a highly selective α2 adrenergic receptor agonist, improves arterial oxygenation in adult patients undergoing thoracic surgery. The aim of this pilot study was to explore possible mechanism related to lung protection of DEX in patients undergoing VATS. Patients and Methods Seventy-four patients scheduled for VATS were enrolled in this study. Three timepoints (before anesthesia induction (T0), 40 min after OLV (T1), and 10 min after two-lung ventilation (T2)) of arterial blood gas were obtained. Meanwhile, lung histopathologic examination, immunohistochemistry analysis (occludin and ZO-1), levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in lung tissue and plasma, and activation of phosphoinositide-3-kinase (PI3K)/AKT/hypoxia-inducible factor (HIF)-1α signaling were detected. Postoperative outcomes including duration of withdrawing the pleural drainage tube, length of hospital stay, hospitalization expenses, and postoperative pulmonary complications (PPCs) were also recorded. Results Sixty-seven patients were randomly divided into DEX group (group D, n=33) and control group (group N, n=34). DEX improved oxygenation at T1 and T2 (group D vs group N; T1: 191.8 ± 49.8 mmHg vs 159.6 ± 48.1 mmHg, P = 0.009; T2: 406.0 mmHg [392.2–423.7] vs 374.5 mmHg [340.2–378.2], P = 0.001). DEX alleviated the alveolar capillary epithelial structure damage, increased protein expression of ZO-1 and occludin, inhibited elevation of the expression of TNF-α and IL-6 in lung tissue and plasma, and increased protein expression of p-PI3K, p-AKT and HIF-1α. Dex administered had better postoperative outcomes with less risk of PPCs and hospitalization expenses as well as shorter duration of withdrawing the pleural drainage tube and length of hospital stay. Conclusion Activation of PI3K/Akt/HIF-1α signaling might be involved in lung protection of DEX in patients undergoing VATS.
Collapse
Affiliation(s)
- Linjia Zhu
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhenfeng Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiahao Ding
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chanjuan Gong
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
114
|
Abstract
Despite substantial advances in anesthesia safety within the past decades, perioperative mortality remains a prevalent problem and can be considered among the top causes of death worldwide. Acute organ failure is a major risk factor of morbidity and mortality in surgical patients and develops primarily as a consequence of a dysregulated inflammatory response and insufficient tissue perfusion. Neurological dysfunction, myocardial ischemia, acute kidney injury, respiratory failure, intestinal dysfunction, and hepatic impairment are among the most serious complications impacting patient outcome and recovery. Pre-, intra-, and postoperative arrangements, such as enhanced recovery after surgery programs, can contribute to lowering the occurrence of organ dysfunction, and mortality rates have improved with the advent of specialized intensive care units and advances in procedures relating to extracorporeal organ support. However, no specific pharmacological therapies have proven effective in the prevention or reversal of perioperative organ injury. Therefore, understanding the underlying mechanisms of organ dysfunction is essential to identify novel treatment strategies to improve perioperative care and outcomes for surgical patients. This review focuses on recent knowledge of pathophysiological and molecular pathways leading to perioperative organ injury. Additionally, we highlight potential therapeutic targets relevant to the network of events that occur in clinical settings with organ failure.
Collapse
Affiliation(s)
- Catharina Conrad
- From the Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Holger K Eltzschig
- From the Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
115
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
116
|
Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY, Lai ACY, Pan HY, Chang YJ, Lai MZ. HIF-2α is indispensable for regulatory T cell function. Nat Commun 2020; 11:5005. [PMID: 33024109 PMCID: PMC7538433 DOI: 10.1038/s41467-020-18731-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α are master transcription factors that regulate cellular responses to hypoxia, but the exact function in regulatory T (Treg) cells is controversial. Here, we show that Treg cell development is normal in mice with Foxp3-specific knockout (KO) of HIF-1α or HIF-2α. However, HIF-2α-KO (but not HIF-1α-KO) Treg cells are functionally defective in suppressing effector T cell-induced colitis and inhibiting airway hypersensitivity. HIF-2α-KO Treg cells have enhanced reprogramming into IL-17-secreting cells. We show crosstalk between HIF-2α and HIF-1α, and that HIF-2α represses HIF-1α expression. HIF-1α is upregulated in HIF-2α-KO Treg cells and further deletion of HIF-1α restores the inhibitory function of HIF-2α-KO Treg cells. Mice with Foxp3-conditional KO of HIF-2α are resistant to growth of MC38 colon adenocarcinoma and metastases of B16F10 melanoma. Together, these results indicate that targeting HIF-2α to destabilize Treg cells might be an approach for regulating the functional activity of Treg cells.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Yen-Lin Lin
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Yu-An Wang
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | | | - Hsuan-Yin Pan
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
117
|
Lei D, Wang Y, Zhang L, Wang Z. Circ_0010729 regulates hypoxia-induced cardiomyocyte injuries by activating TRAF5 via sponging miR-27a-3p. Life Sci 2020; 262:118511. [PMID: 33010282 DOI: 10.1016/j.lfs.2020.118511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Ischemic cardiomyopathy is a severe cardiovascular disease with high mortality. Circular RNAs (circRNAs) are widely regulated in diverse human diseases, including Ischemic cardiomyopathy. This study aimed to investigate a novel functional mechanism of circRNA circ_0010729 in hypoxia-induced cardiomyocyte injuries. Human cardiomyocytes (AC16) were exposed to hypoxia to mimic ischemic cardiomyopathy in vitro. Cell viability, apoptosis/necrosis and glycolysis progress, were determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry assay and glycolysis stress test, respectively. Cell apoptosis was also assessed by the activity of cleaved caspase-3/7. The levels of glycolysis-related proteins and tumor necrosis factor receptor-associated factor 5 (TRAF5) were examined by western blot. The expression of circ_0010729 and miR-27a-3p was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The prediction about the targeted relationship was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. As a result, hypoxia treatment inhibited cell viability, induced cell apoptosis and blocked glycolysis, however, these injuries were alleviated by circ_0010729 knockdown. MiR-27a-3p was targeted by circ_0010729, and miR-27a-3p inhibition reversed the role of circ_0010729 knockdown, leading to the deterioration of cell injuries. Further, TRAF5 was a target of miR-27a-3p, and circ_0010729 upregulated the expression of TRAF5 by sponging miR-27a-3p. MiR-27a-3p restoration enhanced cell viability, depleted cell apoptosis and promoted glycolysis of hypoxia-induced AC16 cells, while these effects were abolished by TRAF5 overexpression. In conclusion, circ_0010729 knockdown alleviated hypoxia-induced AC16 cell injuries by mediating the miR-27a-3p/TRAF5 axis.
Collapse
Affiliation(s)
- Dazhou Lei
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Yan Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Luochao Zhang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China.
| |
Collapse
|
118
|
Liu Y, Lei Y, Guo S, Zuo Z. Ensemble-based virtual screening in discovering potent inhibitors targeting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. Life Sci 2020; 262:118495. [PMID: 32987061 DOI: 10.1016/j.lfs.2020.118495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which mediates its substrate hypoxia-inducible factor 1α (HIF-1α) for ubiquitination and subsequent degradation, is an attractive drug target in various diseases, such as anemia, inflammation, neurodegeneration and cancer. Proteolysis targeting chimeras (PROTACs) containing a VHL ligand that can hijack the E3 ligase activity to degrade the target protein has also been studied in academic and in industry areas recently. METHODS Herein, by developing and optimizing the Bayesian Model, we report ensemble-based virtual screening as an effective strategy to discover potential VHL inhibitors from Specs database. RESULTS The virtual screening protocol was developed, ten representative molecules were obtained and five compounds were selected for subsequent binding mode analysis to be potent VHL inhibitors.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China.
| | - Yu Lei
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sheng Guo
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhili Zuo
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
119
|
General principles of developing novel radioprotective agents for nuclear emergency. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
120
|
Wang HG, Yan H, Wang C, Li MM, Lv XZ, Wu HD, Fang ZH, Mo DL, Zhang ZY, Liang B, Lai KG, Bao JY, Yang XJ, Zhao HJ, Chen S, Fan YM, Tong XG. circAFF1 Aggravates Vascular Endothelial Cell Dysfunction Mediated by miR-516b/SAV1/YAP1 Axis. Front Physiol 2020; 11:899. [PMID: 32848851 PMCID: PMC7425207 DOI: 10.3389/fphys.2020.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Pathological vascular endothelial damage caused by hypoxia is the basis of many vascular-related diseases. However, the role of circular RNA in hypoxic vascular injury is still poorly understood. Here, we found that hypoxia induced AFF1 circular RNA (circAFF1) can activate the SAV1/YAP1 and lead to the dysfunction of vascular endothelial cells. In HUV-EC-C and HBEC-5i cells, circAFF1 was upregulated under CoCl2 induced hypoxic conditions. The abnormal expression of circAFF1 inhibited the proliferation, tube formation, migration of vascular endothelial cells. The effect of circAFF1 is achieved by the adsorption of miR-516b to release SAV1, which in turn causes the phosphorylation of YAP1. Moreover, we found that the upregulation of circAFF1 in 235 Patients with subarachnoid hemorrhage. Taken together, we clarify the role of circAFF1/miR-516b/SAV1/YAP1 axis in vascular endothelial dysfunction and its potential early diagnostic value of disease caused by hypoxia injury in blood vessels.
Collapse
Affiliation(s)
- Hong-Guang Wang
- College of Pharmacy, Nankai University, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| | - Chen Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mi-Mi Li
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xin-Ze Lv
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hai-Dong Wu
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhan-Hai Fang
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Dong-Li Mo
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhi-Yuan Zhang
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Bin Liang
- Tianjin Institute, of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Ke-Guan Lai
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing-Yu Bao
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xue-Jia Yang
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Juan Zhao
- Department of Respiratory Medicine, Songjiang Sijing Hospital, Shanghai, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yi-Mu Fan
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiao-Guang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
121
|
Xu L, Sun L, Zeng F, Wu S. Activatable fluorescent probe based on aggregation-induced emission for detecting hypoxia-related pathological conditions. Anal Chim Acta 2020; 1125:152-161. [DOI: 10.1016/j.aca.2020.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
|
122
|
Ni M, Zhou H, Zhang J, Jin D, Lu T, Busuttil RW, Kupiec-Weglinski JW, Wang X, Zhai Y. Isoform- and Cell Type-Specific Roles of Glycogen Synthase Kinase 3 N-Terminal Serine Phosphorylation in Liver Ischemia Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1147-1156. [PMID: 32680958 DOI: 10.4049/jimmunol.2000397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase 3 (Gsk3) α and β are both constitutively active and inhibited upon stimulation by N-terminal serine phosphorylation. Although roles of active Gsk3 in liver ischemia reperfusion injury (IRI) have been well appreciated, whether Gsk3 N-terminal serine phosphorylation has any functional significance in the disease process remains unclear. In a murine liver partial warm ischemia model, we studied Gsk3 N-terminal serine mutant knock-in (KI) mice and showed that liver IRI was decreased in Gsk3αS21A but increased in Gsk3βS9A mutant KI mice. Bone marrow chimeric experiments revealed that the Gsk3α, but not β, mutation in liver parenchyma protected from IRI, and both mutations in bone marrow-derived cells exacerbated liver injuries. Mechanistically, mutant Gsk3α protected hepatocytes from inflammatory (TNF-α) cell death by the activation of HIV-1 TAT-interactive protein 60 (TIP60)-mediated autophagy pathway. The pharmacological inhibition of TIP60 or autophagy diminished the protection of the Gsk3α mutant hepatocytes from inflammatory cell death in vitro and the Gsk3α mutant KI mice from liver IRI in vivo. Thus, Gsk3 N-terminal serine phosphorylation inhibits liver innate immune activation but suppresses hepatocyte autophagy in response to inflammation. Gsk3 αS21, but not βS9, mutation is sufficient to sustain Gsk4 activities in hepatocytes and protect livers from IRI via TIP60 activation.
Collapse
Affiliation(s)
- Ming Ni
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Haoming Zhou
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Jing Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Dan Jin
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Obstetrics and Gynecology, Shanghai Jiaotong University, Shanghai 200025, China; and
| | - Tianfei Lu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Liver Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai 200025, China
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Xuehao Wang
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China;
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
123
|
Transcription-independent Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection during Ischemia and Reperfusion. Anesthesiology 2020; 132:763-780. [PMID: 31794514 DOI: 10.1097/aln.0000000000003037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND During myocardial ischemia, hypoxia-inducible factors are stabilized and provide protection from ischemia and reperfusion injury. Recent studies show that myocyte-specific hypoxia-inducible factor 2A promotes myocardial ischemia tolerance through induction of epidermal growth factor, amphiregulin. Here, the authors hypothesized that hypoxia-inducible factor 2A may enhance epidermal growth factor receptor 1 (ERBB1) expression in the myocardium that could interface between growth factors and its effect on providing tolerance to ischemia and reperfusion injury. METHODS Human myocardial tissues were obtained from ischemic heart disease patients and normal control patients to compare ERBB1 expression. Myocyte-specific Hif2a or ErbB1 knockout mice were generated to observe the effect of Hif2a knockdown in regulating ERBB1 expression and to examine the role of ERBB1 during myocardial ischemia and reperfusion injury. RESULTS Initial studies of myocardial tissues from patients with ischemic heart disease showed increased ERBB1 protein (1.12 ± 0.24 vs. 13.01 ± 2.20, P < 0.001). In contrast, ERBB1 transcript was unchanged. Studies using short hairpin RNA repression of Hif2A or Hif2a Myosin Cre+ mice directly implicated hypoxia-inducible factor 2A in ERBB1 protein induction during hypoxia or after myocardial ischemia, respectively. Repression of RNA-binding protein 4 abolished hypoxia-inducible factor 2A-dependent induction of ERBB1 protein. Moreover, ErbB1 Myosin Cre+ mice experienced larger infarct sizes (22.46 ± 4.06 vs. 46.14 ± 1.81, P < 0.001) and could not be rescued via amphiregulin treatment. CONCLUSIONS These findings suggest that hypoxia-inducible factor 2A promotes transcription-independent induction of ERBB1 protein and implicates epidermal growth factor signaling in protection from myocardial ischemia and reperfusion injury.
Collapse
|
124
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
125
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
126
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
127
|
Lee CC, Wu CY, Yang HY. Discoveries of how cells sense oxygen win the 2019 Nobel Prize in Physiology or medicine. Biomed J 2020; 43:434-437. [PMID: 33012698 PMCID: PMC7680809 DOI: 10.1016/j.bj.2020.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The importance of oxygen to life has been recognized for hundreds of years, but how cells and tissues sense reduced oxygen levels remained elusive until the late twentieth century. The 2019 Nobel Prize in Physiology or Medicine was awarded to William G. Kaelin Jr., Sir Peter J. Ratcliffe, and Gregg L. Semenza for their discovery of hypoxia-inducible factor, a key transcription factor that regulates gene expression in response to decreases in cellular oxygenation. The three scientists provided the first information about the cellular oxygen-sensing mechanism and downstream signal transduction under hypoxic conditions. Their discoveries have also paved the way for promising novel treatments for cancer, renal anemia, and inflammatory disease.
Collapse
Affiliation(s)
- Cheng-Chia Lee
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
128
|
Orr WC, Fass R, Sundaram SS, Scheimann AO. The effect of sleep on gastrointestinal functioning in common digestive diseases. Lancet Gastroenterol Hepatol 2020; 5:616-624. [DOI: 10.1016/s2468-1253(19)30412-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
|
129
|
Ma J, Stefanoska D, Stone LS, Hildebrand M, van Donkelaar CC, Zou X, Basoli V, Grad S, Alini M, Peroglio M. Hypoxic stress enhances extension and branching of dorsal root ganglion neuronal outgrowth. JOR Spine 2020; 3:e1090. [PMID: 32613165 PMCID: PMC7323469 DOI: 10.1002/jsp2.1090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue. HIGHLIGHTS Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research Institute DavosDavosSwitzerland
| | - Despina Stefanoska
- AO Research Institute DavosDavosSwitzerland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Laura S. Stone
- Alan Edwards Centre for Research on Pain, Faculty of DentistryMcGill UniversityMontreal, QuebecCanada
| | | | | | - Xuenong Zou
- Department of Spine Surgery, Orthopedic Research InstituteThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | | | | | | | | |
Collapse
|
130
|
Zhang R, Luo W, Zhang Y, Zhu D, Midgley AC, Song H, Khalique A, Zhang H, Zhuang J, Kong D, Huang X. Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases. SCIENCE ADVANCES 2020; 6:eaaz8011. [PMID: 32494716 PMCID: PMC7202876 DOI: 10.1126/sciadv.aaz8011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 05/08/2023]
Abstract
Development of new approaches to biomimetically reconstruct vasculature networks remains challenging in regenerative medicine. We introduce a particle-based artificial stem cell spheroid (ASSP) technology that recapitulates paracrine functions of three-dimensional (3D) SSPs for vasculature regeneration. Specifically, we used a facile method to induce the aggregation of stem cells into 3D spheroids, which benefited from hypoxia microenvironment-driven and enhanced secretion of proangiogenic bioactive factors. Furthermore, we artificially reconstructed 3D spheroids (i.e., ASSP) by integration of SSP-secreted factors into micro-/nanoparticles with cell membrane-derived surface coatings. The easily controllable sizes of the ASSP particles provided superior revascularization effects on the ischemic tissues in hindlimb ischemia models through local administration of ASSP microparticles and in myocardial infarction models via the systemic delivery of ASSP nanoparticles. The strategy offers a promising therapeutic option for ischemic tissue regeneration and addresses issues faced by the bottlenecked development in the delivery of stem cell therapies.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Dashuai Zhu
- College of Medicine, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Song
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Medicine, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
- Corresponding author. (X.H.); (D.K.)
| |
Collapse
|
131
|
Kaiser A, Heiss K, Mueller AK, Fimmers R, Matthes J, Njuguna JT. Inhibition of EIF-5A prevents apoptosis in human cardiomyocytes after malaria infection. Amino Acids 2020; 52:693-710. [PMID: 32367435 DOI: 10.1007/s00726-020-02843-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.
Collapse
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Rolf Fimmers
- Institut für Medizinische Biometrie, Informatik Und Epedimologie, Sigmund-Freud-Strasse 25, 53107, Bonn, Germany
| | - Jan Matthes
- Centre of Pharmcology, University of Cologne, Gleueler Strasse 24, 50931, Köln, Germany
| | | |
Collapse
|
132
|
Pedrosa AM, Lemes RPG. Gene expression of HIF-1α and VEGF in response to hypoxia in sickle cell anaemia: Influence of hydroxycarbamide. Br J Haematol 2020; 190:e39-e42. [PMID: 32352161 DOI: 10.1111/bjh.16693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Hypoxia and hemoglobin S polymerization are two triggers responsible for initiating erythrocyte sickling and the consequent clinical sickle cell anemia (SCA) events. The objective of this study was to investigate the expression of hypoxia-responsive genes in SCA, testing for correlation with the clinical-laboratorial characteristics of the patient and hydroxyurea therapy. Our results showed, for the first time, a significantly increased expression of HIF-1α and VEGF genes in patients with SCA and an inverse dose-response relationship with hydroxyurea therapy. These results suggest that hypoxic stress may be involved in both the severity of SCA and its response to treatment.
Collapse
Affiliation(s)
- Alano M Pedrosa
- Research Laboratory on Hemoglobinopathies and Hematological Genetic Diseases, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Romélia P G Lemes
- Research Laboratory on Hemoglobinopathies and Hematological Genetic Diseases, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceará, Fortaleza-CE, Brazil
| |
Collapse
|
133
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
134
|
Zhao C, Chen J, Cheng L, Xu K, Yang Y, Su X. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg Microbes Infect 2020; 9:691-706. [PMID: 32208814 PMCID: PMC7144238 DOI: 10.1080/22221751.2020.1742585] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infection of influenza A virus (IAV) can trigger exaggerated pulmonary inflammation and induce acute lung injury (ALI). Limiting IAV replication and alleviation of pulmonary inflammation are two important therapeutic strategies for influenza virus infection. Recent studies have shown that hypoxia inducible factor-1α (HIF-1α) is an essential factor for the development and repair of ALI; however, the role and the underlying mechanisms of HIF-1α in IAV-induced ALI remain elusive. Here, we demonstrated that lung epithelial cell-specific Hif1α knockout mice infected with IAV developed more lung IAV replication and severe lung inflammation, which led to increased mortality compared to IAV-infected control mice. Moreover, knockdown of HIF1A in A549 cells (human alveolar type II epithelial cell line) promoted IAV replication in vitro. Mechanistically, knockdown of HIF1A reduced glycolysis by regulating transcription of glycolysis-related enzymes, which subsequently activated the AMPKα-ULK1 signalling pathway. Interestingly, AMPKα-ULK1 signalling promoted autophagy and augmented IAV replication. Taken together, deficiency of HIF-1α in lung epithelial cells reduces glycolysis and enhances AMPKα-ULK1-mediated autophagy, which finally facilitates IAV replication. These findings have deepened our understanding of the role of HIF-1α in regulating IAV replication and provided us novel therapeutic targets for combating influenza infection.
Collapse
Affiliation(s)
- Caiqi Zhao
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kaifeng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yiyu Yang
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
135
|
Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunol 2020; 13:230-244. [PMID: 31792360 PMCID: PMC7044055 DOI: 10.1038/s41385-019-0237-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Acute intestinal inflammation includes the early accumulation of neutrophils (PMN). Based on recent evidence that PMN infiltration "imprints" changes in the local tissue environment through local oxygen depletion and the release of adenine nucleotides, we hypothesized that the interaction between transmigrating PMN and intestinal epithelial cells (IECs) results in inflammatory acidification of the tissue. Using newly developed tools, we revealed that active PMN transepithelial migration (TEM) significantly acidifies the local microenvironment, a decrease of nearly 2 pH units. Using unbiased approaches, we sought to define acid-adaptive pathways elicited by PMN TEM. Given the significant amount of adenosine (Ado) generated during PMN TEM, we profiled the influence of Ado on IECs gene expression by microarray and identified the induction of SLC26A3, the major apical Cl-/HCO3- exchanger in IECs. Utilizing loss- and gain-of-function approaches, as well as murine and human colonoids, we demonstrate that Ado-induced SLC26A3 promotes an adaptive IECs phenotype that buffers local pH during active inflammation. Extending these studies, chronic murine colitis models were used to demonstrate that SLC26A3 expression rebounds during chronic DSS-induced inflammation. In conclusion, Ado signaling during PMN TEM induces an adaptive tissue response to inflammatory acidification through the induction of SLC26A3 expression, thereby promoting pH homeostasis.
Collapse
|
136
|
Tian Y, Li Y, Wang WX, Jiang WL, Fei J, Li CY. Novel Strategy for Validating the Existence and Mechanism of the “Gut–Liver Axis” in Vivo by a Hypoxia-Sensitive NIR Fluorescent Probe. Anal Chem 2020; 92:4244-4250. [DOI: 10.1021/acs.analchem.9b04578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, P.R. China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
137
|
Vanderhaeghen T, Vandewalle J, Libert C. Hypoxia-inducible factors in metabolic reprogramming during sepsis. FEBS J 2020; 287:1478-1495. [PMID: 31970890 DOI: 10.1111/febs.15222] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Sepsis is a highly heterogeneous syndrome that is caused by an imbalanced host response to infection. Despite huge investments, sepsis remains a contemporary threat with significant burden on health systems. Vascular dysfunction and elevated oxygen consumption by highly metabolically active immune cells result in tissue hypoxia during inflammation. The transcription factor hypoxia-inducible factor-1a (HIF1α), and its family members, plays an important role in cellular metabolism and adaptation to cellular stress caused by hypoxia. In this review, we discuss the role of HIF in sepsis. We show possible mechanisms by which the inflammatory response activated during sepsis affects the HIF pathway. The activated HIF pathway in turn changes the metabolism of both innate and adaptive immune cells. As HIF expression in leukocytes of septic patients can be directly linked with mortality, we discuss multiple ways of interfering with the HIF signaling pathway.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
138
|
Playford RJ, Marchbank T. Pancreatic secretory trypsin inhibitor reduces multi-organ injury caused by gut ischemia/reperfusion in mice. PLoS One 2020; 15:e0227059. [PMID: 31923181 PMCID: PMC6953855 DOI: 10.1371/journal.pone.0227059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury occurs during transplantation, mesenteric arterial occlusion, trauma and shock, causing systemic inflammation, multiple organ dysfunction and high mortality. Pancreatic secretory trypsin inhibitor (PSTI), a serine protease inhibitor expressed in gut mucosa may function as a mucosal protective/repair peptide. We examined whether PSTI affected mesenteric I/R-induced injury. Hypoxia/normoxia (H/N) caused 50% drop in cell viability of AGS, RIE1 and Caco-2 cells but PSTI (10 μg/ml) given prior- or during-hypoxic period improved survival by 50% (p<0.01). Similarly, Caco-2 monolayers exposed to H/N had 300% increase in transepithelial permeability, PSTI truncated this by 50% (p<0.01). Mice underwent mesenteric I/R by clamping jejunum, causing severe mucosal injury, increased apoptotic markers and 3-fold increases in plasma IL-6, IL1β, TNFα, and tissue lipid peroxidation (MDA) and inflammatory infiltration (MPO) levels. Lungs showed similar significant injury and inflammatory infiltrate markers. Smaller increases in MDA and MPO were seen in kidney & liver. PSTI (20 mg/kg) reduced all injury markers by 50–80% (p<0.01). In vitro and in vivo studies showed PSTI reduced pro-apoptotic Caspase 3, 9 and Baxα levels, normalised Bcl2 and caused additional increases in HIF1α, VEGF and Hsp70 above rises caused by I/R alone (all p<0.01). PSTI also prevented reduction of tight junction molecules ZO1 and Claudin1 (all p<0.01) but did not affect increased ICAM-1 caused by I/R in gut or lung. PSTI may be a useful clinical target to prevent I/R injury.
Collapse
Affiliation(s)
- Raymond J. Playford
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Tania Marchbank
- Centre of Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary, University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
139
|
Triantafyllou EA, Mylonis I, Simos G, Paraskeva E. Hypoxia Induces Pro-Fibrotic and Fibrosis Marker Genes in Hepatocellular Carcinoma Cells Independently of Inflammatory Stimulation and the NF-κΒ Pathway. HYPOXIA 2019; 7:87-91. [PMID: 31921932 PMCID: PMC6935274 DOI: 10.2147/hp.s235967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Hypoxia and its key mediators hypoxia inducible Factors (HIFs) are implicated in the development of liver diseases of diverse etiologies, often in interplay with inflammatory mediators. We investigated the interplay between hypoxia and proinflammatory mediators in the development of liver fibrosis, using human hepatocellular carcinoma Huh7 cells as a model. Treatment of Huh7 with DMOG or under hypoxia, induced HIF-1α protein levels and the expression of genes for pro-fibrotic (TGF-β1, PDGFC, PAI-1) and fibrosis (LOX, P4HA1, P4HB) markers. Knockdown of HIF-1α decreased the induction of PDGFC, LOX and P4HA1, showing the involvement of HIF-1 in their regulation. Interestingly, incubation of Huh7 cells under hypoxia did not cause activation of the NF-κΒ pathway. In contrast, inflammatory mediators such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS) activated the NF-κΒ pathway, but failed to increase HIF-1α protein levels. Moreover, TNFα had a weaker effect than hypoxia on the induction or did not induce pro-fibrotic and fibrosis markers, respectively, while LPS enhanced only the hypoxic induction of P4HB. In conclusion, the above findings suggest that hypoxia and HIF-1 play an important role in the development of fibrosis in hepatocellular carcinoma, which appears to be independent of the activation of the NF-κΒ pathway.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Department of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Simos
- Department of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Efrosyni Paraskeva
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
140
|
Sulser P, Pickel C, Günter J, Leissing TM, Crean D, Schofield CJ, Wenger RH, Scholz CC. HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J 2019; 34:2344-2358. [PMID: 31908020 DOI: 10.1096/fj.201902240r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Pharmacologic HIF hydroxylase inhibitors (HIs) are effective for the treatment of anemia in chronic kidney disease patients and may also be beneficial for the treatment of diseases such as chronic inflammation and ischemia-reperfusion injury. The selectivities of many HIs for HIF hydroxylases and possible off-target effects in cellulo are unclear, delaying the translation from preclinical studies to clinical trials. We developed a novel assay that discriminates between the inhibition of HIF-α prolyl-4-hydroxylase domain (PHD) enzymes and HIF-α asparagine hydroxylase factor inhibiting HIF (FIH). We characterized 15 clinical and preclinical HIs, categorizing them into pan-HIF-α hydroxylase (broad spectrum), PHD-selective, and FIH-selective inhibitors, and investigated their effects on HIF-dependent transcriptional regulation, erythropoietin production, and cellular energy metabolism. While energy homeostasis was generally maintained following HI treatment, the pan-HIs led to a stronger increase in pericellular pO2 than the PHD/FIH-selective HIs. Combined knockdown of FIH and PHD-selective inhibition did not further increase pericellular pO2 . Hence, the additional increase in pericellular pO2 by pan- over PHD-selective HIs likely reflects HIF hydroxylase independent off-target effects. Overall, these analyses demonstrate that HIs can lead to oxygen redistribution within the cellular microenvironment, which should be considered as a possible contributor to HI effects in the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Pascale Sulser
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Daniel Crean
- School of Veterinary Medicine & UCD Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
141
|
Syeda MZ, Fasae MB, Yue E, Ishimwe AP, Jiang Y, Du Z, Yang B, Bai Y. Anthocyanidin attenuates myocardial ischemia induced injury via inhibition of ROS‐JNK‐Bcl‐2 pathway: New mechanism of anthocyanidin action. Phytother Res 2019; 33:3129-3139. [DOI: 10.1002/ptr.6485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Madiha Zahra Syeda
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Er Yue
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Alain Prudence Ishimwe
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
| | - Yannan Jiang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| | - Zhimin Du
- Institute of Clinical Pharmacologythe Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Drug Development, Universities of Heilongjiang Province) Harbin P. R. China
| | - Baofeng Yang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| | - Yunlong Bai
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical University Harbin P. R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical Sciences Harbin P. R. China
| |
Collapse
|
142
|
Peng R, Yuan J, Cheng D, Ren T, Jin F, Yang R, Yuan L, Zhang X. Evolving a Unique Red-Emitting Fluorophore with an Optically Tunable Hydroxy Group for Imaging Nitroreductase in Cells, in Tissues, and in Vivo. Anal Chem 2019; 91:15974-15981. [DOI: 10.1021/acs.analchem.9b04564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Fangping Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 P. R. China
| |
Collapse
|
143
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
144
|
Xu G, Wang X, Xiong Y, Ma X, Qu L. Effect of sevoflurane pretreatment in relieving liver ischemia/reperfusion-induced pulmonary and hepatic injury. Acta Cir Bras 2019; 34:e201900805. [PMID: 31618405 PMCID: PMC6799973 DOI: 10.1590/s0102-865020190080000005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 02/18/2023] Open
Abstract
Purpose To investigate the effect of sevoflurane preconditioning on
ischemia/reperfusion (I/R)-induced pulmonary/hepatic injury Methods Fifty-one Wistar rats were randomly grouped into sham, I/R, and sevoflurane
groups. After reperfusion, the structural change of the lung was measured by
Smith score, the wet and dry weights (W/D) were determined, malondialdehyde
(MDA) myeloperoxidase (MPO) content was determined colorimetrically and by
fluorescence, respectively, and matrix metalloprotein-9 (MMP-9) mRNA was
quantified by RT-PCR. Biopsy and morphological analyses were performed on
liver tissue, activities of aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) were determined, and tumor necrosis factor-alpha
(TNF-α) level was determined. Results The sham group showed no changes in tissue structure. Structural lesions in
the sevoflurane and I/R groups were mild and severe, respectively. Smith
score, W/D, MDA, MPO, and MMP mRNA showed the same trend, and were increased
in the I/R group and recovered in the sevoflurane group, compared with the
sham group (both P<0.05). AST and ALT were significantly increased
compared to the sham group (AST: 655±52.06 vs . 29±9.30
U/L; ALT: 693±75.56 vs . 37±6.71 U/L; P<0.05). In the
sevoflurane group, AST and ALT levels were significantly decreased
(464±47.71 and 516±78.84 U/L; P<0.001). TNF-α presented similar
results. Conclusion The protection of lung and liver by sevoflurane may be mediated by inhibited
leukocyte recruitment and MMP-9 secretion.
Collapse
Affiliation(s)
- Guiping Xu
- Professor, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Conception, design, intellectual and scientific content of the study; manuscript writing; critical revision; final approval
| | - Xiaoli Wang
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data, manuscript writing
| | - Yuxiang Xiong
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Xueping Ma
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| | - Li Qu
- MD, Department of Anesthesia, Xinjiang Uygur Municipal People's Hospital, Urumqi 830001, China. Acquisition and analysis of data
| |
Collapse
|
145
|
Cummins EP, Strowitzki MJ, Taylor CT. Mechanisms and Consequences of Oxygen and Carbon Dioxide Sensing in Mammals. Physiol Rev 2019; 100:463-488. [PMID: 31539306 DOI: 10.1152/physrev.00003.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular oxygen (O2) and carbon dioxide (CO2) are the primary gaseous substrate and product of oxidative phosphorylation in respiring organisms, respectively. Variance in the levels of either of these gasses outside of the physiological range presents a serious threat to cell, tissue, and organism survival. Therefore, it is essential that endogenous levels are monitored and kept at appropriate concentrations to maintain a state of homeostasis. Higher organisms such as mammals have evolved mechanisms to sense O2 and CO2 both in the circulation and in individual cells and elicit appropriate corrective responses to promote adaptation to commonly encountered conditions such as hypoxia and hypercapnia. These can be acute and transient nontranscriptional responses, which typically occur at the level of whole animal physiology or more sustained transcriptional responses, which promote chronic adaptation. In this review, we discuss the mechanisms by which mammals sense changes in O2 and CO2 and elicit adaptive responses to maintain homeostasis. We also discuss crosstalk between these pathways and how they may represent targets for therapeutic intervention in a range of pathological states.
Collapse
Affiliation(s)
- Eoin P Cummins
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Moritz J Strowitzki
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and the School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
146
|
Babosova O, Kapralova K, Raskova Kafkova L, Korinek V, Divoky V, Prchal JT, Lanikova L. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1. J Cell Mol Med 2019; 23:7785-7795. [PMID: 31517438 PMCID: PMC6815829 DOI: 10.1111/jcmm.14655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/21/2023] Open
Abstract
The patients with mantle cell lymphoma (MCL) have translocation t(11;14) associated with cyclin D1 overexpression. We observed that iron (an essential cofactor of dioxygenases including prolyl hydroxylases [PHDs]) depletion by deferoxamine blocked MCL cells' proliferation, increased expression of DNA damage marker γH2AX, induced cell cycle arrest and decreased cyclin D1 level. Treatment of MCL cell lines with dimethyloxalylglycine, which blocks dioxygenases involving PHDs by competing with their substrate 2-oxoglutarate, leads to their decreased proliferation and the decrease of cyclin D1 level. We then postulated that loss of EGLN2/PHD1 in MCL cells may lead to down-regulation of cyclin D1 by blocking the degradation of FOXO3A, a cyclin D1 suppressor. However, the CRISPR/Cas9-based loss-of-function of EGLN2/PHD1 did not affect cyclin D1 expression and the loss of FOXO3A did not restore cyclin D1 levels after iron chelation. These data suggest that expression of cyclin D1 in MCL is not controlled by ENGL2/PHD1-FOXO3A pathway and that chelation- and 2-oxoglutarate competition-mediated down-regulation of cyclin D1 in MCL cells is driven by yet unknown mechanism involving iron- and 2-oxoglutarate-dependent dioxygenases other than PHD1. These data support further exploration of the use of iron chelation and 2-oxoglutarate-dependent dioxygenase inhibitors as a novel therapy of MCL.
Collapse
Affiliation(s)
- Olga Babosova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Katarina Kapralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Leona Raskova Kafkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| |
Collapse
|
147
|
Ji Z, Wang L, Wang S, Liang G. [Dexmedetomidine hydrochloride up-regulates expression of hypoxia inducible factor-1α to alleviate renal ischemiareperfusion injury in diabetic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:944-949. [PMID: 31511215 DOI: 10.12122/j.issn.1673-4254.2019.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To verify whether dexmedetomidine hydrochloride (Dex) alleviates renal ischemia-reperfusion (IR) injury in diabetic rats by increasing the expression of hypoxia inducible factor-1α (HIF-1α). METHODS A rat model of type 2 diabetes mellitus was established by high-fat diet and streptozotocin injection. The rats were subjected to daily intragastric administration of 0.05 mg/kg digoxin for 7 consecutive days and intraperitoneal injection of Dex 2 h before renal IR injury induced by ligation of the bilateral renal arteries for 60 min followed by reperfusion for 120 min. After reperfusion, blood samples were taken for detection of serum creatinine (Scr) and urea nitrogen (BUN) levels. Western blotting was used to detect the expression of HIF-1α, cleaved caspase-3, Bcl-2, and Bax in the renal tissues; the expression of the HIF-1α, p-eNOS, and eNOS were detected using ELISA. The percentage of apoptotic glomerular cells was assessed using TUNEL assay. RESULTS The levels of Scr, BUN, HIF-1α, p-eNOS, and eNOS and the percentage of apoptotic cells in both normal and diabetic rats increased significantly after renal IR injury (P < 0.05). The expressions of Scr, BUN, p-eNOS, and eNOS decreased while HIF-1α expression increased significantly in Dex-treated rats with renal IR injury (P < 0.05). Compared with the non-diabetic rats, the diabetic rats showed more obvious increase in the expressions of Scr, BUN, p-eNOS, and eNOS following renal IR injury. In the diabetic rats with renal IR injury, Dex treatment prior to the injury significantly lowered the expressions of Scr, BUN, p-eNOS, eNOS, cleaved caspase-3, and Bax, decreased the percentage of apoptotic cells, and increased the levels of HIF-1a and Bcl-2 (P < 0.05). Digoxin treatment significantly antagonized the effects of Dex in the diabetic rats with renal IR injury by increasing the expressions of cleaved caspase-3 and Bax, promoting glomerular cell apoptosis, and decreasing renal expressions of HIF-1 and Bcl-2 (P < 0.05). CONCLUSIONS Dex alleviates renal IR injury in diabetic rats probably by inhibiting renal expression of HIF-1α and glomerular cell apoptosis.
Collapse
Affiliation(s)
- Zhonghua Ji
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Liping Wang
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Shiying Wang
- Health Management Center, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| | - Genqiang Liang
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai 519000, China
| |
Collapse
|
148
|
Schley G, Klanke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Struebe M, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C. Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated renoprotection in chronic tubulointerstitial nephritis. Kidney Int 2019; 96:378-396. [DOI: 10.1016/j.kint.2019.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
149
|
Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy 2019; 11:983-997. [PMID: 31223045 PMCID: PMC6609898 DOI: 10.2217/imt-2018-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD73 is a novel immune checkpoint associated with adenosine metabolism that promotes tumor progression by suppressing antitumor immune response and promoting angiogenesis. The inhibition of CD73, in combination with immune checkpoint blockade, targeted therapy or conventional therapy, improves antitumor effects in numerous preclinical mouse models of cancer. Emerging evidence suggests that the combination of anti-CD73 and immune checkpoint blockade has promising clinical activity in patients with advanced solid tumors. In this review, we will discuss the specific role of CD73 on both tumor cells and nontumor cells in regulating tumor immunity and tumorigenesis and provide an update on the current view of the antitumor activity of targeting CD73 by mAb or small molecule selective inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Siqi Chen
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniela E Matei
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
150
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|