101
|
Liu Q, Pan S, Liu S, Zhang S, Willerson JT, Martin JF, Dixon RAF. Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration. STEM CELLS (DAYTON, OHIO) 2021; 39:737-749. [PMID: 33529408 DOI: 10.1002/stem.3343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Lack of blood flow to the lower extremities in peripheral arterial disease causes oxygen and nutrient deprivation in ischemic skeletal muscles, leading to functional impairment. Treatment options for muscle regeneration in this scenario are lacking. Here, we selectively targeted the Hippo pathway in myofibers, which provide architectural support for muscle stem cell niches, to facilitate functional muscle recovery in ischemic extremities by promoting angiogenesis, neovascularization, and myogenesis. We knocked down the core Hippo pathway component, Salvador (SAV1), by using an adeno-associated virus 9 (AAV9) vector expressing a miR30-based triple short-hairpin RNA (shRNA), controlled by a muscle-specific promoter. In a mouse hindlimb-ischemia model, AAV9 SAV1 shRNA administration in ischemic muscles induced nuclear localization of the Hippo effector YAP, accelerated perfusion restoration, and increased exercise endurance. Intravascular lectin labeling of the vasculature revealed enhanced angiogenesis. Using 5-ethynyl-2'-deoxyuridine to label replicating cellular DNA in vivo, we found SAV1 knockdown concurrently increased paired box transcription factor Pax7+ muscle satellite cell and CD31+ endothelial cell proliferation in ischemic muscles. To further study Hippo suppression in skeletal muscle regeneration, we used a cardiotoxin-induced muscle damage model in adult (12-15 weeks old) and aged mice (26-month old). Two weeks after delivery of AAV9 SAV1 shRNA into injured muscles, the distribution of regenerative myofibers shifted toward a larger cross-sectional area and increased capillary density compared with mice receiving AAV9 control. Together, these findings suggest our approach may have clinical promise in regenerative therapy for leg ischemia and muscle injury.
Collapse
Affiliation(s)
- Qi Liu
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| | - Su Pan
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - Sui Zhang
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
| | | | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A F Dixon
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
102
|
Sanchez-Castro EE, Pajuelo-Reyes C, Tejedo R, Soria-Juan B, Tapia-Limonchi R, Andreu E, Hitos AB, Martin F, Cahuana GM, Guerra-Duarte C, de Assis TCS, Bedoya FJ, Soria B, Chávez-Olórtegui C, Tejedo JR. Mesenchymal Stromal Cell-Based Therapies as Promising Treatments for Muscle Regeneration After Snakebite Envenoming. Front Immunol 2021; 11:609961. [PMID: 33633730 PMCID: PMC7902043 DOI: 10.3389/fimmu.2020.609961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Snakebite envenoming is a global neglected disease with an incidence of up to 2.7 million new cases every year. Although antivenoms are so-far the most effective treatment to reverse the acute systemic effects induced by snakebite envenoming, they have a limited therapeutic potential, being unable to completely neutralize the local venom effects. Local damage, such as dermonecrosis and myonecrosis, can lead to permanent sequelae with physical, social, and psychological implications. The strong inflammatory process induced by snake venoms is associated with poor tissue regeneration, in particular the lack of or reduced skeletal muscle regeneration. Mesenchymal stromal cells (MSCs)-based therapies have shown both anti-inflammatory and pro-regenerative properties. We postulate that using allogeneic MSCs or their cell-free products can induce skeletal muscle regeneration in snakebite victims, improving all the three steps of the skeletal muscle regeneration process, mainly by anti-inflammatory activity, paracrine effects, neovascularization induction, and inhibition of tissue damage, instrumental for microenvironment remodeling and regeneration. Since snakebite envenoming occurs mainly in areas with poor healthcare, we enlist the principles and potential of MSCs-based therapies and discuss regulatory issues, good manufacturing practices, transportation, storage, and related-procedures that could allow the administration of these therapies, looking forward to a safe and cost-effective treatment for a so far unsolved and neglected health problem.
Collapse
Affiliation(s)
| | - Cecilia Pajuelo-Reyes
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Rebeca Tejedo
- Faculty of Medicine, Universidad Privada San Juan Bautista, Lima, Peru
| | - Bárbara Soria-Juan
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Surgery, Fundación Jiménez Díaz, Unidad de Terapias Avanzadas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Tapia-Limonchi
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Etelvina Andreu
- ISABIAL-Hospital General y Universitario de Alicante, Alicante, Spain.,Departmento de Fisica Aplicadas, University Miguel Hernández, Alicante, Spain
| | - Ana B Hitos
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Franz Martin
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Gladys M Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
| | - Clara Guerra-Duarte
- Center of Research and Development, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Thamyres C Silva de Assis
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Francisco J Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,ISABIAL-Hospital General y Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.,Institute of Bioengineering, University Miguel Hernandez de Elche, Alicante, Spain
| | - Carlos Chávez-Olórtegui
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juan R Tejedo
- Institute of Tropical Diseases, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Department of Cell Regeneration and Advanced Therapies, Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain.,Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
103
|
SYSTEMIC DEPENDENCES OF CHANGES IN BODY COMPOSITION WITH THE PROGRESSION OF NON-COMMUNICABLE DISEASES. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-3-77-132-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
104
|
Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021; 599:171-192. [PMID: 32991751 PMCID: PMC8418193 DOI: 10.1113/jp280405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Randa Eldosougi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Tracey Myers
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | | | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
105
|
Kletzien H, Kelm-Nelson CA, Wang S, Suzuki M, Connor NP. Myogenic marker expression as a function of age and exercise-based therapy in the tongue. Exp Gerontol 2020; 142:111104. [PMID: 33017670 PMCID: PMC7748063 DOI: 10.1016/j.exger.2020.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
Degeneration of tongue muscles with aging may contribute to swallowing deficits observed in elderly people. However, the capacity for tongue muscle stem cells (SCs) to regenerate and repair the aged tongue and improve tongue strength following tongue exercise (a current clinical treatment) has never been examined. We found that the expression of regenerative, myogenic markers were impaired with age and may be related to increased expression of senescent marker p16INK4a. Tongue strength increased in young adult and old rats following exercise and was related to the expression of Pax7, MyoD, myogenin, and p16INK4a. Our study also suggests that strengthening of tongue muscles via clinical rehabilitation strategies also increased the expression of SC regenerative markers in the tongue throughout the exercise duration.
Collapse
Affiliation(s)
- Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States of America; Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America; Department of Stem Cell and Regenerative Biology, Harvard University, United States of America.
| | - Cynthia A Kelm-Nelson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America
| | - Sabrina Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States of America; Department of Comparative Biosciences, University of Wisconsin-Madison, United States of America
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, United States of America; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States of America
| |
Collapse
|
106
|
Yuan H, Ruan Y, Tan Y, Reed-Maldonado AB, Chen Y, Zhao D, Wang Z, Zhou F, Peng D, Banie L, Wang G, Liu J, Lin G, Qi LS, Lue TF. Regenerating Urethral Striated Muscle by CRISPRi/dCas9-KRAB-Mediated Myostatin Silencing for Obesity-Associated Stress Urinary Incontinence. CRISPR J 2020; 3:562-572. [PMID: 33346712 PMCID: PMC7757699 DOI: 10.1089/crispr.2020.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overweight females are prone to obesity-associated stress urinary incontinence (OA-SUI), and there are no definitive medical therapies for this common urologic condition. This study was designed to test the hypothesis that regenerative therapy to restore urethral striated muscle (stM) and pelvic floor muscles might represent a valuable therapeutic approach. For the in vitro experiment, single-guide RNAs targeting myostatin (MSTN) were used for CRISPRi/dCas9-Kruppel associated box (KRAB)-mediated gene silencing. For the in vivo experiment, a total of 14 female lean ZUC-Leprfa 186 and 14 fatty ZUC-Leprfa 185 rats were used as control and CRISPRi-MSTN treated groups, respectively. The results indicated that lentivirus-mediated expression of MSTN CRISPRi/dCas9-KRAB caused sustained downregulation of MSTN in rat L6 myoblast cells and significantly enhanced myogenesis in vitro. In vivo, the urethral sphincter injection of lentiviral-MSTN sgRNA and lentiviral-dCas9-KRAB significantly increased the leak point pressure, the thickness of the stM layer, the ratio of stM to smooth muscle, and the number of neuromuscular junctions. Downregulation of MSTN with CRISPRi/dCas9-KRAB-mediated gene silencing significantly enhanced myogenesis in vitro and in vivo. It also improved urethral continence in the OA-SUI rat model.
Collapse
Affiliation(s)
- Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Amanda B. Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, Hawaii, USA; and Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yinwei Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Dehua Zhao
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Zhao Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Lei S. Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Tom F. Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| |
Collapse
|
107
|
Ramalingam V, Harshavardhan M, Hwang I. Titanium decorated iron oxide (Ti@Fe2O3) regulates the proliferation of bovine muscle satellite cells through oxidative stress. Bioorg Chem 2020; 105:104459. [DOI: 10.1016/j.bioorg.2020.104459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023]
|
108
|
Hall A, Fontelonga T, Wright A, Bugda Gwilt K, Widrick J, Pasut A, Villa F, Miranti CK, Gibbs D, Jiang E, Meng H, Lawlor MW, Gussoni E. Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skelet Muscle 2020; 10:34. [PMID: 33243288 PMCID: PMC7693590 DOI: 10.1186/s13395-020-00252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. Methods We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. Results Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82−/− dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. Conclusion Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-020-00252-3.
Collapse
Affiliation(s)
- Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular metabolism, Center for Cancer Biology, VIB and KU Leuven, 3000, Leuven, Belgium
| | - Francesco Villa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Devin Gibbs
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Evan Jiang
- The University of Pennsylvania, College of Arts and Sciences, Philadelphia, PA, 19104, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA. .,The Stem Cell Program at Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
109
|
Lee Y, Choi JJ, Ahn SI, Lee NH, Han WM, Mohiuddin M, Shin EJ, Wood L, Park KD, Kim Y, Jang YC. Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle Rejuvenating Factors. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002924. [PMID: 38053980 PMCID: PMC10697693 DOI: 10.1002/adfm.202002924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/07/2023]
Abstract
Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.
Collapse
Affiliation(s)
- Yunki Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeongmoon J. Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nan Hee Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Woojin M. Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mahir Mohiuddin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eun Jung Shin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young C. Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
110
|
Ahuja N, Jin R, Powers C, Billi A, Bass K. Dehydrated Human Amnion Chorion Membrane as Treatment for Pediatric Burns. Adv Wound Care (New Rochelle) 2020; 9:602-611. [PMID: 33095127 PMCID: PMC7580638 DOI: 10.1089/wound.2019.0983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Pediatric burns are a major source of injury and in the absence of adequate care can lead to lifelong functional loss and disfigurement. While split thickness skin autografts are the current standard of care for deep partial and full-thickness burns, this approach is associated with considerable morbidity. For this reason, alternative skin substitutes such as allografts have gained interest. Approach: In the present study, we present a case series of 30 children with various types of burns treated with dehydrated human amnion chorion membrane (dHACM). Results: We show that treatment with dHACM is associated with an excellent rate of healing comparable to split thickness skin grafts with less rate of hypertrophic scar and contracture. Innovation: Treatment with dHACM is particularly attractive as it consists of many tissue regenerative factors, such as growth factors and immune modulators, thus it will reduce the risk of scaring. Conclusion: While dHACM is associated with an increased upfront cost, treating patients with small to moderate-sized burns with dHACM in their regional centers works to decrease downstream costs such as management of prolonged pain from donor-site morbidity, revisional surgeries from scar and contractures of split thickness grafts, and avoiding the cost of transfer to higher level centers of care. Our findings challenge the current standard of care, suggesting that dHACM provides an alternative to the current use of split thickness skin grafting and is a safe, feasible, and potentially superior substitute for the management of small to moderate total body surface area partial and full-thickness pediatric burns.
Collapse
Affiliation(s)
- Natasha Ahuja
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Richard Jin
- Department of Pediatric Surgery, John R. Oishei Children's Hospital, Buffalo, New York, USA
| | - Colin Powers
- Department of Pediatric Surgery, John R. Oishei Children's Hospital, Buffalo, New York, USA
| | - Alexandria Billi
- Department of Pediatric Surgery, John R. Oishei Children's Hospital, Buffalo, New York, USA
| | - Kathryn Bass
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Pediatric Surgery, John R. Oishei Children's Hospital, Buffalo, New York, USA
| |
Collapse
|
111
|
Konagaya Y, Takakura K, Sogabe M, Bisaria A, Liu C, Meyer T, Sehara-Fujisawa A, Matsuda M, Terai K. Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle 2020; 19:3167-3181. [PMID: 33131406 DOI: 10.1080/15384101.2020.1838779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells. We found that in vivo, ERK is maximally activated in myogenic cells two days after injury, and this is then followed by increases in cell number and motility. With limited effects of ERK activity on migration on an acute timescale, we hypothesized that ERK increases migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle analysis further revealed that in myogenic cells, ERK activity is critical for G1/S transition, and cells migrate more rapidly in S/G2 phase 3 days after injury. Finally, migration speed of myogenic cells was suppressed after CDK1/2-but not CDK1-inhibitor treatment, demonstrating a critical role of CDK2 in myogenic cell migration. Overall, our study demonstrates that in myogenic cells, the ERK-CDK2 axis promotes not only G1/S transition but also migration, thus providing a novel mechanism for efficient muscle regeneration.
Collapse
Affiliation(s)
- Yumi Konagaya
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Maina Sogabe
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| |
Collapse
|
112
|
Buchanan SM, Price FD, Castiglioni A, Gee AW, Schneider J, Matyas MN, Hayhurst M, Tabebordbar M, Wagers AJ, Rubin LL. Pro-myogenic small molecules revealed by a chemical screen on primary muscle stem cells. Skelet Muscle 2020; 10:28. [PMID: 33036659 PMCID: PMC7547525 DOI: 10.1186/s13395-020-00248-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022] Open
Abstract
Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.
Collapse
Affiliation(s)
- Sean M Buchanan
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Feodor D Price
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Alessandra Castiglioni
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA.,Cancer Immunology Department, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Amanda Wagner Gee
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Joel Schneider
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Mark N Matyas
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Monica Hayhurst
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Mohammadsharif Tabebordbar
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Amy J Wagers
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
| | - Lee L Rubin
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| |
Collapse
|
113
|
Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress. J Nutr Biochem 2020; 87:108523. [PMID: 33039582 DOI: 10.1016/j.jnutbio.2020.108523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023]
Abstract
Increasing studies report that many natural products can participate in formation of muscle fibers. This study aimed to investigate the effect of lycopene on skeletal muscle-fiber type in vivo and in vitro. C2C12 myoblasts were used in vitro study, and the concentration of lycopene was 10 µM. In vivo, 8-week-old male C57/BL6 mice were used and divided into four groups (n=8): (1) ND: normal-fat diet; (2) ND+Lyc: normal-fat diet mixed with 0.33% w/w lycopene; (3) HFD: high-fat diet; and (4) HFD+Lyc: high-fat diet mixed with 0.33% w/w lycopene. The mice tissue samples were collected after 8 weeks feeding. We found that lycopene supplementation enhanced the protein expression of slow-twitch fiber, succinate dehydrogenase, and malic dehydrogenase enzyme activities, whereas lycopene reduced the protein expression of fast-twitch fibers, lactate dehydrogenase, pyruvate kinase enzyme activities. Moreover, lycopene can promote skeletal muscle triglyceride deposition, enhanced the mRNA expression of genes related to lipid synthesis, reduced the mRNA expression of genes related to lipolysis. And high-fat diet-induced dyslipidemia and oxidative stress were attenuated after lycopene supplementation. Additionally, lycopene supplementation reduced the glycolytic reserve but enhanced mitochondrial ATP production in C2C12 cells. These results demonstrated that lycopene affects the activities of metabolic enzymes in muscle fibers, promotes the expression of slow-twitch fibers, and enhanced mitochondrial respiratory capacity. We speculated that lycopene affects the muscle-fiber type through aerobic oxidation, suggesting that lycopene exerts potential beneficial effects on skeletal muscle metabolism.
Collapse
|
114
|
Zhang C, Cheng N, Qiao B, Zhang F, Wu J, Liu C, Li Y, Du J. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration. J Cachexia Sarcopenia Muscle 2020; 11:1291-1305. [PMID: 32725722 PMCID: PMC7567146 DOI: 10.1002/jcsm.12584] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Impaired muscle regeneration and increased muscle fibrosis are observed in aged muscle accompanied by progressive loss of muscle mass (sarcopenia). However, the underlying mechanism is still unclear. METHODS The differentiated expressed genes in young and aged muscles after acute injury by cardiotoxin were identified by RNA-sequence analysis. Single-cell RNA-sequence analysis was used to identify cell clusters and functions in young muscle after acute injury, and flow cytometry analysis and sorting were used to validate the function. The proliferation and differentiation functions of satellite cells were accessed by immunostaining with 5-ethynyl-2'-deoxyuridine and embryonic myosin heavy chain (eMyHC), respectively. Muscle regeneration ability was accessed by histopathological and molecular biological methods. RESULTS Gene expression patterns associated with responses to interferon-gamma (IFN-γ) (15 genes; false discovery rate < 0.001) were significantly down-regulated during muscle regeneration in aged mice (P = 2.25e-7). CD8+ T cells were the main source of increased IFN-γ after injury, adoptive transfer of wild-type CD8+ T cells to IFN-γ-deficient young mice resulted in 78% increase in cross-sectional areas (CSAs) of regenerated myofibres (P < 0.05) and 63% decrease in muscle fibrosis (P < 0.05) after injury. Single-cell RNA-sequence analysis identified a novel subset of macrophages [named as IFN-responsive macrophages (IFNRMs)] that specifically expressed IFN-responsive genes (Ifit3, Isg15, Irf7, etc.) in young mice at 3 days after injury, and the number of this macrophage subset was ~20% lower in aged mice at the same time (P < 0.05). IFNRMs secreted cytokine C-X-C motif chemokine 10 (CXCL10) that promoted the proliferation and differentiation of satellite cells via its receptor, CXCR3. Intramuscular recombinant CXCL10 treatment in aged mice rejuvenated the proliferation of satellite cells (80% increase in Ki-67+ Pax7+ cells, P < 0.01) and resulted in 27% increase in CSA of regenerated myofibres (P < 0.01) and 29% decrease in muscle fibrosis (P < 0.05). CONCLUSIONS Our study indicates that decline in IFN-γ response in a novel subset of macrophage contributes to satellite cells dysfunctions in aged skeletal muscles and demonstrates that this mechanism can be targeted to restore age-associated myogenesis.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Naixuan Cheng
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, China
| | - Chang Liu
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
115
|
Manford AG, Rodríguez-Pérez F, Shih KY, Shi Z, Berdan CA, Choe M, Titov DV, Nomura DK, Rape M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020; 183:46-61.e21. [PMID: 32941802 DOI: 10.1016/j.cell.2020.08.034] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.
Collapse
Affiliation(s)
- Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Fernando Rodríguez-Pérez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Zhuo Shi
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Charles A Berdan
- Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Mangyu Choe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Daniel K Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California at Berkeley, CA 94720, USA
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
116
|
Gheller BJ, Blum JE, Fong EHH, Malysheva OV, Cosgrove BD, Thalacker-Mercer AE. A defined N6-methyladenosine (m 6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discov 2020; 6:95. [PMID: 33083017 PMCID: PMC7524727 DOI: 10.1038/s41420-020-00328-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Muscle-specific adult stem cells (MuSCs) are required for skeletal muscle regeneration. To ensure efficient skeletal muscle regeneration after injury, MuSCs must undergo state transitions as they are activated from quiescence, give rise to a population of proliferating myoblasts, and continue either to terminal differentiation, to repair or replace damaged myofibers, or self-renewal to repopulate the quiescent population. Changes in MuSC/myoblast state are accompanied by dramatic shifts in their transcriptional profile. Previous reports in other adult stem cell systems have identified alterations in the most abundant internal mRNA modification, N6-methyladenosine (m6A), conferred by its active writer, METTL3, to regulate cell state transitions through alterations in the transcriptional profile of these cells. Our objective was to determine if m6A-modification deposition via METTL3 is a regulator of MuSC/myoblast state transitions in vitro and in vivo. Using liquid chromatography/mass spectrometry we identified that global m6A levels increase during the early stages of skeletal muscle regeneration, in vivo, and decline when C2C12 myoblasts transition from proliferation to differentiation, in vitro. Using m6A-specific RNA-sequencing (MeRIP-seq), a distinct profile of m6A-modification was identified, distinguishing proliferating from differentiating C2C12 myoblasts. RNAi studies show that reducing levels of METTL3, the active m6A methyltransferase, reduced global m6A levels and forced C2C12 myoblasts to prematurely differentiate. Reducing levels of METTL3 in primary mouse MuSCs prior to transplantation enhanced their engraftment capacity upon primary transplantation, however their capacity for serial transplantation was lost. In conclusion, METTL3 regulates m6A levels in MuSCs/myoblasts and controls the transition of MuSCs/myoblasts to different cell states. Furthermore, the first transcriptome wide map of m6A-modifications in proliferating and differentiating C2C12 myoblasts is provided and reveals a number of genes that may regulate MuSC/myoblast state transitions which had not been previously identified.
Collapse
Affiliation(s)
| | - Jamie E. Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | | - Anna E. Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
117
|
Gumpenberger M, Wessner B, Graf A, Narici MV, Fink C, Braun S, Hoser C, Blazevich AJ, Csapo R. Remodeling the Skeletal Muscle Extracellular Matrix in Older Age-Effects of Acute Exercise Stimuli on Gene Expression. Int J Mol Sci 2020; 21:ijms21197089. [PMID: 32992998 PMCID: PMC7583913 DOI: 10.3390/ijms21197089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
With advancing age, the skeletal muscle extracellular matrix (ECM) undergoes fibrotic changes that may lead to increased muscle stiffness, injury susceptibility and strength loss. This study tested the potential of different exercises to counter these changes by stimulating the activity of genes associated with ECM remodeling. Twenty-six healthy men (66.9 ± 3.9 years) were stratified to two of four groups, performing unilateral (i) conventional resistance exercise, (ii) conventional resistance exercise followed by self-myofascial release (CEBR), (iii) eccentric-only exercise (ECC) or (iv) plyometric jumps (PLY). The non-trained leg served as control. Six hours post-exercise, vastus lateralis muscle biopsy samples were analyzed for the expression of genes associated with ECM collagen synthesis (COL1A1), matrix metallopeptidases (collagen degradation; MMPs) and peptidase inhibitors (TIMP1). Significant between-group differences were found for MMP3, MMP15 and TIMP1, with the greatest responses in MMP3 and TIMP1 seen in CEBR and in MMP15 in ECC. MMP9 (3.24–3.81-fold change) and COL1A1 (1.47–2.40-fold change) were increased in CEBR and PLY, although between-group differences were non-significant. The expression of ECM-related genes is exercise-specific, with CEBR and PLY triggering either earlier or stronger remodeling than other stimuli. Training studies will test whether execution of such exercises may help counter age-associated muscle fibrosis.
Collapse
Affiliation(s)
- Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
| | - Barbara Wessner
- Centre for Sport Science and University Sports, University of Vienna, Vienna 1150, Austria;
| | - Alexandra Graf
- Institute for Medical Statistics, CeMSIIS, Medical University of Vienna, Vienna 1090, Austria;
| | - Marco V. Narici
- CirMyo Myology Center, Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| | - Christian Fink
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Sepp Braun
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Christian Hoser
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Gelenkpunkt Sports and Joint Surgery, Innsbruck 6020, Austria
| | - Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Private University for Health Sciences, Medical Informatics and Technology, Hall 6060, Austria; (M.G.); (C.F.); (S.B.); (C.H.)
- Correspondence: ; Tel.: +43-50-8648-3887
| |
Collapse
|
118
|
Schutt C, Hallmann A, Hachim S, Klockner I, Valussi M, Atzberger A, Graumann J, Braun T, Boettger T. Linc-MYH configures INO80 to regulate muscle stem cell numbers and skeletal muscle hypertrophy. EMBO J 2020; 39:e105098. [PMID: 32960481 PMCID: PMC7667881 DOI: 10.15252/embj.2020105098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chromatin remodeling complexes have functions in transcriptional regulation and chromosome maintenance, but it is mostly unknown how the function of these normally ubiquitous complexes is specified in the cellular context. Here, we describe that the evolutionary conserved long non‐coding RNA linc‐MYH regulates the composition of the INO80 chromatin remodeler complex in muscle stem cells and prevents interaction with WDR5 and the transcription factor YY1. Linc‐MYH acts as a selective molecular switch in trans that governs the pro‐proliferative function of the ubiquitous INO80 complex but does not affect its role in maintaining genomic stability. The molecular switch is essential for restricting generation of quiescent MuSCs and proliferation of myoblasts in homeostasis and regeneration. Since linc‐MYH is expressed in proliferating myoblasts but not in quiescent MuSCs, we reason that the extent of myoblast proliferation has decisive effects on the size of the quiescent MuSC pool.
Collapse
Affiliation(s)
- Christian Schutt
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Alix Hallmann
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Salma Hachim
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Ina Klockner
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Melissa Valussi
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Max Planck Institute for Heart- and Lung Research, FACS Service Group, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Mass Spectrometry Service Group, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
119
|
Lin JZ, Liu Y, Ma JD, Mo YQ, Chen CT, Chen LF, Li QH, Yang ZH, Zheng DH, Ling L, Miossec P, Dai L. Reduced skeletal muscle independently predicts 1-year aggravated joint destruction in patients with rheumatoid arthritis. Ther Adv Musculoskelet Dis 2020; 12:1759720X20946220. [PMID: 32922525 PMCID: PMC7448126 DOI: 10.1177/1759720x20946220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Numerous cross-sectional studies have reported the associations between rheumatoid arthritis (RA) and reduced skeletal muscle. We firstly explored the dynamic change of skeletal muscle and its effect on RA clinical outcomes in a real-world prospective cohort. Methods Consecutive RA patients were treated according to the treat-to-target strategy and completed at least 1-year follow up. Clinical data and muscle index (assessed by bioelectric impedance analysis) were collected at baseline and visits at 3, 6, 9 and 12 months. Myopenia was defined by appendicular skeletal muscle mass index ⩽7.0 kg/m2 in men and ⩽5.7 kg/m2 in women. A 1-year radiographic progression as primary outcome was defined by a change in the total Sharp/van der Heijde modified score ⩾0.5 units. Results Among 348 recruited patients, 315 RA patients (mean age 47.9 years, 84.4% female) completed 1-year follow up. There were 143 (45.4%) RA patients showing myopenia at baseline. Compared with those without baseline myopenia, RA patients with baseline myopenia had higher rate of 1-year radiographic progression (43.4% versus 21.5%, all p < 0.05). Baseline myopenia was an independent risk factor for 1-year radiographic progression with adjusted odds ratio (AOR) of 2.5-fold, especially among RA patients in remission at baseline both defined by Disease Activity Score in 28 joints (DAS28) including C-reactive protein (DAS28-CRP) or erythrocyte sedimentation rate (DAS28-ESR) with AOR of 18.5~42.9-fold. Further analysis of six subtypes of dynamic skeletal muscle change showed that newly acquired myopenia at endpoint was associated with radiographic progression (AOR of 5.4-fold). Conclusions Reduced skeletal muscle is an independent predicting factor for 1-year aggravated joint destruction, especially in remission RA. The importance of dynamic monitoring of skeletal muscle and muscle improvement therapy are worth exploration.
Collapse
Affiliation(s)
- Jian-Zi Lin
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Yin Liu
- Department of Medical Statistics, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jian-Da Ma
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Ying-Qian Mo
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Chu-Tao Chen
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Le-Feng Chen
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Qian-Hua Li
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Ze-Hong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, PR China
| | - Dong-Hui Zheng
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou 510120, PR China
| | - Li Ling
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong 510080, PR China
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon and Hospices Civils de Lyon, Lyon, France
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou 510120, PR China
| |
Collapse
|
120
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
121
|
Sun C, Shen L, Zhang Z, Xie X. Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes (Basel) 2020; 11:genes11080837. [PMID: 32717791 PMCID: PMC7463903 DOI: 10.3390/genes11080837] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Neuromuscular disorders encompass a heterogeneous group of conditions that impair the function of muscles, motor neurons, peripheral nerves, and neuromuscular junctions. Being the most common and most severe type of muscular dystrophy, Duchenne muscular dystrophy (DMD), is caused by mutations in the X-linked dystrophin gene. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. Over the last few years, there has been considerable development of diagnosis and therapeutics for DMD, but current treatments do not cure the disease. Here, we review the current status of DMD pathogenesis and therapy, focusing on mutational spectrum, diagnosis tools, clinical trials, and therapeutic approaches including dystrophin restoration, gene therapy, and myogenic cell transplantation. Furthermore, we present the clinical potential of advanced strategies combining gene editing, cell-based therapy with tissue engineering for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China; (C.S.); (L.S.); (Z.Z.)
- Department of Medical Oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Correspondence: ; Tel.: +86-0571-87572326
| |
Collapse
|
122
|
High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells 2020; 9:cells9071723. [PMID: 32708412 PMCID: PMC7407527 DOI: 10.3390/cells9071723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
The interstitial space surrounding the skeletal muscle fibers is populated by a variety of mononuclear cell types. Upon acute or chronic insult, these cell populations become activated and initiate finely-orchestrated crosstalk that promotes myofiber repair and regeneration. Mass cytometry is a powerful and highly multiplexed technique for profiling single-cells. Herein, it was used to dissect the dynamics of cell populations in the skeletal muscle in physiological and pathological conditions. Here, we characterized an antibody panel that could be used to identify most of the cell populations in the muscle interstitial space. By exploiting the mass cytometry resolution, we provided a comprehensive picture of the dynamics of the major cell populations that sensed and responded to acute damage in wild type mice and in a mouse model of Duchenne muscular dystrophy. In addition, we revealed the intrinsic heterogeneity of many of these cell populations.
Collapse
|
123
|
Li Y, Chen M, Zhao Y, Li M, Qin Y, Cheng S, Yang Y, Yin P, Zhang L, Tang P. Advance in Drug Delivery for Ageing Skeletal Muscle. Front Pharmacol 2020; 11:1016. [PMID: 32733249 PMCID: PMC7360840 DOI: 10.3389/fphar.2020.01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The age-related loss of skeletal muscle, sarcopenia, is characterized by progressive loss of muscle mass, reduction in muscle strength, and dysfunction of physical performance. It has become a global health problem leading to several adverse outcomes in the ageing population. Research on skeletal muscle loss prevention and treatment is developing quickly. However, the current clinical approaches to sarcopenia are limited. Recently, novel drug delivery systems offer new possibilities for treating aged muscle loss. Herein, we briefly recapitulate the potential therapeutic targets of aged skeletal muscle and provide a concise advance in the drug delivery systems, mainly focus on the use of nano-carriers. Furthermore, we elaborately discuss the prospect of aged skeletal muscle treatment by nanotechnology approaches.
Collapse
Affiliation(s)
- Yi Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Chen
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yanpeng Zhao
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Qin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Pengbin Yin
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
124
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
125
|
Turpeinen J, Freitas TT, Rubio‐Arias JÁ, Jordan MJ, Aagaard P. Contractile rate of force development after anterior cruciate ligament reconstruction—a comprehensive review and meta‐analysis. Scand J Med Sci Sports 2020; 30:1572-1585. [DOI: 10.1111/sms.13733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | - Tomás T. Freitas
- UCAM Research Center for High Performance Sport Murcia Spain
- NAR—Nucleus of High Performance in Sport São Paulo Brazil
| | - Jacobo Ángel Rubio‐Arias
- UCAM Research Center for High Performance Sport Murcia Spain
- LFE Research Group Department of Health and Human Performance Faculty of Physical Activity and Sport Science‐INEF Universidad Politécnica de Madrid Madrid Spain
| | | | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics SDU Muscle Research Cluster (SMRC) University of Southern Denmark Odense M Denmark
| |
Collapse
|
126
|
Guida JL, Ahles TA, Belsky D, Campisi J, Cohen HJ, DeGregori J, Fuldner R, Ferrucci L, Gallicchio L, Gavrilov L, Gavrilova N, Green PA, Jhappan C, Kohanski R, Krull K, Mandelblatt J, Ness KK, O'Mara A, Price N, Schrack J, Studenski S, Theou O, Tracy RP, Hurria A. Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors. J Natl Cancer Inst 2020; 111:1245-1254. [PMID: 31321426 DOI: 10.1093/jnci/djz136] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Observational data have shown that some cancer survivors develop chronic conditions like frailty, sarcopenia, cardiac dysfunction, and mild cognitive impairment earlier and/or at a greater burden than similarly aged individuals never diagnosed with cancer or exposed to systemic or targeted cancer therapies. In aggregate, cancer- and treatment-related physical, cognitive, and psychosocial late- and long-term morbidities experienced by cancer survivors are hypothesized to represent accelerated or accentuated aging trajectories. However, conceptual, measurement, and methodological challenges have constrained efforts to identify, predict, and mitigate aging-related consequences of cancer and cancer treatment. In July 2018, the National Cancer Institute convened basic, clinical, and translational science experts for a think tank titled "Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors." Through the resulting deliberations, several research and resource needs were identified, including longitudinal studies to examine aging trajectories that include detailed data from before, during, and after cancer treatment; mechanistic studies to elucidate the pathways that lead to the emergence of aging phenotypes in cancer survivors; long-term clinical surveillance to monitor survivors for late-emerging effects; and tools to integrate multiple data sources to inform understanding of how cancer and its therapies contribute to the aging process. Addressing these needs will help expand the evidence base and inform strategies to optimize healthy aging of cancer survivors.
Collapse
|
127
|
Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metab 2020; 31:1136-1153.e7. [PMID: 32492393 PMCID: PMC7267778 DOI: 10.1016/j.cmet.2020.05.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.
Collapse
|
128
|
Yang P, Li C, Lee M, Marzvanyan A, Zhao Z, Ting K, Soo C, Zheng Z. Photopolymerizable Hydrogel-Encapsulated Fibromodulin-Reprogrammed Cells for Muscle Regeneration. Tissue Eng Part A 2020; 26:1112-1122. [PMID: 32323608 DOI: 10.1089/ten.tea.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A central challenge in tissue engineering is obtaining a suitable cell type with a capable delivery vehicle to replace or repair damaged or diseased tissues with tissue mimics. Notably, for skeletal muscle tissue engineering, given the inadequate availability and regenerative capability of endogenous myogenic progenitor cells as well as the tumorigenic risks presented by the currently available pluri- and multipotent stem cells, seeking a safe regenerative cell source is urgently demanded. To conquer this problem, we previously established a novel reprogramming technology that can generate multipotent cells from dermal fibroblasts using a single protein, fibromodulin (FMOD). The yield FMOD-reprogrammed (FReP) cells exhibit exceeding myogenic capability without tumorigenic risk, making them a promising and safe cell source for skeletal muscle establishment. In addition to using the optimal cell for implantation, it is equally essential to maintain cellular localization and retention in the recipient tissue environment for critical-sized muscle tissue establishment. In this study, we demonstrate that the photopolymerizable methacrylated glycol chitosan (MeGC)/type I collagen (ColI)-hydrogel provides a desirable microenvironment for encapsulated FReP cell survival, spreading, extension, and formation of myotubes in the hydrogel three-dimensionally in vitro, without undesired osteogenic, chondrogenic, or tenogenic differentiation. Furthermore, gene profiling revealed a paired box 7 (PAX7) → myogenic factor 5 (MYF5) → myogenic determination 1 (MYOD1) → myogenin (MYOG) → myosin cassette elevation in the encapsulated FReP cells during myogenic differentiation, which is similar to that of the predominant driver of endogenous skeletal muscle regeneration, satellite cells. These findings constitute the evidence that the FReP cell-MeGC/ColI-hydrogel construct is a promising tissue engineering mimic for skeletal muscle generation in vitro, and thus possesses the extraordinary potential for further in vivo validation.
Collapse
Affiliation(s)
- Pu Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Anna Marzvanyan
- A. T. Still University School of Osteopathic Medicine in Arizona, Mesa, Arizona, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Chia Soo
- UCLA Division of Plastic Surgery, Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
129
|
Isolation and Culture of Quiescent Skeletal Muscle Satellite Cells. Methods Mol Biol 2020. [PMID: 32474874 DOI: 10.1007/978-1-0716-0655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It has been shown that freshly isolated satellite cells from adult muscle constitute a stem cell-like population that exhibits more efficient engraftment and self-renewal activity in regenerating muscle than myoblast. Thus, purification of pure populations of quiescent satellite cells from adult skeletal muscle is highly necessary, not only for understanding the biology of satellite cells and myoblasts but also for improving cell-based therapies for muscle regeneration. This chapter describes a basic protocol used in our laboratory to isolate quiescent muscle satellite cells from adult skeletal muscle by enzymatic dissociation followed by a sequential magnetic-activated cell sorting (MACS). This method is cheap and fast providing and alternative procedure to other purification methods that require fluorescence-activated cell sorting (FACS) machines. Freshly isolated quiescent satellite cells purified by this method can be used in a broad range of experiments including cell transplantation for satellite cell self-renewal experiments or cell therapies.
Collapse
|
130
|
Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology 2020; 21:475-484. [PMID: 32447556 PMCID: PMC7347670 DOI: 10.1007/s10522-020-09883-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The loss of muscle mass and function with age, termed sarcopenia, is an inevitable process, which has a significant impact on quality of life. During ageing we observe a progressive loss of total muscle fibres and a reduction in cross-sectional area of the remaining fibres, resulting in a significant reduction in force output. The mechanisms which underpin sarcopenia are complex and poorly understood, ranging from inflammation, dysregulation of protein metabolism and denervation. However, there is significant evidence to demonstrate that modified ROS generation, redox dis-homeostasis and mitochondrial dysfunction may have an important role to play. Based on this, significant interest and research has interrogated potential ROS-targeted therapies, ranging from nutritional-based interventions such as vitamin E/C, polyphenols (resveratrol) and targeted pharmacological compounds, using molecules such as SS-31 and MitoQ. In this review we evaluate these approaches to target aberrant age-related ROS generation and the impact on muscle mass and function.
Collapse
|
131
|
He R, Li H, Wang L, Li Y, Zhang Y, Chen M, Zhu Y, Zhang C. Engraftment of human induced pluripotent stem cell-derived myogenic progenitors restores dystrophin in mice with duchenne muscular dystrophy. Biol Res 2020; 53:22. [PMID: 32430065 PMCID: PMC7238630 DOI: 10.1186/s40659-020-00288-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder with no effective treatment that is caused by the loss of dystrophin. Human induced pluripotent stem cells (hiPSCs) offer a promising unlimited resource for cell-based therapies of muscular dystrophy. However, their clinical applications are hindered by inefficient myogenic differentiation, and moreover, the engraftment of non-transgene hiPSC-derived myogenic progenitors has not been examined in the mdx mouse model of DMD. Methods We investigated the muscle regenerative potential of myogenic progenitors derived from hiPSCs in mdx mice. The hiPSCs were transfected with enhanced green fluorescent protein (EGFP) vector and defined as EGFP hiPSCs. Myogenic differentiation was performed on EGFP hiPSCs with supplementary of basic fibroblast growth factor, forskolin, 6-bromoindirubin-3′-oxime as well as horse serum. EGFP hiPSCs-derived myogenic progenitors were engrafted into mdx mice via both intramuscular and intravenous injection. The restoration of dystrophin expression, the ratio of central nuclear myofibers, and the transplanted cells-derived satellite cells were accessed after intramuscular and systemic transplantation. Results We report that abundant myogenic progenitors can be generated from hiPSCs after treatment with these three small molecules, with consequent terminal differentiation giving rise to mature myotubes in vitro. Upon intramuscular or systemic transplantation into mdx mice, these myogenic progenitors engrafted and contributed to human-derived myofiber regeneration in host muscles, restored dystrophin expression, ameliorated pathological lesions, and seeded the satellite cell compartment in dystrophic muscles. Conclusions This study demonstrates the muscle regeneration potential of myogenic progenitors derived from hiPSCs using non-transgenic induction methods. Engraftment of hiPSC-derived myogenic progenitors could be a potential future therapeutic strategy to treat DMD in a clinical setting.
Collapse
Affiliation(s)
- Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Yaqin Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Menglong Chen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuling Zhu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China.
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China.
| |
Collapse
|
132
|
Chen Z, Li L, Wu W, Liu Z, Huang Y, Yang L, Luo Q, Chen J, Hou Y, Song G. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics 2020; 10:6448-6466. [PMID: 32483463 PMCID: PMC7255041 DOI: 10.7150/thno.43577] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose: The exhaustion of muscle satellite cells (SCs) is correlated with muscle diseases, including sarcopenia and Duchenne muscular dystrophy. Exercise benefits skeletal muscle homeostasis and promotes proliferation of SCs. Elucidating the molecular mechanism underlying the muscle function-improving effect of exercise has important implications in regenerative medicine. Methods: Herein, we investigated the effect of 4-week treadmill training on skeletal muscle and SCs in mice. Hematoxylin and eosin (HE) staining was utilized to detect the morphometry of skeletal muscles. Flow cytometry and immunofluorescence were conducted to analyze the abundance and cell cycle of SCs. RNA sequencing was performed to elucidate the transcriptional regulatory network of SCs. The ChIP-PCR assay was used to detect enrichment of H3K27ac at the promoters of Akt. Results: We observed that exercise resulted in muscle hypertrophy and improved muscle regeneration in mice. Unexpectedly, exercise promoted cell cycling but suppressed the Akt-mTOR pathway in SCs. Proliferative SCs in "exercised mice" required suppressed mTOR activity to limit mitochondrial metabolism, maintaining the "limited activation status" of SCs against exhaustion. Mechanistically, exercise upregulated the expression of Igfbp7, thereby impeding the phosphorylation of Akt and resulting in inhibited mTOR activity and limited mitochondrial metabolism. The limited mitochondrial metabolism resulted in hypoacetylation of histone 3 and reduced enrichment of H3K27ac at promoters of Akt, decreasing the transcription of Akt. Moreover, repeatedly injured mice showed a preserved SC pool and improved muscle regeneration by the suppression of Akt-mTOR signaling. Conclusions: The findings of our study show that exercise protects proliferative SCs against exhaustion via the Igfbp7-Akt-mTOR axis. These findings establish a link between mechanical signaling, mitochondrial metabolism, epigenetic modification, and stem cell fate decisions; thus, present potential therapeutic targets for muscle diseases correlated with SC exhaustion.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiru Wu
- Clinical hematology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongxiu Huang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
133
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
134
|
Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ 2020; 27:2921-2941. [PMID: 32382110 DOI: 10.1038/s41418-020-0551-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Fibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/β-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling. Consistently, pharmacological blockade of GSK3, by the LY2090314 inhibitor, stabilizes β-catenin and represses PPARγ expression abrogating FAP adipogenesis ex vivo while limiting fatty degeneration in vivo. Furthermore, GSK3 inhibition improves the FAP pro-myogenic role by efficiently stimulating, via follistatin secretion, muscle satellite cell (MuSC) differentiation into mature myotubes. Combining, publicly available single-cell RNAseq datasets, we characterize FAPs as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche. Lastly, we identify WNT5a, whose expression is impaired in dystrophic FAPs, as a crucial WNT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the β-catenin signaling.
Collapse
|
135
|
Kimmel JC, Hwang AB, Scaramozza A, Marshall WF, Brack AS. Aging induces aberrant state transition kinetics in murine muscle stem cells. Development 2020; 147:dev183855. [PMID: 32198156 PMCID: PMC7225128 DOI: 10.1242/dev.183855] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is required for regeneration, but it remains unknown if the trajectory and dynamics of activation change with age. Here, we use time-lapse imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged MuSCs. We find that the activation trajectory is conserved in aged cells, and we develop effective machine-learning classifiers for cell age. Using cell-behavior analysis and RNA velocity, we find that activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation appears to be a random walk-like process, with frequent reversals, rather than a continuous linear progression. These results support a view of the aged stem cell phenotype as a combination of differences in the location of stable cell states and differences in transition rates between them.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ara B Hwang
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Annarita Scaramozza
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Wallace F Marshall
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew S Brack
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| |
Collapse
|
136
|
Gabay Yehezkely R, Zaffryar-Eilot S, Kaganovsky A, Fainshtain Malka N, Aviram R, Livneh I, Hasson P. Intracellular Role for the Matrix-Modifying Enzyme Lox in Regulating Transcription Factor Subcellular Localization and Activity in Muscle Regeneration. Dev Cell 2020; 53:406-417.e5. [DOI: 10.1016/j.devcel.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/23/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
|
137
|
Siddiqui SH, Subramaniyan SA, Kang D, Park J, Khan M, Shim K. Modulatory effect of heat stress on viability of primary cultured chicken satellite cells and expression of heat shock proteins ex vivo. Anim Biotechnol 2020; 32:774-785. [PMID: 32340526 DOI: 10.1080/10495398.2020.1757460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells promote muscle repairing and muscle growth. Thereby the intention of the present study was to investigate the beneficial effects of heat stress at different time intervals on chicken satellite cells' viability. Satellite cells were isolated from 1-day-old chicks and treated at two different temperatures (37 °C and 41 °C) for various time periods (6 h, 12 h, 24 h, 48 h, and 72 h). Both temperatures significantly increased cell viability after 24 h and 48 h. After 12 h, cell viability was significantly increased at 41 °C compared to 37 °C. However, more apoptotic cells were observed at end of the experiment of 41 °C compared to 37 °C. In addition, more live cells were found at early of experimental period at 41 °C than 37 °C. Additionally, protein and mRNA expression of HSP70, HP60 and HSP47 were significantly upregulated throughout the experimental period at temperature of 41 °C compared to those at 37 °C. These results indicate that cell viability and expression of heat stress related proteins/genes are induced by high temperature of 41 °C via heat stress pathway whereas activation of heat stress related proteins/genes are lower at 37 °C. Thus, 41 °C can trigger satellite cells' viability essential for better cell survival than 37 °C at early incubation time.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
138
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
139
|
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep 2020; 26:689-701.e6. [PMID: 30650360 DOI: 10.1016/j.celrep.2018.12.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Most human cancers originate from high-turnover tissues, while low-proliferating tissues, like skeletal muscle, exhibit a lower incidence of tumor development. In Duchenne muscular dystrophy (DMD), which induces increased skeletal muscle regeneration, tumor incidence is increased. Rhabdomyosarcomas (RMSs), a rare and aggressive type of soft tissue sarcoma, can develop in this context, but the impact of DMD severity on RMS development and its cell of origin are poorly understood. Here, we show that RMS latency is affected by DMD severity and that muscle stem cells (MuSCs) can give rise to RMS in dystrophic mice. We report that even before tumor formation, MuSCs exhibit increased self-renewal and an expression signature associated with RMSs. These cells can form tumorspheres in vitro and give rise to RMSs in vivo. Finally, we show that the inflammatory genes Ccl11 and Rgs5 are involved in RMS growth. Together, our results show that DMD severity drives MuSC-mediated RMS development.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Fox
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
140
|
Fontelonga TM, Jordan B, Nunes AM, Barraza-Flores P, Bolden N, Wuebbles RD, Griner LM, Hu X, Ferrer M, Marugan J, Southall N, Burkin DJ. Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2020; 28:2120-2132. [PMID: 30806670 DOI: 10.1093/hmg/ddz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7β1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.
Collapse
Affiliation(s)
- Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Brennan Jordan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Nicholas Bolden
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Ryan D Wuebbles
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Lesley Mathews Griner
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Xin Hu
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Marc Ferrer
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Juan Marugan
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Noel Southall
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| |
Collapse
|
141
|
Somasundaram L, Levy S, Hussein AM, Ehnes DD, Mathieu J, Ruohola-Baker H. Epigenetic metabolites license stem cell states. Curr Top Dev Biol 2020; 138:209-240. [PMID: 32220298 DOI: 10.1016/bs.ctdb.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. In this review, we summarize some of the transitions in adult and pluripotent cell types and will propose that the key function in this process is the generation of epigenetic metabolites that govern critical epigenetic modifications, and therefore stem cell states.
Collapse
Affiliation(s)
- Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Shiri Levy
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
142
|
Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020; 11:253. [PMID: 32265741 PMCID: PMC7096581 DOI: 10.3389/fphys.2020.00253] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle represents the largest body-composition component in humans. In addition to its primary function in the maintenance of upright posture and the production of movement, it also plays important roles in many other physiological processes, including thermogenesis, metabolism and the secretion of peptides for communication with other tissues. Research attempting to unveil these processes has traditionally focused on muscle fibers, i.e., the contractile muscle cells. However, it is a frequently overlooked fact that muscle fibers reside in a three-dimensional scaffolding that consists of various collagens, glycoproteins, proteoglycans, and elastin, and is commonly referred to as extracellular matrix (ECM). While initially believed to be relatively inert, current research reveals the involvement of ECM cells in numerous important physiological processes. In interaction with other cells, such as fibroblasts or cells of the immune system, the ECM regulates muscle development, growth and repair and is essential for effective muscle contraction and force transmission. Since muscle ECM is highly malleable, its texture and, consequently, physiological roles may be affected by physical training and disuse, aging or various diseases, such as diabetes. With the aim to stimulate increased efforts to study this still poorly understood tissue, this narrative review summarizes the current body of knowledge on (i) the composition and structure of the ECM, (ii) molecular pathways involved in ECM remodeling, (iii) the physiological roles of muscle ECM, (iv) dysregulations of ECM with aging and disease as well as (v) the adaptations of muscle ECM to training and disuse.
Collapse
Affiliation(s)
- Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Barbara Wessner
- Department of Sports Medicine, Exercise Physiology and Prevention, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
143
|
Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, Chen Y, Zhang Y, Li X, Liu R, Shang Q, Zheng Z, Song L, Li Y, Fu Z, Lin L, Melino G, Wang Y, Shao C, Shi Y. Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med 2020; 9:773-785. [PMID: 32176461 PMCID: PMC7308640 DOI: 10.1002/sctm.19-0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cytokines produced by immune cells have been demonstrated to act on muscle stem cells (MuSCs) and direct their fate and behavior during muscle repair and regeneration. Nevertheless, it is unclear whether and how MuSCs can also in turn modulate the properties of immune cells. Here, we showed that in vitro expanded MuSCs exhibited a potent anti‐inflammatory effect when infused into mice suffering from inflammatory bowel disease (IBD). Supernatant conditioned by MuSCs similarly ameliorated IBD. This beneficial effect of MuSCs was not observed when macrophages were depleted. The MuSC supernatant was found to greatly attenuate the expression of inflammatory cytokines but increase the expression of programmed death‐ligand 1 in macrophages treated with lipopolysaccharide and interferon gamma. Further analysis revealed that MuSCs produce a large amount of insulin‐like growth factor‐2 (IGF‐2) that instructs maturing macrophages to undergo oxidative phosphorylation and thus acquire anti‐inflammatory properties. Interestingly, the IGF‐2 production by MuSCs is much higher than by mesenchymal stem cells. Knockdown or neutralization of IGF‐2 abrogated the anti‐inflammatory effects of MuSCs and their therapeutic efficacy on IBD. Our study demonstrated that MuSCs possess a strong anti‐inflammatory property and the bidirectional interactions between immune cells and MuSCs have important implications in muscle‐related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhanhong Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongsha Pan
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Pengbo Hou
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yuyan Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Zhonglin Fu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Liangyu Lin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
144
|
Fabbrizio P, Apolloni S, Bianchi A, Salvatori I, Valle C, Lanzuolo C, Bendotti C, Nardo G, Volonté C. P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2020; 30:272-282. [PMID: 31376190 PMCID: PMC7065186 DOI: 10.1111/bpa.12774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Muscle weakness plays an important role in neuromuscular disorders comprising amyotrophic lateral sclerosis (ALS). However, it is not established whether muscle denervation originates from the motor neurons, the muscles or more likely both. Previous studies have shown that the expression of the SOD1G93A mutation in skeletal muscles causes denervation of the neuromuscular junctions, inability to regenerate and consequent atrophy, all clear symptoms of ALS. In this work, we used SOD1G93A mice, a model that best mimics some pathological features of both familial and sporadic ALS, and we investigated some biological effects induced by the activation of the P2X7 receptor in the skeletal muscles. The P2X7, belonging to the ionotropic family of purinergic receptors for extracellular ATP, is abundantly expressed in the healthy skeletal muscles, where it controls cell duplication, differentiation, regeneration or death. In particular, we evaluated whether an in vivo treatment in SOD1G93A mice with the P2X7 specific agonist 2'(3')-O-(4-Benzoylbenzoyl) adenosine5'-triphosphate (BzATP) just before the onset of a pathological neuromuscular phenotype could exert beneficial effects in the skeletal muscles. Our findings indicate that stimulation of P2X7 improves the innervation and metabolism of myofibers, moreover elicits the proliferation/differentiation of satellite cells, thus preventing the denervation atrophy of skeletal muscles in SOD1G93A mice. Overall, this study suggests that a P2X7-targeted and site-specific modulation might be a strategy to interfere with the complex multifactorial and multisystem nature of ALS.
Collapse
Affiliation(s)
- Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | | | | | | | - Cristiana Valle
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute of Translational PharmacologyRomeItaly
| | - Chiara Lanzuolo
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute of Biomedical TechnologiesMilanItaly
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Cinzia Volonté
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute for Systems Analysis and Computer ScienceRomeItaly
| |
Collapse
|
145
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
146
|
Gao Y, Zhang T, Zhu J, Xiao D, Zhang M, Sun Y, Li Y, Lin Y, Cai X. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. MATERIALS CHEMISTRY FRONTIERS 2020. [DOI: 10.1039/d0qm00329h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenges associated with muscle degenerative diseases and volumetric muscle loss (VML) emphasizes the prospects of muscle tissue regeneration.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Mei Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yue Sun
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - XiaoXiao Cai
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
147
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
148
|
Apsite I, Uribe JM, Posada AF, Rosenfeldt S, Salehi S, Ionov L. 4D biofabrication of skeletal muscle microtissues. Biofabrication 2019; 12:015016. [PMID: 31600742 DOI: 10.1088/1758-5090/ab4cc4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Skeletal muscle is one of the most abundant tissues in the body. Although it has a relatively good regeneration capacity, it cannot heal in the case of disease or severe damage. Many current tissue engineering strategies fall short due to the complex structure of skeletal muscle. Biofabrication techniques have emerged as a popular set of methods for increasing the complexity of tissue-like constructs. In this paper, 4D biofabrication technique is introduced for fabrication of the skeletal muscle microtissues. To this end, a bilayer scaffold consisting of a layer of anisotropic methacrylated alginate fibers (AA-MA) and aligned polycaprolactone (PCL) fibers were fabricated using electrospinning and later induced to self-fold to encapsulate myoblasts. Bilayer mats undergo shape-transformation in an aqueous buffer, a process that depends on their overall thickness, the thickness of each layer and the geometry of the mat. Proper selection of these parameters allowed fabrication of scroll-like tubes encapsulating myoblasts. The myoblasts were shown to align along the axis of the anisotropic PCL fibers and further differentiated into aligned myotubes that contracted under electrical stimulation. Overall the significance of this approach is in the fabrication of hollow tubular constructs that can be further developed for the formation of a vascularized and functional muscle.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genet 2019; 15:e1008408. [PMID: 31626629 PMCID: PMC6821135 DOI: 10.1371/journal.pgen.1008408] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/30/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles. Muscular dystrophies are a heterogenous group of genetic disorders characterized by muscle wasting, leading to loss of mobility and eventually to death due to respiratory or cardiac failure. Duchenne Muscular Dystrophy (DMD) is one of the most severe dystrophies and is caused by the loss of functional dystrophin protein owing to genetic mutations, consequently, the sarcolemma becomes fragile and susceptible to muscle damage induced by contraction. Satellite cells (SCs) are skeletal muscle stem cells that mediate the repair process leading to muscle regeneration. Dystrophic muscles undergo continuous cycles of degeneration and regeneration eventually culminating in myofiber loss and deposition of fibrous and fatty connective tissue. Inflammation is always associated with the muscle regeneration process. Among different types of inflammatory cells, mainly macrophages (MΦs) are present in regenerating skeletal muscles and are involved in the regenerative process both after an acute injury and during pathological conditions such as DMD. We focused on the cross-talk between MΦs and SCs in a mouse model of DMD and highlighted a role of MΦs in preserving the SC identity.
Collapse
|
150
|
Angiotensin-II Drives Human Satellite Cells Toward Hypertrophy and Myofibroblast Trans-Differentiation by Two Independent Pathways. Int J Mol Sci 2019; 20:ijms20194912. [PMID: 31623362 PMCID: PMC6801484 DOI: 10.3390/ijms20194912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.
Collapse
|