101
|
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs.
Collapse
|
102
|
Abstract
RNAs have highly complex and dynamic cellular localization patterns. Technologies for imaging RNA in living cells are important for uncovering their function and regulatory pathways. One approach for imaging RNA involves genetically encoding fluorescent RNAs using RNA mimics of green fluorescent protein (GFP). These mimics are RNA aptamers that bind fluorophores resembling those naturally found in GFP and activate their fluorescence. These RNA-fluorophore complexes, including Spinach, Spinach2, and Broccoli, can be used to tag RNAs and to image their localization in living cells. In this article, we describe the generation and optimization of these aptamers, along with strategies for expanding the spectral properties of their associated RNA-fluorophore complexes. We also discuss the structural basis for the fluorescence and photophysical properties of Spinach, and we describe future prospects for designing enhanced RNA-fluorophore complexes with enhanced photostability and increased sensitivity.
Collapse
Affiliation(s)
- Mingxu You
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York 10065; ,
| | | |
Collapse
|
103
|
Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, Philippe A, Feron F, Gepner B, Rougeulle C, Humeau Y, Colleaux L. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism 2016; 7:1. [PMID: 26753090 PMCID: PMC4705753 DOI: 10.1186/s13229-015-0064-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders caused by the interaction between genetic vulnerability and environmental factors. MicroRNAs (miRNAs) are key posttranscriptional regulators involved in multiple aspects of brain development and function. Previous studies have investigated miRNAs expression in ASD using non-neural cells like lymphoblastoid cell lines (LCL) or postmortem tissues. However, the relevance of LCLs is questionable in the context of a neurodevelopmental disorder, and the impact of the cause of death and/or post-death handling of tissue likely contributes to the variations observed between studies on brain samples. Methods miRNA profiling using TLDA high-throughput real-time qPCR was performed on miRNAs extracted from olfactory mucosal stem cells (OMSCs) biopsied from eight patients and six controls. This tissue is considered as a closer tissue to neural stem cells that could be sampled in living patients and was never investigated for such a purpose before. Real-time PCR was used to validate a set of differentially expressed miRNAs, and bioinformatics analysis determined common pathways and gene targets. Luciferase assays and real-time PCR analysis were used to evaluate the effect of miRNAs misregulation on the expression and translation of several autism-related transcripts. Viral vector-mediated expression was used to evaluate the impact of miRNAs deregulation on neuronal or glial cells functions. Results We identified a signature of four miRNAs (miR-146a, miR-221, miR-654-5p, and miR-656) commonly deregulated in ASD. This signature is conserved in primary skin fibroblasts and may allow discriminating between ASD and intellectual disability samples. Putative target genes of the differentially expressed miRNAs were enriched for pathways previously associated to ASD, and altered levels of neuronal transcripts targeted by miR-146a, miR-221, and miR-656 were observed in patients’ cells. In the mouse brain, miR-146a, and miR-221 display strong neuronal expression in regions important for high cognitive functions, and we demonstrated that reproducing abnormal miR-146a expression in mouse primary cell cultures leads to impaired neuronal dendritic arborization and increased astrocyte glutamate uptake capacities. Conclusions While independent replication experiments are needed to clarify whether these four miRNAS could serve as early biomarkers of ASD, these findings may have important diagnostic implications. They also provide mechanistic connection between miRNA dysregulation and ASD pathophysiology and may open up new opportunities for therapeutic. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0064-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lam Son Nguyen
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Marylin Lepleux
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Mélanie Makhlouf
- Epigénétique et Destin Cellulaire, Université Paris Diderot, UMR 7216, 75205 Paris, France
| | - Christelle Martin
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Julien Fregeac
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Anne Philippe
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| | - François Feron
- Aix Marseille Université, NICN, CNRS UMR 7259, 13344 Marseille, France
| | - Bruno Gepner
- Aix Marseille Université, NICN, CNRS UMR 7259, 13344 Marseille, France
| | - Claire Rougeulle
- Epigénétique et Destin Cellulaire, Université Paris Diderot, UMR 7216, 75205 Paris, France
| | - Yann Humeau
- Synapse in Cognition Laboratory, Institut Interdisciplinaire de NeuroSciences, Centre de génomique fonctionnelle, UMR 5297 CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Laurence Colleaux
- INSERM UMR 1163, Laboratory of Molecular and pathophysiological bases of cognitive disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 24 boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
104
|
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. GENES, BRAIN, AND BEHAVIOR 2016; 15:7-26. [PMID: 26403076 PMCID: PMC4775274 DOI: 10.1111/gbb.12256] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.
Collapse
Affiliation(s)
- T. M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - P. T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - J. N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
105
|
Okray Z, de Esch CEF, Van Esch H, Devriendt K, Claeys A, Yan J, Verbeeck J, Froyen G, Willemsen R, de Vrij FMS, Hassan BA. A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function. EMBO Mol Med 2015; 7:423-37. [PMID: 25693964 PMCID: PMC4403044 DOI: 10.15252/emmm.201404576] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.
Collapse
Affiliation(s)
- Zeynep Okray
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| | - Celine E F de Esch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilde Van Esch
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Koen Devriendt
- Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Annelies Claeys
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jiekun Yan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Guy Froyen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, University of Leuven School of Medicine and University Hospitals Leuven, Leuven, Belgium Program in Molecular and Developmental Genetics, Doctoral School of Biomedical Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
106
|
Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 2015; 15:146-67. [PMID: 25732149 DOI: 10.2174/1566524015666150303003028] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.
Collapse
Affiliation(s)
| | - P Penzes
- Department of Physiology, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
107
|
Orefice LL, Shih CC, Xu H, Waterhouse EG, Xu B. Control of spine maturation and pruning through proBDNF synthesized and released in dendrites. Mol Cell Neurosci 2015; 71:66-79. [PMID: 26705735 DOI: 10.1016/j.mcn.2015.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022] Open
Abstract
Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75(NTR) receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Chien-Cheng Shih
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Emily G Waterhouse
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
108
|
Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C, Zilberberg A, Lerer-Goldshtein T, Efroni S, Levanon EY, Appelbaum L. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish. PLoS Genet 2015; 11:e1005702. [PMID: 26637167 PMCID: PMC4670233 DOI: 10.1371/journal.pgen.1005702] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023] Open
Abstract
Fragile X syndrome (FXS) is the most frequent inherited form of mental retardation. The cause for this X-linked disorder is the silencing of the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (Fmrp). The RNA-binding protein Fmrp represses protein translation, particularly in synapses. In Drosophila, Fmrp interacts with the adenosine deaminase acting on RNA (Adar) enzymes. Adar enzymes convert adenosine to inosine (A-to-I) and modify the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we studied Fmrp-dependent neuronal circuit formation, behavior, and Adar-mediated RNA editing. By combining behavior analyses and live imaging of single axons and synapses, we showed hyperlocomotor activity, as well as increased axonal branching and synaptic density, in fmr1-/- larvae. We identified thousands of clustered RNA editing sites in the zebrafish transcriptome and showed that Fmrp biochemically interacts with the Adar2a protein. The expression levels of the adar genes and Adar2 protein increased in fmr1-/- zebrafish. Microfluidic-based multiplex PCR coupled with deep sequencing showed a mild increase in A-to-I RNA editing levels in evolutionarily conserved neuronal and synaptic Adar-targets in fmr1-/- larvae. These findings suggest that loss of Fmrp results in increased Adar-mediated RNA editing activity on target-specific RNAs, which, in turn, might alter neuronal circuit formation and behavior in FXS. The most frequent inherited mental retardation disorder is fragile X syndrome, which is characterized by learning disabilities, cognitive impairment, anxiety, and hyperactive behavior. The genetic cause of this disorder is the silencing of the fmr1 gene, which encodes the RNA-binding protein Fmrp. This protein inhibits the production of various proteins in the brain and interacts with the Adar enzyme, which converts the nucleotide A into I in RNAs. However, it is unclear by which mechanism the loss of Fmrp affects the sequence of neuronal genes and, ultimately, brain function. Here, we used the fmr1 mutant zebrafish (fmr1-/-), which enables high-throughput genetics and live imaging experiments in a transparent and evolutionarily conserved brain. We found that loss of Fmrp altered neuronal circuit formation. Furthermore, similar to human patients, the fmr1-/- larvae were hyperactive. Biochemical assays showed that Fmrp interacts with the Adar2a protein, which is increased in fmr1-/- larvae. Thus, we characterized global RNA editing in the zebrafish transcriptome and used a microfluidic-based high-throughput technique to accurately quantify RNA editing levels. Loss of Fmrp resulted in a mild increase in RNA editing in the coding sequences of conserved synaptic genes. These findings propose that altered RNA editing levels may affect neuronal and behavioral deficiencies in FXS.
Collapse
Affiliation(s)
- Adi Shamay-Ramot
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Khen Khermesh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hagit T. Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Chaim Wachtel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Erez Y. Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lior Appelbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
109
|
Stefanovic S, DeMarco BA, Underwood A, Williams KR, Bassell GJ, Mihailescu MR. Fragile X mental retardation protein interactions with a G quadruplex structure in the 3'-untranslated region of NR2B mRNA. MOLECULAR BIOSYSTEMS 2015; 11:3222-30. [PMID: 26412477 PMCID: PMC4643373 DOI: 10.1039/c5mb00423c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5'-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the post synaptic density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3'-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3'-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-d-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Brett A DeMarco
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Ayana Underwood
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
110
|
Zhang P, Abdelmohsen K, Liu Y, Tominaga-Yamanaka K, Yoon JH, Ioannis G, Martindale JL, Zhang Y, Becker KG, Yang IH, Gorospe M, Mattson MP. Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nat Commun 2015; 6:8888. [PMID: 26586091 PMCID: PMC4673492 DOI: 10.1038/ncomms9888] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a non-telomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The process is antagonized by fragile X mental retardation protein (FMRP). Distinct from the current RNA-binding model of FMRP, we show that FMRP occupies the GAR domain of TRF2-S protein to block the assembly of TRF2-S–mRNA complexes. Overexpressing TRF2-S and silencing FMRP promotes mRNA entry to axons and enhances axonal outgrowth and neurotransmitter release from presynaptic terminals. Our findings suggest a pivotal role for TRF2-S in an axonal mRNA localization pathway that enhances axon outgrowth and neurotransmitter release. The molecular mechanisms regulating axonal mRNA transport are only partially understood. Here, Zhang et al. show a nontelomeric TRF2 splice variant interacts with FMRP to regulate the transport of several axonal mRNAs involved in axonal elongation and neurotransmitter release.
Collapse
Affiliation(s)
- Peisu Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Yong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Kumiko Tominaga-Yamanaka
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Grammatikakis Ioannis
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - In Hong Yang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117465, Singapore.,SINAPSE, National University of Singapore, Singapore 117465, Singapore
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
111
|
Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus. Nat Commun 2015; 5:3259. [PMID: 24514761 DOI: 10.1038/ncomms4259] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/15/2014] [Indexed: 12/16/2022] Open
Abstract
The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.
Collapse
|
112
|
Hussain S, Bashir ZI. The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Front Cell Neurosci 2015; 9:420. [PMID: 26582006 PMCID: PMC4628113 DOI: 10.3389/fncel.2015.00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023] Open
Abstract
The application of next-generation-sequencing based methods has recently allowed the sequence-specific occurrence of RNA modifications to be investigated in transcriptome-wide settings. This has led to the emergence of a new field of molecular genetics research termed “epitranscriptomics.” Investigations have shown that these modifications can exert control over protein synthesis via various mechanisms, and particularly when occurring on messenger RNAs, can be dynamically regulated. Here, we propose that RNA modifications may be a critical regulator over the spatiotemporal control of protein-synthesis in neurons, which is supported by our finding that the RNA methylase NSun2 colocalizes with the translational-repressor FMRP at neuronal dendrites. We also observe that NSun2 commonly methylates mRNAs which encode components of the postsynaptic proteome, and further find that NSun2 and FMRP likely share a common subset of mRNA targets which include those that are known to be translated at dendrites in an activity-dependent manner. We consider potential roles for RNA modifications in space- time- and activity-dependent regulation of protein synthesis in neuronal physiology, with a particular focus on synaptic plasticity modulation.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Zafar I Bashir
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
113
|
Zhang Y, Gaetano CM, Williams KR, Bassell GJ, Mihailescu MR. FMRP interacts with G-quadruplex structures in the 3'-UTR of its dendritic target Shank1 mRNA. RNA Biol 2015; 11:1364-74. [PMID: 25692235 DOI: 10.1080/15476286.2014.996464] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3'-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ' -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Yang Zhang
- a Graduate School of Pharmaceutical Sciences; Mylan School of Pharmacy ; Duquesne University ; Pittsburgh , PA USA
| | | | | | | | | |
Collapse
|
114
|
Abstract
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
Collapse
Affiliation(s)
- Dima Amso
- Department of Cognitive, Linguistic &Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| |
Collapse
|
115
|
Jewett KA, Zhu J, Tsai NP. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity. J Neurochem 2015; 135:226-33. [PMID: 26250624 DOI: 10.1111/jnc.13271] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Chronic activity perturbation in neurons can trigger homeostatic mechanisms to restore the baseline function. Although the importance and dysregulation of neuronal activity homeostasis has been implicated in neurological disorders such as epilepsy, the complete signaling by which chronic changes in neuronal activity initiate the homeostatic mechanisms is unclear. We report here that the tumor suppressor p53 and its signaling are involved in neuronal activity homeostasis. Upon chronic elevation of neuronal activity in primary cortical neuron cultures, the ubiquitin E3 ligase, murine double minute- 2 (Mdm2), is phosphorylated by the kinase Akt. Phosphorylated Mdm2 triggers the degradation of p53 and subsequent induction of a p53 target gene, neural precursor cell expressed developmentally down-regulated gene 4-like (Nedd4-2). Nedd4-2 encodes another ubiquitin E3 ligase. We identified glutamate receptor subunit 1 (GluA1), subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as a novel substrate of Nedd4-2. The regulation of GluA1 level is known to be crucial for neuronal activity homeostasis. We confirmed that, by pharmacologically inhibiting Mdm2-mediated p53 degradation or genetically reducing Nedd4-2 in a mouse model, the GluA1 ubiquitination and down-regulation induced by chronically elevated neuronal activity are both attenuated. Our findings demonstrate the first direct function of p53 in neuronal homeostasis and elucidate a new mechanism by which cortical neurons respond to chronic activity perturbation.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
116
|
GABAB receptor upregulates fragile X mental retardation protein expression in neurons. Sci Rep 2015; 5:10468. [PMID: 26020477 PMCID: PMC4447080 DOI: 10.1038/srep10468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/15/2015] [Indexed: 12/17/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS), which leads to intellectual disability and social impairment. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the mammalian central nervous system, and its metabotropic GABAB receptor has been implicated in various mental disorders. The GABAB receptor agonist baclofen has been shown to improve FXS symptoms in a mouse model and in human patients, but the signaling events linking the GABAB receptor and FMRP are unknown. In this study, we found that GABAB receptor activation upregulated cAMP response element binding protein-dependent Fmrp expression in cultured mouse cerebellar granule neurons via two distinct mechanisms: the transactivation of insulin-like growth factor-1 receptor and activation of protein kinase C. In addition, a positive allosteric modulator of the GABAB receptor, CGP7930, stimulated Fmrp expression in neurons. These results suggest a role for GABAB receptor in Fmrp regulation and a potential interest of GABAB receptor signaling in FXS improvement.
Collapse
|
117
|
Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T, Watanabe M. Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 2015; 16:264-77. [PMID: 25891509 PMCID: PMC10631555 DOI: 10.1038/nrn3937] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.
Collapse
Affiliation(s)
- Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Bradley E Alger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sang-Hun Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Takako Ohno-Shosaku
- Department of Impairment Study, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0942, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
118
|
Rheb activation disrupts spine synapse formation through accumulation of syntenin in tuberous sclerosis complex. Nat Commun 2015; 6:6842. [PMID: 25880340 DOI: 10.1038/ncomms7842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/03/2015] [Indexed: 01/14/2023] Open
Abstract
Rheb is a small GTP-binding protein and its GTPase activity is activated by the complex of Tsc1 and Tsc2 whose mutations cause tuberous sclerosis complex (TSC). We previously reported that cultured TSC neurons showed impaired spine synapse morphogenesis in an mTORC1-independent manner. Here we show that the PDZ protein syntenin preferentially binds to the GDP-bound form of Rheb. The levels of syntenin are significantly higher in TSC neurons than in wild-type neurons because the Rheb-GDP-syntenin complex is prone to proteasomal degradation. Accumulated syntenin in TSC neurons disrupts spine synapse formation through inhibition of the association between syndecan-2 and calcium/calmodulin-dependent serine protein kinase. Instead, syntenin enhances excitatory shaft synapse formation on dendrites by interacting with ephrinB3. Downregulation of syntenin in TSC neurons restores both spine and shaft synapse densities. These findings suggest that Rheb-syntenin signalling may be a novel therapeutic target for abnormalities in spine and shaft synapses in TSC neurons.
Collapse
|
119
|
Quantitative profiling of brain lipid raft proteome in a mouse model of fragile X syndrome. PLoS One 2015; 10:e0121464. [PMID: 25849048 PMCID: PMC4388542 DOI: 10.1371/journal.pone.0121464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders.
Collapse
|
120
|
Neuhofer D, Henstridge CM, Dudok B, Sepers M, Lassalle O, Katona I, Manzoni OJ. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front Cell Neurosci 2015; 9:100. [PMID: 25859182 PMCID: PMC4374460 DOI: 10.3389/fncel.2015.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 12/26/2022] Open
Abstract
Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X.
Collapse
Affiliation(s)
- Daniela Neuhofer
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - Christopher M Henstridge
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; School of Ph.D. Studies, Semmelweis University Budapest, Hungary
| | - Marja Sepers
- Department of Psychiatry, University of British Columbia Vancouver, Canada
| | - Olivier Lassalle
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| | - István Katona
- Momentum Laboratory of Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Olivier J Manzoni
- INSERM U901 Marseille, France ; INMED Marseille, France ; Université de Aix-Marseille, UMR S901 Marseille, France
| |
Collapse
|
121
|
Meredith R. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: A framework for neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 50:180-8. [DOI: 10.1016/j.neubiorev.2014.12.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/21/2014] [Accepted: 12/01/2014] [Indexed: 01/16/2023]
|
122
|
Enhanced corticosteroid signaling alters synaptic plasticity in the dentate gyrus in mice lacking the fragile X mental retardation protein. Neurobiol Dis 2015; 77:26-34. [PMID: 25731748 DOI: 10.1016/j.nbd.2015.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/06/2015] [Accepted: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
The fragile X mental retardation protein (FMRP) is an important regulator of protein translation, and a lack of FMRP expression leads to a cognitive disorder known as fragile X syndrome (FXS). Clinical symptoms characterizing FXS include learning impairments and heightened anxiety in response to stressful situations. Here, we report that, in response to acute stress, mice lacking FMRP show a faster elevation of corticosterone and a more immediate impairment in N-methyl-d-aspartate receptor (NMDAR) dependent long-term potentiation (LTP) in the dentate gyrus (DG). These stress-induced LTP impairments were rescued by administering the glucocorticoid receptor (GR) antagonist RU38486. Administration of RU38486 also enhanced LTP in Fmr1(-/y) mice in the absence of acute stress to wild-type levels, and this enhancement was blocked by application of the NMDAR antagonist 2-amino-5-phosphonopentanoic acid. These results suggest that a loss of FMPR results in enhanced GR signaling that may adversely affect NMDAR dependent synaptic plasticity in the DG.
Collapse
|
123
|
Increased coupling of caveolin-1 and estrogen receptor α contributes to the fragile X syndrome. Ann Neurol 2015; 77:618-36. [DOI: 10.1002/ana.24358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/04/2015] [Accepted: 01/14/2015] [Indexed: 11/07/2022]
|
124
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
125
|
Koga K, Liu MG, Qiu S, Song Q, O'Den G, Chen T, Zhuo M. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice. J Neurosci 2015; 35:2033-43. [PMID: 25653361 PMCID: PMC6705363 DOI: 10.1523/jneurosci.2644-14.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome is a common inherited form of mental impairment. Fragile X mental retardation protein (FMRP) plays important roles in the regulation of synaptic protein synthesis, and loss of FMRP leads to deficits in learning-related synaptic plasticity and behavioral disability. Previous studies mostly focus on postsynaptic long-term potentiation (LTP) in Fmr1 knock-out (KO) mice. Here, we investigate the role of FMRP in presynaptic LTP (pre-LTP) in the adult mouse anterior cingulate cortex (ACC). Low-frequency stimulation induced LTP in layer II/III pyramidal neurons under the voltage-clamp mode. Paired-pulse ratio, which is a parameter for presynaptic changes, was decreased after the low-frequency stimulation in Fmr1 wild-type (WT) mice. Cingulate pre-LTP was abolished in Fmr1 KO mice. We also used a 64-electrode array system for field EPSP recording and found that the combination of low-frequency stimulation paired with a GluK1-containing kainate receptor agonist induced NMDA receptor-independent and metabotropic glutamate receptor-dependent pre-LTP in the WT mice. This potentiation was blocked in Fmr1 KO mice. Biochemical experiments showed that Fmr1 KO mice displayed altered translocation of protein kinase A subunits in the ACC. Our results demonstrate that FMRP plays an important role in pre-LTP in the adult mouse ACC, and loss of this pre-LTP may explain some of the behavioral deficits in Fmr1 KO mice.
Collapse
Affiliation(s)
- Kohei Koga
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Ming-Gang Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Department of Anatomy and Histology and Embryology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, and
| | - Shuang Qiu
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Qian Song
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Gerile O'Den
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Tao Chen
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China, Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China,
| |
Collapse
|
126
|
Steward O, Farris S, Pirbhoy PS, Darnell J, Driesche SJV. Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Front Mol Neurosci 2015; 7:101. [PMID: 25628532 PMCID: PMC4290588 DOI: 10.3389/fnmol.2014.00101] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
Arc is a unique immediate early gene whose expression is induced as synapses are being modified during learning. The uniqueness comes from the fact that newly synthesized Arc mRNA is rapidly transported throughout dendrites where it localizes near synapses that were recently activated. Here, we summarize aspects of Arc mRNA translation in dendrites in vivo, focusing especially on features of its expression that are paradoxical or that donot fit in with current models of how Arc protein operates. Findings from in vivo studies that donot quite fit include: (1) Following induction of LTP in vivo, Arc mRNA and protein localize near active synapses, but are also distributed throughout dendrites. In contrast, Arc mRNA localizes selectively near active synapses when stimulation is continued as Arc mRNA is transported into dendrites; (2) Strong induction of Arc expression as a result of a seizure does not lead to a rundown of synaptic efficacy in vivo as would be predicted by the hypothesis that high levels of Arc cause glutamate receptor endocytosis and LTD. (3) Arc protein is synthesized in the perinuclear cytoplasm rapidly after transcriptional activation, indicating that at least a pool of Arc mRNA is not translationally repressed to allow for dendritic delivery; (4) Increases in Arc mRNA in dendrites are not paralleled by increases in levels of exon junction complex (EJC) proteins. These results of studies of mRNA trafficking in neurons in vivo provide a new perspective on the possible roles of Arc in activity-dependent synaptic modifications.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine Irvine, CA, USA ; Department of Neurobiology and Behavior, University of California Irvine Irvine, CA, USA ; Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA, USA
| | - Shannon Farris
- Reeve-Irvine Research Center, University of California Irvine Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine Irvine, CA, USA
| | - Patricia S Pirbhoy
- Reeve-Irvine Research Center, University of California Irvine Irvine, CA, USA ; Department of Neurobiology and Behavior, University of California Irvine Irvine, CA, USA
| | - Jennifer Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University New York, NY, USA
| | - Sarah J Van Driesche
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University New York, NY, USA
| |
Collapse
|
127
|
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601:30-40. [PMID: 25578949 DOI: 10.1016/j.neulet.2015.01.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023]
Abstract
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
128
|
Erickson CA, Ray B, Maloney B, Wink LK, Bowers K, Schaefer TL, McDougle CJ, Sokol DK, Lahiri DK. Impact of acamprosate on plasma amyloid-β precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res 2014; 59:220-8. [PMID: 25300441 PMCID: PMC4253657 DOI: 10.1016/j.jpsychires.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Understanding of the pathophysiology of autism spectrum disorder (ASD) remains limited. Brain overgrowth has been hypothesized to be associated with the development of ASD. A derivative of amyloid-β precursor protein (APP), secreted APPα (sAPPα), has neuroproliferative effects and has been shown to be elevated in the plasma of persons with ASD compared to control subjects. Reduction in sAPPα holds promise as a novel molecular target of treatment in ASD. Research into the neurochemistry of ASD has repeatedly implicated excessive glutamatergic and deficient GABAergic neurotransmission in the disorder. With this in mind, acamprosate, a novel modulator of glutamate and GABA function, has been studied in ASD. No data is available on the impact of glutamate or GABA modulation on sAPPα function. METHODS Plasma APP derivative levels pre- and post-treatment with acamprosate were determined in two pilot studies involving youth with idiopathic and fragile X syndrome (FXS)-associated ASD. We additionally compared baseline APP derivative levels between youth with FXS-associated or idiopathic ASD. RESULTS Acamprosate use was associated with a significant reduction in plasma sAPP(total) and sAPPα levels but no change occurred in Aβ40 or Aβ42 levels in 15 youth with ASD (mean age: 11.1 years). Youth with FXS-associated ASD (n = 12) showed increased sAPPα processing compared to age-, gender- and IQ-match youth with idiopathic ASD (n = 11). CONCLUSIONS Plasma APP derivative analysis holds promise as a potential biomarker for use in ASD targeted treatment. Reduction in sAPP (total) and sAPPα may be a novel pharmacodynamic property of acamprosate. Future study is required to address limitations of the current study to determine if baseline APP derivative analysis may predict subgroups of persons with idiopathic or FXS-associated ASD who may respond best to acamprosate or to potentially other modulators of glutamate and/or GABA neurotransmission.
Collapse
Affiliation(s)
| | - Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Logan K. Wink
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine Bowers
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tori L. Schaefer
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher J. McDougle
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. Sokol
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA,Corresponding Author: Debomoy K. Lahiri, Ph.D., Professor, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 West 15th Street, NB 200C, Indianapolis, IN 46202-2266, USA, Tel: (317) 274-2706; Fax: (317) 231-0200
| |
Collapse
|
129
|
La Fata G, Gärtner A, Domínguez-Iturza N, Dresselaers T, Dawitz J, Poorthuis RB, Averna M, Himmelreich U, Meredith RM, Achsel T, Dotti CG, Bagni C. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat Neurosci 2014; 17:1693-700. [PMID: 25402856 DOI: 10.1038/nn.3870] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Abstract
Deficiencies in fragile X mental retardation protein (FMRP) are the most common cause of inherited intellectual disability, fragile X syndrome (FXS), with symptoms manifesting during infancy and early childhood. Using a mouse model for FXS, we found that Fmrp regulates the positioning of neurons in the cortical plate during embryonic development, affecting their multipolar-to-bipolar transition (MBT). We identified N-cadherin, which is crucial for MBT, as an Fmrp-regulated target in embryonic brain. Furthermore, spontaneous network activity and high-resolution brain imaging revealed defects in the establishment of neuronal networks at very early developmental stages, further confirmed by an unbalanced excitatory and inhibitory network. Finally, reintroduction of Fmrp or N-cadherin in the embryo normalized early postnatal neuron activity. Our findings highlight the critical role of Fmrp in the developing cerebral cortex and might explain some of the clinical features observed in patients with FXS, such as alterations in synaptic communication and neuronal network connectivity.
Collapse
Affiliation(s)
- Giorgio La Fata
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium
| | - Annette Gärtner
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium
| | - Nuria Domínguez-Iturza
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium
| | | | - Julia Dawitz
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, the Netherlands
| | - Rogier B Poorthuis
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, the Netherlands
| | - Michele Averna
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium
| | | | - Rhiannon M Meredith
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, the Netherlands
| | - Tilmann Achsel
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium
| | - Carlos G Dotti
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium. [3] Centro de Biología Molecular Severo Ochoa, Campus de la Universidad Autónoma de Madrid, Spain
| | - Claudia Bagni
- 1] VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium. [2] Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, Leuven, Belgium. [3] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
130
|
MicroRNAs in Schizophrenia: Implications for Synaptic Plasticity and Dopamine-Glutamate Interaction at the Postsynaptic Density. New Avenues for Antipsychotic Treatment Under a Theranostic Perspective. Mol Neurobiol 2014; 52:1771-1790. [PMID: 25394379 DOI: 10.1007/s12035-014-8962-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
Despite dopamine-glutamate aberrant interaction that has long been considered a relevant landmark of psychosis pathophysiology, several aspects of these two neurotransmitters reciprocal interaction remain to be defined. The emerging role of postsynaptic density (PSD) proteins at glutamate synapse as a molecular "lego" making a functional hub where different signals converge may add a new piece of information to understand how dopamine-glutamate interaction may work with regard to schizophrenia pathophysiology and treatment. More recently, compelling evidence suggests a relevant role for microRNA (miRNA) as a new class of dopamine and glutamate modulators with regulatory functions in the reciprocal interaction of these two neurotransmitters. Here, we aimed at addressing the following issues: (i) Do miRNAs have a role in schizophrenia pathophysiology in the context of dopamine-glutamate aberrant interaction? (ii) If miRNAs are relevant for dopamine-glutamate interaction, at what level this modulation takes place? (iii) Finally, will this knowledge open the door to innovative diagnostic and therapeutic tools? The biogenesis of miRNAs and their role in synaptic plasticity with relevance to schizophrenia will be considered in the context of dopamine-glutamate interaction, with special focus on miRNA interaction with PSD elements. From this framework, implications both for biomarkers identification and potential innovative interventions will be considered.
Collapse
|
131
|
Loerwald KW, Patel AB, Huber KM, Gibson JR. Postsynaptic mGluR5 promotes evoked AMPAR-mediated synaptic transmission onto neocortical layer 2/3 pyramidal neurons during development. J Neurophysiol 2014; 113:786-95. [PMID: 25392167 DOI: 10.1152/jn.00465.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both short- and long-term roles for the group I metabotropic glutamate receptor number 5 (mGluR5) have been examined for the regulation of cortical glutamatergic synapses. However, how mGluR5 sculpts neocortical networks during development still remains unclear. Using a single cell deletion strategy, we examined how mGluR5 regulates glutamatergic synaptic pathways in neocortical layer 2/3 (L2/3) during development. Electrophysiological measurements were made in acutely prepared slices to obtain a functional understanding of the effects stemming from loss of mGluR5 in vivo. Loss of postsynaptic mGluR5 results in an increase in the frequency of action potential-independent synaptic events but, paradoxically, results in a decrease in evoked transmission in two separate synaptic pathways providing input to the same pyramidal neurons. Synaptic transmission through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not N-methyl-d-aspartate (NMDA) receptors, is specifically decreased. In the local L2/3 pathway, the decrease in evoked transmission appears to be largely due to a decrease in cell-to-cell connectivity and not in the strength of individual cell-to-cell connections. This decrease in evoked transmission correlates with a decrease in the total dendritic length in a region of the dendritic arbor that likely receives substantial input from these two pathways, thereby suggesting a morphological correlate to functional alterations. These changes are accompanied by an increase in intrinsic membrane excitability. Our data indicate that total mGluR5 function, incorporating both short- and long-term processes, promotes the strengthening of AMPA receptor-mediated transmission in multiple neocortical pathways.
Collapse
Affiliation(s)
- Kristofer W Loerwald
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ankur B Patel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jay R Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
132
|
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:202-17. [DOI: 10.1016/j.neubiorev.2014.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
133
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
134
|
Visual-spatial learning impairments are associated with hippocampal PSD-95 protein dysregulation in a mouse model of fragile X syndrome. Neuroreport 2014; 25:255-61. [PMID: 24323121 PMCID: PMC3925173 DOI: 10.1097/wnr.0000000000000087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fragile X syndrome is the most common cause of inherited intellectual disability and is caused by the lack of fragile X mental retardation protein (FMRP) expression. In-vitro findings in mice and post-mortem autopsies in humans are characterized by dendritic spine abnormalities in the absence of Fmrp/FMRP. Biochemical and electrophysiological studies have identified postsynaptic density protein (PSD)-95 as having an established role in dendritic morphology as well as a molecular target of Fmrp. How Fmrp affects the expression of PSD-95 following behavioral learning is unknown. In the current study, wild type controls and Fmr1 knockout mice were trained in a subset of the Hebb–Williams (H–W) mazes. Dorsal hippocampal PSD-95 protein levels relative to a stable cytoskeleton protein (β-tubulin) were measured. We report a significant upregulation of PSD-95 protein levels in wild type mice, whereas training-related protein increases were blunted in Fmr1 knockout mice. In addition, there was a significant negative correlation between mean total errors on the mazes and PSD-95 protein levels. The coefficient of determination indicated that the mean total errors on the H–W mazes accounted for 35% of the variance in PSD-95 protein levels. These novel findings suggest that reduced PSD-95-associated postsynaptic plasticity may contribute to the learning and memory deficits observed in human fragile X syndrome patients.
Collapse
|
135
|
New Innovations: Therapies for Genetic Conditions. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
136
|
Waltereit R, Banaschewski T, Meyer-Lindenberg A, Poustka L. Interaction of neurodevelopmental pathways and synaptic plasticity in mental retardation, autism spectrum disorder and schizophrenia: implications for psychiatry. World J Biol Psychiatry 2014; 15:507-16. [PMID: 24079538 DOI: 10.3109/15622975.2013.838641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Schizophrenia (SCZ), autism spectrum disorder (ASD) and mental retardation (MR) are psychiatric disorders with high heritability. They differ in their clinical presentation and in their time course of major symptoms, which predominantly occurs for MR and ASD during childhood and for SCZ during young adult age. Recent findings with focus on the developmental neurobiology of these disorders emphasize shared mechanisms of common origin. These findings propose a continuum of genetic risk factors impacting on synaptic plasticity with MR causing impairments in global cognitive abilities, ASD in social cognition and SCZ in both global and social cognition. METHODS We assess here the historical developments that led to the current disease concepts of the three disorders. We then analyse, based on the functions of genes mutated in two or three of the disorders, selected mechanisms shared in neurodevelopmental pathways and synaptic plasticity. RESULTS The analysis of the psychopathological constructs supports the existence of three distinct clinical entities but also elaborates important associations. Similarly, there are common mechanisms especially in global and social cognition. CONCLUSIONS We discuss implications from this integrated view on MR, ASD and SCZ for child & adolescent and adult psychiatry in pathophysiology and research perspectives.
Collapse
Affiliation(s)
- Robert Waltereit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health and University of Heidelberg, Mannheim Medical Faculty , Mannheim , Germany
| | | | | | | |
Collapse
|
137
|
Stackpole EE, Akins MR, Fallon JR. N-myristoylation regulates the axonal distribution of the Fragile X-related protein FXR2P. Mol Cell Neurosci 2014; 62:42-50. [PMID: 25109237 DOI: 10.1016/j.mcn.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading cause of inherited intellectual disability and autism, is caused by loss of function of Fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein that regulates local protein synthesis in the somatodendritic compartment. However, emerging evidence also indicates important roles for FMRP in axonal and presynaptic functions. In particular, FMRP and its homologue FXR2P localize axonally and presynaptically to discrete endogenous structures in the brain termed Fragile X granules (FXGs). FXR2P is a component of all FXGs and is necessary for the axonal and presynaptic localization of FMRP to these structures. We therefore sought to identify and characterize structural features of FXR2P that regulate its axonal localization. Sequence analysis reveals that FXR2P harbors a consensus N-terminal myristoylation sequence (MGXXXS) that is absent in FMRP. Using click chemistry with wild type and an unmyristoylatable G2A mutant we demonstrate that FXR2P is N-myristoylated on glycine 2, establishing it as a lipid-modified RNA binding protein. To investigate the role of FXR2P N-myristoylation in neurons we generated fluorescently tagged wild type and unmyristoylatable FXR2P (WT and G2A, respectively) and expressed them in primary cortical cultures. Both FXR2P(WT) and FXR2P(G2A) are expressed at equivalent overall levels and are capable of forming FMRP-containing axonal granules. However, FXR2P(WT) granules are largely restricted to proximal axonal segments while granules formed with unmyristoylatable FXR2P(G2A) are localized throughout the axonal arbor, including in growth cones. These studies indicate that N-terminal myristoylation of the RNA binding protein FXR2P regulates its localization within the axonal arbor. Moreover, since FMRP localization within axonal domains requires its association with FXR2P, these findings suggest that FXR2P lipid modification is a control point for the axonal and presynaptic distribution of FMRP.
Collapse
Affiliation(s)
- Emily E Stackpole
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael R Akins
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
138
|
Colvin SM, Kwan KY. Dysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders. Front Genet 2014; 5:239. [PMID: 25101118 PMCID: PMC4105824 DOI: 10.3389/fgene.2014.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
A mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.
Collapse
Affiliation(s)
- Steven M Colvin
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kenneth Y Kwan
- Department of Human Genetics - The Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
139
|
Chen T, Lu JS, Song Q, Liu MG, Koga K, Descalzi G, Li YQ, Zhuo M. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome. Neuropsychopharmacology 2014; 39:1955-67. [PMID: 24553731 PMCID: PMC4059905 DOI: 10.1038/npp.2014.44] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 12/29/2022]
Abstract
Fragile X syndrome, caused by the mutation of the Fmr1 gene, is characterized by deficits of attention and learning ability. In the hippocampus of Fmr1 knockout mice (KO), long-term depression is enhanced whereas long-term potentiation (LTP) including late-phase LTP (L-LTP) is reduced or unaffected. Here we examined L-LTP in the anterior cingulate cortex (ACC) in Fmr1 KO mice by using a 64-electrode array recording system. In wild-type mice, theta-burst stimulation induced L-LTP that does not occur in all active electrodes/channels within the cingulate circuit and is typically detected in ∼75% of active channels. Furthermore, L-LTP recruited new responses from previous inactive channels. Both L-LTP and the recruitment of inactive responses were blocked in the ACC slices of Fmr1 KO mice. Bath application of metabotropic glutamate receptor 5 (mGluR5) antagonist or glycogen synthase kinase-3 (GSK3) inhibitors rescued the L-LTP and network recruitment. Our results demonstrate that loss of FMRP will greatly impair L-LTP and recruitment of cortical network in the ACC that can be rescued by pharmacological inhibition of mGluR5 or GSK3. This study is the first report of the network properties of L-LTP in the ACC, and provides basic mechanisms for future treatment of cortex-related cognitive defects in fragile X patients.
Collapse
Affiliation(s)
- Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming-Gang Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giannina Descalzi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yun-Qing Li
- Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an 710032, China, Tel: +86 29 84774501, Fax: +86 29 83283229, E-mail:
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada, Tel: +1 416 978 4018, Fax: +1 416 978 7398, E-mail:
| |
Collapse
|
140
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
141
|
Remmers C, Sweet RA, Penzes P. Abnormal kalirin signaling in neuropsychiatric disorders. Brain Res Bull 2014; 103:29-38. [PMID: 24334022 PMCID: PMC3989394 DOI: 10.1016/j.brainresbull.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Changes in dendritic spines structure and function play a critical role in a number of physiological processes, including synaptic transmission and plasticity, and are intimately linked to cognitive function. Alterations in dendritic spine morphogenesis occur in a number of neuropsychiatric disorders and likely underlie the cognitive and behavioral changes associated with these disorders. The neuronal guanine nucleotide exchange factor (GEF) kalirin is emerging as a key regulator of structural and functional plasticity at dendritic spines. Moreover, a series of recent studies have genetically and functionally linked kalirin signaling to several disorders, including schizophrenia and Alzheimer's disease. Kalirin signaling may thus represent a disease mechanism and provide a novel therapeutic target.
Collapse
Affiliation(s)
- Christine Remmers
- Department of Physiology, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Robert A Sweet
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Peter Penzes
- Department of Physiology, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
142
|
Tissue plasminogen activator contributes to alterations of neuronal migration and activity-dependent responses in fragile X mice. J Neurosci 2014; 34:1916-23. [PMID: 24478370 DOI: 10.1523/jneurosci.3753-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited neurodevelopmental disorder with intellectual disability. Here, we show that the expression of tissue plasminogen activator (tPA) is increased in glial cells differentiated from neural progenitors of Fmr1 knock-out mice, a mouse model for FXS, and that tPA is involved in the altered migration and differentiation of these progenitors lacking FMR1 protein (FMRP). When tPA function is blocked with an antibody, enhanced migration of doublecortin-immunoreactive neurons in 1 d differentiated FMRP-deficient neurospheres is normalized. In time-lapse imaging, blocking the tPA function promotes early glial differentiation and reduces the velocity of nuclear movement of FMRP-deficient radial glia. In addition, we show that enhanced intracellular Ca(2+) responses to depolarization with potassium are prevented by the treatment with the tPA-neutralizing antibody in FMRP-deficient cells during early neural progenitor differentiation. Alterations of the tPA expression in the embryonic, postnatal, and adult brain of Fmr1 knock-out mice suggest an important role for tPA in the abnormal neuronal differentiation and plasticity in FXS. Altogether, the results indicate that tPA may prove to be an interesting potential target for pharmacological intervention in FXS.
Collapse
|
143
|
Lim CS, Hoang ET, Viar KE, Stornetta RL, Scott MM, Zhu JJ. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev 2014; 28:273-89. [PMID: 24493647 PMCID: PMC3923969 DOI: 10.1101/gad.232470.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation. Lim et al. find that compounds activating serotonin (5HT) subtype 2B receptors or dopamine (DA) subtype 1-like receptors and those inhibiting 5HT2A-Rs or D2-Rs enhance Ras signaling, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Combining 5HT and DA compounds at low doses synergistically restored normal learning. This suggests that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome. Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras–PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras–PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.
Collapse
|
144
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
145
|
Patel AB, Loerwald KW, Huber KM, Gibson JR. Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the L5A neocortical network. J Neurosci 2014; 34:3413-8. [PMID: 24573297 PMCID: PMC3935093 DOI: 10.1523/jneurosci.2921-13.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 01/09/2014] [Accepted: 01/29/2014] [Indexed: 11/21/2022] Open
Abstract
Pruning of structural synapses occurs with development and learning. A deficit in pruning of cortical excitatory synapses and the resulting hyperconnectivity is hypothesized to underlie the etiology of fragile X syndrome (FXS) and related autistic disorders. However, clear evidence for pruning in neocortex and its impairment in FXS remains elusive. Using simultaneous recordings of pyramidal neurons in the layer 5A neocortical network of the wild-type (WT) mouse to observe cell-to-cell connections in isolation, we demonstrate here a specific form of "connection pruning." Connection frequency among pyramidal neurons decreases between the third and fifth postnatal weeks, indicating a period of connection pruning. Over the same interval in the FXS model mouse, the Fmr1 knock-out (KO), connection frequency does not decrease. Therefore, connection frequency in the fifth week is higher in the Fmr1 KO compared with WT, indicating a state of hyperconnectivity. These alterations are due to postsynaptic deletion of Fmr1. At early ages (2 weeks), postsynaptic Fmr1 promoted the maturation of cell-to-cell connections, but not their number. These findings indicate that impaired connection pruning at later ages, and not an excess of connection formation, underlies the hyperconnectivity in the Fmr1 KO mouse. FMRP did not appear to regulate synapses individually, but instead regulated cell-to-cell connectivity in which groups of synapses mediating a single cell-to-cell connection are uniformly removed, retained, and matured. Although we do not link connection pruning directly to the pruning of structurally defined synapses, this study nevertheless provides an important model system for studying altered pruning in FXS.
Collapse
Affiliation(s)
- Ankur B. Patel
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, Texas 75390-9111
| | - Kristofer W. Loerwald
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, Texas 75390-9111
| | - Kimberly M. Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, Texas 75390-9111
| | - Jay R. Gibson
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, Texas 75390-9111
| |
Collapse
|
146
|
Extensive use of RNA-binding proteins in Drosophila sensory neuron dendrite morphogenesis. G3-GENES GENOMES GENETICS 2014; 4:297-306. [PMID: 24347626 PMCID: PMC3931563 DOI: 10.1534/g3.113.009795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo.
Collapse
|
147
|
Doll CA, Broadie K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8:30. [PMID: 24570656 PMCID: PMC3916725 DOI: 10.3389/fncel.2014.00030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA ; Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
148
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
149
|
Thomazeau A, Lassalle O, Iafrati J, Souchet B, Guedj F, Janel N, Chavis P, Delabar J, Manzoni OJ. Prefrontal deficits in a murine model overexpressing the down syndrome candidate gene dyrk1a. J Neurosci 2014; 34:1138-47. [PMID: 24453307 PMCID: PMC3953590 DOI: 10.1523/jneurosci.2852-13.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 12/16/2022] Open
Abstract
The gene Dyrk1a is the mammalian ortholog of Drosophila minibrain. Dyrk1a localizes in the Down syndrome (DS) critical region of chromosome 21q22.2 and is a major candidate for the behavioral and neuronal abnormalities associated with DS. PFC malfunctions are a common denominator in several neuropsychiatric diseases, including DS, but the contribution of DYRK1A in PFC dysfunctions, in particular the synaptic basis for impairments of executive functions reported in DS patients, remains obscure. We quantified synaptic plasticity, biochemical synaptic markers, and dendritic morphology of deep layer pyramidal PFC neurons in adult mBACtgDyrk1a transgenic mice that overexpress Dyrk1a under the control of its own regulatory sequences. We found that overexpression of Dyrk1a largely increased the number of spines on oblique dendrites of pyramidal neurons, as evidenced by augmented spine density, higher PSD95 protein levels, and larger miniature EPSCs. The dendritic alterations were associated with anomalous NMDAR-mediated long-term potentiation and accompanied by a marked reduction in the pCaMKII/CaMKII ratio in mBACtgDyrk1a mice. Retrograde endocannabinoid-mediated long-term depression (eCB-LTD) was ablated in mBACtgDyrk1a mice. Administration of green tea extracts containing epigallocatechin 3-gallate, a potent DYRK1A inhibitor, to adult mBACtgDyrk1a mice normalized long-term potentiation and spine anomalies but not eCB-LTD. However, inhibition of the eCB deactivating enzyme monoacylglycerol lipase normalized eCB-LTD in mBACtgDyrk1a mice. These data shed light on previously undisclosed participation of DYRK1A in adult PFC dendritic structures and synaptic plasticity. Furthermore, they suggest its involvement in DS-related endophenotypes and identify new potential therapeutic strategies.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Institut National de la Santé et de la Recherche Médicale U901, Marseille, 13009, France, Université Aix-Marseille UMR S901, Marseille, 13009, France, INMED, Marseille, 13009, France, and Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, EAC Centre National de la Recherche Scientifique 4413, Paris, 75205, France
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Li KW, Jimenez CR. Synapse proteomics: current status and quantitative applications. Expert Rev Proteomics 2014; 5:353-60. [DOI: 10.1586/14789450.5.2.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|