101
|
Alves CJ, Maximino JR, Chadi G. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:332. [PMID: 26339226 PMCID: PMC4555015 DOI: 10.3389/fncel.2015.00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old) SOD1(G93A) mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1) and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3). Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10) and down-regulated (Foxo3, Mtor) genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
102
|
Multhaup G, Huber O, Buée L, Galas MC. Amyloid Precursor Protein (APP) Metabolites APP Intracellular Fragment (AICD), Aβ42, and Tau in Nuclear Roles. J Biol Chem 2015; 290:23515-22. [PMID: 26296890 DOI: 10.1074/jbc.r115.677211] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyloid precursor protein (APP) metabolites (amyloid-β (Aβ) peptides) and Tau are the main components of senile plaques and neurofibrillary tangles, the two histopathological hallmarks of Alzheimer disease. Consequently, intense research has focused upon deciphering their physiological roles to understand their altered state in Alzheimer disease pathophysiology. Recently, the impact of APP metabolites (APP intracellular fragment (AICD) and Aβ) and Tau on the nucleus has emerged as an important, new topic. Here we discuss (i) how AICD, Aβ, and Tau reach the nucleus and how AICD and Aβ control protein expression at the transcriptional level, (ii) post-translational modifications of AICD, Aβ, and Tau, and (iii) what these three molecules have in common.
Collapse
Affiliation(s)
- Gerhard Multhaup
- From the Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada,
| | - Otmar Huber
- the Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University, D-07743 Jena, Germany, and
| | - Luc Buée
- the Jean Pierre Aubert Research Centre, Alzheimer & Tauopathies, INSERM, CHU-Lille, UMR-S 1172, University of Lille, F-59000 Lille, France
| | - Marie-Christine Galas
- the Jean Pierre Aubert Research Centre, Alzheimer & Tauopathies, INSERM, CHU-Lille, UMR-S 1172, University of Lille, F-59000 Lille, France
| |
Collapse
|
103
|
Wharton SB, Simpson JE, Brayne C, Ince PG. Age-associated white matter lesions: the MRC Cognitive Function and Ageing Study. Brain Pathol 2015; 25:35-43. [PMID: 25521175 DOI: 10.1111/bpa.12219] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Cerebral white matter lesions (WML) are common in the aging brain and are associated with dementia and depression. They are associated with vascular risk factors and small vessel disease, suggesting an ischemic origin, but recent pathology studies suggest a more complex pathogenesis. Studies using samples from the population-representative Medical Research Council Cognitive Function and Ageing Study neuropathology cohort used post-mortem magnetic resonance imaging to identify WML for further study. Expression of hypoxia-related molecules and other injury and protective cellular pathways in candidate immunohistochemical and gene expression microarray studies support a role for hypoxia/ischemia. However, these approaches also suggest that immune activation, blood-brain barrier dysfunction, altered cell metabolic pathways and glial cell injury contribute to pathogenesis. These abnormalities are not confined to WML, but are also found in apparently normal white matter in brains with lesions, suggesting a field effect of white matter abnormality within which lesions arise. WML are an active pathology with a complex pathogenesis that may potentially offer a number of primary and secondary intervention targets.
Collapse
Affiliation(s)
- Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
104
|
Carreiro AV, Mendonça A, de Carvalho M, Madeira SC. Integrative biomarker discovery in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:357-79. [PMID: 26136395 DOI: 10.1002/wsbm.1310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Data mining has been widely applied in biomarker discovery resulting in significant findings of different clinical and biological biomarkers. With developments in technology, from genomics to proteomics analysis, a deluge of data has become available, as well as standardized data repositories. Nonetheless, researchers are still facing important challenges in analyzing the data, especially when considering the complexity of pathways involved in biological processes and diseases. Data from single sources appear unable to explain complex processes, such as those involved in brain-related disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, thus raising the need for a more comprehensive perspective. A possible solution relies on data and model integration, where several data types are combined to provide complementary views. This in turn can result in the discovery of previously unknown biomarkers by unraveling otherwise hidden relationships between data from different sources, and/or validate such composite biomarkers in more powerful predictive models.
Collapse
Affiliation(s)
- André V Carreiro
- INESC-ID Lisbon and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandre Mendonça
- Dementia Clinics, Institute of Molecular Medicine and Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Translational Clinical Physiology Unit, Institute of Molecular Medicine and Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal
| | - Sara C Madeira
- INESC-ID Lisbon and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
105
|
Cooper-Knock J, Bury JJ, Heath PR, Wyles M, Higginbottom A, Gelsthorpe C, Highley JR, Hautbergue G, Rattray M, Kirby J, Shaw PJ. C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0127376. [PMID: 26016851 PMCID: PMC4446097 DOI: 10.1371/journal.pone.0127376] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE An intronic GGGGCC-repeat expansion of C9ORF72 is the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The mechanism of neurodegeneration is unknown, but a direct effect on RNA processing mediated by RNA foci transcribed from the repeat sequence has been proposed. METHODS Gene expression profiling utilised total RNA extracted from motor neurons and lymphoblastoid cell lines derived from human ALS patients, including those with an expansion of C9ORF72, and controls. In lymphoblastoid cell lines, expansion length and the frequency of sense and antisense RNA foci was also examined. RESULTS Gene level analysis revealed a number of differentially expressed networks and both cell types exhibited dysregulation of a network functionally enriched for genes encoding 'RNA splicing' proteins. There was a significant overlap of these genes with an independently generated list of GGGGCC-repeat protein binding partners. At the exon level, in lymphoblastoid cells derived from C9ORF72-ALS patients splicing consistency was lower than in lines derived from non-C9ORF72 ALS patients or controls; furthermore splicing consistency was lower in samples derived from patients with faster disease progression. Frequency of sense RNA foci showed a trend towards being higher in lymphoblastoid cells derived from patients with shorter survival, but there was no detectable correlation between disease severity and DNA expansion length. SIGNIFICANCE Up-regulation of genes encoding predicted binding partners of the C9ORF72 expansion is consistent with an attempted compensation for sequestration of these proteins. A number of studies have analysed changes in the transcriptome caused by C9ORF72 expansion, but to date findings have been inconsistent. As a potential explanation we suggest that dynamic sequestration of RNA processing proteins by RNA foci might lead to a loss of splicing consistency; indeed in our samples measurement of splicing consistency correlates with disease severity.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Joanna J Bury
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Catherine Gelsthorpe
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Guillaume Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Magnus Rattray
- Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| |
Collapse
|
106
|
Cha K, Hwang T, Oh K, Yi GS. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data. BMC Med Inform Decis Mak 2015; 15 Suppl 1:S7. [PMID: 26043779 PMCID: PMC4460778 DOI: 10.1186/1472-6947-15-s1-s7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. RESULTS In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. CONCLUSIONS This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
Collapse
|
107
|
Bartoletti-Stella A, Gasparini L, Giacomini C, Corrado P, Terlizzi R, Giorgio E, Magini P, Seri M, Baruzzi A, Parchi P, Brusco A, Cortelli P, Capellari S. Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum Mol Genet 2015; 24:2746-56. [PMID: 25637521 PMCID: PMC4406291 DOI: 10.1093/hmg/ddv034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by autonomic dysfunction, followed by cerebellar and pyramidal features. ADLD is caused by duplication of the lamin B1 gene (LMNB1), which leads to its increased expression. The molecular pathways involved in the disease are still poorly understood. Hence, we analyzed global gene expression in fibroblasts and whole blood of LMNB1 duplication carriers and used Gene Set Enrichment Analysis to explore their gene signatures. We found that LMNB1 duplication is associated with dysregulation of genes involved in the immune system, neuronal and skeletal development. Genes with an altered transcriptional profile clustered in specific genomic regions. Among the dysregulated genes, we further studied the role of RAVER2, which we found to be overexpressed at mRNA and protein level. RAVER2 encodes a putative trans regulator of the splicing repressor polypyrimidine tract binding protein (PTB) and is likely implicated in alternative splicing regulation. Functional studies demonstrated an abnormal splicing pattern of several PTB-target genes and of the myelin protein gene PLP1, previously demonstrated to be involved in ADLD. Mutant mice with different lamin B1 expression levels confirmed that Raver2 expression is dependent on lamin B1 in neural tissue and determines an altered splicing pattern of PTB-target genes and Plp1. Overall our results demonstrate that deregulation of lamin B1 expression induces modified splicing of several genes, likely driven by raver-2 overexpression, and suggest that an alteration of mRNA processing could be a pathogenic mechanism in ADLD.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Caterina Giacomini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Patrizia Corrado
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Rossana Terlizzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Pamela Magini
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Agostino Baruzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy, Città della Salute e della Scienza, University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy,
| |
Collapse
|
108
|
Abstract
The most accredited (and fashionable) hypothesis of the pathogenesis of Alzheimer Disease (AD) sees accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) as a leading mechanism of neurotoxicity. How β-amyloid triggers the neurodegenerative disorder is at present unclear, but growing evidence suggests that a deregulation of Ca(2+) homeostasis and deficient Ca(2+) signalling may represent a fundamental pathogenic factor. Given that symptoms of AD are most likely linked to synaptic dysfunction (at the early stages) followed by neuronal loss (at later and terminal phases of the disease), the effects of β-amyloid have been mainly studied in neurones. Yet, it must be acknowledged that neuroglial cells, including astrocytes, contribute to pathological progression of most (if not all) neurological diseases. Here, we review the literature pertaining to changes in Ca(2+) signalling in astrocytes exposed to exogenous β-amyloid or in astrocytes from transgenic Alzheimer disease animals models, characterized by endogenous β-amyloidosis. Accumulated experimental data indicate deregulation of Ca(2+) homeostasis and signalling in astrocytes in AD, which should be given full pathogenetic consideration. Further studies are warranted to comprehend the role of deficient astroglial Ca(2+) signalling in the disease progression.
Collapse
|
109
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
110
|
Merkle FT, Eggan K. Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 2014; 12:656-68. [PMID: 23746975 DOI: 10.1016/j.stem.2013.05.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanistic insights into human disease may enable the development of treatments that are effective in broad patient populations. The confluence of gene-editing technologies, induced pluripotent stem cells, and genome-wide association as well as DNA sequencing studies is enabling new approaches for illuminating the molecular basis of human disease. We discuss the opportunities and challenges of combining these technologies and provide a workflow for interrogating the contribution of disease-associated candidate genetic variants to disease-relevant phenotypes. Finally, we discuss the potential utility of human pluripotent stem cells for placing disease-associated genetic variants into molecular pathways.
Collapse
Affiliation(s)
- Florian T Merkle
- The Howard Hughes Medical Institute, the Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
111
|
RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains. DISEASE MARKERS 2014; 2014:123165. [PMID: 25548427 PMCID: PMC4274867 DOI: 10.1155/2014/123165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide with no curative therapies currently available. Previously, global transcriptome analysis of AD brains by microarray failed to identify the set of consistently deregulated genes for biomarker development of AD. Therefore, the molecular pathogenesis of AD remains largely unknown. Whole RNA sequencing (RNA-Seq) is an innovative technology for the comprehensive transcriptome profiling on a genome-wide scale that overcomes several drawbacks of the microarray-based approach. To identify biomarker genes for AD, we analyzed a RNA-Seq dataset composed of the comprehensive transcriptome of autopsized AD brains derived from two independent cohorts. We identified the core set of 522 genes deregulated in AD brains shared between both, compared with normal control subjects. They included downregulation of neuronal differentiation 6 (NeuroD6), a basic helix-loop-helix (bHLH) transcription factor involved in neuronal development, differentiation, and survival in AD brains of both cohorts. We verified the results of RNA-Seq by analyzing three microarray datasets of AD brains different in brain regions, ethnicities, and microarray platforms. Thus, both RNA-Seq and microarray data analysis indicated consistent downregulation of NeuroD6 in AD brains. These results suggested that downregulation of NeuroD6 serves as a possible biomarker for AD brains.
Collapse
|
112
|
Fernández-Irigoyen J, Zelaya MV, Tuñon T, Santamaría E. Anatomo-proteomic characterization of human basal ganglia: focus on striatum and globus pallidus. Mol Brain 2014; 7:83. [PMID: 25406675 PMCID: PMC4236423 DOI: 10.1186/s13041-014-0083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The basal ganglia (BG) are a complex network of subcortical nuclei involved in the coordination and integration of the motor activity. Although these independent anatomical structures are functionally related, the proteome present in each isolated nucleus remains largely unexplored. In order to analyse the BG proteome in a large-scale format, we used a multi-dimensional fractionation approach which combines isolation of anatomically-defined nuclei, and protein/peptide chromatographic fractionation strategies coupled to mass spectrometry. RESULTS Using this workflow, we have obtained a proteomic expression profile across striatum and globus pallidus structures among which 1681 proteins were located in caudate nucleus (CN), 1329 in putamen, 1419 in medial globus pallidus (GPi), and 1480 in lateral globus pallidus (GPe), establishing a BG reference proteome to a depth of 2979 unique proteins. Protein interactome mapping highlighted significant clustering of common proteins in striatal and pallidal structures, contributing to oxidative phosphorylation, protein degradation and neurotrophin signalling pathways. In silico analyses emphasized specific pathways represented in striatal and pallidal structures highlighting 5-hydroxytryptamine degradation, synaptic vesicle trafficking, and dopamine, metabotropic glutamate and muscarinic acetylcholine receptor pathways. Additional bioinformatic analyses also revealed that: i) nearly 4% of identified proteins have been previously associated to neurodegenerative syndromes, ii) 11% of protein set tends to localize to synaptic terminal, and iii) 20% of identified proteins were also localized in cerebrospinal fluid (CSF). CONCLUSIONS Overall, the anatomo-proteomic profiling of BG complements the anatomical atlas of the human brain transcriptome, increasing our knowledge about the molecular basis of the BG and the etiology of the movement disorders.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- />Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Irunlarrea Street, 31008 Pamplona, Spain
| | - María Victoria Zelaya
- />Neurological Tissue Bank, Navarrabiomed, Fundación Miguel Servet, 31008 Pamplona, Spain
| | - Teresa Tuñon
- />Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Enrique Santamaría
- />Clinical Neuroproteomics Group, Proteomics Unit, Proteored-ISCIII, Navarrabiomed, Fundación Miguel Servet, Irunlarrea Street, 31008 Pamplona, Spain
| |
Collapse
|
113
|
Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C, Berciano J, Combarros O, Sainz J. Identification of candidate genes for Parkinson's disease through blood transcriptome analysis in LRRK2-G2019S carriers, idiopathic cases, and controls. Neurobiol Aging 2014; 36:1105-9. [PMID: 25475535 DOI: 10.1016/j.neurobiolaging.2014.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/14/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
The commonest known cause of Parkinson's disease (PD) is the G2019S mutation of the LRRK2 gene, but this mutation is not sufficient for causing PD, and many carriers of the mutation never develop PD symptoms during life. Differences at the expression level of certain genes, resulting from either genetic variations or environmental interactions, might be one of the mechanisms underlying differential risks for developing both idiopathic and genetic PD. To identify the genes involved in PD pathogenesis, we compared genome-wide gene expression (RNA-seq) in peripheral blood of 20 PD patients carrying the G2019S mutation of the LRRK2 gene, 20 asymptomatic carriers of the mutation, 20 subjects with idiopathic PD, 20 controls and 7 PD patients before and after initiating dopaminergic therapy. We identified 13 common genes (ADARB2, CEACAM6, CNTNAP2, COL19A1, DEF4, DRAXIN, FCER2, HBG1, NCAPG2, PVRL2, SLC2A14, SNCA, and TCL1B) showing significant differential expression between G2019S-associated PD and asymptomatic carriers and also between idiopathic PD and controls but not between untreated and treated patients. Some of these genes are functionally involved in the processes known to be involved in PD pathogenesis, such as Akt signaling, glucose metabolism, or immunity. We consider that these genes merit further attention in future studies as potential candidate genes involved in both idiopathic and LRRK2-G2019S-associated forms of PD.
Collapse
Affiliation(s)
- Jon Infante
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos Prieto
- Institute of Biomedicine and Biotechnology of Cantabria, Spanish National Research Council (CSIC), Santander, Spain
| | - María Sierra
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pascual Sánchez-Juan
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel González-Aramburu
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Coro Sánchez-Quintana
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain
| | - José Berciano
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Onofre Combarros
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Sainz
- Institute of Biomedicine and Biotechnology of Cantabria, Spanish National Research Council (CSIC), Santander, Spain
| |
Collapse
|
114
|
Theme 9 in vitro experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15 Suppl 1:161-78. [PMID: 25382839 DOI: 10.3109/21678421.2014.960186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
115
|
Neueder A, Bates GP. A common gene expression signature in Huntington's disease patient brain regions. BMC Med Genomics 2014; 7:60. [PMID: 25358814 PMCID: PMC4219025 DOI: 10.1186/s12920-014-0060-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background Gene expression data provide invaluable insights into disease mechanisms. In Huntington’s disease (HD), a neurodegenerative disease caused by a tri-nucleotide repeat expansion in the huntingtin gene, extensive transcriptional dysregulation has been reported. Conventional dysregulation analysis has shown that e.g. in the caudate nucleus of the post mortem HD brain the gene expression level of about a third of all genes was altered. Owing to this large number of dysregulated genes, the underlying relevance of expression changes is often lost in huge gene lists that are difficult to comprehend. Methods To alleviate this problem, we employed weighted correlation network analysis to archival gene expression datasets of HD post mortem brain regions. Results We were able to uncover previously unidentified transcription dysregulation in the HD cerebellum that contained a gene expression signature in common with the caudate nucleus and the BA4 region of the frontal cortex. Furthermore, we found that yet unassociated pathways, e.g. global mRNA processing, were dysregulated in HD. We provide evidence to show that, contrary to previous findings, mutant huntingtin is sufficient to induce a subset of stress response genes in the cerebellum and frontal cortex BA4 region. The comparison of HD with other neurodegenerative disorders showed that the immune system, in particular the complement system, is generally activated. We also demonstrate that HD mouse models mimic some aspects of the disease very well, while others, e.g. the activation of the immune system are inadequately reflected. Conclusion Our analysis provides novel insights into the molecular pathogenesis in HD and identifies genes and pathways as potential therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0060-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Neueder
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| | - Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
116
|
Fang P, Xu W, Wu C, Zhu M, Li X, Hong D. MAPT as a predisposing gene for sporadic amyotrophic lateral sclerosis in the Chinese Han population. Neural Regen Res 2014; 8:3116-23. [PMID: 25206632 PMCID: PMC4158701 DOI: 10.3969/j.issn.1673-5374.2013.33.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/15/2013] [Indexed: 01/23/2023] Open
Abstract
A previous study of European Caucasian patients with sporadic amyotrophic lateral sclerosis demonstrated that a polymorphism in the microtubule-associated protein Tau (MAPT) gene was significantly associated with sporadic amyotrophic lateral sclerosis pathogenesis. Here, we tested this association in 107 sporadic amyotrophic lateral sclerosis patients and 100 healthy controls from the Chinese Han population. We screened the mutation-susceptible regions of MAPT - the 3' and 5' untranslated regions as well as introns 9, 10, 11, and 12 - by direct sequencing, and identified 33 genetic variations. Two of these, 105788 A > G in intron 9 and 123972 T > A in intron 11, were not present in the control group. The age of onset in patients with the 105788 A > G and/or the 123972 T > A variant was younger than that in patients without either genetic variation. Moreover, the pa-tients with a genetic variation were more prone to bulbar palsy and breathing difficulties than those with the wild-type genotype. This led to a shorter survival period in patients with a MAPT genetic variant. Our study suggests that the MAPT gene is a potential risk gene for sporadic amyotrophic lateral sclerosis in the Chinese Han population.
Collapse
Affiliation(s)
- Pu Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wenyuan Xu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chengsi Wu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Min Zhu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaobing Li
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Daojun Hong
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
117
|
Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, Božič AL, Walter M, Bonin M, Mayer B, von Arnim CAF, Otto M, Dieterich C, Holzmann K, Andersen PM, Ludolph AC, Danzer KM, Weishaupt JH. Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. ACTA ACUST UNITED AC 2014; 137:2938-50. [PMID: 25193138 DOI: 10.1093/brain/awu249] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Knowledge about the nature of pathomolecular alterations preceding onset of symptoms in amyotrophic lateral sclerosis is largely lacking. It could not only pave the way for the discovery of valuable therapeutic targets but might also govern future concepts of pre-manifest disease modifying treatments. MicroRNAs are central regulators of transcriptome plasticity and participate in pathogenic cascades and/or mirror cellular adaptation to insults. We obtained comprehensive expression profiles of microRNAs in the serum of patients with familial amyotrophic lateral sclerosis, asymptomatic mutation carriers and healthy control subjects. We observed a strikingly homogenous microRNA profile in patients with familial amyotrophic lateral sclerosis that was largely independent from the underlying disease gene. Moreover, we identified 24 significantly downregulated microRNAs in pre-manifest amyotrophic lateral sclerosis mutation carriers up to two decades or more before the estimated time window of disease onset; 91.7% of the downregulated microRNAs in mutation carriers overlapped with the patients with familial amyotrophic lateral sclerosis. Bioinformatic analysis revealed a consensus sequence motif present in the vast majority of downregulated microRNAs identified in this study. Our data thus suggest specific common denominators regarding molecular pathogenesis of different amyotrophic lateral sclerosis genes. We describe the earliest pathomolecular alterations in amyotrophic lateral sclerosis mutation carriers known to date, which provide a basis for the discovery of novel therapeutic targets and strongly argue for studies evaluating presymptomatic disease-modifying treatment in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | - Lisa Zondler
- 1 Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Weydt
- 1 Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Michael Walter
- 4 Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Michael Bonin
- 4 Department of Medical Genetics, University of Tübingen, Tübingen, Germany
| | - Benjamin Mayer
- 5 Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Markus Otto
- 1 Department of Neurology, Ulm University, Ulm, Germany
| | | | - Karlheinz Holzmann
- 6 Genomics-Core Facility, University Hospital Ulm, Centre for Biomedical Research, Ulm, Germany
| | - Peter M Andersen
- 1 Department of Neurology, Ulm University, Ulm, Germany 7 The Institute of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden 8 Virtual Helmholtz Institute RNA dysmetabolism in Amyotrophic Lateral Sclerosis and Fronto-temporal Dementia, Germany
| | - Albert C Ludolph
- 1 Department of Neurology, Ulm University, Ulm, Germany 8 Virtual Helmholtz Institute RNA dysmetabolism in Amyotrophic Lateral Sclerosis and Fronto-temporal Dementia, Germany
| | | | | |
Collapse
|
118
|
Li MD, Burns TC, Morgan AA, Khatri P. Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases. Acta Neuropathol Commun 2014; 2:93. [PMID: 25187168 PMCID: PMC4167139 DOI: 10.1186/s40478-014-0093-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
Introduction Neurodegenerative diseases share common pathologic features including neuroinflammation, mitochondrial dysfunction and protein aggregation, suggesting common underlying mechanisms of neurodegeneration. We undertook a meta-analysis of public gene expression data for neurodegenerative diseases to identify a common transcriptional signature of neurodegeneration. Results Using 1,270 post-mortem central nervous system tissue samples from 13 patient cohorts covering four neurodegenerative diseases, we identified 243 differentially expressed genes, which were similarly dysregulated in 15 additional patient cohorts of 205 samples including seven neurodegenerative diseases. This gene signature correlated with histologic disease severity. Metallothioneins featured prominently among differentially expressed genes, and functional pathway analysis identified specific convergent themes of dysregulation. MetaCore network analyses revealed various novel candidate hub genes (e.g. STAU2). Genes associated with M1-polarized macrophages and reactive astrocytes were strongly enriched in the meta-analysis data. Evaluation of genes enriched in neurons revealed 70 down-regulated genes, over half not previously associated with neurodegeneration. Comparison with aging brain data (3 patient cohorts, 221 samples) revealed 53 of these to be unique to neurodegenerative disease, many of which are strong candidates to be important in neuropathogenesis (e.g. NDN, NAP1L2). ENCODE ChIP-seq analysis predicted common upstream transcriptional regulators not associated with normal aging (REST, RBBP5, SIN3A, SP2, YY1, ZNF143, IKZF1). Finally, we removed genes common to neurodegeneration from disease-specific gene signatures, revealing uniquely robust immune response and JAK-STAT signaling in amyotrophic lateral sclerosis. Conclusions Our results implicate pervasive bioenergetic deficits, M1-type microglial activation and gliosis as unifying themes of neurodegeneration, and identify numerous novel genes associated with neurodegenerative processes. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0093-y) contains supplementary material, which is available to authorized users.
Collapse
|
119
|
Decision trees for the analysis of genes involved in Alzheimer׳s disease pathology. J Theor Biol 2014; 357:21-5. [DOI: 10.1016/j.jtbi.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
|
120
|
De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe C, Tang A, Raj T, Replogle J, Brodeur W, Gabriel S, Chai HS, Younkin C, Younkin SG, Zou F, Szyf M, Epstein CB, Schneider JA, Bernstein BE, Meissner A, Ertekin-Taner N, Chibnik LB, Kellis M, Mill J, Bennett DA. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 2014; 17:1156-63. [PMID: 25129075 PMCID: PMC4292795 DOI: 10.1038/nn.3786] [Citation(s) in RCA: 646] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
Abstract
We used a collection of 708 prospectively collected autopsied brains to assess the methylation state of the brain's DNA in relation to Alzheimer's disease (AD). We found that the level of methylation at 71 of the 415,848 interrogated CpGs was significantly associated with the burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known AD susceptibility variants. We validated 11 of the differentially methylated regions in an independent set of 117 subjects. Furthermore, we functionally validated these CpG associations and identified the nearby genes whose RNA expression was altered in AD: ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Our analyses suggest that these DNA methylation changes may have a role in the onset of AD given that we observed them in presymptomatic subjects and that six of the validated genes connect to a known AD susceptibility gene network.
Collapse
Affiliation(s)
- PL De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - G Srivastava
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - K Lunnon
- University of Exeter Medical School, University of Exeter, RILD (Level 4), Barrack Rd, Exeter, UK
- Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London. SE5 8AF. UK
| | - J Burgess
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224
| | - LC Schalkwyk
- University of Exeter Medical School, University of Exeter, RILD (Level 4), Barrack Rd, Exeter, UK
- Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London. SE5 8AF. UK
| | - L Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina St., Chicago, IL 60612; Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA 02139
| | - ML Eaton
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - BT Keenan
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - J Ernst
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - C McCabe
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - A Tang
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
| | - T Raj
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - J Replogle
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - W Brodeur
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - S Gabriel
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - HS Chai
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224
| | - C Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - SG Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - F Zou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - M Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Québec, H3G 1Y6
| | - CB Epstein
- Epigenomics Program, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - JA Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina St., Chicago, IL 60612; Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA 02139
| | - BE Bernstein
- Harvard Medical School, Boston, MA 02115
- Epigenomics Program, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
- Department of Pathology, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114
| | - A Meissner
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
- Harvard Stem Cell Institute, Harvard University, 1350 Massachusetts Ave., Cambridge MA 02138
| | - N Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224
| | - LB Chibnik
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - M Kellis
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
- Genetic Analysis Platform, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142
| | - J Mill
- University of Exeter Medical School, University of Exeter, RILD (Level 4), Barrack Rd, Exeter, UK
- Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London. SE5 8AF. UK
| | - DA Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina St., Chicago, IL 60612; Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA 02139
| |
Collapse
|
121
|
Zhang P, Liu L, Huang J, Shao L, Wang H, Xiong N, Wang T. Non-SMC condensin I complex, subunit D2 gene polymorphisms are associated with Parkinson's disease: a Han Chinese study. Genome 2014; 57:253-7. [PMID: 25166511 DOI: 10.1139/gen-2014-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have indicated that non-SMC condensin I complex, subunit D2 (NCAPD2), an important protein in chromosome condensation, gene polymorphisms are associated with Alzheimer's disease. But no study has shown the relationship between NCAPD2 polymorphisms and Parkinson's disease. Here, we conducted a case-control study to investigate the relationship between NCAPD2 polymorphisms and the risk of Parkinson's disease in a Han Chinese population. Two single nuclear polymorphisms (SNPs) of NCAPD2 (rs7311174 and rs2072374) showed significant p values (p = 0.046 and p = 0.043, respectively) in 265 patients and 267 controls. Further analysis showed an effect of age and gender on the relationship between the two SNPs and the risk for Parkinson's disease. The A allele of rs7311174 and the T allele of rs2072374 were protective in the male patients (p = 0.016 and p = 0.019, respectively). The frequencies of the T allele of rs7311174 and the C allele of rs2072374 were significantly associated with late-onset Parkinson's disease (p = 0.048 and p = 0.044, respectively). This research demonstrates a positive relationship between the NCAPD2 gene and the risk for Parkinson's disease in a Han Chinese population and provides a potential genetic marker for sporadic Parkinson's disease.
Collapse
Affiliation(s)
- Ping Zhang
- a Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
122
|
Ruiz A, Joshi P, Mastrangelo R, Francolini M, Verderio C, Matteoli M. Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips. LAB ON A CHIP 2014; 14:2860-2866. [PMID: 24914747 DOI: 10.1039/c4lc00174e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Open microscale cultures of primary central nervous system (CNS) cells have been implemented in microfluidic chips that can expose the cells to physiological fluidic shear stress conditions. Cells in the chips were exposed to differently aggregated forms of beta-amyloid (Aβ), i.e. conditions mimicking an Alzheimer's Disease environment, and treated with CNS drugs in order to assess the contribution of glial cells during pharmacological treatments. FTY720, a drug approved for the treatment of Multiple Sclerosis, was found to play a marked neuroprotective role in neuronal cultures as well as in microglia-enriched neuronal cultures, preventing neurodegeneration after cell exposure to neurotoxic oligomers of Aβ.
Collapse
Affiliation(s)
- A Ruiz
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via L. Vanvitelli 32, 20129 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
123
|
Paproski RJ, Forbrich A, Hitt M, Zemp R. RNA biomarker release with ultrasound and phase-change nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1847-1856. [PMID: 24792584 DOI: 10.1016/j.ultrasmedbio.2014.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Microbubbles driven by ultrasound are capable of permeabilizing cell membranes and allowing biomarkers or therapeutics to exit from or enter cancer cells, respectively. Unfortunately, the relatively large size of microbubbles prevents extravasation. Lipid-based perfluorobutane microbubbles can be made seven-fold smaller by pressurization, creating 430-nm nanodroplets. The present study compares microbubbles and nanodroplets with respect to their ability to enhance miR-21 and mammaglobin mRNA release from cultured ZR-75-1 cells. Mammaglobin mRNA and miR-21 release increased with escalating concentrations of nanodroplets up to, respectively, 25- and 42-fold with 2% nanodroplets (v/v), compared with pre-ultrasound levels, whereas cell viability decreased to 62.4%. Sonication of ZR-75-1 cells incubated with microbubbles or nanodroplets caused relatively similar levels of cell death and miR-21 release, suggesting that nanodroplets are similar to microbubbles in enhancing cell permeability, but may be more advantageous because of their smaller size, which may allow extravasation through leaky tumor vasculature.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Forbrich
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mary Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
124
|
Apocynin, a low molecular oral treatment for neurodegenerative disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:298020. [PMID: 25140304 PMCID: PMC4129132 DOI: 10.1155/2014/298020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/26/2023]
Abstract
Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment with selective inhibitors of innate immune activity. Here we review the therapeutic potential of apocynin, an essentially nontoxic phenolic compound isolated from the medicinal plant Jatropha multifida. Apocynin is a selective inhibitor of the phagocyte NADPH oxidase Nox2 that can be applied orally and is remarkably effective at low dose.
Collapse
|
125
|
Neuman KM, Molina-Campos E, Musial TF, Price AL, Oh KJ, Wolke ML, Buss EW, Scheff SW, Mufson EJ, Nicholson DA. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3143-65. [PMID: 25031178 DOI: 10.1007/s00429-014-0848-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.
Collapse
Affiliation(s)
- Krystina M Neuman
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Elizabeth Molina-Campos
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Andrea L Price
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Malerie L Wolke
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
126
|
Tan L, Yu JT, Tan L. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Mol Neurobiol 2014; 51:1249-62. [PMID: 24973986 DOI: 10.1007/s12035-014-8803-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/22/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), originate from a loss of neurons in the central nervous system (CNS) and are severely debilitating. The incidence of neurodegenerative diseases increases with age, and they are expected to become more common due to extended life expectancy. Because of no clear mechanisms, these diseases have become a major challenge in neurobiology. It is well recognized that these disorders become the culmination of many different genetic and environmental influences. Prior studies have shown that microRNAs (miRNAs) are pathologically altered during the inexorable course of some neurodegenerative diseases, suggesting that miRNAs may be the contributing factor in neurodegeneration. Here, we review what is known about the involvement of miRNAs in the pathogenesis of neurodegenerative diseases. The biogenesis of miRNAs and various functions of miRNAs that act as the chief regulators will be discussed. We focus in particular on dysregulation of miRNAs which leads to several neurodegenerative diseases from three aspects: miRNA-generating disorders, miRNA-targeting genes and epigenetic alterations. Furthermore, recent evidences have shown that circulating miRNA expression levels are changed in patients with neurodegenerative diseases. Circulating miRNA expression levels are reported in patients in order to evaluate their application as biomarkers of these diseases. A discussion is included with a potential diagnostic biomarker and the possible future direction in exploring the nexus between miRNAs and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
127
|
Zorov DB, Isaev NK, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Morosanova MA, Jankauskas SS, Zorov SD, Babenko VA. Perspectives of mitochondrial medicine. BIOCHEMISTRY (MOSCOW) 2014; 78:979-90. [PMID: 24228919 DOI: 10.1134/s0006297913090034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial medicine was established more than 50 years ago after discovery of the very first pathology caused by impaired mitochondria. Since then, more than 100 mitochondrial pathologies have been discovered. However, the number may be significantly higher if we interpret the term "mitochondrial medicine" more widely and include in these pathologies not only those determined by the genetic apparatus of the nucleus and mitochondria, but also acquired mitochondrial defects of non-genetic nature. Now the main problems of mitochondriology arise from methodology, this being due to studies of mitochondrial activities under different models and conditions that are far from the functioning of mitochondria in a cell, organ, or organism. Controversial behavior of mitochondria ("friends and foes") to some extent might be explained by their bacterial origin with possible preservation of "egoistic" features peculiar to bacteria. Apparently, for normal mitochondrial functioning it is essential to maintain homeostasis of a number of mitochondrial elements such as mitochondrial DNA structure, membrane potential, and the system of mitochondrial quality control. Abrogation of these elements can cause a number of pathologies that have become subjects of mitochondrial medicine. Some approaches to therapy of mitochondrial pathologies are discussed.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Dibenzo[1,4,5]thiadiazepine: A hardly-known heterocyclic system with neuroprotective properties of potential usefulness in the treatment of neurodegenerative diseases. Eur J Med Chem 2014; 81:350-8. [DOI: 10.1016/j.ejmech.2014.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|
129
|
Knowles TPJ, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15:384-96. [PMID: 24854788 DOI: 10.1038/nrm3810] [Citation(s) in RCA: 1648] [Impact Index Per Article: 164.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenomenon of protein aggregation and amyloid formation has become the subject of rapidly increasing research activities across a wide range of scientific disciplines. Such activities have been stimulated by the association of amyloid deposition with a range of debilitating medical disorders, from Alzheimer's disease to type II diabetes, many of which are major threats to human health and welfare in the modern world. It has become clear, however, that the ability to form the amyloid state is more general than previously imagined, and that its study can provide unique insights into the nature of the functional forms of peptides and proteins, as well as understanding the means by which protein homeostasis can be maintained and protein metastasis avoided.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
130
|
Maximino JR, de Oliveira GP, Alves CJ, Chadi G. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 2014; 8:148. [PMID: 24904291 PMCID: PMC4033281 DOI: 10.3389/fncel.2014.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Collapse
Affiliation(s)
- Jessica R Maximino
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Chrystian J Alves
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
131
|
Guffanti A, Simchovitz A, Soreq H. Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases. Front Cell Neurosci 2014; 8:89. [PMID: 24723850 PMCID: PMC3973899 DOI: 10.3389/fncel.2014.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/10/2014] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative diseases in general and specifically late-onset Alzheimer’s disease (LOAD) involve a genetically complex and largely obscure ensemble of causative and risk factors accompanied by complex feedback responses. The advent of “high-throughput” transcriptome investigation technologies such as microarray and deep sequencing is increasingly being combined with sophisticated statistical and bioinformatics analysis methods complemented by knowledge-based approaches such as Bayesian Networks or network and graph analyses. Together, such “integrative” studies are beginning to identify co-regulated gene networks linked with biological pathways and potentially modulating disease predisposition, outcome, and progression. Specifically, bioinformatics analyses of integrated microarray and genotyping data in cases and controls reveal changes in gene expression of both protein-coding and small and long regulatory RNAs; highlight relevant quantitative transcriptional differences between LOAD and non-demented control brains and demonstrate reconfiguration of functionally meaningful molecular interaction structures in LOAD. These may be measured as changes in connectivity in “hub nodes” of relevant gene networks (Zhang etal., 2013). We illustrate here the open analytical questions in the transcriptome investigation of neurodegenerative disease studies, proposing “ad hoc” strategies for the evaluation of differential gene expression and hints for a simple analysis of the non-coding RNA (ncRNA) part of such datasets. We then survey the emerging role of long ncRNAs (lncRNAs) in the healthy and diseased brain transcriptome and describe the main current methods for computational modeling of gene networks. We propose accessible modular and pathway-oriented methods and guidelines for bioinformatics investigations of whole transcriptome next generation sequencing datasets. We finally present methods and databases for functional interpretations of lncRNAs and propose a simple heuristic approach to visualize and represent physical and functional interactions of the coding and non-coding components of the transcriptome. Integrating in a functional and integrated vision coding and ncRNA analyses is of utmost importance for current and future analyses of neurodegenerative transcriptomes.
Collapse
Affiliation(s)
- Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel ; Bioinformatics, Genomnia srl Milano, Italy
| | - Alon Simchovitz
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
132
|
Tsai LH, Madabhushi R. Alzheimer's disease: A protective factor for the ageing brain. Nature 2014; 507:439-40. [PMID: 24670758 DOI: 10.1038/nature13214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ram Madabhushi
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
133
|
Mutez E, Nkiliza A, Belarbi K, de Broucker A, Vanbesien-Mailliot C, Bleuse S, Duflot A, Comptdaer T, Semaille P, Blervaque R, Hot D, Leprêtre F, Figeac M, Destée A, Chartier-Harlin MC. Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson's disease. Neurobiol Dis 2014; 63:165-70. [DOI: 10.1016/j.nbd.2013.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022] Open
|
134
|
Frost B, Hemberg M, Lewis J, Feany MB. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 2014; 17:357-66. [PMID: 24464041 PMCID: PMC4012297 DOI: 10.1038/nn.3639] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/24/2013] [Indexed: 12/16/2022]
Abstract
The microtubule-associated protein tau is involved in a number of neurodegenerative disorders, including Alzheimer's disease. Previous studies have linked oxidative stress and subsequent DNA damage to neuronal death in Alzheimer's disease and related tauopathies. Given that DNA damage can substantially alter chromatin structure, we examined epigenetic changes in tau-induced neurodegeneration. We found widespread loss of heterochromatin in tau transgenic Drosophila and mice and in human Alzheimer's disease. Notably, genetic rescue of tau-induced heterochromatin loss substantially reduced neurodegeneration in Drosophila. We identified oxidative stress and subsequent DNA damage as a mechanistic link between transgenic tau expression and heterochromatin relaxation, and found that heterochromatin loss permitted aberrant gene expression in tauopathies. Furthermore, large-scale analyses from the brains of individuals with Alzheimer's disease revealed a widespread transcriptional increase in genes that were heterochromatically silenced in controls. Our results establish heterochromatin loss as a toxic effector of tau-induced neurodegeneration and identify chromatin structure as a potential therapeutic target in Alzheimer's disease.
Collapse
Affiliation(s)
- Bess Frost
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Hemberg
- Department of Ophthalmology and Program in Neurobiology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jada Lewis
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
135
|
Head SR, Mondala T, Gelbart T, Ordoukhanian P, Chappel R, Hernandez G, Salomon DR. RNA purification and expression analysis using microarrays and RNA deep sequencing. Methods Mol Biol 2014; 1034:385-403. [PMID: 23775753 DOI: 10.1007/978-1-62703-493-7_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcriptome analysis or global gene expression profiling is a powerful tool for discovery as well as -understanding biological mechanisms in health and disease. We present in this chapter a description of methods used to isolate mRNA from cells and tissues that has been optimized for preservation of RNA quality using clinical materials and implemented successfully in several large, multicenter studies by the authors. In addition, two methods, gene expression microarrays and RNAseq, are described for mRNA profiling of cells and tissues from clinical or laboratory sources.
Collapse
Affiliation(s)
- Steven R Head
- Microarray and Next Generation Sequencing Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL. Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell Death Dis 2014; 5:e1054. [PMID: 24525730 PMCID: PMC3944230 DOI: 10.1038/cddis.2014.11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurological condition associated with a genetic profile that is still not completely understood. In this study, using a whole gene microarray approach, we investigated age-dependent gene expression profile changes occurring in the hippocampus of young and old transgenic AD (3xTg-AD) and wild-type (WT) mice. The aim of the study was to assess similarities between aging- and AD-related modifications of gene expression and investigate possible interactions between the two processes. Global gene expression profiles of hippocampal tissue obtained from 3xTg-AD and WT mice at 3 and 12 months of age (m.o.a.) were analyzed by hierarchical clustering. Interaction among transcripts was then studied with the Ingenuity Pathway Analysis (IPA) software, a tool that discloses functional networks and/or pathways associated with sets of specific genes of interest. Cluster analysis revealed the selective presence of hundreds of upregulated and downregulated transcripts. Functional analysis showed transcript involvement mainly in neuronal death and autophagy, mitochondrial functioning, intracellular calcium homeostasis, inflammatory response, dendritic spine formation, modulation of synaptic functioning, and cognitive decline. Thus, overexpression of AD-related genes (such as mutant APP, PS1, and hyperphosphorylated tau, the three genes that characterize our model) appears to favor modifications of additional genes that are involved in AD development and progression. The study also showed overlapping changes in 3xTg-AD at 3 m.o.a. and WT mice at 12 m.o.a., thereby suggesting altered expression of aging-related genes that occurs earlier in 3xTg-AD mice.
Collapse
Affiliation(s)
- V Gatta
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Psychological Sciences, ‘G. d'Annunzio' University, Chieti, Italy
| | - M D'Aurora
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Neuroscience and Imaging, ‘G. d'Annunzio' University, Chieti, Italy
| | - A Granzotto
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
| | - L Stuppia
- Functional Genetics Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Department of Psychological Sciences, ‘G. d'Annunzio' University, Chieti, Italy
| | - S L Sensi
- Department of Neuroscience and Imaging, ‘G. d'Annunzio' University, Chieti, Italy
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI), Chieti, Italy
- Departments of Neurology and Pharmacology, University of California-Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
137
|
Bayatti N, Cooper-Knock J, Bury JJ, Wyles M, Heath PR, Kirby J, Shaw PJ. Comparison of blood RNA extraction methods used for gene expression profiling in amyotrophic lateral sclerosis. PLoS One 2014; 9:e87508. [PMID: 24475299 PMCID: PMC3903649 DOI: 10.1371/journal.pone.0087508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/26/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes death within a mean of 2–3 years from symptom onset. There is no diagnostic test and the delay from symptom onset to diagnosis averages 12 months. The identification of prognostic and diagnostic biomarkers in ALS would facilitate earlier diagnosis and faster monitoring of treatments. Gene expression profiling (GEP) can help to identify these markers as well as therapeutic targets in neurological diseases. One source of genetic material for GEP in ALS is peripheral blood, which is routinely accessed from patients. However, a high proportion of globin mRNA in blood can mask important genetic information. A number of methods allow safe collection, storage and transport of blood as well as RNA stabilisation, including the PAXGENE and TEMPUS systems for the collection of whole blood and LEUKOLOCK which enriches for the leukocyte population. Here we compared these three systems and assess their suitability for GEP in ALS. We collected blood from 8 sporadic ALS patients and 7 controls. PAXGENE and TEMPUS RNA extracted samples additionally underwent globin depletion using GlobinClear. RNA was amplified and hybridised onto Affymetrix U133 Plus 2.0 arrays. Lists of genes differentially regulated in ALS patients and controls were created for each method using the R package PUMA, and RT-PCR validation was carried out on selected genes. TEMPUS/GlobinClear, and LEUKOLOCK produced high quality RNA with sufficient yield, and consistent array expression profiles. PAXGENE/GlobinClear yield and quality were lower. Globin depletion for PAXGENE and TEMPUS uncovered the presence of over 60% more transcripts than when samples were not depleted. TEMPUS/GlobinClear and LEUKOLOCK gene lists respectively contained 3619 and 3047 genes differentially expressed between patients and controls. Real-time PCR validation revealed similar reliability between these two methods and gene ontology analyses revealed similar pathways differentially regulated in disease compared to controls.
Collapse
Affiliation(s)
- Nadhim Bayatti
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Joanna J. Bury
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
138
|
Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD. Therapeutic implications of the prostaglandin pathway in Alzheimer's disease. Biochem Pharmacol 2014; 88:565-72. [PMID: 24434190 DOI: 10.1016/j.bcp.2013.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022]
Abstract
An important pathologic hallmark of Alzheimer's disease (AD) is neuroinflammation, a process characterized in AD by disproportionate activation of cells (microglia and astrocytes, primarily) of the non-specific innate immune system within the CNS. While inflammation itself is not intrinsically detrimental, a delicate balance of pro- and anti-inflammatory signals must be maintained to ensure that long-term exaggerated responses do not damage the brain over time. Non-steroidal anti-inflammatory drugs (NSAIDs) represent a broad class of powerful therapeutics that temper inflammation by inhibiting cyclooxygenase-mediated signaling pathways including prostaglandins, which are the principal mediators of CNS neuroinflammation. While historically used to treat discrete or systemic inflammatory conditions, epidemiologic evidence suggests that protracted NSAID use may delay AD onset, as well as decrease disease severity and rate of progression. Unfortunately, clinical trials with NSAIDs have thus far yielded disappointing results, including premature discontinuation of a large-scale prevention trial due to unexpected cardiovascular side effects. Here we review the literature and make the argument that more targeted exploitation of downstream prostaglandin signaling pathways may offer significant therapeutic benefits for AD while minimizing adverse side effects. Directed strategies such as these may ultimately help to delay the deleterious consequences of brain aging and might someday lead to new therapies for AD and other chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Eiron Cudaback
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Nikolas L Jorstad
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Yue Yang
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Thomas J Montine
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - C Dirk Keene
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA.
| |
Collapse
|
139
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
140
|
Horiuchi Y, Kano SI, Ishizuka K, Cascella NG, Ishii S, Talbot CC, Jaffe AE, Okano H, Pevsner J, Colantuoni C, Sawa A. Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: utility and limitation of the surrogate tissues in research for brain disorders. Neurosci Res 2013; 77:247-50. [PMID: 24120685 PMCID: PMC4097863 DOI: 10.1016/j.neures.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Human olfactory cells obtained by rapid nasal biopsy have been suggested to be a good surrogate system to address brain disease-associated molecular changes. Nonetheless, whether use of this experimental strategy is justified remains unclear. Here we compared expression profiles of olfactory cells systematically with those from the brain tissues and other cells. Principal component analysis indicated that the expression profiles of olfactory cells are very different from those of blood cells, but are closer to those of stem cells, in particular mesenchymal stem cells, that can be differentiated into the cells of the central nervous system.
Collapse
Affiliation(s)
- Yasue Horiuchi
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin-ichi Kano
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola G. Cascella
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seiji Ishii
- Department of Physiology, Keio University School of Medicine, Japan
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan
| | - Jonathan Pevsner
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | | | - Akira Sawa
- Department of Psychiatry Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
141
|
Brendel A, Renziehausen J, Behl C, Hajieva P. Downregulation of PMCA2 increases the vulnerability of midbrain neurons to mitochondrial complex I inhibition. Neurotoxicology 2013; 40:43-51. [PMID: 24269647 DOI: 10.1016/j.neuro.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/26/2013] [Accepted: 11/12/2013] [Indexed: 12/28/2022]
Abstract
Parkinson's disease is an age-associated disorder characterized by selective degeneration of dopaminergic neurons. The molecular mechanisms underlying the selective vulnerability of this subset of neurons are, however, not fully understood. Employing SH-SY5Y neuroblastoma cells and primary mesencephalic neurons, we here demonstrate a significant increase in cytosolic calcium after inhibition of mitochondrial complex I by means of MPP(+), which is a well-established environmental toxin-based in vitro model of Parkinson's disease. This increase in calcium is correlated with a downregulation of the neuron-specific plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2). Interestingly, two other important mediators of calcium efflux, sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), and Na(+)-Ca(2+)-exchanger (NCX), remained unaltered, indicating a specific role of PMCA2 in maintaining calcium homeostasis in neurons. The observed PMCA2 downregulation was accompanied by reduced levels of phosphorylated CREB protein, an intracellular signaling molecule and transcriptional regulator. In order to investigate the potential influence of PMCA2 on neuronal vulnerability, experimental downregulation of PMCA2 by means of siRNA was performed. The results demonstrate a significant impairment of cell survival under conditions of PMCA2 suppression. Hence, in our cell models increased cytosolic calcium levels as a consequence of insufficient calcium efflux lead to an increased vulnerability of neuronal cells. Moreover, overexpression of PMCA2 rendered the neurons significantly resistant to complex I inhibition. Our findings point toward a dysregulation of calcium homeostasis in Parkinson's disease and suggest a potential molecular mechanism of neurodegeneration via PMCA2.
Collapse
Affiliation(s)
- Alexander Brendel
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Jana Renziehausen
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany.
| |
Collapse
|
142
|
Computational evaluation of cellular metabolic costs successfully predicts genes whose expression is deleterious. Proc Natl Acad Sci U S A 2013; 110:19166-71. [PMID: 24198337 DOI: 10.1073/pnas.1312361110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gene suppression and overexpression are both fundamental tools in linking genotype to phenotype in model organisms. Computational methods have proven invaluable in studying and predicting the deleterious effects of gene deletions, and yet parallel computational methods for overexpression are still lacking. Here, we present Expression-Dependent Gene Effects (EDGE), an in silico method that can predict the deleterious effects resulting from overexpression of either native or foreign metabolic genes. We first test and validate EDGE's predictive power in bacteria through a combination of small-scale growth experiments that we performed and analysis of extant large-scale datasets. Second, a broad cross-species analysis, ranging from microorganisms to multiple plant and human tissues, shows that genes that EDGE predicts to be deleterious when overexpressed are indeed typically down-regulated. This reflects a universal selection force keeping the expression of potentially deleterious genes in check. Third, EDGE-based analysis shows that cancer genetic reprogramming specifically suppresses genes whose overexpression impedes proliferation. The magnitude of this suppression is large enough to enable an almost perfect distinction between normal and cancerous tissues based solely on EDGE results. We expect EDGE to advance our understanding of human pathologies associated with up-regulation of particular transcripts and to facilitate the utilization of gene overexpression in metabolic engineering.
Collapse
|
143
|
Decressac M, Volakakis N, Björklund A, Perlmann T. NURR1 in Parkinson disease--from pathogenesis to therapeutic potential. Nat Rev Neurol 2013; 9:629-36. [PMID: 24126627 DOI: 10.1038/nrneurol.2013.209] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson disease (PD), affected midbrain dopamine (DA) neurons lose specific dopaminergic properties before the neurons die. How the phenotype of DA neurons is normally established and the ways in which pathology affects the maintenance of cell identity are, therefore, important considerations. Orphan nuclear receptor NURR1 (NURR1, also known as NR4A2) is involved in the differentiation of midbrain DA neurons, but also has an important role in the adult brain. Emerging evidence indicates that impaired NURR1 function might contribute to the pathogenesis of PD: NURR1 and its transcriptional targets are downregulated in midbrain DA neurons that express high levels of the disease-causing protein α-synuclein. Clinical and experimental data indicate that disrupted NURR1 function contributes to induction of DA neuron dysfunction, which is seen in early stages of PD. The likely involvement of NURR1 in the development and progression of PD makes this protein a potentially interesting target for therapeutic intervention.
Collapse
Affiliation(s)
- Mickael Decressac
- Wallenberg Neuroscience Centre, Department of Experimental Medical Sciences, Lund University, BMC A11, Lund 22184, Sweden
| | | | | | | |
Collapse
|
144
|
Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ, Bendotti C. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:3305-32. [PMID: 24065725 DOI: 10.1093/brain/awt250] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Collapse
Affiliation(s)
- Giovanni Nardo
- 1 Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Core modular blood and brain biomarkers in social defeat mouse model for post traumatic stress disorder. BMC SYSTEMS BIOLOGY 2013; 7:80. [PMID: 23962043 PMCID: PMC3751782 DOI: 10.1186/1752-0509-7-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/02/2013] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects a substantial portion of combat veterans and poses serious consequences to long-term health. Consequently, the identification of diagnostic and prognostic blood biomarkers for PTSD is of great interest. Previously, we assessed genome-wide gene expression of seven brain regions and whole blood in a social defeat mouse model subjected to various stress conditions. Results To extract biological insights from these data, we have applied a new computational framework for identifying gene modules that are activated in common across blood and various brain regions. Our results, in the form of modular gene networks that highlight spatial and temporal biological functions, provide a systems-level molecular description of response to social stress. Specifically, the common modules discovered between the brain and blood emphasizes molecular transporters in the blood-brain barrier, and the associated genes have significant overlaps with known blood signatures for PTSD, major depression, and bipolar disease. Similarly, the common modules specific to the brain highlight the components of the social defeat stress response (e.g., fear conditioning pathways) in each brain sub-region. Conclusions Many of the brain-specific genes discovered are consistent with previous independent studies of PTSD or other mental illnesses. The results from this study further our understanding of the mechanism of stress response and contribute to a growing list of diagnostic biomarkers for PTSD.
Collapse
|
146
|
Abstract
Dysfunctions at the level of RNA processing have recently been shown to play a fundamental role in the pathogenesis of many neurodegenerative diseases. Several proteins responsible for these dysfunctions (TDP-43, FUS/TLS, and hnRNP A/Bs) belong to the nuclear class of heterogeneous ribonucleoproteins (hnRNPs) that predominantly function as general regulators of both coding and noncoding RNA metabolism. The discovery of the importance of these factors in mediating neuronal death has represented a major paradigmatic shift in our understanding of neurodegenerative processes. As a result, these discoveries have also opened the way toward novel biomolecular screening approaches in our search for therapeutic options. One of the major hurdles in this search is represented by the correct identification of the most promising targets to be prioritized. These may include aberrant aggregation processes, protein-protein interactions, RNA-protein interactions, or specific cellular pathways altered by disease. In this review, we discuss these four major options together with their various advantages and drawbacks.
Collapse
Affiliation(s)
- Maurizio Romano
- 1Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
147
|
Rembach A, Ryan TM, Roberts BR, Doecke JD, Wilson WJ, Watt AD, Barnham KJ, Masters CL. Progress towards a consensus on biomarkers for Alzheimer’s disease: a review of peripheral analytes. Biomark Med 2013; 7:641-62. [DOI: 10.2217/bmm.13.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population and attempts to develop therapies have been unsuccessful because there is no means to target an effective therapeutic window. CNS biomarkers are insightful but impractical for high-throughput population-based screening. Therefore, a peripheral, blood-based biomarker for AD would significantly improve early diagnosis, potentially enable presymptomatic detection and facilitate effective targeting of disease-modifying treatments. The various constituents of blood, including plasma, platelets and cellular fractions, are now being systematically explored as a pool of putative peripheral biomarkers for AD. In this review we cover some less known peripheral biomarkers and highlight the latest developments for their clinical application.
Collapse
Affiliation(s)
- Alan Rembach
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia.
| | - Tim M Ryan
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Blaine R Roberts
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, Herston, Queensland, 4029, Australia
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - William J Wilson
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - Andrew D Watt
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| |
Collapse
|
148
|
Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways. BMC Med Genomics 2013; 6:22. [PMID: 23777634 PMCID: PMC3689607 DOI: 10.1186/1755-8794-6-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background SCA28 is an autosomal dominant ataxia associated with AFG3L2 gene mutations. We performed a whole genome expression profiling using lymphoblastoid cell lines (LCLs) from four SCA28 patients and six unrelated healthy controls matched for sex and age. Methods Gene expression was evaluated with the Affymetrix GeneChip Human Genome U133A 2.0 Arrays and data were validated by real-time PCR. Results We found 66 genes whose expression was statistically different in SCA28 LCLs, 35 of which were up-regulated and 31 down-regulated. The differentially expressed genes were clustered in five functional categories: (1) regulation of cell proliferation; (2) regulation of programmed cell death; (3) response to oxidative stress; (4) cell adhesion, and (5) chemical homeostasis. To validate these data, we performed functional experiments that proved an impaired SCA28 LCLs growth compared to controls (p < 0.005), an increased number of cells in the G0/G1 phase (p < 0.001), and an increased mortality because of apoptosis (p < 0.05). We also showed that respiratory chain activity and reactive oxygen species levels was not altered, although lipid peroxidation in SCA28 LCLs was increased in basal conditions (p < 0.05). We did not detect mitochondrial DNA large deletions. An increase of TFAM, a crucial protein for mtDNA maintenance, and of DRP1, a key regulator of mitochondrial dynamic mechanism, suggested an alteration of fission/fusion pathways. Conclusions Whole genome expression profiling, performed on SCA28 LCLs, allowed us to identify five altered functional categories that characterize the SCA28 LCLs phenotype, the first reported in human cells to our knowledge.
Collapse
|
149
|
Gurwitz D. Expression profiling: a cost-effective biomarker discovery tool for the personal genome era. Genome Med 2013; 5:41. [PMID: 23672693 PMCID: PMC3706770 DOI: 10.1186/gm445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
150
|
YANG CHUN, JIANG RIYUE, SHEN JIANG, HONG TAO, LIU NING, DING LIANGCAI, WANG DAMING, CHEN LUJUN, XU BIN, ZHU BIN. Ketamine attenuates the lipopolysaccharide-induced inflammatory response in cultured N2a cells. Mol Med Rep 2013; 8:217-20. [DOI: 10.3892/mmr.2013.1465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/26/2013] [Indexed: 11/06/2022] Open
|