101
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, Van Damme J. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev 2015; 30:55-69. [PMID: 26794452 DOI: 10.1016/j.cytogfr.2015.12.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Levels of serum amyloid A (SAA), a major acute phase protein in humans, are increased up to 1000-fold upon infection, trauma, cancer or other inflammatory events. However, the exact role of SAA in host defense is yet not fully understood. Several pro- and anti-inflammatory properties have been ascribed to SAA. Here, the regulated production of SAA by cytokines and glucocorticoids is discussed first. Secondly, the cytokine and chemokine inducing capacity of SAA and its receptor usage are reviewed. Thirdly, the direct (via FPR2) and indirect (via TLR2) chemotactic effects of SAA and its synergy with chemokines are unraveled. Altogether, a complex cytokine-SAA-chemokine network is established, in which SAA plays a key role in regulating the inflammatory response.
Collapse
Affiliation(s)
- Mieke De Buck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Jacques Van Snick
- Ludwig Cancer Research, Brussels Branch, Brussels, Belgium; e Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
102
|
Abstract
Delivery of nanoparticles with arterial tropism containing the annexin A1 fragment Ac2-26 reduces signs of lesion instability in a mouse model of advanced atherosclerosis (Fredman et al., this issue).
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University Munich, Munich Germany. Academic Medical Center, Amsterdam, Netherlands. German Centre for Cardiovascular Research, partner site Munich, Munich Germany
| |
Collapse
|
103
|
Cao W, Peters JH, Nieman D, Sharma M, Watson T, Yu J. Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. Br J Cancer 2015; 113:738-46. [PMID: 26263481 PMCID: PMC4559839 DOI: 10.1038/bjc.2015.292] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Currently, there is a lack of ideal biomarkers for predicting nodal status in preoperative stage of oesophageal adenocarcinoma (EAC) to aid optimising therapeutic options. We studied the potential of applying subtype macrophages to predict lymph node metastasis and prognosis in EAC. MATERIAL AND METHODS Fifty-three EAC resection specimens were immunostained with CD68, CD40 (M1), and CD163 (M2). Lymphatic vessel density (LVD) was estimated with the staining of D2-40. Subsequently, we tested if M2d macrophage could promote EAC cell migration and invasion. RESULTS In EAC without neoadjuvant treatment, an increase in M2-like macrophage was associated with poor patient survival, independent of the locations of macrophages in tumour. The M2/M1 ratio that represented the balance between M2- and M1-like macrophages was significantly higher in nodal-positive EACs than that in nodal-negative EACs, and inversely correlated with patient overall survival. The M2/M1 ratio was not related to LVD. EAC cell polarised THP1 cell into M2d-like macrophage, which promoted EAC cell migration and invasion. Neoadjuvant therapy appeared to diminish the correlation between the M2/M1 ratio and survival. CONCLUSIONS The ratio of M2/M1 macrophage may serve as a sensitive marker to predict lymph node metastasis and poor prognosis in EAC without neoadjuvant therapy. M2d macrophage may have important roles in EAC metastasis.
Collapse
Affiliation(s)
- Wenqing Cao
- Department of Pathology, NYU School of Medicine, 560 First Avenue, New York, NY, USA
| | - Jeffrey H Peters
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Dylan Nieman
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Meenal Sharma
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 626, Rochester, NY, USA
| | - Thomas Watson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - JiangZhou Yu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 626, Rochester, NY, USA
| |
Collapse
|
104
|
Börgeson E, Johnson AMF, Lee YS, Till A, Syed GH, Ali-Shah ST, Guiry PJ, Dalli J, Colas RA, Serhan CN, Sharma K, Godson C. Lipoxin A4 Attenuates Obesity-Induced Adipose Inflammation and Associated Liver and Kidney Disease. Cell Metab 2015; 22:125-37. [PMID: 26052006 PMCID: PMC4584026 DOI: 10.1016/j.cmet.2015.05.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/22/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analog as interventions in a 3-month high-fat diet (HFD; 60% fat)-induced obesity model. Obesity caused distinct pathologies, including impaired glucose tolerance, adipose inflammation, fatty liver, and chronic kidney disease (CKD). Lipoxins (LXs) attenuated obesity-induced CKD, reducing glomerular expansion, mesangial matrix, and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase, and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c(+) M1-macrophages (MΦs), while restoring CD206(+) M2-MΦs and increasing Annexin-A1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin(-/-) mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity-induced systemic disease, and these data support a novel therapeutic paradigm for treating obesity and associated pathologies.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA; Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Andrew M F Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas Till
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Reconstructive Neurobiology, LIFE&BRAIN, University Clinic Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Gulam Hussain Syed
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093, USA
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA
| | - Catherine Godson
- Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
105
|
She S, Xiang Y, Yang M, Ding X, Liu X, Ma L, Liu Q, Liu B, Lu Z, Li S, Liu Y, Ran X, Xu X, Hu H, Hu P, Zhang D, Ren H, Yang Y. C-reactive protein is a biomarker of AFP-negative HBV-related hepatocellular carcinoma. Int J Oncol 2015; 47:543-54. [PMID: 26058824 DOI: 10.3892/ijo.2015.3042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide and is associated with the high rates of morbidity and mortality. α-fetoprotein (AFP) is common used in diagnosis of HCC; however, a growing body of research is questioning the diagnostic power of AFP. There is, therefore, an urgent need to develop additional novel non-invasive techniques for the early diagnosis of HCC, particularly for patients with AFP-negative [AFP(-)] HCC. Accordingly, in the present study, we employed iTRAQ-based mass spectro-metry to analyze the plasma proteins of subjects with AFP(-) HBV-related HCC, AFP(+) HBV-related HCC and non-malignant cirrhosis. We identified 14 aberrantly expressed proteins specific to the HCC patients, including 10 upregulated and 4 downregulated proteins. We verified C-reactive protein (CRP) overexpression by ELISA and immunohistochemical staining of clinical samples. Per ROC curve analyses, CRP was positive in 73.3% of patients with HBV-related HCC, and CRP overexpression had significant diagnostic power for AFP(-) HBV-related HCC. Furthermore, we found that silencing CRP caused a >2-fold decease in HBV replication. Additionally, we determined that this reduction in HBV replication involved the interferon-signaling pathway. However, silencing CRP also promoted HCC invasion and migration in vitro. In conclusion, we demonstrated that CRP can serve as a diagnostic biomarker for AFP(-) HBV-related HCC.
Collapse
Affiliation(s)
- Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yi Xiang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Min Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiangchun Ding
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lina Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qing Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Bin Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shiying Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yi Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoping Ran
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoming Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
106
|
Abstract
BACKGROUND Inflammatory bowel diseases are incurable illnesses of the gastrointestinal tract, which substantially enhance the risk of developing colorectal carcinogenesis. Conventional photodynamic therapy is a clinically approved therapeutic modality used in the treatment of neoplastic diseases. Recent preclinical and clinical studies have shown that photodynamic therapy with low doses of photosensitizer and/or light improves inflammatory conditions, including colitis. This study aims therefore at investigating the therapeutic potential of low-dose photodynamic therapy (LDPDT) with a liposomal formulation of meta-tetra(hydroxyphenyl)chlorin (namely Foslip) in the prevention of colitis-associated cancer in mice. METHODS LDPDT efficacy was evaluated by endoscopic, macroscopic, and histological analysis. Myeloperoxidase levels were quantified by enzyme linked immunosorbent assay and cytokines expression by quantitative RT-PCR analysis. The integrity of the intestinal barrier was evaluated by immunostaining, and bacterial composition of the fecal microbiota was determined by 454 pyrosequencing of V3-V4 region of bacterial 16S rRNA genes. RESULTS LDPDT reduced intestinal tumor growth by decreasing the expression of a wide range of inflammatory mediators and by lowering neutrophil influx. LDPDT treatment prevents onset of a dysbiotic microbiota in the colitis-associated cancer model. CONCLUSIONS LDPDT with Foslip could be considered as a novel treatment modality to prevent colorectal carcinogenesis in patients with inflammatory bowel disease.
Collapse
|
107
|
Butcher MJ, Galkina EV. wRAPping up early monocyte and neutrophil recruitment in atherogenesis via Annexin A1/FPR2 signaling. Circ Res 2015; 116:774-7. [PMID: 25722438 DOI: 10.1161/circresaha.115.305920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Matthew J Butcher
- From the Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Elena V Galkina
- From the Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk.
| |
Collapse
|
108
|
Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol 2015; 27:184-93. [PMID: 25865626 DOI: 10.1016/j.smim.2015.03.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries.
Collapse
Affiliation(s)
- Joana Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
109
|
Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1172-84. [PMID: 25791526 DOI: 10.1016/j.ajpath.2015.01.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/03/2015] [Accepted: 01/13/2015] [Indexed: 01/18/2023]
Abstract
Neutrophil migration to sites of inflammation and the subsequent execution of multiple functions are designed to contain and kill invading pathogens. These highly regulated and orchestrated processes are controlled by interactions between numerous receptors and their cognate ligands. Unraveling and identifying those that are central to inflammatory processes may represent novel therapeutic targets for the treatment of neutrophil-dominant inflammatory disorders in which dysregulated neutrophil recruitment, function, and elimination serve to potentiate rather than resolve an initial inflammatory insult. The first G protein-coupled receptor to be described on human neutrophils, formyl peptide receptor 1 (FPR1), is one such receptor that plays a significant role in the execution of these functions through multiple intracellular signaling pathways. Recent work has highlighted important observations with regard to both receptor function and the importance and functional relevance of FPR1 in the pathogenesis of a range of both sterile and infective inflammatory conditions. In this review, we explore the multiple components of neutrophil migration and function in both health and disease, with a focus on the role of FPR1 in these processes. The current understanding of FPR1 structure, function, and signaling is examined, alongside discussion of the potential importance of FPR1 in inflammatory diseases suggesting that FPR1 is a key regulator of the inflammatory environment.
Collapse
Affiliation(s)
- David A Dorward
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom.
| | - Christopher D Lucas
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Gavin B Chapman
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Haslett
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
110
|
Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G, Wang JM, Grommes J, Hinkel R, Kupatt C, Weber C, Döring Y, Zarbock A, Soehnlein O. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ Res 2014; 116:827-35. [PMID: 25520364 DOI: 10.1161/circresaha.116.305825] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Chemokine-controlled arterial leukocyte recruitment is a crucial process in atherosclerosis. Formyl peptide receptor 2 (FPR2) is a chemoattractant receptor that recognizes proinflammatory and proresolving ligands. The contribution of FPR2 and its proresolving ligand annexin A1 to atherosclerotic lesion formation is largely undefined. OBJECTIVE Because of the ambivalence of FPR2 ligands, we here investigate the role of FPR2 and its resolving ligand annexin A1 in atherogenesis. METHODS AND RESULTS Deletion of FPR2 or its ligand annexin A1 enhances atherosclerotic lesion formation, arterial myeloid cell adhesion, and recruitment. Mechanistically, we identify annexin A1 as an endogenous inhibitor of integrin activation evoked by the chemokines CCL5, CCL2, and CXCL1. Specifically, the annexin A1 fragment Ac2-26 counteracts conformational activation and clustering of integrins on myeloid cells evoked by CCL5, CCL2, and CXCL1 through inhibiting activation of the small GTPase Rap1. In vivo administration of Ac2-26 largely diminishes arterial recruitment of myeloid cells in a FPR2-dependent fashion. This effect is also observed in the presence of selective antagonists to CCR5, CCR2, or CXCR2, whereas Ac2-26 was without effect when all 3 chemokine receptors were antagonized simultaneously. Finally, repeated treatment with Ac2-26 reduces atherosclerotic lesion sizes and lesional macrophage accumulation. CONCLUSIONS Instructing the annexin A1-FPR2 axis harbors a novel approach to target arterial leukocyte recruitment. With the ability of Ac2-26 to counteract integrin activation exerted by various chemokines, delivery of Ac2-26 may be superior in inhibition of arterial leukocyte recruitment when compared with blocking individual chemokine receptors.
Collapse
Affiliation(s)
- Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Renske de Jong
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jan Rossaint
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Joana R Viola
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Giovanna Leoni
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Ji Ming Wang
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jochen Grommes
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Rabea Hinkel
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Kupatt
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Alexander Zarbock
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.).
| |
Collapse
|
111
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
112
|
Zhou D, Huang C, Kong L, Li J. Novel therapeutic target of hepatocellular carcinoma by manipulation of macrophage colony-stimulating factor/tumor-associated macrophages axis in tumor microenvironment. Hepatol Res 2014; 44:E318-9. [PMID: 25257690 DOI: 10.1111/hepr.12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
113
|
Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS One 2014; 9:e108564. [PMID: 25251243 PMCID: PMC4177399 DOI: 10.1371/journal.pone.0108564] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022] Open
Abstract
Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3(-/-)). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3(-/-) mice gained less weight on the HFHSC diet compared to Saa3(+/+) littermate controls, with no differences in body composition or resting metabolism. Female Saa3(-/-) mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3(-/-) mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3(-/-) mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3(-/-) mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.
Collapse
|
114
|
Locatelli I, Sutti S, Jindal A, Vacchiano M, Bozzola C, Reutelingsperger C, Kusters D, Bena S, Parola M, Paternostro C, Bugianesi E, McArthur S, Albano E, Perretti M. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 2014; 60:531-44. [PMID: 24668763 PMCID: PMC4258084 DOI: 10.1002/hep.27141] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Annexin A1 (AnxA1) is an effector of the resolution of inflammation and is highly effective in terminating acute inflammatory responses. However, its role in chronic settings is less investigated. Because changes in AnxA1 expression within adipose tissue characterize obesity in mice and humans, we queried a possible role for AnxA1 in the pathogenesis of nonalcoholic steatohepatitis (NASH), a disease commonly associated with obesity. NASH was induced in wild-type (WT) and AnxA1 knockout (AnxA1 KO) C57BL/6 mice by feeding a methionine-choline deficient (MCD) diet up to 8 weeks. In MCD-fed WT mice, hepatic AnxA1 increased in parallel with progression of liver injury. This mediator was also detected in liver biopsies from patients with NASH and its degree of expression inversely correlated with the extent of fibrosis. In both humans and rodents, AnxA1 production was selectively localized in liver macrophages. NASH in AnxA1 KO mice was characterized by enhanced lobular inflammation resulting from increased macrophage recruitment and exacerbation of the M1 phenotype. Consistently, in vitro addition of recombinant AnxA1 to macrophages isolated from NASH livers down-modulated M1 polarization through stimulation of interleukin-10 production. Furthermore, the degree of hepatic fibrosis was enhanced in MCD-fed AnxA1 KO mice, an effect associated with augmented liver production of the profibrotic lectin, galectin-3. Accordingly, AnxA1 addition to isolated hepatic macrophages reduced galectin-3 expression. CONCLUSIONS Macrophage-derived AnxA1 plays a functional role in modulating hepatic inflammation and fibrogenesis during NASH progression, suggesting the possible use of AnxA1 analogs for therapeutic control of this disease.
Collapse
Affiliation(s)
- Irene Locatelli
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy
| | - Aastha Jindal
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy
| | - Marco Vacchiano
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy
| | - Cristina Bozzola
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy
| | - Chris Reutelingsperger
- Cardiovascular Research Institute MaastrichtDepartment of Biochemistry, Maastricht UniversityMaastricht, The Netherlands
| | - Dennis Kusters
- Cardiovascular Research Institute MaastrichtDepartment of Biochemistry, Maastricht UniversityMaastricht, The Netherlands
| | - Stefania Bena
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; and Departments of TurinItaly
| | - Maurizio Parola
- Clinical and Biological Sciences, University of TurinTurin, Italy
| | | | | | - Simon McArthur
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; and Departments of TurinItaly
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University “Amedeo Avogadro” of East PiedmontNovara, Italy,* These authors share senior authorship
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; and Departments of TurinItaly,* These authors share senior authorship
| |
Collapse
|
115
|
Luo ZZ, Gao Y, Sun N, Zhao Y, Wang J, Tian B, Shi J. Enhancing the interaction between annexin-1 and formyl peptide receptors regulates microglial activation to protect neurons from ischemia-like injury. J Neuroimmunol 2014; 276:24-36. [PMID: 25115219 DOI: 10.1016/j.jneuroim.2014.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 12/30/2022]
Abstract
As the immune cells of the brain, microglia are crucial for the maintenance of brain function. The aims of the present study were to determine whether and how annexin-1 is able to affect microglial phenotype and migration in the lesion microenvironment. In the current experiment, we enhanced the interaction between annexin-1 and formyl peptide receptors in microglia and analyzed the function. We found that annexin-1 could polarize microglia to a beneficial phenotype and promote microglial migration to protect neurons from ischemia-like injury, and the annexin-1-mediated neuroprotective effect was dependent on the release of glutamate and ATP from the injured neurons.
Collapse
Affiliation(s)
- Zhen Zhao Luo
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Yan Gao
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Ning Sun
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Yin Zhao
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Jing Wang
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China; Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
116
|
Perez DA, Vago JP, Athayde RM, Reis AC, Teixeira MM, Sousa LP, Pinho V. Switching off key signaling survival molecules to switch on the resolution of inflammation. Mediators Inflamm 2014; 2014:829851. [PMID: 25136148 PMCID: PMC4127222 DOI: 10.1155/2014/829851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/02/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023] Open
Abstract
Inflammation is a physiological response of the immune system to injury or infection but may become chronic. In general, inflammation is self-limiting and resolves by activating a termination program named resolution of inflammation. It has been argued that unresolved inflammation may be the basis of a variety of chronic inflammatory diseases. Resolution of inflammation is an active process that is fine-tuned by the production of proresolving mediators and the shutdown of intracellular signaling molecules associated with cytokine production and leukocyte survival. Apoptosis of leukocytes (especially granulocytes) is a key element in the resolution of inflammation and several signaling molecules are thought to be involved in this process. Here, we explore key signaling molecules and some mediators that are crucial regulators of leukocyte survival in vivo and that may be targeted for therapeutic purposes in the context of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Denise Alves Perez
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Juliana Priscila Vago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Sinalização inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Rayssa Maciel Athayde
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Alesandra Corte Reis
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Sinalização inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
117
|
Rébé C, Végran F, Berger H, Ghiringhelli F. STAT3 activation: A key factor in tumor immunoescape. JAKSTAT 2014; 2:e23010. [PMID: 24058791 PMCID: PMC3670267 DOI: 10.4161/jkst.23010] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022] Open
Abstract
Cancer growth is controlled by cancer cells (cell intrinsic phenomenon), but also by the immune cells in the tumor microenvironment (cell extrinsic phenomenon). Thus cancer progression is mediated by the activation of transcription programs responsible for cancer cell proliferation, but also induced proliferation/activation of immunosuppressive cells such as Th17, Treg or myeloid derived suppressor cells (MDSCs). One of the key transcription factors involved in these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on STAT3 activation in immune cells, and how it impacts on tumor progression.
Collapse
Affiliation(s)
- Cédric Rébé
- INSERM, U866; Dijon, France ; Centre Georges François Leclerc; Dijon, France
| | | | | | | |
Collapse
|
118
|
Anthony D, McQualter JL, Bishara M, Lim EX, Yatmaz S, Seow HJ, Hansen M, Thompson M, Hamilton JA, Irving LB, Levy BD, Vlahos R, Anderson GP, Bozinovski S. SAA drives proinflammatory heterotypic macrophage differentiation in the lung via CSF-1R-dependent signaling. FASEB J 2014; 28:3867-77. [PMID: 24846388 DOI: 10.1096/fj.14-250332] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/05/2014] [Indexed: 12/11/2022]
Abstract
Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1β concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1β. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1β expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11c(high)CD11b(high) macrophage population that generated higher levels of IL-6, IL-1β, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11c(high)CD11b(high) macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%. In conclusion, our findings suggest that SAA can promote a distinct CD11c(high)CD11b(high) macrophage phenotype, and targeting this population may provide a novel approach to treating chronic inflammatory conditions associated with persistent SAA expression.
Collapse
Affiliation(s)
| | | | | | - Ee X Lim
- Department of Pharmacology and Therapeutics and
| | | | | | | | - Michelle Thompson
- Department of Respiratory Medicine, Royal Melbourne Hospital; Parkville, Victoria, Australia; and
| | - John A Hamilton
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Louis B Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital; Parkville, Victoria, Australia; and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ross Vlahos
- Department of Pharmacology and Therapeutics and
| | | | | |
Collapse
|
119
|
Liu Y, Wang X, Li S, Hu H, Zhang D, Hu P, Yang Y, Ren H. The role of von Willebrand factor as a biomarker of tumor development in hepatitis B virus-associated human hepatocellular carcinoma: a quantitative proteomic based study. J Proteomics 2014; 106:99-112. [PMID: 24769235 DOI: 10.1016/j.jprot.2014.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), the sixth most common cancer worldwide. To explore potential biomarkers for HCC, iTRAQ coupled with mass spectrometry was used to analyze proteins in plasma from individuals with HBV-associated HCC, nonmalignant cirrhosis, chronic hepatitis B, and healthy individuals. Twenty-one aberrantly expressed proteins were identified from HCC patients as compared with nontumor controls. Overexpression of von Willebrand factor (vWF) was confirmed by Western blotting, and immunohistochemical analysis from liver biopsies and ELISA from plasma samples revealed a correlation between vWF expression and HCC clinicopathologic staging. Furthermore, siRNA-induced vWF silencing reduced HBV replication by over two-fold via the interferon-signaling pathway and impaired the invasion and migration of HCC cells in vitro. These results indicate that vWF can serve as a biomarker, and perhaps an alternative target for therapeutic intervention of HCC progression and HBV viral infection. BIOLOGICAL SIGNIFICANCE We report comparative plasma proteome profiles of HBV-associated HCC and nonmalignant chronic liver diseases, including chronic hepatitis B and cirrhosis. The quantification of these datasets showed altered abundance of 21 proteins in HBV-related HCC and provides a reference point for future applied and basic research. In addition, we have demonstrated that the candidate protein vWF is involved in the pathogenesis of HBV infection and replication, and also associated with clinicopathologic staging of HCC patients with HBV infection. Overall these findings provide information on the mechanism of HCC development, which may assist in the development of novel cancer and HBV therapeutic drugs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiwei Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanglin Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China.
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
120
|
Lee JM, Kim EK, Seo H, Jeon I, Chae MJ, Park YJ, Song B, Kim YS, Kim YJ, Ko HJ, Kang CY. Serum amyloid A3 exacerbates cancer by enhancing the suppressive capacity of myeloid-derived suppressor cells via TLR2-dependent STAT3 activation. Eur J Immunol 2014; 44:1672-84. [PMID: 24659444 DOI: 10.1002/eji.201343867] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/05/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), which suppress diverse innate and adaptive immune responses and thereby provide an evasion mechanism for tumors, are emerging as a key population linking inflammation to cancer. Although many inflammatory factors that induce MDSCs in the tumor microenvironment are known, the crucial components and the underlying mechanisms remain elusive. In this study, we proposed a novel mechanism by which serum amyloid A3 (SAA3), a well-known inflammatory factor, connects MDSCs with cancer progression. We found that SAA3 expression in BALB/c mice increased in monocytic MDSCs (Mo MDSCs) with tumor growth. The induction of SAA3 by apo-SAA treatment in Mo MDSCs enhanced their survival and suppressive activity, while it inhibited GM-CSF-induced differentiation. Endogenous SAA3 itself contributed to the increase in the survival and suppressive activity of Mo MDSCs. We demonstrated that SAA3 induced TLR2 signaling, in turn increasing the autocrine secretion of TNF-α, that led to STAT3 activation. In addition, activated STAT3 enhanced the suppressive activity of Mo MDSCs. Furthermore, SAA3 induction in Mo MDSCs contributed to accelerating tumor progression in vivo. Collectively, these data suggest a novel mechanism by which Mo MDSCs mediate inflammation through SAA3-TLR2 signaling and thus exacerbate cancer progression by a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Adipose tissue historically was believed to be an inert tissue, functioning primarily in the storage of energy and thermal homeostasis. However, recent discoveries point toward a critical role for adipocytes in endocrine function as well as immune regulation. Excess body fat, accumulated through aging and/or a calorie-rich diet, is associated with many chronic metabolic and inflammatory diseases. Within the stromal vascular fraction of adipose tissue, macrophages and T cells accumulate with increasing tissue mass, secreting pro- or anti-inflammatory cytokines. In this review we discuss the current understanding of immune cell function in both diet-induced and age-related obesity. In both models of obesity, the classically activated, pro-inflammatory (M1) subtype takes precedence over the alternatively activated, anti-inflammatory (M2) macrophages, causing tissue necrosis and releasing pro-inflammatory cytokines like interleukin-6. Other distinct adipose tissue macrophage subtypes have been identified by surface marker expression and their functions characterized. Adipose tissue T cell recruitment to adipose tissue is also different between aging- and diet-induced obesity. Under both conditions, T cells exhibit restricted T-cell receptor diversity and produce higher levels of pro-inflammatory signals like interferon-γ and granzyme B relative to young or healthy mice. However, numbers of regulatory T cells are dramatically different between the 2 models of obesity. Taken together, these findings suggest models of age- and diet-induced obesity may be more distinct than previously thought, with many questions yet to be resolved in this multidimensional disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Colin Delaney
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Hang Shi
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
122
|
Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci U S A 2013; 110:18232-7. [PMID: 24108355 DOI: 10.1073/pnas.1308253110] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Formyl-peptide receptor type 2 (FPR2), also called ALX (the lipoxin A4 receptor), conveys the proresolving properties of lipoxin A4 and annexin A1 (AnxA1) and the proinflammatory signals elicited by serum amyloid protein A and cathelicidins, among others. We tested here the hypothesis that ALX might exist as homo- or heterodimer with FPR1 or FPR3 (the two other family members) and operate in a ligand-biased fashion. Coimmunoprecipitation and bioluminescence resonance energy transfer assays with transfected HEK293 cells revealed constitutive dimerization of the receptors; significantly, AnxA1, but not serum amyloid protein A, could activate ALX homodimers. A p38/MAPK-activated protein kinase/heat shock protein 27 signaling signature was unveiled after AnxA1 application, leading to generation of IL-10, as measured in vitro (in primary monocytes) and in vivo (after i.p. injection in the mouse). The latter response was absent in mice lacking the ALX ortholog. Using a similar approach, ALX/FPR1 heterodimerization evoked using the panagonist peptide Ac2-26, identified a JNK-mediated proapoptotic path that was confirmed in primary neutrophils. These findings provide a molecular mechanism that accounts for the dual nature of ALX and indicate that agonist binding and dimerization state contribute to the conformational landscape of FPRs.
Collapse
|
123
|
Planagumà A, Domenech T, Jover I, Ramos I, Sentellas S, Malhotra R, Miralpeix M. Lack of activity of 15-epi-lipoxin A₄ on FPR2/ALX and CysLT1 receptors in interleukin-8-driven human neutrophil function. Clin Exp Immunol 2013; 173:298-309. [PMID: 23607720 DOI: 10.1111/cei.12110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 01/21/2023] Open
Abstract
Neutrophil recruitment and survival are important control points in the development and resolution of inflammatory processes. 15-epi-lipoxin (LX)A interaction with formyl peptide receptor 2 (FPR2)/ALX receptor is suggested to enhance anti-inflammatory neutrophil functions and mediate resolution of airway inflammation. However, it has been reported that 15-epi-LXA₄ analogues can also bind to cysteinyl leukotriene receptor 1 (CysLT1) and that the CysLT1 antagonist MK-571 binds to FPR2/ALX, so cross-reactivity between FPR2/ALX and CysLT1 ligands cannot be discarded. It is not well established whether the resolution properties reported for 15-epi-LXA4 are mediated through FPR2/ALX, or if other receptors such as CysLT1 may also be involved. Evaluation of specific FPR2/ALX ligands and CysLT1 antagonists in functional biochemical and cellular assays were performed to establish a role for both receptors in 15-epi-LXA₄-mediated signalling and function. In our study, a FPR2/ALX synthetic peptide (WKYMVm) and a small molecule FPR2/ALX agonist (compound 43) induced FPR2/ALX-mediated signalling, enhancing guanosine triphosphate-gamma (GTPγ) binding and decreasing cyclic adenosine monophosphate (cAMP) levels, whereas 15-epi-LXA₄ was inactive. Furthermore, 15-epi-LXA4 showed neither binding affinity nor signalling towards CysLT1. In neutrophils, 15-epi-LXA₄ showed a moderate reduction of interleukin (IL)-8-mediated neutrophil chemotaxis but no effect on neutrophil survival was observed. In addition, CysLT1 antagonists were inactive in FPR2/ALX signalling or neutrophil assays. In conclusion, 15-epi-LXA₄ is not a functional agonist or an antagonist of FPR2/ALX or CysLT1, shows no effect on IL-8-induced neutrophil survival and produces only moderate inhibition in IL-8-mediated neutrophil migration. Our data do not support an anti-inflammatory role of 15-epi-LXA₄- FPR2/ALX interaction in IL-8-induced neutrophil inflammation.
Collapse
Affiliation(s)
- A Planagumà
- Respiratory Therapeutic Area-Discovery, Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
124
|
Placental Vacuolar ATPase Function Is a Key Link between Multiple Causes of Preeclampsia. ISRN OBSTETRICS AND GYNECOLOGY 2013; 2013:504173. [PMID: 23762576 PMCID: PMC3674723 DOI: 10.1155/2013/504173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022]
Abstract
Preeclampsia, a relatively common pregnancy disorder, is one of the major causes of maternal and fetal morbidity and mortality. Despite numerous research, the etiology of this syndrome remains not well understood as the pathogenesis of preeclampsia is complex, involving interaction between genetic, immunologic, and environmental factors. Preeclampsia, originating in placenta abnormalities, is induced by the circulating factors derived from the abnormal placenta. Recent work has identified various molecular mechanisms related to placenta development, including renin-angiotensin system, 1, 25-dihydroxyvitamin D, and lipoxin A4. Interestingly, advances suggest that vacuolar ATPase, a key molecule in placentation, is closely associated with them. Therefore, this intriguing molecule may represent an important link between various causes of preeclampsia. Here, we review that vacuolar ATPase works as a key link between multiple causes of preeclampsia and discuss the potential molecular mechanisms. The novel findings outlined in this review may provide promising explanations for the causation of preeclampsia and a rationale for future therapeutic interventions for this condition.
Collapse
|
125
|
Canny GO, Lessey BA. The role of lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol 2013; 6:439-50. [PMID: 23485944 PMCID: PMC4062302 DOI: 10.1038/mi.2013.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoxin A4 (LXA4), an endogenous anti-inflammatory and immunomodulatory mediator studied in many disease states, is recently appreciated as a potentially significant player in the endometrium. This eicosanoid, synthesized from arachidonic acid via the action of lipoxygenase enzymes, is likely regulated in endometrial tissue during the menstrual cycle. Recent studies revealed that LXA4 acts as an estrogen receptor agonist in endometrial epithelial cells, antagonizing some estrogen-mediated activities in a manner similar to the weak estrogen estriol, with which it shares structural similarity. LXA4 may also be an anti-inflammatory molecule in the endometrium, though its precise function in various physiological and pathological scenarios remains to be determined. The expression patterns for LXA4 and its receptor in the female reproductive tract suggest a role in pregnancy. The present review provides an oversight of its known and putative roles in the context of immuno-endocrine crosstalk. Endometriosis, a common inflammatory condition and a major cause of infertility and pain, is currently treated by surgery or anti-hormone therapies that are contraceptive and associated with undesirable side effects. LXA4 may represent a potential therapeutic and further research to elucidate its function in endometrial tissue and the peritoneal cavity will undoubtedly provide valuable insights.
Collapse
Affiliation(s)
- GO Canny
- Geneva Foundation for Medical Education and Research, Versoix, Switzerland
| | - BA Lessey
- University of South Carolina School of Medicine—Greenville, Greenville, SC, USA
| |
Collapse
|
126
|
Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci 2013; 14:7193-230. [PMID: 23549262 PMCID: PMC3645683 DOI: 10.3390/ijms14047193] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
The formyl peptide receptor 2 (FPR2) is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR) family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ)-42 and prion protein (Prp)106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP)-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC), protein kinase C (PKC) isoforms, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, the mitogen-activated protein kinase (MAPK) pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2 agonists.
Collapse
|
127
|
Xiong J, Zeng P, Cheng X, Miao S, Wu L, Zhou S, Wu P, Ye D. Lipoxin A4 blocks embryo implantation by controlling estrogen receptor α activity. Reproduction 2013; 145:411-20. [DOI: 10.1530/rep-12-0469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Embryo implantation involves a complex regulatory network of steroid hormones, inflammatory cytokines, and immune cells. Lipoxin A4(LXA4), a biologically active eicosanoid with specific anti-inflammatory and pro-resolving properties, was recently found to be a novel modulator of estrogen receptor α (ERα). In this study, we investigated the potential role of LXA4in implantation. We found that LXA4blocked embryo implantation in mice and significantly reduced the expression of inflammatory mediators associated with uterine receptivity and embryo implantation, including corticotropin-releasing factor (CRF), cyclooxygenase 2-derived prostaglandin I2and prostaglandin E2, leukemia inhibitory factor, and interleukin 6, but this effect was independent of LXA4receptor. Subsequent investigation revealed enhanced ERα activity in the uteri of LXA4-treated mice during the peri-implantation period. ERα and phosphorylated ERα were significantly increased following LXA4treatment. Finally, it was demonstrated that the inhibitory effect of LXA4on embryo implantation was mediated through ERα. In the presence of the ERα antagonist ICI 182 780, LXA4failed to block embryo implantation. LXA4also failed to inhibit CRF expression. These results suggested that LXA4blocks embryo implantation by controlling ERα activity, and this effect appeared to be related to the suppression of the inflammatory microenvironment necessary for implantation.
Collapse
|
128
|
Serum Amyloid A as a Predictive Marker for Radiation Pneumonitis in Lung Cancer Patients. Int J Radiat Oncol Biol Phys 2013; 85:791-7. [DOI: 10.1016/j.ijrobp.2012.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 06/02/2012] [Accepted: 06/13/2012] [Indexed: 12/25/2022]
|
129
|
Li Y, Ye D. Molecular biology for formyl peptide receptors in human diseases. J Mol Med (Berl) 2013; 91:781-9. [PMID: 23404331 DOI: 10.1007/s00109-013-1005-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 02/07/2023]
Abstract
Leukocytes accumulate at sites of inflammation and immunological reaction in response to locally existing chemotactic mediators. The first chemotactic factors structurally defined were N-formyl peptides. Subsequently, numerous ligands were identified to activate formyl peptide receptors (FPRs) that belong to the seven-transmembrane G protein-coupled receptor superfamily. FPRs interact with this menagerie of structurally diverse pro- and anti-inflammatory ligands to possess important regulatory effects in multiple diseases, including inflammation, amyloidosis, Alzheimer's disease, prion disease, acquired immunodeficiency syndrome, obesity, diabetes, and cancer. How these receptors recognize diverse ligands and how they contribute to disease pathogenesis and host defense are basic questions currently under investigation that would open up new avenues for the future management of inflammation-related diseases.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| | | |
Collapse
|
130
|
Liu Y, Chen K, Wang C, Gong W, Yoshimura T, Liu M, Wang JM. Cell surface receptor FPR2 promotes antitumor host defense by limiting M2 polarization of macrophages. Cancer Res 2013; 73:550-60. [PMID: 23139214 PMCID: PMC3549056 DOI: 10.1158/0008-5472.can-12-2290] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
FPR2 (Fpr2 in mouse) is a G-protein-coupled receptor interacting with bacterial and host-derived chemotactic agonists. Fpr2 supports innate and adaptive immune responses as illustrated by the reduction in severity of allergic airway inflammation in Fpr2-KO mice, due to impaired trafficking of antigen-presenting dendritic cells (DC). The aim of this study is to examine the role of Fpr2 in host antitumor responses. We found that Fpr2-KO mice bearing subcutaneously implanted Lewis lung carcinoma (LLC) cells exhibited significantly shortened survival than normal mice due to more rapidly growing tumors. In contrast, in Fpr2-transgenic mice overexpressing Fpr2, subcutaneously implanted LLC tumors grew more slowly than those in wild-type (WT) littermates. Investigation of tumor tissues revealed an increased number of macrophages associated with tumors grown in Fpr2-KO mice. Macrophages derived from Fpr2-KO mice showed a more potent chemotactic response to LLC-derived supernatant (LLC Sup), which could be neutralized by an anti-CCL2 antibody. The increased chemotaxis of Fpr2-KO mouse macrophages in response to LLC Sup was due to their higher level expression of CCR4, a chemokine receptor that also recognizes the ligand CCL2. Furthermore, macrophages from Fpr2-KO mice acquired an M2 phenotype after stimulation with LLC Sup. These results suggest that Fpr2 plays an important role in host defense against implanted LLC by sustaining macrophages in an M1 phenotype with more potent antitumor activities.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
| | - Chunyan Wang
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
- Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, 221004, China
| | - Wanghua Gong
- Basic Research Program, SAIC-Frederick, Frederick, Maryland, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
| | - Mingyong Liu
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
- Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P. R. China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center of Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Maryland, 21702, USA
| |
Collapse
|
131
|
Wang JY, Zheng YZ, Yang J, Lin YH, Dai SQ, Zhang G, Liu WL. Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma. BMC Cancer 2012; 12:365. [PMID: 22917173 PMCID: PMC3492207 DOI: 10.1186/1471-2407-12-365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increase of Serum amyloid A (SAA) level has been observed in patients with a variety of cancers. The objective of this study was to determined whether SAA level could be used as a prognostic parameter in patients with esophageal squamous cell carcinoma (ESCC). METHODS SAA levels were measured by rate nephelometry immunoassay in 167 healthy controls and 167 ESCC patients prior to surgical resection. Statistical associations between clinicopathological observations and SAA levels were determined using the Mann-Whitney U test. The clinical value of SAA level as a prognostic parameter was evaluated using the Cox's proportional hazards model. RESULTS SAA levels were significantly higher in patients with ESCC compared to levels in healthy controls (13.88 ± 15.19 mg/L vs. 2.26 ± 1.66 mg/L, P < 0.001). Elevation of SAA levels (≥ 8.0 mg/L) was observed in 54.5% (91/167) of patients with ESCC but not in healthy controls. SAA levels were associated with tumor size (P < 0.001), histological differentiation (P = 0.015), T classification (P < 0.001), clinical stage (P < 0.001), lymph node metastasis (P < 0.001) and distant metastasis (P < 0.001), but not with the age and gender of the patients or tumor location. Multivariate analysis revealed that patients with an elevated level of SAA (≥ 8.0 mg/L) had significantly lower 5-year survival rate than those with non-elevated SAA (< 8.0 mg/L, log-rank P < 0.0001). CONCLUSIONS An elevated level of preoperative SAA was found to associate with tumor progression and poor survival in patients with ESCC.
Collapse
Affiliation(s)
- Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
132
|
Woloszynek JC, Hu Y, Pham CTN. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions. J Biol Chem 2012; 287:34101-9. [PMID: 22879591 DOI: 10.1074/jbc.m112.394452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway.
Collapse
Affiliation(s)
- Josh C Woloszynek
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
133
|
Jensen AL, Collins J, Shipman EP, Wira CR, Guyre PM, Pioli PA. A subset of human uterine endometrial macrophages is alternatively activated. Am J Reprod Immunol 2012; 68:374-86. [PMID: 22882270 DOI: 10.1111/j.1600-0897.2012.01181.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/02/2012] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Human uterine macrophages must maintain an environment hospitable to implantation and pregnancy and simultaneously provide protection against pathogens. Although macrophages comprise a significant portion of leukocytes within the uterine endometrium, the activation profile and functional response of these cells to endotoxin are unknown. METHOD OF STUDY Flow cytometric analysis of surface receptors and intracellular markers expressed by macrophages isolated from human endometria was performed. Uterine macrophages were stimulated with LPS. Cytokines, chemokines, and growth factors expressed by these cells were analyzed using Bio-Plex analysis. RESULTS CD163(high) human endometrial macrophages constitutively secrete both pro- and anti-inflammatory cytokines as well as pro-angiogenic factors and secretion of these factors is LPS-inducible. CONCLUSION A major population of human uterine macrophages is alternatively activated. These cells secrete factors in response to LPS that are involved in the activation of immune responses and tissue homeostasis.
Collapse
Affiliation(s)
- Amy L Jensen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
134
|
Bena S, Brancaleone V, Wang JM, Perretti M, Flower RJ. Annexin A1 interaction with the FPR2/ALX receptor: identification of distinct domains and downstream associated signaling. J Biol Chem 2012; 287:24690-7. [PMID: 22610094 PMCID: PMC3397896 DOI: 10.1074/jbc.m112.377101] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how proresolving agonists selectively activate FPR2/ALX is a crucial step in the clarification of proresolution molecular networks that can be harnessed for the design of novel therapeutics for inflammatory disease. FPR2/ALX, a G protein-coupled receptor belonging to the formyl peptide receptor (FPR) family, conveys the biological functions of a variety of ligands, including the proresolution mediators annexin A1 (AnxA1) and lipoxin A4, as well as the activating and proinflammatory protein serum amyloid A. FPR2/ALX is the focus of intense screening for novel anti-inflammatory therapeutics, and the small molecule compound 43 was identified as a receptor ligand. Here, we used chimeric FPR1 and FPR2/ALX clones (stably transfected in HEK293 cells) to identify the N-terminal region and extracellular loop II as the FPR2/ALX domain required for AnxA1-mediated signaling. Genomic responses were also assessed with domain-specific effects emerging, so the N-terminal region is required for AnxA1 induction of JAG1 and JAM3, whereas it is dispensable for modulation of SGPP2. By comparison, serum amyloid A non-genomic responses were reliant on extracellular loops I and II, whereas the small molecule compound 43 activated extracellular loop I with downstream signaling dependent on transmembrane region II. In desensitization experiments, the N-terminal region was dispensable for AnxA1-induced FPR2/ALX down-regulation in both the homologous and heterologous desensitization modes.
Collapse
Affiliation(s)
- Stefania Bena
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
135
|
Zhang G, Sun X, Lv H, Yang X, Kang X. Serum amyloid A: A new potential serum marker correlated with the stage of breast cancer. Oncol Lett 2012; 3:940-944. [PMID: 22741023 DOI: 10.3892/ol.2012.584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/20/2012] [Indexed: 01/10/2023] Open
Abstract
Previous studies reported that serum amyloid A (SAA) is elevated in patients with tumors, including breast cancer, compared to healthy controls. In addition, the levels of SAA increase gradually with tumor progression. In this study, we investigated the blood SAA level of breast cancer patients, and evaluated its potential as a serum biomarker for the early diagnosis of breast cancer and as a staging estimate. SAA protein was determined by enzyme-linked immunosorbent assay in serum samples from 30 healthy women, 21 women with benign diseases and 118 breast cancer patients who were subdivided into 4 groups based on their clinical characteristics. SAA levels were not statistically different in stage I breast cancer patients compared with the healthy controls and benign breast disease patients. SAA concentrations had medians of 0.63 µg/ml in normal healthy women, 0.76 µg/ml in patients with benign disease (p>0.05) and 0.82 µg/ml in stage I breast cancer patients (p>0.05). By contrast, SAA values in stage Ⅱ, Ⅲ and Ⅳ patients had a significantly higher median compared to those of the healthy, benign breast diseases and stage I groups (p<0.05). Breast cancer patients with lymph node (LN) metastasis or distant metastasis were found to have significantly higher SAA concentrations than those without metastases. SAA is not a suitable marker for early breast cancer diagnosis, but its level is correlated with the stage of breast cancer. Thus, it may be a good candidate marker for the staging and prognosis of breast cancer.
Collapse
Affiliation(s)
- Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, P.R. China
| | | | | | | | | |
Collapse
|
136
|
Waechter V, Schmid M, Herova M, Weber A, Günther V, Marti-Jaun J, Wüst S, Rösinger M, Gemperle C, Hersberger M. Characterization of the Promoter and the Transcriptional Regulation of the Lipoxin A4 Receptor (FPR2/ALX) Gene in Human Monocytes and Macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:1856-67. [DOI: 10.4049/jimmunol.1101788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
137
|
Subramanian H, Gupta K, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem 2011; 286:44739-49. [PMID: 22069323 PMCID: PMC3247983 DOI: 10.1074/jbc.m111.277152] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/29/2011] [Indexed: 01/14/2023] Open
Abstract
Human LL-37 is a multifunctional antimicrobial peptide that promotes inflammation, angiogenesis, wound healing, and tumor metastasis. Most effects of LL-37 are mediated via the activation of the cell surface G protein-coupled receptor FPR2 on leukocytes and endothelial cells. Although LL-37 induces chemotaxis, degranulation, and chemokine production in mast cells, the receptor involved and the mechanism of its regulation remain unknown. MrgX2 is a member of Mas-related genes that is primarily expressed in human dorsal root ganglia and mast cells. We found that a human mast cell line LAD2 and CD34(+) cell-derived primary mast cells, which natively express MrgX2, responded to LL-37 for sustained Ca(2+) mobilization and substantial degranulation. However, an immature human mast cell line, HMC-1, that lacks functional MrgX2 did not respond to LL-37. shRNA-mediated knockdown of MrgX2 in LAD2 mast cell line and primary CD34(+) cell-derived mast cells caused a substantial reduction in LL-37-induced degranulation. Furthermore, mast cell lines stably expressing MrgX2 responded to LL-37 for chemotaxis, degranulation, and CCL4 production. Surprisingly, MrgX2 was resistant to LL-37-induced phosphorylation, desensitization, and internalization. In addition, shRNA-mediated knockdown of the G protein-coupled receptor kinases (GRK2 and GRK3) had no effect on LL-37-induced mast cell degranulation. This study identified MrgX2 as a novel G protein-coupled receptor for the antibacterial peptide LL-37 and demonstrated that unlike most G protein-coupled receptors it is resistant to agonist-induced receptor phosphorylation, desensitization, and internalization.
Collapse
Affiliation(s)
- Hariharan Subramanian
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kshitij Gupta
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Qiang Guo
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ryan Price
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hydar Ali
- From the Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|