101
|
Mathiot L, Nigen B, Goronflot T, Hiret S, Doucet L, Pons-Tostivint E, Bennouna J, Denis MG, Herbreteau G, Raimbourg J. Prognostic Impact of TP53 Mutations in Metastatic Nonsquamous Non-small-cell Lung Cancer. Clin Lung Cancer 2024; 25:244-253.e2. [PMID: 38218680 DOI: 10.1016/j.cllc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND The prognostic impact of TP53 mutations in advanced or metastatic nonsquamous non-small-cell lung cancer (nsNSCLC) patients treated with chemotherapy and/or immune checkpoint inhibitors (ICI) remains unclear. MATERIALS AND METHODS We retrospectively collected data from patients with nsNSCLC treated in the first line from January 2018 to May 2021. The patient was separated into 2 groups according to their TP53 mutation status (wt vs. mut). Survival was estimated through the Kaplan-Meier method and compared by log-rank test. RESULTS Of 220 patients included, 126 were in the mutTP53 group, and 94 were in the wtTP53wt group. Median OS (mOS) was not significantly different between the mutTP53 and wtTP53 groups [17.5 months (95% confidence interval (CI), 11.3-21.5) vs. 9.5 months (95% CI, 7.4-14.2), (P = .051)]. In subgroup analyses, the mutTP53 group treated with ICI had a significantly improved mOS compared to the wtTP53 group [(24.7 months (95% CI, 20.8-not reach) vs. 12.0 months (95% CI, 4.7-not reach), (P = .017)] and mPFS [(9.6 months (95% CI, 5.8-not reach) vs. 3.2 months (95% CI, 1.3-13.8) (P = .048)]. There was no difference in terms of mOS and mPFS between the mutTP53 and the wtTP53 group treated by chemotherapy alone or combined with ICI. CONCLUSION TP53 mutation had no survival impact in the overall population, but is associated with better outcomes with ICI alone. These results suggest that patients with TP53 mutations could be treated with ICI alone, and wild-type patients could benefit from the addition of chemotherapy.
Collapse
Affiliation(s)
- Laurent Mathiot
- CHU Nantes, Medical Oncology, Nantes Université, Nantes, France
| | - Benoit Nigen
- CHU Nantes, Medical Oncology, Nantes Université, Nantes, France
| | - Thomas Goronflot
- Nantes Université, CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, Nantes, France
| | - Sandrine Hiret
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Ludovic Doucet
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | | | - Jaafar Bennouna
- Department of Medical Oncology, Hôpital Foch, Suresnes, France
| | - Marc G Denis
- Nantes Université, CHU Nantes, Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| | - Guillaume Herbreteau
- Nantes Université, CHU Nantes, Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, Nantes, France
| | - Judith Raimbourg
- Department of Medical Oncology, Comprehensive Cancer Center, Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Inserm UMR 1307, Nantes, France.
| |
Collapse
|
102
|
Vial Y, Nardelli J, Bonnard AA, Rousselot J, Souyri M, Gressens P, Cavé H, Drunat S. Mcph1, mutated in primary microcephaly, is also crucial for erythropoiesis. EMBO Rep 2024; 25:2418-2440. [PMID: 38605277 PMCID: PMC11094029 DOI: 10.1038/s44319-024-00123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.
Collapse
Affiliation(s)
- Yoann Vial
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | | | - Adeline A Bonnard
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Justine Rousselot
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Michèle Souyri
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Hélène Cavé
- Université Paris Cité, Institut de Recherche Saint-Louis, Inserm UMR_S1131, F-75010, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France
| | - Séverine Drunat
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Laboratoire de Génétique Moléculaire, F-75019, Paris, France.
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France.
| |
Collapse
|
103
|
Liao QQ, Shu X, Sun W, Mandapaka H, Xie F, Zhang Z, Dai T, Wang S, Zhao J, Jiang H, Zhang L, Lin J, Li SW, Coin I, Yang F, Peng J, Li K, Wu H, Zhou F, Yang B. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308383. [PMID: 38073323 DOI: 10.1002/smll.202308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Indexed: 05/18/2024]
Abstract
Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hyma Mandapaka
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Feng Xie
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengkui Zhang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Dai
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shuai Wang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc, Nanjing, Jiangsu, 210033, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Fangfang Zhou
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
104
|
Mandal K, Tomar SK, Kumar Santra M. Decoding the ubiquitin language: Orchestrating transcription initiation and gene expression through chromatin remodelers and histones. Gene 2024; 904:148218. [PMID: 38307220 DOI: 10.1016/j.gene.2024.148218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Eukaryotic transcription is a finely orchestrated process and it is controlled by transcription factors as well as epigenetic regulators. Transcription factors and epigenetic regulators undergo different types of posttranslational modifications including ubiquitination to control transcription process. Ubiquitination, traditionally associated with protein degradation, has emerged as a crucial contributor to the regulation of chromatin structure through ubiquitination of histone and chromatin remodelers. Ubiquitination introduces new layers of intricacy to the regulation of transcription initiation through controlling the equilibrium between euchromatin and heterochromatin states. Nucleosome, the fundamental units of chromatin, spacing in euchromatin and heterochromatin states are regulated by histone modification and chromatin remodeling complexes. Chromatin remodeling complexes actively sculpt the chromatin architecture and thereby influence the transcriptional states of genes. Therefore, understanding the dynamic behavior of nucleosome spacing is critical as it impacts various cellular functions through controlling gene expression profiles. In this comprehensive review, we discussed the intricate interplay between ubiquitination and transcription initiation, and illuminated the underlying molecular mechanisms that occur in a variety of biological contexts. This exploration sheds light on the complex regulatory networks that govern eukaryotic transcription, providing important insights into the fine orchestration of gene expression and chromatin dynamics.
Collapse
Affiliation(s)
- Kartik Mandal
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shiva Kumar Tomar
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
105
|
Abad E, Sandoz J, Romero G, Zadra I, Urgel-Solas J, Borredat P, Kourtis S, Ortet L, Martínez CM, Weghorn D, Sdelci S, Janic A. The TP53-activated E3 ligase RNF144B is a tumour suppressor that prevents genomic instability. J Exp Clin Cancer Res 2024; 43:127. [PMID: 38685100 PMCID: PMC11057071 DOI: 10.1186/s13046-024-03045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eμ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.
Collapse
Affiliation(s)
- Etna Abad
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Jérémy Sandoz
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Gerard Romero
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Ivan Zadra
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Julia Urgel-Solas
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Pablo Borredat
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Carlos M Martínez
- Pathology Platform, Instituto Murciano de Investigación Biosanitaria (IMIB-Pascual Parrilla), Murcia, 30120, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Ana Janic
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain.
| |
Collapse
|
106
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
107
|
Parwanto E, Tjahyadi D, Sisca S, Amalia H, Hairunisa N, Edy HJ, Oladimeji AV, Djebli N. Low Doses of Kretek Cigarette Smoke Altered Rat Lung Histometric, and Overexpression of the p53 Gene. Open Respir Med J 2024; 18:e18743064285619. [PMID: 39130649 PMCID: PMC11311747 DOI: 10.2174/0118743064285619240327055359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
Background The components of kretek cigarettes include tobacco as the main part, clove, and sauce. Filtered kretek cigarettes are kretek cigarettes that have one end filtered. Cigarette smoke contributes to the disruption of the respiratory system, so it is necessary to know the effect of low doses of cigarette smoke on changes in the histometric of the respiratory system, and whether it affects p53 gene expression. This study aims to determine changes in the histometric of the respiratory system and p53 gene expression. Methods In this study, we used Sprague-Dawley rats. Group I of rats breathing normal air, were not exposed to filtered kretek cigarette smoke (as a control). Group II of rats, as a treatment group, were exposed to filtered kretek cigarette smoke 1 stick/day for 3 months. The results of lung histometry measurements and p53 gene expression between groups were analyzed using the Independent Sample T-test. The difference between groups is significant if the test results show P < 0.05. Results Bronchioles length, width, area, and perimeter in group I were 40.55±1.57 μm, 14.82±0.41 μm, 494.61±5.62 μm2, and 233.87±4.51 μm, respectively. Bronchioles length, width, area, and perimeter in group II were 30.76±0.78 μm, 9.28±0.40 μm, 297.32±2.53 μm2, and 177.84±5.15 μm, respectively. The area and perimeter of respiratory bronchioles in group I were 17.68±0.49 μm2, and 26.60±0.52 μm respectively, while those in group II were 19.28±0.35 μm2, and 29.28±0.35 μm, respectively. Mucus was found in the bronchioles and respiratory bronchioles in group II, however, there was no visible mucus observed in group I. In addition, it was also concluded that exposure to low doses of filtered kretek cigarette smoke, 1 cigarette/day for 3 months, increased the expression of the p53 gene in the lungs of rats. Conclusion The size of bronchioles in rats decreased after being exposed to filtered kretek cigarette smoke 1 stick/day for 3 months, while the size of respiratory bronchioles increased. In addition, exposure to filtered kretek cigarette smoke increased the expression of the p53 gene in the rat lungs.
Collapse
Affiliation(s)
- Edy Parwanto
- Department of Biology, Faculty of Medicine, Universitas Trisakti, Jl. Kyai Tapa, Kampus B, No.260 Grogol 11440, Jakarta, Indonesia
| | - David Tjahyadi
- Department of Histology, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Sisca Sisca
- Department of Biology, Faculty of Medicine, Universitas Trisakti, Jl. Kyai Tapa, Kampus B, No.260 Grogol 11440, Jakarta, Indonesia
| | - Husnun Amalia
- Department of Ophthalmology, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Nany Hairunisa
- Department of Occupational Medicine, Faculty of Medicine,Universitas Trisakti, Jakarta, Indonesia
| | - Hosea Jaya Edy
- Study Program of Pharmacy, Faculty of Math, and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
| | | | - Noureddine Djebli
- Department of Biologie, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| |
Collapse
|
108
|
Kaller M, Forné I, Imhof A, Hermeking H. LINC01021 Attenuates Expression and Affects Alternative Splicing of a Subset of p53-Regulated Genes. Cancers (Basel) 2024; 16:1639. [PMID: 38730591 PMCID: PMC11083319 DOI: 10.3390/cancers16091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Loss of the p53-inducible LINC01021 in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyze how LINC01021 affects the p53-induced transcriptional program. METHODS Using a CRISPR/Cas9-approach, we deleted the p53 binding site in the LINC01021 promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after the activation of ectopic p53. RNA affinity purification followed by mass spectrometry was used to identify proteins associated with LINC01021. RESULTS Loss of the p53-inducibility of LINC01021 resulted in an ~1.8-fold increase in the number of significantly regulated mRNAs compared to LINC01021 wild-type cells after ectopic activation of p53. A subset of direct p53 target genes, such as NOXA and FAS, displayed significantly stronger induction when the p53-inducibility of LINC01021 was abrogated. Loss of the p53-inducibility of LINC01021 resulted in alternative splicing of a small number of mRNAs, such as ARHGAP12, HSF2, and LYN. Several RNA binding proteins involved in pre-mRNA splicing were identified as interaction partners of LINC01021 by mass spectrometry. CONCLUSIONS Our results suggest that LINC01021 may restrict the extent and strength of p53-mediated transcriptional changes via context-dependent regulation of the expression and splicing of a subset of p53-regulated genes.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | - Ignasi Forné
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
109
|
Jose E, March-Steinman W, Wilson BA, Shanks L, Parkinson C, Alvarado-Cruz I, Sweasy JB, Paek AL. Temporal coordination of the transcription factor response to H 2O 2 stress. Nat Commun 2024; 15:3440. [PMID: 38653977 PMCID: PMC11039679 DOI: 10.1038/s41467-024-47837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.
Collapse
Affiliation(s)
- Elizabeth Jose
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Bryce A Wilson
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Lisa Shanks
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Chance Parkinson
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Isabel Alvarado-Cruz
- Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Joann B Sweasy
- Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
- Fred and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew L Paek
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA.
| |
Collapse
|
110
|
Boruah N, Hoyos D, Moses R, Hausler R, Desai H, Le AN, Good M, Kelly G, Raghavakaimal A, Tayeb M, Narasimhamurthy M, Doucette A, Gabriel P, Feldman MJ, Park J, de Rodas ML, Schalper KA, Goldfarb SB, Nayak A, Levine AJ, Greenbaum BD, Maxwell KN. Distinct genomic and immunologic tumor evolution in germline TP53-driven breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.588009. [PMID: 38617260 PMCID: PMC11014613 DOI: 10.1101/2024.04.03.588009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Pathogenic germline TP53 alterations cause Li-Fraumeni Syndrome (LFS), and breast cancer is the most common cancer in LFS females. We performed first of its kind multimodal analysis of LFS breast cancer (LFS-BC) compared to sporadic premenopausal BC. Nearly all LFS-BC underwent biallelic loss of TP53 with no recurrent oncogenic variants except ERBB2 (HER2) amplification. Compared to sporadic BC, in situ and invasive LFS-BC exhibited a high burden of short amplified aneuploid segments (SAAS). Pro-apoptotic p53 target genes BAX and TP53I3 failed to be up-regulated in LFS-BC as was seen in sporadic BC compared to normal breast tissue. LFS-BC had lower CD8+ T-cell infiltration compared to sporadic BC yet higher levels of proliferating cytotoxic T-cells. Within LFS-BC, progression from in situ to invasive BC was marked by an increase in chromosomal instability with a decrease in proliferating cytotoxic T-cells. Our study uncovers critical events in mutant p53-driven tumorigenesis in breast tissue.
Collapse
Affiliation(s)
- Nabamita Boruah
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renyta Moses
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh N Le
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Madeline Good
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory Kelly
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ashvathi Raghavakaimal
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maliha Tayeb
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mohana Narasimhamurthy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J. Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Jinae Park
- Departments of Medicine and Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Shari B. Goldfarb
- Departments of Medicine and Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | | | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Medical Center, New York, NY:
| | - Kara N. Maxwell
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| |
Collapse
|
111
|
Pizzolato G, Moparthi L, Pagella P, Cantù C, D'Arcy P, Koch S. The tumor suppressor p53 is a negative regulator of the carcinoma-associated transcription factor FOXQ1. J Biol Chem 2024; 300:107126. [PMID: 38432629 PMCID: PMC10981115 DOI: 10.1016/j.jbc.2024.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
The forkhead box family transcription factor FOXQ1 is highly induced in several types of carcinomas, where it promotes epithelial-to-mesenchymal transition and tumor metastasis. The molecular mechanisms that lead to FOXQ1 deregulation in cancer are incompletely understood. Here, we used CRISPR-Cas9-based genomic locus proteomics and promoter reporter constructs to discover transcriptional regulators of FOXQ1 and identified the tumor suppressor p53 as a negative regulator of FOXQ1 expression. Chromatin immunoprecipitation followed by quantitative PCR as well as complementary gain and loss-of-function assays in model cell lines indicated that p53 binds close to the transcription start site of the FOXQ1 promoter, and that it suppresses FOXQ1 expression in various cell types. Consistently, pharmacological activation of p53 using nutlin-3 or doxorubicin reduced FOXQ1 mRNA and protein levels in cancer cell lines harboring wildtype p53. Finally, we observed that p53 mutations are associated with increased FOXQ1 expression in human cancers. Altogether, these results suggest that loss of p53 function-a hallmark feature of many types of cancer-derepresses FOXQ1, which in turn promotes tumor progression.
Collapse
Affiliation(s)
- Giulia Pizzolato
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
| | - Lavanya Moparthi
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
| |
Collapse
|
112
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
113
|
Serra F, Nieto-Aliseda A, Fanlo-Escudero L, Rovirosa L, Cabrera-Pasadas M, Lazarenkov A, Urmeneta B, Alcalde-Merino A, Nola EM, Okorokov AL, Fraser P, Graupera M, Castillo SD, Sardina JL, Valencia A, Javierre BM. p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response. Nat Commun 2024; 15:2821. [PMID: 38561401 PMCID: PMC10984980 DOI: 10.1038/s41467-024-46666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.
Collapse
Affiliation(s)
- François Serra
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | | | | | - Mónica Cabrera-Pasadas
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Blanca Urmeneta
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Emanuele M Nola
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mariona Graupera
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Barcelona, Spain.
| |
Collapse
|
114
|
Durand R, Descamps G, Bellanger C, Dousset C, Maïga S, Alberge JB, Derrien J, Cruard J, Minvielle S, Lilli NL, Godon C, Le Bris Y, Tessoulin B, Amiot M, Gomez-Bougie P, Touzeau C, Moreau P, Chiron D, Moreau-Aubry A, Pellat-Deceunynck C. A p53 score derived from TP53 CRISPR/Cas9 HMCLs predicts survival and reveals a major role of BAX in the response to BH3 mimetics. Blood 2024; 143:1242-1258. [PMID: 38096363 DOI: 10.1182/blood.2023021581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.
Collapse
Affiliation(s)
- Romane Durand
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Géraldine Descamps
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Céline Bellanger
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Christelle Dousset
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Sophie Maïga
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Jean-Baptiste Alberge
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jennifer Derrien
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jonathan Cruard
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Stéphane Minvielle
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | | | | | - Yannick Le Bris
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Benoit Tessoulin
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Martine Amiot
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Patricia Gomez-Bougie
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Cyrille Touzeau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Philippe Moreau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - David Chiron
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Agnès Moreau-Aubry
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Catherine Pellat-Deceunynck
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| |
Collapse
|
115
|
Ku J, Lee K, Ku D, Kim S, Lee J, Bang H, Kim N, Do H, Lee H, Lim C, Han J, Lee YS, Kim Y. Alternative polyadenylation determines the functional landscape of inverted Alu repeats. Mol Cell 2024; 84:1062-1077.e9. [PMID: 38309276 DOI: 10.1016/j.molcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.
Collapse
Affiliation(s)
- Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongbin Lee
- Research Center for Cellular Identity, KAIST, Daejeon 34141, Korea
| | - Hyunwoo Bang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Namwook Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Hyeonjung Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Chunghun Lim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea; BioMedical Research Center, KAIST, Daejeon 34141, Korea
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
116
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
117
|
Peng M, Ye F, Fan C, Dong J, Chai W, Deng W, Zhang H, Yang L. Endogenous S100P-mediated autophagy regulates the chemosensitivity of leukemia cells through the p53/AMPK/mTOR pathway. Am J Cancer Res 2024; 14:1121-1138. [PMID: 38590396 PMCID: PMC10998763 DOI: 10.62347/nwxe8730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Autophagy, a highly regulated lysosome-dependent catabolic pathway, has garnered increasing attention because of its role in leukemia resistance. Among the S100 family of small calcium-binding proteins, S100P is differentially expressed in various tumor cell lines, thereby influencing tumor occurrence, invasion, metastasis, and drug resistance. However, the relationship between S100P and autophagy in determining chemosensitivity in leukemia cells remains unexplored. Our investigation revealed a negative correlation between S100P expression and the clinical status in childhood leukemia, with its presence observed in HL-60 and Jurkat cell lines. Suppression of S100P expression resulted in increased cell proliferation and decreased chemosensitivity in leukemia cells, whereas enhancement of S100P expression inhibited cell proliferation and increased chemosensitivity. Additionally, S100P knockdown drastically promoted autophagy, which was subsequently suppressed by S100P upregulation. Moreover, the p53/AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was found to be functionally associated with S100P-mediated autophagy. Knockdown of S100P expression led to a decrease in p53 and p-mTOR levels and an increase in p-AMPK expression, ultimately promoting autophagy. This effect was reversed by administration of Tenovin-6 (a p53 activator) and Compound C (an AMPK inhibitor). The findings of our in vivo experiments provide additional evidence supporting the aforementioned data. Specifically, S100P inhibition significantly enhanced the growth of HL-60 tumor xenografts and increased the expression of microtubule-associated protein 1 light chain 3 and p-AMPK in nude mice. Consequently, it can be concluded that S100P plays a regulatory role in the chemosensitivity of leukemia cells by modulating the p53/AMPK/mTOR pathway, which controls autophagy in leukemia cells.
Collapse
Affiliation(s)
- Min Peng
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Chenying Fan
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Jiajia Dong
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Hui Zhang
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| |
Collapse
|
118
|
Xiao S, Shi F, Song H, Cui J, Zheng D, Zhang H, Tan K, Wu J, Chen X, Wu J, Tang Y, Dai Y, Lu M. Characterization of the generic mutant p53-rescue compounds in a broad range of assays. Cancer Cell 2024; 42:325-327. [PMID: 38402608 DOI: 10.1016/j.ccell.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Dozens of compounds that rescue tumor-associated mutant p53 have been reported. Xiao et al. perform 10 assays to evaluate effectiveness of the mutant p53-rescue compounds side-by-side but do not detect reliable rescue in any assay for the evaluated compounds, except for ATO and its analog PAT.
Collapse
Affiliation(s)
- Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Cui
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hesong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqin Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
119
|
Wang YJ, Cao JB, Yang J, Liu T, Yu HL, He ZX, Bao SL, He XX, Zhu XJ. PRMT5-mediated homologous recombination repair is essential to maintain genomic integrity of neural progenitor cells. Cell Mol Life Sci 2024; 81:123. [PMID: 38459149 PMCID: PMC10923982 DOI: 10.1007/s00018-024-05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jian-Bo Cao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Tong Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Shi-Lai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
120
|
Roselle C, Horikawa I, Chen L, Kelly AR, Gonzales D, Da T, Wellhausen N, Rommel PC, Baker D, Suhoski M, Scholler J, O'Connor RS, Young RM, Harris CC, June CH. Enhancing chimeric antigen receptor T cell therapy by modulating the p53 signaling network with Δ133p53α. Proc Natl Acad Sci U S A 2024; 121:e2317735121. [PMID: 38408246 DOI: 10.1073/pnas.2317735121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Antigens, CD19
- Cell- and Tissue-Based Therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Christopher Roselle
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Donna Gonzales
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan Suhoski
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
121
|
Huang Y, Flentke GR, Rivera OC, Saini N, Mooney SM, Smith SM. Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain. Cells 2024; 13:440. [PMID: 38474404 PMCID: PMC10931382 DOI: 10.3390/cells13050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5-E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol's actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - George R. Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Olivia C. Rivera
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
122
|
Köberle B, Usanova S, Piee-Staffa A, Heinicke U, Clauss P, Brozovic A, Kaina B. Strong apoptotic response of testis tumor cells following cisplatin treatment. Int Urol Nephrol 2024; 56:1007-1017. [PMID: 37891379 PMCID: PMC10853295 DOI: 10.1007/s11255-023-03825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Most solid metastatic cancers are resistant to chemotherapy. However, metastatic testicular germ cell tumors (TGCT) are cured in over 80% of patients using cisplatin-based combination therapy. Published data suggest that TGCTs are sensitive to cisplatin due to limited DNA repair and presumably also to a propensity to undergo apoptosis. To further investigate this aspect, cisplatin-induced activation of apoptotic pathways was investigated in cisplatin-sensitive testis tumor cells (TTC) and compared to cisplatin-resistant bladder cancer cells. Apoptosis induction was investigated using flow cytometry, caspase activation and PARP-1 cleavage. Immunoblotting and RT-PCR were applied to investigate pro- and anti-apoptotic proteins. Transfections were performed to target p53- and Fas/FasL-mediated apoptotic signaling. Immunoblotting experiments revealed p53 to be induced in TTC, but not bladder cancer cells following cisplatin. Higher levels of pro-apoptotic Bax and Noxa were observed in TTC, anti-apoptotic Bcl-2 was solely expressed in bladder cancer cells. Cisplatin led to translocation of Bax to the mitochondrial membrane in TTC, resulting in cytochrome C release. Cisplatin increased the expression of FasR mRNA and FasL protein in all tumor cell lines. Targeting the apoptotic pathway via siRNA-mediated knockdown of p53 and FAS reduced death receptor-mediated apoptosis and increased cisplatin resistance in TTC, indicating the involvement of FAS-mediated apoptosis in the cisplatin TTC response. In conclusion, both the death receptor and the mitochondrial apoptotic pathway become strongly activated in TTC following cisplatin treatment, explaining, together with attenuated DNA repair, their unique sensitivity toward platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Beate Köberle
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany.
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Svetlana Usanova
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Andrea Piee-Staffa
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Ulrike Heinicke
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, 60596, Frankfurt Am Main, Germany
| | - Philipp Clauss
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Bernd Kaina
- Institute of Toxicology, University of Mainz Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
123
|
Grant B, Sundaram Buitrago PA, Mercado BC, Yajima M. Characterization of p53/p63/p73 and Myc expressions during embryogenesis of the sea urchin. Dev Dyn 2024; 253:333-350. [PMID: 37698352 DOI: 10.1002/dvdy.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.
Collapse
Affiliation(s)
- Blaine Grant
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Beatriz C Mercado
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
124
|
Shin JH, Kim HR, Roe JS. A pipeline to characterize p53 effectors by integrative cistrome and transcriptome analysis in a genetically-defined organoid model. Genes Dis 2024; 11:512-515. [PMID: 37692486 PMCID: PMC10491866 DOI: 10.1016/j.gendis.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
125
|
Price K, Yang WH, Cardoso L, Wang CM, Yang RH, Yang WH. Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2. Cancers (Basel) 2024; 16:1000. [PMID: 38473360 DOI: 10.3390/cancers16051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has been shown to interact with the cAMP response element (CRE) site present in many cis-elements of downstream target genes. JDP2 has also demonstrates important roles in cell-cycle regulation, cancer development and progression, inhibition of adipocyte differentiation, and the regulation of antibacterial immunity and bone homeostasis. JDP2 and ATF3 exhibit significant similarity in their C-terminal domains, sharing 60-65% identities. Previous studies have demonstrated that ATF3 is able to influence both the transcriptional activity and p53 stability via a p53-ATF3 interaction. While some studies have shown that JDP2 suppresses p53 transcriptional activity and in turn, p53 represses JDP2 promoter activity, the direct interaction between JDP2 and p53 and the regulatory role of JDP2 in p53 transactivation have not been explored. In the current study, we provide evidence, for the first time, that JDP2 interacts with p53 and regulates p53 transactivation. First, we demonstrated that JDP2 binds to p53 and the C-terminal domain of JDP2 is crucial for the interaction. Second, in p53-null H1299 cells, JDP2 shows a robust increase of p53 transactivation in the presence of p53 using p53 (14X)RE-Luc. Furthermore, JDP2 and ATF3 together additively enhance p53 transactivation in the presence of p53. While JDP2 can increase p53 transactivation in the presence of WT p53, JDP2 fails to enhance transactivation of hotspot mutant p53. Moreover, in CHX chase experiments, we showed that JDP2 slightly enhances p53 stability. Finally, our findings indicate that JDP2 has the ability to reverse MDM2-induced p53 repression, likely due to decreased levels of MDM2 by JDP2. In summary, our results provide evidence that JDP2 directly interacts with p53 and decreases MDM2 levels to enhance p53 transactivation, suggesting that JDP2 is a novel regulator of p53 and MDM2.
Collapse
Affiliation(s)
- Kasey Price
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - William H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Leticia Cardoso
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Chiung-Min Wang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Richard H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| |
Collapse
|
126
|
Kamikokura M, Tange S, Nakase H, Tokino T, Idogawa M. Long Noncoding RNA RP11-278A23.1, a Potential Modulator of p53 Tumor Suppression, Contributes to Colorectal Cancer Progression. Cancers (Basel) 2024; 16:882. [PMID: 38473243 DOI: 10.3390/cancers16050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, many studies revealed that long noncoding RNAs (lncRNAs) play important roles in cancers. To identify lncRNAs contributing to colorectal cancers, we screened lncRNAs through expression and survival analyses in datasets from The Cancer Genome Atlas (TCGA). The screen revealed that RP11-278A23.1 expression is significantly increased in colorectal cancer tissues compared with normal tissues and that high RP11-278A23.1 expression correlates with poor prognosis. The knockdown of RP11-278A23.1 inhibited the growth of and promoted apoptosis in colorectal cancer cells. Next, to comprehensively examine differentially expressed genes after RP11-278A23.1 knockdown, RNA sequencing was performed in HCT116 cells. The expression of p21, a p53 target gene, was significantly upregulated, and the expression of several p53 target proapoptotic genes was also altered. RP11-278A23.1 knockdown increased p53 expression at the translational level but not at the transcriptional level. Interestingly, RP11-278A23.1 knockdown also altered the expression of these proapoptotic genes in DLD1 cells with mutated p53 and in p53-knockout HCT116 cells. These results suggest that RP11-278A23.1 modifies the expression of these apoptosis-related genes in p53-dependent and p53-independent manners. In summary, lncRNA RP11-278A23.1 contributes to colorectal cancer progression by promoting cell growth and inhibiting apoptosis, suggesting that this lncRNA may be a useful therapeutic target.
Collapse
Affiliation(s)
- Masayo Kamikokura
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
127
|
Chen J, Laverty DJ, Talele S, Bale A, Carlson BL, Porath KA, Bakken KK, Burgenske DM, Decker PA, Vaubel RA, Eckel-Passow JE, Bhargava R, Lou Z, Hamerlik P, Harley B, Elmquist WF, Nagel ZD, Gupta SK, Sarkaria JN. Aberrant ATM signaling and homology-directed DNA repair as a vulnerability of p53-mutant GBM to AZD1390-mediated radiosensitization. Sci Transl Med 2024; 16:eadj5962. [PMID: 38354228 PMCID: PMC11064970 DOI: 10.1126/scitranslmed.adj5962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Ashwin Bale
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Katrina K. Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachael A. Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rohit Bhargava
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55905, USA
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shiv K. Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
128
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
129
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
130
|
Aslamkhan AG, Michna L, Podtelezhnikov A, Vlasakova K, Suemizu H, Ohnishi Y, Liu L, Lane P, Xu Q, Kuhls MC, Wang Z, Pacchione S, Erdos Z, Tracy RW, Koeplinger K, Muniappa N, Valentine J, Galijatovic-Idrizbegovic A, Glaab WE, Sistare FD, Lebron J. A mechanistic biomarker investigation of fialuridine hepatotoxicity using the chimeric TK-NOG Hu-liver mouse model and in vitro micropatterned hepatocyte cocultures. Toxicol Res (Camb) 2024; 13:tfad120. [PMID: 38223529 PMCID: PMC10784659 DOI: 10.1093/toxres/tfad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Fialuridine (FIAU) is a nucleoside-based drug that caused liver failure and deaths in a human clinical trial that were not predicted by nonclinical safety studies. A recent report concluded that a TK-NOG humanized liver (hu-liver) mouse model detected human-specific FIAU liver toxicity, and broader use of that model could improve drug safety testing. We further evaluated this model at similar dose levels to assess FIAU sensitivity and potential mechanistic biomarkers. Although we were unable to reproduce the marked acute liver toxicity with two separate studies (including one with a "sensitized" donor), we identified molecular biomarkers reflecting the early stages of FIAU mitochondrial toxicity, which were not seen with its stereoisomer (FIRU). Dose dependent FIAU-induced changes in hu-liver mice included more pronounced reductions in mitochondrial to nuclear DNA (mtDNA/nucDNA) ratios in human hepatocytes compared to mouse hepatocytes and kidneys of the same animals. FIAU treatment also triggered a p53 transcriptional response and opposing changes in transcripts of nuclear- and mitochondrial-encoded mitochondrial proteins. The time dependent accumulation of FIAU into mtDNA is consistent with the ≥9-week latency of liver toxicity observed for FIAU in the clinic. Similar changes were observed in an in vitro micro-patterned hepatocyte coculture system. In addition, FIAU-dependent mtDNA/nucDNA ratio and transcriptional alterations, especially reductions in mitochondrially encoded transcripts, were seen in livers of non-engrafted TK-NOG and CD-1 mice dosed for a shorter period. Conclusion: These mechanistic biomarker findings can be leveraged in an in vitro model and in a more routine preclinical model (CD-1 mice) to identify nucleosides with such a FIAU-like mitochondrial toxicity mechanistic liability potential. Further optimization of the TK-NOG hu-liver mouse model is necessary before broader adoption for drug safety testing.
Collapse
Affiliation(s)
- Amy G Aslamkhan
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Laura Michna
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Alexei Podtelezhnikov
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Katerina Vlasakova
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Hiroshi Suemizu
- Laboratory Animal Research, Central Institute for Experimental Animals, 210-0821 Kawasaki-ku, Kawasaki 3-25-12 Tonomachi, Japan
| | - Yasuyuki Ohnishi
- Laboratory Animal Research, Central Institute for Experimental Animals, 210-0821 Kawasaki-ku, Kawasaki 3-25-12 Tonomachi, Japan
| | - Liping Liu
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Pamela Lane
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Qiuwei Xu
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Matthew C Kuhls
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Zhibin Wang
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Stephen Pacchione
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Zoltan Erdos
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Rodger William Tracy
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | - Kenneth Koeplinger
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | - Nagaraja Muniappa
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - John Valentine
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, United States
| | | | - Warren E Glaab
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Frank D Sistare
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| | - Jose Lebron
- Nonclinical Drug Safety, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States
| |
Collapse
|
131
|
Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol 2024; 59:128-138. [PMID: 38661126 PMCID: PMC11209770 DOI: 10.1080/10409238.2024.2344465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.
Collapse
Affiliation(s)
- Alexandra Indeglia
- The Wistar Institute, Philadelphia PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | | |
Collapse
|
132
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
133
|
Forsberg M, Konopleva M. SOHO State of the Art Updates and Next Questions: Understanding and Overcoming Venetoclax Resistance in Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:1-14. [PMID: 38007372 DOI: 10.1016/j.clml.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
The discovery of Venetoclax (VEN) has transformed the therapeutic landscape of acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). However, the response is heterogeneous with 10% to 50% of newly diagnosed AML patients not responding to hypomethylating agent (HMA) and VEN. Furthermore, up to 40% of responding patients relapse shortly. This review discusses the mechanism of action of Venetoclax and the major mechanisms of inherent and acquired resistance to VEN. VEN is highly specific to BCL-2 binding, as such other antiapoptotic proteins in BCL-2 family induce resistance. These antiapoptotic proteins can also be upregulated via a number of compensatory cell signaling pathways including PI3K/AKT/mTOR, the MAPK/ERK pathway, and mutant FLT3-ITD. Mutations can occur in BCL-2 and BAX proteins, or they can be silenced by TP53 mutations and other epigenetic changes. Changes to mitochondrial structure and metabolism can induce resistance. Key metabolic regulators include OXPHOS and alternative amino acid metabolism. Finally microenvironmental factors can influence VEN responses. This paper evaluates subsets of AML by differentiation, histology, cytogenetics and molecular markers and their different responses to VEN; with spliceosome mutations, ASXL1, NPM1 and IDH1/2 being favorable while others such as FLT3, TP53 and BCL-2 mutations being less responsive. Currently intensive multiagent chemotherapy and Venetoclax combinations such as 7+3+VEN are favored in fit younger AML patients. However, with resistant patients' subsets targeted combination therapies are becoming an increasingly attractive option. We explore the incorporation of non-BCL-2 inhibitors, next-generation BCL-2 and multi-protein agents, other inhibitors most prominently FLT-3 inhibitors in addition to Venetoclax, and other novel approaches for resolving Venetoclax resistance.
Collapse
Affiliation(s)
- Mark Forsberg
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY
| | - Marina Konopleva
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY.
| |
Collapse
|
134
|
Khor AHP, Koguchi T, Liu H, Kakuta M, Matsubara D, Wen R, Sagiya Y, Imoto S, Nakagawa H, Matsuda K, Tanikawa C. Regulation of the innate immune response and gut microbiome by p53. Cancer Sci 2024; 115:184-196. [PMID: 38050344 PMCID: PMC10823282 DOI: 10.1111/cas.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 12/06/2023] Open
Abstract
p53 is a key tumor suppressor mutated in half of human cancers. In recent years, p53 was shown to regulate a wide variety of functions. From the transcriptome analysis of 24 tissues of irradiated mice, we identified 553 genes markedly induced by p53. Gene Ontology (GO) enrichment analysis found that the most associated biological process was innate immunity. 16S rRNA-seq analysis revealed that Akkermansia, which has anti-inflammatory properties and is involved in the regulation of intestinal barrier integrity, was decreased in p53-knockout (p53-/- ) mice after radiation. p53-/- mice were susceptible to radiation-induced GI toxicity and had a significantly shorter survival time than p53-wild-type (p53+/+ ) mice following radiation. However, administration of antibiotics resulted in a significant improvement in survival and protection against GI toxicity. Mbl2 and Lcn2, which have antimicrobial activity, were identified to be directly transactivated by p53 and secreted by liver into the circulatory system. We also found the expression of MBL2 and LCN2 was decreased in liver cancer tissues with p53 mutations compared with those without p53 mutations. These results indicate that p53 is involved in shaping the gut microbiome through its downstream targets related to the innate immune system, thus protecting the intestinal barrier.
Collapse
Affiliation(s)
- Amy Hui Ping Khor
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoMinato City, TokyoJapan
| | - Tomoyuki Koguchi
- Department of UrologyFukushima Medical University School of MedicineFukushimaJapan
| | - Hao Liu
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoMinato City, TokyoJapan
| | - Masanori Kakuta
- Department of Integrated Analytics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Daisuke Matsubara
- Department of Pathology, Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Ruimeng Wen
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoMinato City, TokyoJapan
| | - Yoji Sagiya
- Laboratory of Genome Technology, Human Genome Center, The Institute of Medical ScienceThe University of TokyoMinato City, TokyoJapan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical ScienceThe University of TokyoMinato City, TokyoJapan
| | - Hidewaki Nakagawa
- Laboratory for Cancer GenomicsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoMinato City, TokyoJapan
- Laboratory of Genome Technology, Human Genome Center, The Institute of Medical ScienceThe University of TokyoMinato City, TokyoJapan
| | - Chizu Tanikawa
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoMinato City, TokyoJapan
| |
Collapse
|
135
|
Shen J, Li M. Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Gene Analysis. Crit Rev Immunol 2024; 44:1-13. [PMID: 38618724 DOI: 10.1615/critrevimmunol.2024052391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gastric cancer (GC) is highly heterogeneous and influenced by aging-related factors. This study aimed to improve individualized prognostic assessment of GC by identifying aging-related genes and subtypes. Immune scores of GC samples from GEO and TCGA databases were calculated using ESTIMATE and scored as high immune (IS_high) and low immune (IS_low). ssGSEA was used to analyze immune cell infiltration. Univariate Cox regression was employed to identify prognosis-related genes. LASSO regression analysis was used to construct a prognostic model. GSVA enrichment analysis was applied to determine pathways. CCK-8, wound healing, and Transwell assays tested the proliferation, migration, and invasion of the GC cell line (AGS). Cell cycle and aging were examined using flow cytometry, β-galactosidase staining, and Western blotting. Two aging-related GC subtypes were identified. Subtype 2 was characterized as lower survival probability and higher risk, along with a more immune-responsive tumor microenvironment. Three genes (IGFBP5, BCL11B, and AKR1B1) screened from aging-related genes were used to establish a prognosis model. The AUC values of the model were greater than 0.669, exhibiting strong prognostic value. In vitro, IGFBP5 overexpression in AGS cells was found to decrease viability, migration, and invasion, alter the cell cycle, and increase aging biomarkers (SA-β-galactosidase, p53, and p21). This analysis uncovered the immune characteristics of two subtypes and aging-related prognosis genes in GC. The prognostic model established for three aging-related genes (IGFBP5, BCL11B, and AKR1B1) demonstrated good prognosis performance, providing a foundation for personalized treatment strategies aimed at GC.
Collapse
Affiliation(s)
- Jian Shen
- Beijing Chao-Yang Hospital, Capital Medical University
| | - Minzhe Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
136
|
Liang Y, An Q, Song H, Tang Y, Xiao S, Wu J, Yan N, Yu B, Cao X, Lu M. AcGlcAs: A Novel P53-Targeting Arsenical with Potent Cellular Uptake and Cancer Cell Selectivity. J Med Chem 2023; 66:16579-16596. [PMID: 38069817 DOI: 10.1021/acs.jmedchem.3c00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Arsenic trioxide (ATO) targets PML/RARα and leads to miraculous success in treating acute promyelocytic leukemia. Notably, ATO also targets p53, the most frequently mutated protein in cancers, through a similar binding mechanism. However, p53-targeting ATO trials are challenging due to the poor cellular uptake and cancer selectivity of ATO. Here, we analyzed the structure-activity relationship of arsenicals and rationally developed a novel arsenical (designated AcGlcAs) by conjugating arsenic to sulfur atoms and tetraacetyl-β-d-thioglucose. AcGlcAs exhibited remarkable cellular uptake through a thiol-mediated pathway (maximally 127-fold higher than ATO), thereby potently targeting PML/RARα and mutant p53. Among the 55 tested cell lines, AcGlcAs preferentially killed cancer lines rather than normal lines. In preclinical studies, AcGlcAs significantly extended the survival of mice bearing a xenograft tumor with p53 mutation while showing high plasma stability and oral bioavailability. Thus, AcGlcAs is a potential clinical candidate for precisely treating numerous p53-mutated cancers.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quanlin An
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
137
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
138
|
Perez AA, Goronzy IN, Blanco MR, Guo JK, Guttman M. ChIP-DIP: A multiplexed method for mapping hundreds of proteins to DNA uncovers diverse regulatory elements controlling gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571730. [PMID: 38187704 PMCID: PMC10769186 DOI: 10.1101/2023.12.14.571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gene expression is controlled by the dynamic localization of thousands of distinct regulatory proteins to precise regions of DNA. Understanding this cell-type specific process has been a goal of molecular biology for decades yet remains challenging because most current DNA-protein mapping methods study one protein at a time. To overcome this, we developed ChIP-DIP (ChIP Done In Parallel), a split-pool based method that enables simultaneous, genome-wide mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate that ChIP-DIP generates highly accurate maps for all classes of DNA-associated proteins, including histone modifications, chromatin regulators, transcription factors, and RNA Polymerases. Using these data, we explore quantitative combinations of protein localization on genomic DNA to define distinct classes of regulatory elements and their functional activity. Our data demonstrate that ChIP-DIP enables the generation of 'consortium level', context-specific protein localization maps within any molecular biology lab.
Collapse
|
139
|
Su Z, Luo M, Chen ZL, Lan H. Comparison of the Ways in Which Nitidine Chloride and Bufalin Induce Programmed Cell Death in Hematological Tumor Cells. Appl Biochem Biotechnol 2023; 195:7755-7765. [PMID: 37086379 PMCID: PMC10754759 DOI: 10.1007/s12010-023-04468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/23/2023]
Abstract
The objective of this work to study the programmed cell death (PCD) in hematological tumor cells induced by nitidine chloride (NC) and bufalin (BF). Hematological tumor cells were exposed to various doses of NC and BF to measure the level of growth inhibition. While inverted microscope is used to observe cell morphology, western blot technique is used to detect apoptosis-related protein expression levels. The effects of NC and BF on hematological tumor cells were different. Although abnormal cell morphology could be seen under the inverted microscope, the western blot results showed that the two medicines induced PCD through different pathways. Drug resistance varied in intensity across distinct cells. THP-1, Jurkat, and RPMI-8226 each had half maximum inhibitory concentrations (IC50) of 36.23 nM, 26.71 nM, and 40.46 nM in BF, and 9.24 µM, 4.33 µM, and 28.18 µM in NC, respectively. Different hematopoietic malignancy cells exhibit varying degrees of drug resistance, and the mechanisms by which apoptosis of hematologic tumor cells is triggered by NC and BF are also distinct.
Collapse
Affiliation(s)
- Zejie Su
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China
| | - Man Luo
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhi Lian Chen
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hai Lan
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China.
| |
Collapse
|
140
|
Yue Z, Lin J, Lu X, Gao Q, Pan M, Zhang Y, Shen S, Zhu WG, Paus R. Keratin 17 Impacts Global Gene Expression and Controls G2/M Cell Cycle Transition in Ionizing Radiation-Induced Skin Damage. J Invest Dermatol 2023; 143:2436-2446.e13. [PMID: 37414246 DOI: 10.1016/j.jid.2023.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 07/08/2023]
Abstract
Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China.
| | - JianQiong Lin
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - XiaoPeng Lu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - MeiPing Pan
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - YaFei Zhang
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - SiTing Shen
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Center for Dermatology Research, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Center, Manchester, United Kingdom
| |
Collapse
|
141
|
Li J, Xiao S, Shi F, Song H, Wu J, Zheng D, Chen X, Tan K, Lu M. Arsenic trioxide extends survival of Li-Fraumeni syndrome mimicking mouse. Cell Death Dis 2023; 14:783. [PMID: 38030599 PMCID: PMC10687230 DOI: 10.1038/s41419-023-06281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Li-Fraumeni syndrome (LFS) is characterized by germline mutations occurring on one allele of genome guardian TP53. It is a severe cancer predisposition syndrome with a poor prognosis, partly due to the frequent development of subsequent primary tumors following DNA-damaging therapies. Here we explored, for the first time, the effectiveness of mutant p53 rescue compound in treating LFS-mimicking mice harboring a deleterious p53 mutation. Among the ten p53 hotspot mutations in IARC LFS cohorts, R282W is one of the mutations predicting the poorest survival prognosis and the earliest tumor onset. Among the six clinical-stage mutant p53 rescue compounds, arsenic trioxide (ATO) effectively restored transactivation activity to p53-R282W. We thus constructed a heterozygous Trp53 R279W (corresponding to human R282W) mouse model for the ATO treatment study. The p53R279W/+ (W/+) mice exhibited tumor onset and overall survival well mimicking the ones of human LFS. Further, 35 mg/L ATO addition in drink water significantly extended the median survival of W/+ mice (from 460 to 596 days, hazard ratio = 0.4003, P = 0.0008). In the isolated tumors from ATO-treated W/+ mice, the representative p53 targets including Cdkn1a, Mdm2, and Tigar were significantly upregulated, accompanying with a decreased level of the proliferation marker Ki67 and increased level of apoptosis marker TUNEL. Together, the non-genotoxic treatment of p53 rescue compound ATO holds promise as an alternative for LFS therapeutic.
Collapse
Affiliation(s)
- Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shujun Xiao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueqin Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kai Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
142
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
143
|
Hatano Y. The Pathology according to p53 Pathway. Pathobiology 2023; 91:230-243. [PMID: 37963443 PMCID: PMC11313058 DOI: 10.1159/000535203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Observations play a pivotal role in the progress of science, including in pathology. The cause of a disease such as cancer is analyzed by breaking it down into smaller organs, tissues, cells, and molecules. The current standard cancer diagnostic procedure, microscopic observation, relies on preserved morphological characteristics. In contrast, molecular analyses explore oncogenic pathway activation that leads to genetic mutations and aberrant protein expression. Such molecular analyses could potentially identify therapeutic targets and has gained considerable attention in clinical oncology. SUMMARY This review summarizes the cardinal biomarkers of the p53 pathway, p53, p16, and mouse double minute 2 (MDM2), in the context of traditional surgical pathology and emerging genomic oncology. The p53 pathway, which is dysregulated in more than a half of all cancers, can be applied in several diagnostic settings. A four-classification model of immunophenotype for p53 pathway gene status, tumor types with a high frequency of abnormalities for each p53 pathway gene, and a minimal p53 pathway immunohistochemical panel is also described. KEY MESSAGES Immunohistochemistry of oncogenic signals should be interpreted according to molecular findings based on genomic oncology, in addition to the microscopic findings of diagnostic pathology.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
144
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
145
|
Park HB, Baek KH. Current and future directions of USP7 interactome in cancer study. Biochim Biophys Acta Rev Cancer 2023; 1878:188992. [PMID: 37775071 DOI: 10.1016/j.bbcan.2023.188992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential protein quality controller for regulating protein homeostasis and autophagy. Ubiquitination is a protein modification process that involves the binding of one or more ubiquitins to substrates through a series of enzymatic processes. These include ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Conversely, deubiquitination is a reverse process that removes ubiquitin from substrates via deubiquitinating enzymes (DUBs). Dysregulation of ubiquitination-related enzymes can lead to various human diseases, including cancer, through the modulation of protein ubiquitination. The most structurally and functionally studied DUB is the ubiquitin-specific protease 7 (USP7). Both the TRAF and UBL domains of USP7 are known to bind to the [P/A/E]-X-X-S or K-X-X-X-K motif of substrates. USP7 has been shown to be involved in cancer pathogenesis by binding with numerous substrates. Recently, a novel substrate of USP7 was discovered through a systemic analysis of its binding motif. This review summarizes the currently discovered substrates and cellular functions of USP7 in cancer and suggests putative substrates of USP7 through a comprehensive systemic analysis.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea; International Ubiquitin Center(,) CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
146
|
Ma X, Fan M, Yang K, Wang Y, Hu R, Guan M, Hou Y, Ying J, Deng N, Li Q, Jiang G, Zhang Y, Zhang X. ZNF500 abolishes breast cancer proliferation and sensitizes chemotherapy by stabilizing P53 via competing with MDM2. Cancer Sci 2023; 114:4237-4251. [PMID: 37700392 PMCID: PMC10637072 DOI: 10.1111/cas.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Zinc finger protein 500 (ZNF500) has an unknown expression pattern and biological function in human tissues. Our study revealed that the ZNF500 mRNA and protein levels were higher in breast cancer tissues than those in their normal counterparts. However, ZNF500 expression was negatively correlated with advanced TNM stage (p = 0.018), positive lymph node metastasis (p = 0.014), and a poor prognosis (p < 0.001). ZNF500 overexpression abolished in vivo and in vitro breast cancer cell proliferation by activating the p53-p21-E2F4 signaling axis and directly interacting with p53 via its C2H2 domain. This may prevent ubiquitination of p53 in a manner that is competitive to MDM2, thus stabilizing p53. When ZNF500-∆C2H2 was overexpressed, the suppressed proliferation of breast cancer cells was neutralized in vitro and in vivo. In human breast cancer tissues, ZNF500 expression was positively correlated with p53 (p = 0.022) and E2F4 (p = 0.004) expression. ZNF500 expression was significantly lower in patients with Miller/Payne Grade 1-2 than in those with Miller/Payne Grade 3-5 (p = 0.012). ZNF500 suppresses breast cancer cell proliferation and sensitizes cells to chemotherapy.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
- Second Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Mingwei Fan
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Kaibo Yang
- Department of OphthalmologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yuanyuan Wang
- Department of AnesthesiologyThe Fourth Affiliated Hospital, China Medical UniversityShenyangChina
| | - Ran Hu
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Mengyao Guan
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yuekang Hou
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jiao Ying
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Ning Deng
- Department of Breast SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Qingchang Li
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Guiyang Jiang
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yong Zhang
- Department of PathologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Xiupeng Zhang
- Department of PathologyCollege of Basic Medical Sciences and First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
147
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
148
|
Wu X, Zhou X, Wang S, Mao G. DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus. Virol J 2023; 20:250. [PMID: 37915066 PMCID: PMC10621139 DOI: 10.1186/s12985-023-02203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).
Collapse
Affiliation(s)
- Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Genxiang Mao
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
149
|
von Stromberg K, Seddar L, Ip WH, Günther T, Gornott B, Weinert SC, Hüppner M, Bertzbach LD, Dobner T. The human adenovirus E1B-55K oncoprotein coordinates cell transformation through regulation of DNA-bound host transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2310770120. [PMID: 37883435 PMCID: PMC10622919 DOI: 10.1073/pnas.2310770120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Collapse
Affiliation(s)
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Günther
- Virus Genomics, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Sophie-Celine Weinert
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Max Hüppner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| |
Collapse
|
150
|
Trauernicht M, Rastogi C, Manzo S, Bussemaker H, van Steensel B. Optimisation of TP53 reporters by systematic dissection of synthetic TP53 response elements. Nucleic Acids Res 2023; 51:9690-9702. [PMID: 37650627 PMCID: PMC10570033 DOI: 10.1093/nar/gkad718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
TP53 is a transcription factor that controls multiple cellular processes, including cell cycle arrest, DNA repair and apoptosis. The relation between TP53 binding site architecture and transcriptional output is still not fully understood. Here, we systematically examined in three different cell lines the effects of binding site affinity and copy number on TP53-dependent transcriptional output, and also probed the impact of spacer length and sequence between adjacent binding sites, and of core promoter identity. Paradoxically, we found that high-affinity TP53 binding sites are less potent than medium-affinity sites. TP53 achieves supra-additive transcriptional activation through optimally spaced adjacent binding sites, suggesting a cooperative mechanism. Optimally spaced adjacent binding sites have a ∼10-bp periodicity, suggesting a role for spatial orientation along the DNA double helix. We leveraged these insights to construct a log-linear model that explains activity from sequence features, and to identify new highly active and sensitive TP53 reporters.
Collapse
Affiliation(s)
- Max Trauernicht
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Biosciences, University of Milan “La Statale”, 20133 Milan, Italy
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|