101
|
Niu K, Sun P, Chen J, Lu X. Dense Conductive Metal-Organic Frameworks as Robust Electrocatalysts for Biosensing. Anal Chem 2022; 94:17177-17185. [PMID: 36454682 DOI: 10.1021/acs.analchem.2c03766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Due to the fascinating properties such as high porosity, large surface areas, and tunable chemical components, metal-organic frameworks (MOFs) have emerged in many fields including catalysis, energy storage, and gas separation. However, the intrinsic electrical insulation of MOFs severely restricts their application in electrochemistry. Here, we synthesize a series of 2D conductive MOFs (cMOFs) through tuning the structure with atomic precision using simple hydrothermal methods. Various electroactive probes are used to reveal the structure-property relationships in 2D cMOFs. Then, we demonstrate the first exploration and implementation of 2D cMOFs toward the construction of electrochemical biosensors. In particular, the biosensor based on Cu3(tetrahydroxy-1,4-quinone)2 [Cu3(THQ)2] displays a remarkably improved electrocatalytic performance at a much lower potential. The mechanism study reveals the essential role of charge-transfer interactions between the dense catalytic sites of Cu3(THQ)2 and analytes. Furthermore, the Cu3(THQ)2-based biosensor demonstrates robust anti-interference capability, good stability, fast response speed, and an ultralow detection limit for paraoxon. These promising results indicate the great potential of cMOFs in biomedical, food safety, and environmental sensing applications.
Collapse
Affiliation(s)
- Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Pengcheng Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
102
|
Chen F, Luo H, Li M, Zheng Y, Zhou M, Gui H, Xiang Y, Xu C, Li X, Wang R. High-Performance Aqueous Zinc-Ion Batteries Enabled by Binder-Free and Ultrathin V 2O 5-x@Graphene Aerogels with Intercalation Pseudocapacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53677-53689. [PMID: 36399399 DOI: 10.1021/acsami.2c14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a result of the absence of solid-state diffusion limitation, intercalation pseudocapacitance behavior is emerging as an attractive charge-storage mechanism that can greatly facilitate the ion kinetics to boost the rate capability and cycle stability of batteries; however, related research in the field of zinc-ion batteries (ZIBs) is still in the initial stage and only found in limited cathode materials. In this study, a novel V2O5-x@rGO hybrid aerogel consisting of ultrathin V2O5 nanosheets (∼1.26 nm) with abundant oxygen vacancies (Vö) and a three-dimensional (3D) graphene conductive network was specifically designed and used as a freestanding and binder-free electrode for ZIBs. As expected, the ideal microstructure of both the material and the electrode enable fast electron/ion diffusion kinetics of the electrode, which realize a typical intercalation pseudocapacitance behavior as demonstrated by the simulation calculation of cyclic voltammetry (CV), ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and first-principles density functional theory (DFT) calculation. Thanks to the elimination of solid-state diffusion limitation, the V2O5-x@rGO electrode delivers a high reversible rate capacity of 153.9 mAh g-1 at 15 A g-1 and 90.6% initial capacity retention at 0.5 A g-1 after 1050 cycles in ZIBs. The intercalation pseudocapacitance behavior is also realized in the assembled soft-pack battery, showing promising practical application prospects.
Collapse
Affiliation(s)
- Fuyu Chen
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| | - Haoran Luo
- School of Energy and Power Engineering, Chongqing University, Chongqing400044, China
| | - Meng Li
- School of Energy and Power Engineering, Chongqing University, Chongqing400044, China
| | - Yujie Zheng
- School of Energy and Power Engineering, Chongqing University, Chongqing400044, China
| | - Minquan Zhou
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| | - Hao Gui
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| | - Yongsheng Xiang
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| | - Chaohe Xu
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Xinlu Li
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| | - Ronghua Wang
- School of Materials Science and Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
103
|
Sun C, Wang W, Mu X, Zhang Y, Wang Y, Ma C, Jia Z, Zhu J, Wang C. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54266-54275. [PMID: 36399651 DOI: 10.1021/acsami.2c17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of metal-organic frameworks (MOFs) and flexible fabrics has been recently considered as a promising strategy applied in wearable electronic devices. We synthesized a flexible fabric-based Cu-HHTP film consisted of Cu2+ ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) via a self-sacrificial template method. The obtained Cu-HHTP film displays an outstanding nanostructured surface and uniformity. Iodine molecules are first introduced into the pores of Cu-HHTP to investigate the influence of guest molecules on electrical conductivity in a 2D guest-host system. After doping, the conductivity of the Cu-HHTP film shows an increased dependent on the doping time, and the maximum value is more than 30 times that of the original MOFs. The enhanced electrical conductivity results from an intriguing redox interaction occurred between the confined iodine molecules and the framework. The organic ligands are oxidized by iodine molecules, and generating new ions allows for subsequent participation in the regulation of the mixed valence bands of copper ions in MOFs, changing the ratio of Cu2+/Cu+, promoting the charge transport of the framework, and then synergistically enhancing the electronic conductivity. This study successfully prepared a flexible fabric-based conductive I2@Cu-HHTP film and presented insights into revealing the behavior of iodine molecules after entering the Cu-HHTP pores, expanding the possibilities of Cu-HHTP used in flexible wearable electronics.
Collapse
Affiliation(s)
- Chongcai Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Weike Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Xueyang Mu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yifan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yong Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Chuang Ma
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Zhen Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Jiankang Zhu
- Guangzhou Special Pressure Equipment Inspection and Research Institute National Graphene Product Quality Supervision and Inspection Center, Guangzhou, Guangdong510700, P. R. China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| |
Collapse
|
104
|
Chen Y, Fan K, Gao Y, Wang C. Challenges and Perspectives of Organic Multivalent Metal-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200662. [PMID: 35364614 DOI: 10.1002/adma.202200662] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Rechargeable organic multivalent metal-ion batteries (MMIBs) have attracted a surge of interest as promising alternatives for large-scale energy storage applications because they can combine the advantages of both organic electrodes and multivalent metal-ion batteries. However, the development of organic MMIBs is hampered by many factors, which mean they lag far behind organic alkali-metal- (e.g., Li-, Na-, and K-) ion batteries. Herein, the challenges that are specifically faced by organic MMIBs are analyzed and the strategies that can probably solve such challenges are then discussed. As a special challenge that organic MMIBs are facing, the charge-storage mechanism is particularly underlined to deeply understand the structure-property relationships for guiding the future design of high-performance organic electrodes for MMIBs. The perspectives are thereby elaborated in this review with the outlook of practical applications of organic MMIBs.
Collapse
Affiliation(s)
- Yuan Chen
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Fan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanbo Gao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
105
|
Liu J, Lu ZX, Wu FF, Wang B, Cao XL, Wang W, Zhuo Z, Li QH, Huang YG. A chiral SrSi2 (srs) superstructure constructed by a dual interaction system showing isotropic electrical conductivity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
106
|
The emerging aqueous zinc-organic battery. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
107
|
Wang Y, Qiao Z, Liu K, Yu L, Lv Y, Shi L, Zhao Y, Cao D, Wang Z, Wang S, Yuan S. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205069. [PMID: 36354197 PMCID: PMC9798962 DOI: 10.1002/advs.202205069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Indexed: 05/13/2023]
Abstract
The sluggish ion-transport in electrodes and low utilization of active materials are critical limitations of organic cathodes, which lead to the slow reaction dynamics and low specific capacity. In this study, the hierarchical tube is constructed by iron-hexaazatrinaphthalene tricarboxylic acid coordination polymer (Fe-HATNTA), using HATNTA as the self-engaged template to coordinate with Fe2+ ions. This Fe-HATNTA tube with hierarchical porous structure ensures the sufficient contact between electrolyte and active materials, shortens the diffusion distance, and provides more favorable transport pathways for ions. When employed as the cathode for rechargeable Li-ion batteries, Fe-HATNTA delivers a high specific capacity (244 mAh g-1 at 50 mA g-1 , 91% of theoretical capacity), excellent rate capability (128 mAh g-1 at 9 A g-1 ), and a long-term cycle life (73.9% retention over 3000 cycles at 5 A g-1 ). Moreover, the Li+ ions storage and conduction mechanisms are further disclosed by the ex situ and in situ characterizations, kinetic analyses, and theoretical calculations. This work is expected to boost further enthusiasm for developing the hierarchical structured metal-organic coordination polymers with superb ionic storage and transport as high-performance organic cathodes.
Collapse
Affiliation(s)
- Yifan Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai200444P. R. China
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| | - Zelong Qiao
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Kexin Liu
- School of Materials Science and EngineeringShanghai UniversityShanghai200444P. R. China
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| | - Le Yu
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yingying Lv
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| | - Liyi Shi
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
- Emerging Industries InstituteShanghai UniversityJiaxingZhejiang314006P. R. China
| | - Yin Zhao
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| | - Dapeng Cao
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhuyi Wang
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| | - Shitao Wang
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shuai Yuan
- Research Centre of Nanoscience and NanotechnologyShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
108
|
Yang S, Lv H, Wang Y, Guo X, Zhao L, Li H, Zhi C. Regulating Exposed Facets of Metal‐Organic Frameworks for High‐rate Alkaline Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2022; 61:e202209794. [DOI: 10.1002/anie.202209794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Shuo Yang
- Songshan Lake Materials Laboratory Dongguan Guangdong, 523808 China
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong China
| | - Haiming Lv
- Songshan Lake Materials Laboratory Dongguan Guangdong, 523808 China
| | - Yanbo Wang
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong China
| | - Xun Guo
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong China
| | - Lingzhi Zhao
- Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Materials Institute of Semiconductor Science and Technology South China Normal University Guangzhou 510631 China
| | - Hongfei Li
- Songshan Lake Materials Laboratory Dongguan Guangdong, 523808 China
- School of System Design and Intelligent Manufacturing Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory Dongguan Guangdong, 523808 China
- Department of Materials Science and Engineering City University of Hong Kong 83 Tat Chee Avenue Hong Kong China
- Hong Kong Institute for Advanced Study City University of Hong Kong Kowloon, Hong Kong 999077 China
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon, Hong Kong 999077, Hong Kong
| |
Collapse
|
109
|
Wang L, Papoular RJ, Horwitz NE, Xie J, Sarkar A, Campisi D, Zhao N, Cheng B, Grocke GL, Ma T, Filatov AS, Gagliardi L, Anderson JS. Linker Redox Mediated Control of Morphology and Properties in Semiconducting Iron-Semiquinoid Coordination Polymers. Angew Chem Int Ed Engl 2022; 61:e202207834. [PMID: 36070987 PMCID: PMC9827883 DOI: 10.1002/anie.202207834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 01/12/2023]
Abstract
The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal-organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CP Fe5 (C6 O6 )3 , which is a fusion of 2D Fe-semiquinoid materials and 3D cubic Fex (C6 O6 )y materials, by using a different initial redox-state of the C6 O6 linker. The material displays high electrical conductivity (0.02 S cm-1 ), broad electronic transitions, promising thermoelectric behavior (S2 σ=7.0×10-9 W m-1 K-2 ), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox-active components in conducting CPs/MOFs can be a "pre-synthetic" strategy to carefully tune material topologies and properties in contrast to more commonly encountered post-synthetic modifications.
Collapse
Affiliation(s)
- Lei Wang
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | | | - Noah E. Horwitz
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Jiaze Xie
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Arup Sarkar
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Dario Campisi
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Norman Zhao
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Baorui Cheng
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Garrett L. Grocke
- Pritzker School of Molecular EngineeringUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - Tengzhou Ma
- Pritzker School of Molecular EngineeringUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | | | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute and Chicago Center for Theoretical ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| | - John S. Anderson
- Department of ChemistryUniversity of Chicago5735 S Ellis AveChicagoIL 60637USA
| |
Collapse
|
110
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
111
|
Tan Y, Tao Z, Zhu Y, Chen Z, Wang A, Lai S, Yang Y. Anchoring I 3- via Charge-Transfer Interaction by a Coordination Supramolecular Network Cathode for a High-Performance Aqueous Dual-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47716-47724. [PMID: 36242094 DOI: 10.1021/acsami.2c12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iodine is considered to have broad application prospects in the field of electrochemical energy storage. However, the high solubility of I3- severely hampers its practical application, and the lack of research on the anchoring mechanism of I3- has seriously hindered the development of advanced cathode materials for iodine batteries. Herein, based on the molecular orbital theory, we studied the charge-transfer interaction between the acceptor of I3- with a σ* empty antibonding orbital and the donor of pyrimidine nitrogen with lone-pair electrons, which is proved by the results of UV-vis absorption spectroscopy, Raman spectroscopy, and density functional theory (DFT) calculations. The prepared dual-ion battery (DIB) exhibits a high voltage platform of 1.2 V, a remarkable discharge-specific capacity of up to 207 mAh g-1, and an energy density of 233 Wh kg-1 at a current density of 5 A g-1, as well as outstanding cycle stability (operating stably for 5000 cycles) with a high Coulombic efficiency of 97%, demonstrating excellent electrochemical performance and a promising prospect in stationary energy storage.
Collapse
Affiliation(s)
- Yuanming Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengren Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanfei Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhao Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Anding Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shimei Lai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangyi Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
112
|
Zhan F, Wang H, He Q, Xu W, Chen J, Ren X, Wang H, Liu S, Han M, Yamauchi Y, Chen L. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci 2022; 13:11981-12015. [PMID: 36349101 PMCID: PMC9600411 DOI: 10.1039/d2sc04012c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2023] Open
Abstract
Metal-ion hybrid capacitors (MIHCs) hold particular promise for next-generation energy storage technologies, which bridge the gap between the high energy density of conventional batteries and the high power density and long lifespan of supercapacitors (SCs). However, the achieved electrochemical performance of available MIHCs is still far from practical requirements. This is primarily attributed to the mismatch in capacity and reaction kinetics between the cathode and anode. In this regard, metal-organic frameworks (MOFs) and their derivatives offer great opportunities for high-performance MIHCs due to their high specific surface area, high porosity, topological diversity, and designable functional sites. In this review, instead of simply enumerating, we critically summarize the recent progress of MOFs and their derivatives in MIHCs (Li, Na, K, and Zn), while emphasizing the relationship between the structure/composition and electrochemical performance. In addition, existing issues and some representative design strategies are highlighted to inspire breaking through existing limitations. Finally, a brief conclusion and outlook are presented, along with current challenges and future opportunities for MOFs and their derivatives in MIHCs.
Collapse
Affiliation(s)
- Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
113
|
Lyu S, Guo C, Wang J, Li Z, Yang B, Lei L, Wang L, Xiao J, Zhang T, Hou Y. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat Commun 2022; 13:6171. [PMID: 36257963 PMCID: PMC9579180 DOI: 10.1038/s41467-022-33847-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Oxygen evolution reaction (OER) plays a key role in many renewable energy technologies such as water splitting and metal-air batteries. Metal-organic frameworks (MOFs) are appealing to design efficient OER electrocatalysts, however, their intrinsic poor conductivity strongly hinders the activity. Here, we show a strategy to boost the OER activity of poor-conductive MOFs by confining them between graphene multilayers. The resultant NiFe-MOF//G gives a record-low overpotential of 106 mV to reach 10 mA cm−2 and retains the activity over 150 h, which is in significant contrast to 399 mV of the pristine NiFe-MOF. We use X-ray absorption spectroscopy (XAS) and computations to demonstrate that the nanoconfinement from graphene multilayers not only forms highly reactive NiO6-FeO5 distorted octahedral species in MOF structure but also lowers limiting potential for water oxidation reaction. We also demonstrate that the strategy is applicable to other MOFs of different structures to largely enhance their electrocatalytic activities. While metal-organic frameworks offer a diverse array of structural motifs for electrocatalysis, poor conductivity and mass permeability limit performances. Here, authors confine low-conductivity metal-organic frameworks between graphene multilayers to enhance oxygen evolution performances.
Collapse
Affiliation(s)
- Siliu Lyu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Chenxi Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian, 116023, China
| | - Jianing Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China
| | - Liping Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian, 116023, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
| | - Tao Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Donghai Laboratory, Room 215, Administration Building, No.1 Zheda Road, Zhoushan, 316021, China.
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China. .,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China.
| |
Collapse
|
114
|
Zhao T, Wu H, Wen X, Zhang J, Tang H, Deng Y, Liao S, Tian X. Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
115
|
Zhu Y, Hoh HY, Qian S, Sun C, Wu Z, Huang Z, Wang L, Batmunkh M, Lai C, Zhang S, Zhong YL. Ultrastable Zinc Anode Enabled by CO 2-Induced Interface Layer. ACS NANO 2022; 16:14600-14610. [PMID: 36067416 DOI: 10.1021/acsnano.2c05124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aqueous Zn-ion batteries (AZIBs), being safe, inexpensive, and pollution-free, are a promising candidate for future large-scale sustainable energy storage. However, in a conventional AZIBs setup, the Zn metal anode suffers oxidative corrosion, side reactions with electrolytes, disordered dendrite growth during operation, and consequently low efficiency and short lifespan. In this work, we discover that purging CO2 gas into the electrolyte could address these issues by eliminating dissolved O2, inhibiting side reactions by buffering the local pH change, and preventing dendrite growth by inducing the in situ formation of a ZnCO3 solid electrolyte interphase layer. Moreover, the CO2-purged electrolyte could enable a highly reversible plating/stripping behavior with a high Coulombic efficiency of 99.97% and an ultralong lifespan of 32,000 cycles (1600 h) even under an ultrahigh current density of 40 mA cm-2. Consequently, the CO2-purged symmetrical cells deliver long cycling stability at a high depth of discharge of 57%, while the CO2-purged Zn/V2O5 full cells exhibit outstanding capacity retention of 66% after 1000 cycles at a high current density of 5 A g-1. Our strategy, the simple introduction of CO2 gas into the electrolyte, could effectively mediate the zinc anode's critical issues and provide a scalable and cost-effective pathway for the commercialization of AZIBs.
Collapse
Affiliation(s)
- Yuxuan Zhu
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Nathan Campus, Griffith University, Brisbane, Queensland 4111, Australia
| | - Hui Ying Hoh
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Shangshu Qian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Chuang Sun
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - ZhenZhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Zimo Huang
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Nathan Campus, Griffith University, Brisbane, Queensland 4111, Australia
| | - Liang Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Munkhbayar Batmunkh
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Nathan Campus, Griffith University, Brisbane, Queensland 4111, Australia
| | - Chao Lai
- School of Chemistry and Materials Chemistry, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Brisbane, Queensland 4222, Australia
| | - Yu Lin Zhong
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Nathan Campus, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
116
|
Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Rechargeable Batteries for Grid Scale Energy Storage. Chem Rev 2022; 122:16610-16751. [PMID: 36150378 DOI: 10.1021/acs.chemrev.2c00289] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ever-increasing global energy consumption has driven the development of renewable energy technologies to reduce greenhouse gas emissions and air pollution. Battery energy storage systems (BESS) with high electrochemical performance are critical for enabling renewable yet intermittent sources of energy such as solar and wind. In recent years, numerous new battery technologies have been achieved and showed great potential for grid scale energy storage (GSES) applications. However, their practical applications have been greatly impeded due to the gap between the breakthroughs achieved in research laboratories and the industrial applications. In addition, various complex applications call for different battery performances. Matching of diverse batteries to various applications is required to promote practical energy storage research achievement. This review provides in-depth discussion and comprehensive consideration in the battery research field for GSES. The overall requirements of battery technologies for practical applications with key parameters are systematically analyzed by generating standards and measures for GSES. We also discuss recent progress and existing challenges for some representative battery technologies with great promise for GSES, including metal-ion batteries, lead-acid batteries, molten-salt batteries, alkaline batteries, redox-flow batteries, metal-air batteries, and hydrogen-gas batteries. Moreover, we emphasize the importance of bringing emerging battery technologies from academia to industry. Our perspectives on the future development of batteries for GSES applications are provided.
Collapse
Affiliation(s)
- Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
117
|
Gharagheizi F, Yu Z, Sholl DS. Curated Collection of More than 20,000 Experimentally Reported One-Dimensional Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42258-42266. [PMID: 36075067 DOI: 10.1021/acsami.2c12485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A collection of more than 20,000 experimentally derived crystal structures for metal-organic frameworks (MOFs) that do not have two- or three-dimensional covalently bonded networks has been developed from the materials available at the Cambridge Crystallographic Data Centre. Of these 20,000 1D MOFs, more than 12,000 structures have been verified to be solvent-free and in exact agreement with the stoichiometry of the synthesized materials. More than 10% of the complete data set comprise materials including two or more distinct metals. The band gaps of more than 12,000 1D MOFs have been computed at the density functional theory-generalized gradient approximation level, finding more than 2000 materials that have a zero band gap. Molecular simulations of CH4 adsorption in a small number of 1D MOFs indicated that adsorbate-induced deformation plays a significant role in determining adsorption isotherms in these materials. As a result, methods that have been used previously for high-throughput predictions of molecular adsorption in 3D MOFs are not suitable for 1D MOFs.
Collapse
Affiliation(s)
- Farhad Gharagheizi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Zhenzi Yu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S Sholl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
118
|
Jiang Z, Wen B, Huang Y, Li H, Li F. Metal‐Organic Framework‐Based Lithium‐Oxygen Batteries. Chemistry 2022; 28:e202202130. [DOI: 10.1002/chem.202202130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhuoliang Jiang
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Bo Wen
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yaohui Huang
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Haixia Li
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China
| |
Collapse
|
119
|
Zhang W, Dong M, Jiang K, Yang D, Tan X, Zhai S, Feng R, Chen N, King G, Zhang H, Zeng H, Li H, Antonietti M, Li Z. Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat Commun 2022; 13:5348. [PMID: 36097022 PMCID: PMC9468148 DOI: 10.1038/s41467-022-32955-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Aqueous zinc (Zn) chemistry features intrinsic safety, but suffers from severe irreversibility, as exemplified by low Coulombic efficiency, sustained water consumption and dendrite growth, which hampers practical applications of rechargeable Zn batteries. Herein, we report a highly reversible aqueous Zn battery in which the graphitic carbon nitride quantum dots additive serves as fast colloid ion carriers and assists the construction of a dynamic & self-repairing protective interphase. This real-time assembled interphase enables an ion-sieving effect and is found actively regenerate in each battery cycle, in effect endowing the system with single Zn2+ conduction and constant conformal integrality, executing timely adaption of Zn deposition, thus retaining sustainable long-term protective effect. In consequence, dendrite-free Zn plating/stripping at ~99.6% Coulombic efficiency for 200 cycles, steady charge-discharge for 1200 h, and impressive cyclability (61.2% retention for 500 cycles in a Zn | |MnO2 full battery, 73.2% retention for 500 cycles in a Zn | |V2O5 full battery and 93.5% retention for 3000 cycles in a Zn | |VOPO4 full battery) are achieved, which defines a general pathway to challenge Lithium in all low-cost, large-scale applications. Metallic zinc is an ideal anode material for aqueous rechargeable batteries but reversibility is a challenge. Here, the authors realise a dynamic real-time reconstructed interphase on zinc anode formed by graphitic carbon nitride quantum dot as an electrolyte additive to improve the performance of Zn metal anodes.
Collapse
Affiliation(s)
- Wenyao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada.,Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Muyao Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Xuehai Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Shengli Zhai
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, S7N 2V3, SK, Canada
| | - Ning Chen
- Canadian Light Source, Saskatoon, S7N 2V3, SK, Canada
| | - Graham King
- Canadian Light Source, Saskatoon, S7N 2V3, SK, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Markus Antonietti
- Colloid Chemistry Department Department, Max Planck Institute for Colloids and Interfaces, 14424, Potsdam, Germany
| | - Zhi Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, AB, Canada.
| |
Collapse
|
120
|
Kim E, Choi I, Nam KW. Metal–organic framework for dendrite-free anodes in aqueous rechargeable zinc batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
121
|
A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
122
|
Luo T, Nash GT, Jiang X, Feng X, Mao J, Liu J, Juloori A, Pearson AT, Lin W. A 2D Nanoradiosensitizer Enhances Radiotherapy and Delivers STING Agonists to Potentiate Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110588. [PMID: 35952624 PMCID: PMC9529854 DOI: 10.1002/adma.202110588] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/27/2022] [Indexed: 05/11/2023]
Abstract
Despite potent preclinical antitumor activity, activation of stimulator of interferon genes (STING) has shown modest therapeutic effects in clinical studies. Many STING agonists, including 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), show poor pharmacokinetic properties for sustaining STING activation in tumors and achieving optimal antitumor efficacy. Improved delivery of STING agonists and their effective combination with other treatments are needed to enhance their therapeutic effects. Herein, a 2D nanoplatform, cGAMP/MOL, is reported via conjugating cGAMP to a nanoscale metal-organic layer (MOL) for simultaneous STING activation and radiosensitization. The MOL not only exhibits strong radiosensitization effects for enhanced cancer killing and induction of immunogenic cell death, but also retains cGAMP in tumors for sustained STING activation. Compared to free cGAMP, cGAMP/MOL elicits stronger STING activation and regresses local tumors upon X-ray irradiation. Further combination with an immune checkpoint inhibitor bridges innate and adaptive immune systems by activating the tumor microenvironment to elicit systemic antitumor responses.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey T. Nash
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xuanyu Feng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jianqiao Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aditya Juloori
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander T. Pearson
- Department of Pathology & University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
123
|
Gittins JW, Balhatchet CJ, Fairclough SM, Forse AC. Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure. Chem Sci 2022; 13:9210-9219. [PMID: 36092998 PMCID: PMC9384154 DOI: 10.1039/d2sc03389e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022] Open
Abstract
Metal-organic frameworks (MOFs) are among the most promising materials for next-generation energy storage systems. However, the impact of particle morphology on the energy storage performances of these frameworks is poorly understood. To address this, here we use coordination modulation to synthesise three samples of the conductive MOF Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with distinct microstructures. Supercapacitors assembled with these samples conclusively demonstrate that sample microstructure and particle morphology have a significant impact on the energy storage performances of MOFs. Samples with 'flake-like' particles, with a pore network comprised of many short pores, display superior capacitive performances than samples with either 'rod-like' or strongly agglomerated particles. The results of this study provide a target microstructure for conductive MOFs for energy storage applications.
Collapse
Affiliation(s)
- Jamie W Gittins
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chloe J Balhatchet
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Simon M Fairclough
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
124
|
Anthraquinone porous polymers with different linking patterns for high performance Zinc-Organic battery. J Colloid Interface Sci 2022; 629:434-444. [DOI: 10.1016/j.jcis.2022.08.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/15/2023]
|
125
|
Liu CK, Piradi V, Song J, Wang Z, Wong LW, Tan EHL, Zhao J, Zhu X, Yan F. 2D Metal-Organic Framework Cu 3 (HHTT) 2 Films for Broadband Photodetectors from Ultraviolet to Mid-Infrared. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204140. [PMID: 35765163 DOI: 10.1002/adma.202204140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Cu3 (HHTT)2 (HHTT: 2,3,7,8,12,13-hexahydroxytetraazanaphthotetraphene) is a novel 2D conjugated metal-organic framework (2D c-MOF) with efficient in-plane d-π conjugations and strong interlayer π-π interactions while the growth of Cu3 (HHTT)2 thin films has never been reported until now. Here, the successful fabrication of highly oriented wafer-scale Cu3 (HHTT)2 thin films with a layer-by-layer growth method on various substrates is presented. Its semiconducting behavior and carrier transport mechanisms are clarified through temperature and frequency-dependent conductivity measurements. Flexible photodetectors based on Cu3 (HHTT)2 thin films exhibit reliable photoresponses at room temperature in a wavelength region from UV to mid-IR, which is much broader than those of solution-processed broadband photodetectors reported previously. Moreover, the photodetectors can show a typical synaptic behavior and excellent data recognition accuracy in artificial neural networks. This work opens a window for the exploration of high-performance and multifunctional optoelectronic devices based on 2D c-MOFs.
Collapse
Affiliation(s)
- Chun-Ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Venkatesh Piradi
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, P. R. China
| | - Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Ziru Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Lok-Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Eng-Hao-Louis Tan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
126
|
Wang T, Lei J, Wang Y, Pang L, Pan F, Chen KJ, Wang H. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203307. [PMID: 35843875 DOI: 10.1002/smll.202203307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - You Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Le Pang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Fuping Pan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
127
|
Efficient detection of glucose by graphene-based non-enzymatic sensing material based on carbon dot. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
128
|
Chen J, Zhang W, Zhang X, Li Z, Ma J, Zhao L, Jian W, Chen S, Yin J, Lin X, Qin Y, Qiu X. Sodium Pre-Intercalated Carbon/V 2 O 5 Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zinc-Ion Batteries: A Comprehensive Study. CHEMSUSCHEM 2022; 15:e202200732. [PMID: 35522223 DOI: 10.1002/cssc.202200732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The aqueous zinc-ion battery (AZIB) has been widely investigated in recent years because it has the advantages of being green, safe, and made from abundant raw materials. It is necessary to continue to study how to prepare cathode materials with excellent performance and high cycling stability for future commercialization. In this work, a strategy was proposed that uses sustainable sodium lignosulfonate as both carbon and sodium sources to obtain a sodium pre-intercalated vanadium oxide/carbon (VO/LSC) composite as the cathode of AZIB. The carbon matrix could improve the electronic conductivity of vanadium oxide, while the sodium lignosulfonate could provide sodium ions pre-intercalated into the layered vanadium oxide simultaneously. Through this strategy, vanadium-based cathode materials with high stability and excellent rate capability were obtained. The VO/LSC cathode delivered high capacities of 350 and 112.8 mAh g-1 at 0.1 and 4.0 A g-1 , respectively. Zinc sulfate and zinc trifluoromethyl sulfonate were selected as electrolytes, and the influence of electrolytes on the performance of VO/LSC was analyzed. The oxygen in the environment was used to oxidize the low-priced vanadium oxide to achieve a self-charging AZIB. This paper provides a valuable strategy for the design of vanadium-based cathode material for AZIB, which can broaden the research and application of AZIB.
Collapse
Affiliation(s)
- Junli Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang, Jieyang 522000, P. R. China
| | - Xiaojun Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Ziyan Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Jianhui Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Suli Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| |
Collapse
|
129
|
Peng Y, Xu J, Xu J, Ma J, Bai Y, Cao S, Zhang S, Pang H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv Colloid Interface Sci 2022; 307:102732. [PMID: 35870249 DOI: 10.1016/j.cis.2022.102732] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
Metal-organic framework (MOF) composites are considered to be one of the most vital energy storage materials due to their advantages of high porousness, multifunction, various structures and controllable chemical compositions, which provide a great possibility to find suitable electrode materials for batteries and supercapacitors. However, MOF composites are still in the face of various challenges and difficulties that hinder their practical application. In this review, we introduce and summarize the applications of MOF composites in batteries, covering metal-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and zinc-air batteries, as well as supercapacitors. In addition, the application challenges of MOF composites in batteries and supercapacitors are also summarized. Finally, the basic ideas and directions for further development of these two types of electrochemical energy storage devices are proposed.
Collapse
Affiliation(s)
- Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jia Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jinming Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yang Bai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
130
|
Pan W, Liu C, Li Y, Yang Y, Li W, Feng C, Li L. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioact Mater 2022; 13:96-104. [PMID: 35224294 PMCID: PMC8843971 DOI: 10.1016/j.bioactmat.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Wen Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| | - Yang Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China
| | - Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
- Corresponding author. Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| |
Collapse
|
131
|
Liu L, Lin Z, Shi Q, Tang J, Li Z, Tao Z, Huang W. High-performance 3D biphasic NH4V3O8/Zn3(OH)2V2O7·2H2O synthesized by rapid chemical precipitation as cathodes for Zn-ion batteries. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
132
|
Denis M, Grenèche JM, Gautier N, Poizot P, Devic T. Deciphering the Thermal and Electrochemical Behaviors of Dual Redox-Active Iron Croconate Violet Coordination Complexes. Inorg Chem 2022; 61:9308-9317. [PMID: 35679597 DOI: 10.1021/acs.inorgchem.2c01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in coordination compounds based on non-innocent ligands (NILs) for electrochemical energy storage has risen in the last few years. We have focused our attention on an overlooked redox active linker, croconate violet, which has not yet been addressed in this field although closely related to standard NILs such as catecholate and tetracyanoquinodimethane. Two anionic complexes consisting of Fe(II) and croconate violet (-2) with balancing potassium cations were isolated and structurally characterized. By a combination of in situ and ex situ techniques (powder and single-crystal X-ray diffraction, infrared, and 57Fe Mössbauer spectroscopies), we have shown that their dehydration occurs through complex patterns, whose reversibility depends on the initial crystal structure but that the structural rearrangements around the iron cations occur without any oxidation. While electrochemical studies performed in solution clearly show that both the organic and inorganic parts can be reversibly addressed, in the solid state, poor charge storage capacities were initially measured, mainly due to the solubilization of the solids in the electrolyte. By optimizing the formulation of the electrode and the composition of the electrolyte, a capacity of >100 mA h g-1 after 10 cycles could be achieved. This suggests that this family of redox active linkers deserves to be investigated for solid-state electrochemical energy storage, although it requires the solving of the issues related to the solubilization of the derived coordination compounds.
Collapse
Affiliation(s)
- Morgane Denis
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université, Le Mans Cedex 9 F-72085, France
| | - Nicolas Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Philippe Poizot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| |
Collapse
|
133
|
Jiang K, Peng P, Tranca D, Tong G, Ke C, Lu C, Hu J, Liang H, Li J, Zhou S, Kymakis E, Zhuang X. Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azulene-Based Case. Macromol Rapid Commun 2022; 43:e2200392. [PMID: 35678742 DOI: 10.1002/marc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Indexed: 11/06/2022]
Abstract
Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl2 at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peipei Peng
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diana Tranca
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gangsheng Tong
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changchun Ke
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Haiwei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiantong Li
- School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, 16440, Sweden
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
134
|
Pham HTB, Choi JY, Huang S, Wang X, Claman A, Stodolka M, Yazdi S, Sharma S, Zhang W, Park J. Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker. J Am Chem Soc 2022; 144:10615-10621. [PMID: 35653721 DOI: 10.1021/jacs.2c03793] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of 2D electrically conductive metal-organic frameworks (EC-MOFs) has significantly expanded the scope of MOFs' applications into energy storage, electrocatalysis, and sensors. Despite growing interest in EC-MOFs, they often show low surface area and lack functionality due to the limited ligand motifs available. Herein we present a new EC-MOF using 2,3,8,9,14,15-hexahydroxyltribenzocyclyne (HHTC) linker and Cu nodes, featuring a large surface area. The MOF exhibits an electrical conductivity up to 3.02 × 10-3 S/cm and a surface area up to 1196 m2/g, unprecedentedly high for 2D EC-MOFs. We also demonstrate the utilization of alkyne functionality in the framework by postsynthetically hosting heterometal ions (e.g., Ni2+, Co2+). Additionally, we investigated particle size tunability, facilitating the study of size-property relationships. We believe that these results not only contribute to expanding the library of EC-MOFs but shed light on the new opportunities to explore electronic applications.
Collapse
Affiliation(s)
- Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam Claman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
135
|
|
136
|
Chen Data Analysis X, Kong Q, Wu X, An X, Zhang J, Wang Q, Yao W. Construction of V1.11S2 Flower Spheres for Efficient Aqueous Zn-ion Batteries. J Colloid Interface Sci 2022; 625:1002-1011. [DOI: 10.1016/j.jcis.2022.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
137
|
Zhang F, Zhang W, Wexler D, Guo Z. Recent Progress and Future Advances on Aqueous Monovalent-Ion Batteries towards Safe and High-Power Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107965. [PMID: 35338665 DOI: 10.1002/adma.202107965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/25/2022] [Indexed: 05/24/2023]
Abstract
Aqueous monovalent-ion batteries have been rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their fast charging capability and high power densities. In recent years, Prussian blue analogues, polyanion-type compounds, and layered oxides have been widely developed as cathodes for aqueous monovalent-ion batteries because of their low cost and high theoretical capacity. Furthermore, many design strategies have been proposed to expand their electrochemical stability window by reducing the amount of free water molecules and introducing an electrolyte addictive. This review highlights the advantages and drawbacks of cathode and anode materials, and summarizes the correlations between the various strategies and the electrochemical performance in terms of structural engineering, morphology control, elemental compositions, and interfacial design. Finally, this review can offer rational principles and potential future directions in the design of aqueous monovalent-ion batteries.
Collapse
Affiliation(s)
- Fangli Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, innovation Campus, North Wollongong, New South Wales, 2500, Australia
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - David Wexler
- Faculty of Engineering and Information Science, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
138
|
Xu X, Chen Y, Liu D, Zheng D, Dai X, Shi W, Cao X. Metal-Organic Framework-Based Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Function. CHEM REC 2022; 22:e202200079. [PMID: 35635378 DOI: 10.1002/tcr.202200079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Indexed: 11/07/2022]
Abstract
Aqueous rechargeable zinc-ion batteries (ZIBs) featuring competitive performance, low cost and high safety hold great promise for applications in grid-scale energy storage and portable electronic devices. Metal-organic frameworks (MOFs), relying on their large framework structure and abundant active sites, have been identified as promising materials in ZIBs. This review comprehensively presents the current development of MOF-based materials including MOFs and their derivatives in ZIBs, which begins with Zn storage mechanism of MOFs, followed by introduction of various types of MOF-based cathode materials (PB and PBA, Mn-based MOF, V-based MOF, conductive MOF and their derivatives), and the regulation approaches for Zn deposition behavior. The key factors and optimization strategies of MOF-based materials that affect ZIBs performance are emphasized and discussed. Finally, the challenges and further research directions of MOF-based materials for advanced zinc-ion batteries are provided.
Collapse
Affiliation(s)
- Xilian Xu
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Ye Chen
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Dongshu Liu
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Dong Zheng
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiaojing Dai
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenhui Shi
- Center for Membrane and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiehong Cao
- College of Materials Science and Engineering, and Pinghu Institute of Advanced Materials, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
139
|
Kim Y, Park Y, Kim M, Lee J, Kim KJ, Choi JW. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat Commun 2022; 13:2371. [PMID: 35501314 PMCID: PMC9061739 DOI: 10.1038/s41467-022-29987-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Aqueous zinc ion batteries are receiving increasing attention for large-scale energy storage systems owing to their attractive features with respect to safety, cost, and scalability. Although vanadium oxides with various compositions have been demonstrated to store zinc ions reversibly, their limited cyclability especially at low current densities and their poor calendar life impede their widespread practical adoption. Herein, we reveal that the electrochemically inactive zinc pyrovanadate (ZVO) phase formed on the cathode surface is the main cause of the limited sustainability. Moreover, the formation of ZVO is closely related to the corrosion of the zinc metal counter electrode by perturbing the pH of the electrolyte. Thus, the dissolution of VO2(OH)2−, the source of the vanadium in the ZVO, is no longer prevented. The proposed amalgamated Zn anode improves the cyclability drastically by blocking the corrosion at the anode, verifying the importance of pH control and the interplay between both electrodes. Aqueous zinc ion batteries are good systems for large-scale energy storage. Here, the authors report that the corrosion of zinc metal anode is the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries, and supressing corrosion improves the calendar and cycle lifetime markedly.
Collapse
|
140
|
Jiang L, Wang H, Rao Z, Zhu J, Li G, Huang Q, Wang Z, Liu H. In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing. J Colloid Interface Sci 2022; 622:871-879. [PMID: 35561607 DOI: 10.1016/j.jcis.2022.04.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating Cu2O nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled Cu2O nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained Cu2O NP@CuHHTP heterojunction nanoarrays show high H2O2 sensitivity of 8150.6 μA·mM-1·cm2 and satisfactory detection performances in application of measuring H2O2 concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.
Collapse
Affiliation(s)
- Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haitao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhuang Rao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
141
|
Cheng S, Gao W, Cao Z, Yang Y, Xie E, Fu J. Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109870. [PMID: 35112396 DOI: 10.1002/adma.202109870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Conductive 2D conjugated metal-organic frameworks (c-MOFs) are attractive electrode materials due to their high intrinsic electrical conductivities, large specific surface area, and abundant unsaturated bonds/functional groups. However, the 2D c-MOFs reported so far have limited charge storage capacity during electrochemical charging and discharging, and the energy density is still unsatisfactory. In this work, a strategy of selective center charge density to expand the traditional electrode materials to the electrode-electrolyte coupled system with the prototypical of 2D Co-catecholate (Co-CAT) is proposed. Electrochemical mechanism studies and density functional theory calculations reveal that dual redox sites are achieved with the quinone groups (CAT) and metal-ion linkages (Co-O) serving as the active sites of pseudocapacitive cation (Na+ ) and redox electrolyte species (SO3 2- ). The resultant electrode delivers an exceptionally high capacity of 1160 F g-1 at 1 A g-1 and a special self-discharge rate (86.8% after 48 h). Moreover, the packaged asymmetric device exhibits a state-of-the-art energy density of 158 W h kg-1 at the power density of 2000 W kg-1 and an excellent self-discharge rate of 80.6% after 48 h. This success will provide a new perspective for the performance enhancement for the 2D-MOF-based energy storage devices.
Collapse
Affiliation(s)
- Situo Cheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenzheng Gao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhen Cao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yifan Yang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiecai Fu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
142
|
Guo Y, Wang W, Lei H, Wang M, Jiao S. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110109. [PMID: 35112402 DOI: 10.1002/adma.202110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The limited active sites of cathode materials in aluminum-ion batteries restrict the storage of more large-sized Al-complex ions, leading to a low celling of theoretical capacity. To make the utmost of active sites, an alternate storage mechanism of opposite charges (AlCl4 - anions and AlCl2 + cations) in multisites is proposed herein to achieve an ultrahigh capacity in Al-metal-organic framework (MOF) battery. The bipolar ligands (oxidized from 18π to 16π electrons and reduced from 18π to 20π electrons in a planar cyclic conjugated system) can alternately uptake and release AlCl4 - anions and AlCl2 + cations in charge/discharge processes, which can double the capacity of unipolar ligands. Moreover, the high-density active Cu sites (Cu nodes) in the 2D Cu-based MOF can also store AlCl2 + cations for a higher capacity. The rigid and extended MOF structure can address the problems of high solubility and poor stability of small organic molecules. As a result, three-step redox reactions with two-electron transfer in each step are demonstrated in charge/discharge processes, achieving high reversible capacity (184 mAh g-1 ) and energy density (177 Wh kg-1 ) of the optimized cathode in an Al-MOF battery. The findings provide a new insight for the rational design of stable high-energy Al-MOF batteries.
Collapse
Affiliation(s)
- Yuxi Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
143
|
Gao F, Yan R, Shu Y, Cao Q, Zhang L. Strategies for the application of metal-organic frameworks in catalytic reactions. RSC Adv 2022; 12:10114-10125. [PMID: 35424941 PMCID: PMC8968187 DOI: 10.1039/d2ra01175a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 01/20/2023] Open
Abstract
Efficient catalysts play crucial roles in various organic reactions and polymerization. Metal–organic frameworks (MOFs) have the merits of ultrahigh porosity, large surface area, dispersed polymetallic sites and modifiable linkers, which make them promising candidates for catalyzation. This review primarily summarizes the recent research progress on diverse strategies for tailoring MOFs that are endowed with excellent catalytic behavior. These strategies include utilizing MOFs as nanosized reaction channels, metal nodes decorated as catalytic active sites and the modification of ligands or linkers. All these make them highly attractive to various applications, especially in catalyzing organic reactions or polymerizations and they have proven to be effective catalysts for a wide variety of reactions. MOFs are still an evolving field with tremendous prospects; therefore, through the research and development of more modification and regulation strategies, MOFs will realize their wider practical application in the future. Metal–organic frameworks (MOFs) are promising candidates for catalyzation. This review primarily summarized the recent research progress in diverse strategies for tailoring MOFs which are endowed with more excellent catalytic behavior.![]()
Collapse
Affiliation(s)
- Fei Gao
- School of Physics and Materials, Nanchang University Nanchang 330031 China
| | - Runhan Yan
- School of Physics and Materials, Nanchang University Nanchang 330031 China
| | - Yao Shu
- Institute of New Materials, Guangdong Academy of Science Guangzhou 510651 China
| | - Qingbin Cao
- The State Key Laboratory of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Science Nanchang 330096 China
| |
Collapse
|
144
|
de Lourdes Gonzalez-Juarez M, Morales C, Flege JI, Flores E, Martin-Gonzalez M, Nandhakumar I, Bradshaw D. Tunable Carrier Type of a Semiconducting 2D Metal-Organic Framework Cu 3(HHTP) 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12404-12411. [PMID: 35230804 PMCID: PMC9096791 DOI: 10.1021/acsami.2c00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023]
Abstract
In this work, a switch from n-type to p-type conductivity in electrodeposited Cu3(2,3,6,7,10,11-hexahydroxytriphenylene)2 [Cu3(HHTP2)] has been observed, which is most likely due to oxygen molecular doping. The synthesis of electrically conductive 2D metal-organic frameworks (MOFs) has been achieved through the introduction of highly conjugated organic linkers coordinated to their constituent metal-ion centers. However, the porous structure and unsaturated metal sites in MOFs make them susceptible to ambient adsorbates, which can affect their charge transport properties. This phenomenon has been experimentally investigated by GIXRD, Hall effect and Seebeck measurements, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
| | - Carlos Morales
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus−Senftenberg, Konrad-Zuse-Strasse 1, D-03046 Cottbus, Germany
| | - Jan Ingo Flege
- Applied
Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus−Senftenberg, Konrad-Zuse-Strasse 1, D-03046 Cottbus, Germany
| | - Eduardo Flores
- Instituto
de Micro y Nanotecnología (IMN-CNM-CSIC), C/ Isaac Newton 8, PTM, E-28760 Tres Cantos, Spain
- Centro
de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California C.P. 22860, Mexico
| | - Marisol Martin-Gonzalez
- Instituto
de Micro y Nanotecnología (IMN-CNM-CSIC), C/ Isaac Newton 8, PTM, E-28760 Tres Cantos, Spain
| | - Iris Nandhakumar
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Darren Bradshaw
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
145
|
Chen T, Dou JH, Yang L, Sun C, Oppenheim JJ, Li J, Dincă M. Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks. J Am Chem Soc 2022; 144:5583-5593. [PMID: 35290048 DOI: 10.1021/jacs.2c00614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We reveal here the construction of Ni-based metal-organic frameworks (MOFs) and conjugated coordination polymers (CCPs) with different structural dimensionalities, including closely π-stacked 1D chains (Ni-1D), aggregated 2D layers (Ni-2D), and a 3D framework (Ni-3D), based on 2,3,5,6-tetraamino-1,4-hydroquinone (TAHQ) and its various oxidized forms. These materials have the same metal-ligand composition but exhibit distinct electronic properties caused by different dimensionalities and supramolecular interactions between SBUs, ligands, and structural motifs. The electrical conductivity of these materials spans nearly 8 orders of magnitude, approaching 0.3 S/cm.
Collapse
Affiliation(s)
- Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jin-Hu Dou
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jian Li
- Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.,Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
146
|
Flexible Cu3(HHTP)2 MOF Membranes for Gas Sensing Application at Room Temperature. NANOMATERIALS 2022; 12:nano12060913. [PMID: 35335724 PMCID: PMC8949662 DOI: 10.3390/nano12060913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Mixed matrix membranes (MMMs), possessing high porosity, have received extensive attention for gas sensing applications. However, those with high flexibility and significant sensitivity are rare. In this work, we report on the fabrication of a novel membrane, using Cu3(HHTP)2 MOF (Cu-MOF) embedded in a polymer matrix. A solution comprising a homogenous suspension of poly-vinyl alcohol (PVA) and ionic liquid (IL), and Cu-MOF solid particles, was cast onto a petri dish to obtain a flexible membrane (215 μm in thickness). The sensor membrane (Cu-MOF/PVA/IL), characterized for its structure and morphology, was assessed for its performance in sensing against various test gases. A detection limit of 1 ppm at 23 °C (room temperature) for H2S was achieved, with a response time of 12 s. Moreover, (Cu-MOF/PVA/IL) sensor exhibited excellent repeatability, long-term stability, and selectivity towards H2S gas. The other characteristics of the (Cu-MOF/PVA/IL) sensor include high flexibility, low cost, low-power consumption, and easy fabrication technique, which nominate this sensor as a potential candidate for use in practical industrial applications.
Collapse
|
147
|
Yang H, Ning P, Chen J, Li Y, He H, Cao H. Open-Framework Metal Oxides for Fast and Reversible Hydrated Zinc-Ion Intercalation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10407-10418. [PMID: 35175034 DOI: 10.1021/acsami.1c23995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of high capacity and stable cathodes is the key to the successful commercialization of aqueous zinc-ion batteries. However, significant solvation penalties limit the choice of available positive electrodes. Herein, hydrated intercalation is proposed to promote reversible (de)intercalation within host materials by rationally designing a matching electrode. In contrast to previously reported works, the as-prepared electrode (NHVO@CC) can achieve fast and reversible intercalation of hydrated zinc ions in the interlayer gap, leading to a high capacity of 517 mAh g-1 at 0.1 A g-1 and excellent electrode stability for long-term cycling. Besides, as a consequence of the flexibility of the NHVO@CC electrode, a quasi-solid-state battery was achieved with equally advantageous electrochemical behavior under various bending states. The proposed hydrated cation direct insertion/extraction sets up an efficient way of developing high-performance positive electrodes for aqueous batteries.
Collapse
Affiliation(s)
- Hailun Yang
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengge Ning
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwu Chen
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Li
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan He
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
148
|
Choi JY, Flood J, Stodolka M, Pham HTB, Park J. From 2D to 3D: Postsynthetic Pillar Insertion in Electrically Conductive MOF. ACS NANO 2022; 16:3145-3151. [PMID: 35119816 DOI: 10.1021/acsnano.1c10838] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of 2D electrically conductive metal-organic frameworks (MOFs) has significantly expanded the scope of metal-organic framework applications from electrochemical energy storage to electronic devices. However, their potentials are not fully exploited due to limited accessibility to internal pores in stacked 2D structures. Herein we transform a 2D conjugated MOF into a 3D framework via postsynthetic pillar-ligand insertion. Cu-THQ was chosen due to its ability to adopt additional ligands at the axial positions at the copper nodes. Cu-THQ demonstrates that structural augmentation increases ion accessibility into internal pores, resulting in an increased gravimetric capacitance up to double that of the pristine counterpart. Beyond this, we believe that our findings can further be used to functionalize the existing 2D conductive MOFs to offer more opportunities in sensing, electronic, and energy-related applications by utilizing additional functions and increased accessibility from the pillars.
Collapse
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - John Flood
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
149
|
Meng Z, Jones CG, Farid S, Khan IU, Nelson HM, Mirica KA. Unraveling the Electrical and Magnetic Properties of Layered Conductive Metal‐Organic Framework With Atomic Precision. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zheng Meng
- Department of Chemistry Dartmouth College Burke Laboratory Hanover NH 03755 USA
| | - Christopher G. Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Sidra Farid
- Material Chemistry Laboratory Department of Chemistry GC University Lahore 54000 Pakistan
| | - Islam Ullah Khan
- Material Chemistry Laboratory Department of Chemistry GC University Lahore 54000 Pakistan
- Department of Chemistry University of Mianwali Mianwali 42200 Pakistan
| | - Hosea M. Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Katherine A. Mirica
- Department of Chemistry Dartmouth College Burke Laboratory Hanover NH 03755 USA
| |
Collapse
|
150
|
Wang Y, Yin J, Zhu J. Two‐Dimensional
Cathode Materials for Aqueous Rechargeable
Zinc‐Ion
Batteries
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yurou Wang
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jun Yin
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| |
Collapse
|