101
|
Clarke VC, Danila FR, von Caemmerer S. CO 2 diffusion in tobacco: a link between mesophyll conductance and leaf anatomy. Interface Focus 2021; 11:20200040. [PMID: 33628426 PMCID: PMC7898150 DOI: 10.1098/rsfs.2020.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm). We investigated how gm varies with leaf age and through a tobacco (Nicotiana tabacum) canopy by combining gas exchange and carbon isotope measurements using tunable diode laser spectroscopy. We combined these measurements with the anatomical characterization of leaves. CO2 assimilation rate, A, and gm decreased as leaves aged and moved lower in the canopy and were linearly correlated. This was accompanied by large anatomical changes including an increase in leaf thickness. Chloroplast surface area exposed to the intercellular airspace per unit leaf area (Sc) also decreased lower in the canopy. Older leaves had thicker mesophyll cell walls and gm was inversely proportional to cell wall thickness. We conclude that reduced gm of older leaves lower in the canopy was associated with a reduction in Sc and a thickening of mesophyll cell walls.
Collapse
Affiliation(s)
- Victoria C Clarke
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Florence R Danila
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
102
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
103
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
104
|
Yiotis C, McElwain JC, Osborne BA. Enhancing the productivity of ryegrass at elevated CO2 is dependent on tillering and leaf area development rather than leaf-level photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1962-1977. [PMID: 33315099 PMCID: PMC7921301 DOI: 10.1093/jxb/eraa584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/10/2020] [Indexed: 05/29/2023]
Abstract
Whilst a range of strategies have been proposed for enhancing crop productivity, many recent studies have focused primarily on enhancing leaf photosynthesis under current atmospheric CO2 concentrations. Given that the atmospheric CO2 concentration is likely to increase significantly in the foreseeable future, an alternative/complementary strategy might be to exploit any variability in the enhancement of growth/yield and photosynthesis at higher CO2 concentrations. To explore this, we investigated the responses of a diverse range of wild and cultivated ryegrass genotypes, with contrasting geographical origins, to ambient and elevated CO2 concentrations and examined what genetically tractable plant trait(s) might be targeted by plant breeders for future yield enhancements. We found substantial ~7-fold intraspecific variations in biomass productivity among the different genotypes at both CO2 levels, which were related primarily to differences in tillering/leaf area, with only small differences due to leaf photosynthesis. Interestingly, the ranking of genotypes in terms of their response to both CO2 concentrations was similar. However, as expected, estimates of whole-plant photosynthesis were strongly correlated with plant productivity. Our results suggest that greater yield gains under elevated CO2 are likely through the exploitation of genetic differences in tillering and leaf area rather than focusing solely on improving leaf photosynthesis.
Collapse
Affiliation(s)
- Charilaos Yiotis
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Department of Botany, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - Jennifer C McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, College Green, Dublin, Ireland
| | - Bruce A Osborne
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
105
|
Adeel M, Farooq T, White JC, Hao Y, He Z, Rui Y. Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124167. [PMID: 33049632 DOI: 10.1016/j.jhazmat.2020.124167] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Although nanomaterials (NMs) may inhibit viral pathogens, the mechanisms governing plant-virus-nanomaterial interactions remain unknown. Nicotiana benthamiana plants were treated with nanoscale titanium dioxide (TiO2) and silver (Ag), C60 fullerenes, and carbon nanotubes (CNTs) at 100, 200 and 500 mg L-1 for a 21-day foliar exposure before inoculation with GFP-tagged tobacco mosaic virus (TMV). Plants treated with CNTs and C60 (200 mg L-1) exhibited normal phenotype and viral symptomology was not evident at 5 days post-infection. TiO2 and Ag failed to suppress viral infection. RT-qPCR analysis revealed that viral coat protein transcript abundance and GFP mRNA expression were reduced 74-81% upon CNTs and C60 treatment. TEM revealed that the chloroplast ultrastructure in carbon NM-treated plants was unaffected by TMV infection. Fluorescence measurement of CNTs and C60 (200 mg L-1) treated plants indicated photosynthesis equivalent to healthy controls. CNTs and C60 induced upregulation of the defense-related phytohormones abscisic acid and salicylic acid by 33-52%; the transcription of genes responsible for phytohormone biosynthesis was elevated by 94-104% in treated plants. Our findings demonstrate the protective role of carbon-based NMs, with suppression of TMV symptoms via hindered physical movement and viral replication. Given the lack of viral phytopathogen treatment options, this work represents a novel area of nano-enabled agriculture.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Tahir Farooq
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
106
|
Koester RP, Pignon CP, Kesler DC, Willison RS, Kang M, Shen Y, Priest HD, Begemann MB, Cook KA, Bannon GA, Oufattole M. Transgenic insertion of the cyanobacterial membrane protein ictB increases grain yield in Zea mays through increased photosynthesis and carbohydrate production. PLoS One 2021; 16:e0246359. [PMID: 33539477 PMCID: PMC7861388 DOI: 10.1371/journal.pone.0246359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
The C4 crop maize (Zea mays) is the most widely grown cereal crop worldwide and is an essential feedstock for food and bioenergy. Improving maize yield is important to achieve food security and agricultural sustainability in the 21st century. One potential means to improve crop productivity is to enhance photosynthesis. ictB, a membrane protein that is highly conserved across cyanobacteria, has been shown to improve photosynthesis, and often biomass, when introduced into diverse C3 plant species. Here, ictB from Synechococcus sp. strain PCC 7942 was inserted into maize using Agrobacterium-mediated transformation. In three controlled-environment experiments, ictB insertion increased leaf starch and sucrose content by up to 25% relative to controls. Experimental field trials in four growing seasons, spanning the Midwestern United States (Summers 2018 & 2019) and Argentina (Winter 2018 & 2019), showed an average of 3.49% grain yield improvement, by as much as 5.4% in a given season and up to 9.4% at certain trial locations. A subset of field trial locations was used to test for modification of ear traits and ФPSII, a proxy for photosynthesis. Results suggested that yield gain in transgenics could be associated with increased ФPSII, and the production of longer, thinner ears with more kernels. ictB localized primarily to the microsome fraction of leaf bundle-sheath cells, but not to chloroplasts. Extramembrane domains of ictB interacted in vitro with proteins involved in photosynthesis and carbohydrate metabolism. To our knowledge, this is the first published evidence of ictB insertion into a species using C4 photosynthesis and the largest-scale demonstration of grain yield enhancement from ictB insertion in planta. Results show that ictB is a valuable yield gene in the economically important crop maize, and are an important proof of concept that transgenic manipulation of photosynthesis can be used to create economically viable crop improvement traits.
Collapse
Affiliation(s)
| | | | - Dylan C Kesler
- Benson Hill, St. Louis, Missouri, United States of America
| | | | - Miyoung Kang
- Benson Hill, St. Louis, Missouri, United States of America
| | - Yu Shen
- Benson Hill, St. Louis, Missouri, United States of America
| | - Henry D Priest
- Benson Hill, St. Louis, Missouri, United States of America
| | | | - Kevin A Cook
- Benson Hill, St. Louis, Missouri, United States of America
| | - Gary A Bannon
- Benson Hill, St. Louis, Missouri, United States of America
| | | |
Collapse
|
107
|
Li Q, Kuo YW, Lin KH, Huang W, Deng C, Yeh KW, Chen SP. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.). PLANT CELL REPORTS 2021; 40:339-350. [PMID: 33231729 DOI: 10.1007/s00299-020-02636-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Piriformospora indica symbiosis promoted the growth and photosynthesis, and simultaneously enhanced the resistance against insect herbivory by regulating sporamin-dependent defense in sweet potato. Piriformospora indica (P. indica), a versatile endophytic fungus, promotes the growth and confers resistance against multiple stresses by root colonization in plant hosts. In this study, the effects of P. indica colonization on the growth, physiological change, and herbivore resistance of leaf-vegetable sweet potato cultivar were investigated. P. indica symbiosis significantly improved the biomass in both above- and under-ground parts of sweet potato plants. In comparison with the non-colonized plants, the content of photosynthetic pigments and the efficiency of photosynthesis were increased in P. indica-colonized sweet potato plants. Further investigation showed that the activity of catalase was enhanced in both leaves and roots of sweet potato plants after colonization, but ascorbate peroxidase, peroxidase, and superoxide dismutase were not enhanced. Furthermore, the interaction between P. indica and sweet potato plants also showed the biological function in jasmonic acid (JA)-mediated defense. The plants colonized by P. indica had greatly increased JA accumulation and defense gene expressions, including IbNAC1, IbbHLH3, IbpreproHypSys, and sporamin, leading to elevated trypsin inhibitory activity, which was consistent with a reduced Spodoptera litura performance when larvae fed on the leaves of P. indica-colonized sweet potato plants. The root symbiosis of P. indica is helpful for the plant promoting growth and development and has a strong function as resistance inducers against herbivore attack in sweet potato cultivation by regulating sporamin-dependent defense.
Collapse
Affiliation(s)
- Qing Li
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China
| | - Yun-Wei Kuo
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China
| | - Kuan-Hung Lin
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Weiqun Huang
- Fujian Seed General Station, Fuzhou, Fujian, China
| | - Caisheng Deng
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Shi-Peng Chen
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China.
| |
Collapse
|
108
|
He L, Sun W, Chen X, Han L, Li J, Ma Y, Song Y. Modeling Maize Canopy Morphology in Response to Increased Plant Density. FRONTIERS IN PLANT SCIENCE 2021; 11:533514. [PMID: 33519830 PMCID: PMC7843585 DOI: 10.3389/fpls.2020.533514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/26/2020] [Indexed: 05/31/2023]
Abstract
Increased plant density markedly affects canopy morphophysiological activities and crop productivity. This study aims to model maize canopy final morphology under increased interplant competition by revising a functional-structural plant model, i.e., ADEL-Maize. A 2-year field experiment was conducted at Mengcheng, Anhui Province, China, in 2016 and 2018. A randomized complete block design of five plant densities (PDs), i.e., 4.5, 6, 7.5, 9, and 15 plants m-2, with three replications was applied using a hybrid, i.e., Zhengdan 958. Canopy morphology at different PDs was measured with destructive samplings when maize canopy was fully expanded. The relationship of changes of organ morphology in relation to increased plant density was analyzed based on 2016 data. The ADEL-Maize was first calibrated for the hybrid at 4.5 plants m-2 and then revised by introducing relationships identified from 2016 data, followed by independent validation with 2018 field data. A heatmap visualization was shown to clearly illustrate the effects of increased plant density on final morphology of laminae, sheaths, and internodes. The logarithmic + linear equations were found to fit changes for the organ size versus increased plant density for phytomers excluding ear position or linear equations for the phytomer at ear position based on 2016 field data. The revision was then further tested independently by having achieved satisfactory agreements between the simulations and observations in canopy size under different PDs with 2018 field data. In conclusion, this study has characterized the relationship between canopy morphology and increased interplant competition for use in the ADEL-Maize and realized the simulations of final size of laminae, sheaths, and internodes, as affected by increased plant density, laying a foundation to test an ideotype for maize withstanding high interplant competition.
Collapse
Affiliation(s)
- Liang He
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Liqi Han
- The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jincai Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yuanshan Ma
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
109
|
Adeel Zafar S, Uzair M, Ramzan Khan M, Patil SB, Fang J, Zhao J, Lata Singla‐Pareek S, Pareek A, Li X. DPS1
regulates cuticle development and leaf senescence in rice. Food Energy Secur 2021. [DOI: 10.1002/fes3.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology National Agricultural Research Centre Islamabad Pakistan
| | - Suyash B. Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Sneh Lata Singla‐Pareek
- Plant Stress BiologyInternational Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
110
|
Xiong Z, Dun Z, Wang Y, Yang D, Xiong D, Cui K, Peng S, Huang J. Effect of Stomatal Morphology on Leaf Photosynthetic Induction Under Fluctuating Light in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:754790. [PMID: 35185944 PMCID: PMC8851391 DOI: 10.3389/fpls.2021.754790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/20/2021] [Indexed: 05/06/2023]
Abstract
Plants are often confronted with light fluctuations from seconds to minutes due to altering sun angles, mutual shading, and clouds under natural conditions, which causes a massive carbon loss and water waste. The effect of stomatal morphology on the response of leaf gas exchange to fluctuating light remains disputable. In this study, we investigated the differences in leaf stomatal morphology and photosynthetic induction across twelve rice genotypes after a stepwise increase in light intensity. A negative correlation was observed between stomatal size and density across rice genotypes. Smaller and denser stomata contributed to a faster stomatal response under fluctuating light. Plants with faster stomatal opening also showed faster photosynthetic induction and higher biomass accumulation but lower intrinsic water use efficiency ( i WUE) under fluctuating light. Moreover, stomatal morphology seemed to have less effect on the initial and final stomatal conductance, and there was a minimal correlation between steady-state and non-steady-state stomatal conductance among different rice genotypes. These results highlight the important role of stomatal morphology in regulating photosynthetic efficiency and plant growth under fluctuating light conditions. To simultaneously enhance leaf i WUE when improving the photosynthetic efficiency under fluctuating light, it may be necessary to take biochemical processes into account in the future.
Collapse
|
111
|
Liu S, Cui S, Zhang X, Wang Y, Mi G, Gao Q. Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. FRONTIERS IN PLANT SCIENCE 2020; 11:576718. [PMID: 33343592 PMCID: PMC7746645 DOI: 10.3389/fpls.2020.576718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
As a primary food crop, maize is widely grown around the world. However, the deficiency of essential amino acids, such as lysine, tryptophan, and methionine, results in poor nutritional quality of maize. In addition, the protein concentration of maize declines with the increase in yield, which further reduces the nutritional quality. Here, the photosynthesis of leaves, grain amino acid composition, and stoichiometry of N and S are explored. The results show that N and S maintained the redox balance by increasing the content of glutathione in maize leaves, thereby enhancing the photosynthetic rate and maize yield. Simultaneously, the synergy of N and S increased the grain protein concentration and promoted amino acid balance by increasing the cysteine concentration in maize grains. The maize yield, grain protein concentration, and concentration of essential amino acids, such as lysine, tryptophan, and methionine, could be simultaneously increased in the N:S ratio range of 11.0 to 12.0. Overall, the synergy of N and S simultaneously improved the maize yield and nutritional quality by regulating the redox balance of maize leaves and the amino acids balance of grains, which provides a new theoretical basis and practical method for sustainable production of maize.
Collapse
Affiliation(s)
- Shuoran Liu
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Shuai Cui
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Xue Zhang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Yin Wang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Qiang Gao
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| |
Collapse
|
112
|
Salter WT, Li S, Dracatos PM, Barbour MM. Identification of quantitative trait loci for dynamic and steady-state photosynthetic traits in a barley mapping population. AOB PLANTS 2020; 12:plaa063. [PMID: 33408849 PMCID: PMC7759950 DOI: 10.1093/aobpla/plaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
Enhancing the photosynthetic induction response to fluctuating light has been suggested as a key target for improvement in crop breeding programmes, with the potential to substantially increase whole-canopy carbon assimilation and contribute to crop yield potential. Rubisco activation may be the main physiological process that will allow us to achieve such a goal. In this study, we assessed the phenotype of Rubisco activation rate in a doubled haploid (DH) barley mapping population [131 lines from a Yerong/Franklin (Y/F) cross] after a switch from moderate to saturating light. Rates of Rubisco activation were found to be highly variable across the mapping population, with a median activation rate of 0.1 min-1 in the slowest genotype and 0.74 min-1 in the fastest genotype. A unique quantitative trait locus (QTL) for Rubisco activation rate was identified on chromosome 7H. This is the first report on the identification of a QTL for Rubisco activation rate in planta and the discovery opens the door to marker-assisted breeding to improve whole-canopy photosynthesis of barley. This also suggests that genetic factors other than the previously characterized Rubisco activase (RCA) isoforms on chromosome 4H control Rubisco activity. Further strength is given to this finding as this QTL co-localized with QTLs identified for steady-state photosynthesis and stomatal conductance. Several other distinct QTLs were identified for these steady-state traits, with a common overlapping QTL on chromosome 2H, and distinct QTLs for photosynthesis and stomatal conductance identified on chromosomes 4H and 5H, respectively. Future work should aim to validate these QTLs under field conditions so that they can be used to aid plant breeding efforts.
Collapse
Affiliation(s)
- William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
| | - Peter M Dracatos
- Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Brownlow Hill, NSW, Australia
- School of Science, University of Waikato, Hillcrest, Hamilton, New Zealand
| |
Collapse
|
113
|
Einhardt AM, Ferreira S, Oliveira LM, Ribeiro DM, Rodrigues FÁ. Glyphosate and nickel differently affect photosynthesis and ethylene in glyphosate-resistant soybean plants infected by Phakopsora pachyrhizi. PHYSIOLOGIA PLANTARUM 2020; 170:592-606. [PMID: 32918487 DOI: 10.1111/ppl.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P. pachyrhizi, were investigated. Inoculated plants supplied with Ni had the highest foliar Ni concentration in all the treatments. Gl had a negative effect on the foliar Ni concentration in Ni-sprayed plants. The ASR severity was reduced in plants sprayed with Ni and Gl. Carotenoid and chlorophyll concentrations were higher in inoculated Ni, Gl, and Ni + Gl plants than in control plants. Based on the chlorophyll a fluorescence parameters, the photosynthetic apparatus of the control inoculated plants was damaged, and the least amount of energy was directed to the photochemistry process in these plants. The reduced capacity of the photosynthetic mechanism to capture light and use the energy absorbed by photosystem II in inoculated plants was reflected in their reduced capacity to process CO2 , as indicated by the high internal CO2 concentrations and low rates of net carbon assimilation. The low sugar concentrations in inoculated plants from the control treatment were linked to their reduced photosynthetic capacity due to the high ASR severity. In uninfected plants, the ethylene concentration was not affected by Ni or Gl, while the ethylene concentration decreased in inoculated plants; this decrease was more pronounced in plants from the control treatment than in treated inoculated plants. In conclusion, this study sheds light on the role played by both Ni and Gl in ASR control from a physiological perspective. Soybean plants exposed to Ni and Gl were able to maintain high ethylene concentrations and photosynthetic capacity during the P. pachyrhizi infection process; as a result, these plants consumed less of their reserves than inoculated plants not treated with Ni or Gl.
Collapse
Affiliation(s)
- Andersom Milech Einhardt
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Laboratório da Interação Planta-Patógeno, Viçosa, 36570-900, Brazil
| | - Sandro Ferreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Laboratório da Interação Planta-Patógeno, Viçosa, 36570-900, Brazil
| | - Lillian Mathias Oliveira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Laboratório da Interação Planta-Patógeno, Viçosa, 36570-900, Brazil
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Fabrício Ávila Rodrigues
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Laboratório da Interação Planta-Patógeno, Viçosa, 36570-900, Brazil
| |
Collapse
|
114
|
McAusland L, Vialet-Chabrand S, Jauregui I, Burridge A, Hubbart-Edwards S, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo-Silva E, Lawson T, Murchie EH. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. THE NEW PHYTOLOGIST 2020; 228:1767-1780. [PMID: 32910841 DOI: 10.1111/nph.16832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 05/26/2023]
Abstract
The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | - Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Stella Hubbart-Edwards
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Michael J Fryer
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ian P King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Kevin Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | | | - Tracy Lawson
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
115
|
Fu L, Govindjee G, Tan J, Guo Y. Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. PHOTOSYNTHESIS RESEARCH 2020; 146:213-225. [PMID: 31813097 DOI: 10.1007/s11120-019-00690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this work, the main activities of the plant photosynthesis process are discussed to yield a minimized mathematical model structure with photosystem II (PSII) chlorophyll a fluorescence (ChlF) as a measurable output. After experimental validation of the model structure, we demonstrate that the states of the photosynthetic process may be observed by using this model and the extended Kalman filter method. We then show a feedback control framework that can be used to alter a given photosynthetic activity. The control framework is demonstrated with an example in which PSII ChlF is used as the feedback signal and light intensity is used as a controllable process input to regulate plastoquinone reduction. Although there are caveats, and further research is needed, the results lay the groundwork for further research on novel methods for optimization and regulation of photosynthetic activities, with a goal for sustainability.
Collapse
Affiliation(s)
- Lijiang Fu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, 214122, China
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jinglu Tan
- University of Missouri, Columbia, MO, 65211, USA
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, 214122, China.
- University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
116
|
Beuchat G, Xue X, Chen LQ. Review: The Next Steps in Crop Improvement: Adoption of Emerging Strategies to Identify Bottlenecks in Sugar Flux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110675. [PMID: 33218639 DOI: 10.1016/j.plantsci.2020.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Sugar allocation in plants is the fundamental process that transports sugar from source to sink tissues and has a dramatic impact on crop yields. Controlling sugar allocation is required to increase crop yields, as well as biomass for biofuel production. Successful examples have demonstrated that genetic engineering of sugar partitioning offers a promising strategy to achieve this goal. However, improvement has thus far been limited by gaps in understanding of the underlying mechanisms controlling the allocation of sugars. The dynamics of sugar partitioning are minimally predictable under different conditions, between species, or in response to abiotic stresses. Here, we discuss four methodologies that have not been sufficiently exploited for the identification of bottlenecks in sugar flux. Furthermore, we suggest how these strategies can be used and combined to provide the insight needed to maximize crop yields or biomass, especially under conditions of environmental stress.
Collapse
Affiliation(s)
- Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
117
|
Qu M, Essemine J, Xu J, Ablat G, Perveen S, Wang H, Chen K, Zhao Y, Chen G, Chu C, Zhu X. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1334-1347. [PMID: 33015858 DOI: 10.1111/tpj.15004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 05/07/2023]
Abstract
The acceleration of stomatal closure upon high to low light transition could improve plant water use efficiency and drought tolerance. Herein, using genome-wide association study, we showed that the genetic variation in OsNHX1 was strongly associated with the changes in τcl , the time constant of stomatal closure, in 206 rice accessions. OsNHX1 overexpression in rice resulted in a decrease in τcl , and an increase in biomass, grain yield under drought. Conversely, OsNHX1 knockout by CRISPR/CAS9 shows opposite trends for these traits. We further found three haplotypes spanning the OsNHX1 promoter and CDS regions. Two among them, HapII and HapIII, were found to be associated with a high and low τcl , respectively. A near-isogenic line (NIL, S464) was developed through replacing the genomic region harboring HapII (~10 kb) from MH63 (recipient) rice cultivar by the same sized genomic region containing Hap III from 02428 (donor). Compared with MH63, S464 shows a reduction by 35% in τcl and an increase by 40% in the grain yield under drought. However, under normal conditions, S464 maintains closely similar grain yield as MH63. The global distribution of the two OsNHX1 haplotypes is associated with the local precipitation. Taken together, the natural variation in OsNHX1 could be utilized to manipulate the stomatal dynamics for an improved rice drought tolerance.
Collapse
Affiliation(s)
- Mingnan Qu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guljannat Ablat
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shahnaz Perveen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
118
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
119
|
Digrado A, Mitchell NG, Montes CM, Dirvanskyte P, Ainsworth EA. Assessing diversity in canopy architecture, photosynthesis, and water-use efficiency in a cowpea magic population. Food Energy Secur 2020; 9:e236. [PMID: 33381299 PMCID: PMC7757253 DOI: 10.1002/fes3.236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/02/2023] Open
Abstract
Optimizing crops to improve light absorption and CO2 assimilation throughout the canopy is a proposed strategy to increase yield and meet the needs of a growing population by 2050. Globally, the greatest population increase is expected to occur in Sub-Saharan Africa where large yield gaps currently persist; therefore, it is crucial to develop high-yielding crops adapted to this region. In this study, we screened 50 cowpea (Vigna unguiculata (L.) Walp) genotypes from the multi-parent advanced generation inter-cross (MAGIC) population for canopy architectural traits, canopy photosynthesis, and water-use efficiency using a canopy gas exchange chamber in order to improve our understanding of the relationships among those traits. Canopy architecture contributed to 38.6% of the variance observed in canopy photosynthesis. The results suggest that the light environment within the canopy was a limiting factor for canopy CO2 assimilation. Traits favoring greater exposure of leaf area to light such as the width of the canopy relative to the total leaf area were associated with greater canopy photosynthesis, especially in canopies with high biomass. Canopy water-use efficiency was highly determined by canopy photosynthetic activity and therefore canopy architecture, which indicates that optimizing the canopy will also contribute to improving canopy water-use efficiency. We discuss different breeding strategies for future programs aimed at the improvement of cowpea yield for the Sub-Saharan African region. We show that breeding for high biomass will not optimize canopy CO2 assimilation and suggest that selection should include multiple canopy traits to improve light penetration.
Collapse
Affiliation(s)
- Anthony Digrado
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Noah G. Mitchell
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher M. Montes
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | | | - Elizabeth A. Ainsworth
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
120
|
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF. Functional reconstitution of a bacterial CO 2 concentrating mechanism in Escherichia coli. eLife 2020; 9:59882. [PMID: 33084575 PMCID: PMC7714395 DOI: 10.7554/elife.59882] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shira Amram
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Sumedha Ravishankar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
121
|
Gunn LH, Martin Avila E, Birch R, Whitney SM. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth. Proc Natl Acad Sci U S A 2020; 117:25890-25896. [PMID: 32989135 PMCID: PMC7568259 DOI: 10.1073/pnas.2011641117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant photosynthesis and growth are often limited by the activity of the CO2-fixing enzyme Rubisco. The broad kinetic diversity of Rubisco in nature is accompanied by differences in the composition and compatibility of the ancillary proteins needed for its folding, assembly, and metabolic regulation. Variations in the protein folding needs of catalytically efficient red algae Rubisco prevent their production in plants. Here, we show this impediment does not extend to Rubisco from Rhodobacter sphaeroides (RsRubisco)-a red-type Rubisco able to assemble in plant chloroplasts. In transplastomic tobRsLS lines expressing a codon optimized Rs-rbcLS operon, the messenger RNA (mRNA) abundance was ∼25% of rbcL transcript and RsRubisco ∼40% the Rubisco content in WT tobacco. To mitigate the low activation status of RsRubisco in tobRsLS (∼23% sites active under ambient CO2), the metabolic repair protein RsRca (Rs-activase) was introduced via nuclear transformation. RsRca production in the tobRsLS::X progeny matched endogenous tobacco Rca levels (∼1 µmol protomer·m2) and enhanced RsRubisco activation to 75% under elevated CO2 (1%, vol/vol) growth. Accordingly, the rate of photosynthesis and growth in the tobRsLS::X lines were improved >twofold relative to tobRsLS. Other tobacco lines producing RsRubisco containing alternate diatom and red algae S-subunits were nonviable as CO2-fixation rates (kcatc) were reduced >95% and CO2/O2 specificity impaired 30-50%. We show differences in hybrid and WT RsRubisco biogenesis in tobacco correlated with assembly in Escherichia coli advocating use of this bacterium to preevaluate the kinetic and chloroplast compatibility of engineered RsRubisco, an isoform amenable to directed evolution.
Collapse
Affiliation(s)
- Laura H Gunn
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Elena Martin Avila
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Rosemary Birch
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
122
|
Lacube S, Manceau L, Welcker C, Millet EJ, Gouesnard B, Palaffre C, Ribaut JM, Hammer G, Parent B, Tardieu F. Simulating the effect of flowering time on maize individual leaf area in contrasting environmental scenarios. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5577-5588. [PMID: 32526015 PMCID: PMC7501815 DOI: 10.1093/jxb/eraa278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The quality of yield prediction is linked to that of leaf area. We first analysed the consequences of flowering time and environmental conditions on the area of individual leaves in 127 genotypes presenting contrasting flowering times in fields of Europe, Mexico, and Kenya. Flowering time was the strongest determinant of leaf area. Combined with a detailed field experiment, this experiment showed a large effect of flowering time on the final leaf number and on the distribution of leaf growth rate and growth duration along leaf ranks, in terms of both length and width. Equations with a limited number of genetic parameters predicted the beginning, end, and maximum growth rate (length and width) for each leaf rank. The genotype-specific environmental effects were analysed with datasets in phenotyping platforms that assessed the effects (i) of the amount of intercepted light on leaf width, and (ii) of temperature, evaporative demand, and soil water potential on leaf elongation rate. The resulting model was successfully tested for 31 hybrids in 15 European and Mexican fields. It potentially allows prediction of the vertical distribution of leaf area of a large number of genotypes in contrasting field conditions, based on phenomics and on sensor networks.
Collapse
Affiliation(s)
| | | | | | | | - Brigitte Gouesnard
- Univ. Montpellier, INRAE, CIRAD, Institut Agro, UMR AGAP, Montpellier, France
| | - Carine Palaffre
- INRAE, UE 0394, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, Saint-Martin-De-Hinx, France
| | | | - Graeme Hammer
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD, Australia
| | | | | |
Collapse
|
123
|
von Caemmerer S. Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153240. [PMID: 32707452 DOI: 10.1016/j.jplph.2020.153240] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 05/28/2023]
Abstract
Rubisco is the primary carboxylase of the photosynthetic process, the most abundant enzyme in the biosphere, and also one of the best-characterized enzymes. Rubisco also functions as an oxygenase, a discovery made 50 years ago by Bill Ogren. Carboxylation of ribulose bisphosphate (RuBP) is the first step of the photosynthetic carbon reduction cycle and leads to the assimilation of CO2, whereas the oxygenase activity necessitates the recycling of phosphoglycolate through the photorespiratory carbon oxidation cycle with concomitant loss of CO2. Since the discovery of Rubisco's dual function, the biochemical properties of Rubisco have underpinned the mechanistic mathematical models of photosynthetic CO2 fixation which link Rubisco kinetic properties to gas exchange of leaves. This has allowed assessments of global CO2 exchange and predictions of how Rubisco has and will shape the environmental responses of crop and global photosynthesis in future climates. Rubisco's biochemical properties, including its slow catalytic turnover and poor affinity for CO2, constrain crop growth and therefore improving its activity and regulation and minimising photorespiration are key targets for crop improvement.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 2601, Australia.
| |
Collapse
|
124
|
Chaperone Machineries of Rubisco – The Most Abundant Enzyme. Trends Biochem Sci 2020; 45:748-763. [DOI: 10.1016/j.tibs.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
125
|
Benes B, Guan K, Lang M, Long SP, Lynch JP, Marshall-Colón A, Peng B, Schnable J, Sweetlove LJ, Turk MJ. Multiscale computational models can guide experimentation and targeted measurements for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:21-31. [PMID: 32053236 DOI: 10.1111/tpj.14722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Computational models of plants have identified gaps in our understanding of biological systems, and have revealed ways to optimize cellular processes or organ-level architecture to increase productivity. Thus, computational models are learning tools that help direct experimentation and measurements. Models are simplifications of complex systems, and often simulate specific processes at single scales (e.g. temporal, spatial, organizational, etc.). Consequently, single-scale models are unable to capture the critical cross-scale interactions that result in emergent properties of the system. In this perspective article, we contend that to accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathematical models across biological scales. Computationally mimicking the flow of biological information from the genome to the phenome is an important step in discovering new experimental strategies to improve crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by describing the efforts of the international Crops in silico consortium.
Collapse
Affiliation(s)
- Bedrich Benes
- Computer Graphics Technology and Computer Science, Purdue University, Knoy Hall of Technology, West Lafayette, IN, 47906, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Meagan Lang
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 1YX, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Amy Marshall-Colón
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, 505 South Goodwin Ave., Urbana, IL, 61801, USA
| | - Bin Peng
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Matthew J Turk
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- School of Information Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
126
|
Possibility of Increasing the Growth and Photosynthetic Properties of Precocious Walnut by Grafting. SUSTAINABILITY 2020. [DOI: 10.3390/su12125178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant growth characteristics after grafting are mainly dependent on photosynthesis performance, which may be influenced by grafting combinations with different rootstocks and scions. In this study, we used one-year-old walnut grafts to investigate the grafting compatibility between precocious (‘Liaoning 1’, L) and hybrid (‘Zhong Ning Sheng’, Z) walnut, as well as rootstock and scion impact on the growth and photosynthetic properties of walnut trees. The results showed that grafting compatibility between the two varieties is high, with survival rates upward of 86%. Overwintering survival of grafted seedlings was as high as 100%, which indicated that the allopolyploid had good resistance to low-temperature stress. The homograft of the hybrid walnut had the highest net photosynthesis rate (18.77 μmol·m−2s−1, Z/Z) and growth characteristics, which could be due to its higher transpiration rate and stomatal conductance, whereas the homograft of precocious walnut presented the lowest net photosynthesis rate (15.08 μmol·m−2s−1, L/L) and growth characteristics. Significant improvements in the net photosynthesis rate (15.97 and 15.24 μmol·m−2s−1 for L/Z and Z/L, respectively) and growth characteristics of precocious walnut were noticed during grafting of the hybrid walnut, which could have been contributed by their transpiration rate. The results of this study serve as a guide for the selection and breeding of good rootstock to improve plant growth characteristics and photosynthetic efficiency. We conclude that good rootstock selection improves plant growth potential and could play an important role in sustainable production.
Collapse
|
127
|
Fullana-Pericàs M, Conesa MÀ, Pérez-Alfocea F, Galmés J. The influence of grafting on crops' photosynthetic performance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110250. [PMID: 32534620 DOI: 10.1016/j.plantsci.2019.110250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 05/16/2023]
Abstract
In a near scenario of climate change where stress-derived limitations on crops' yield by affecting plant gas-exchange are expected, grafting may become a cheap and easy technique to improve crops photosynthetic performance and water-use efficiency. Inconsistent data of the effect of rootstocks over gas-exchange can be found in literature, being necessary an integrative analysis of the effect of grafting over photosynthetic parameters. With this aim, we present a compilation of the effect of graft on the net CO2 assimilation rate (AN) and other photosynthetic parameters across different species with agronomic interest. No differences were observed in any photosynthetic parameter between non-grafted and self-grafted plants under non-stress conditions. However, differences were found depending on the used rootstock, particularly for the intrinsic water-use efficiency (WUEi). We observed that variations in AN induced by rootstocks were related to changes in both diffusive and biochemical parameters. Under drought or salt stress, different photosynthetic performances were observed depending on the rootstock, although the high variability among studies promted to remarkable results. Overall, we observed that grafting can be a useful technique to improve plant photosynthetic performance, and therefore, crop yield and WUE, and that the rootstock selection for a target environment is determinant for the variations in photosynthesis.
Collapse
Affiliation(s)
- Mateu Fullana-Pericàs
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Francisco Pérez-Alfocea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100, Murcia, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain.
| |
Collapse
|
128
|
Fu P, Meacham‐Hensold K, Guan K, Wu J, Bernacchi C. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. PLANT, CELL & ENVIRONMENT 2020; 43:1241-1258. [PMID: 31922609 PMCID: PMC7385704 DOI: 10.1111/pce.13718] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 05/20/2023]
Abstract
The lack of efficient means to accurately infer photosynthetic traits constrains understanding global land carbon fluxes and improving photosynthetic pathways to increase crop yield. Here, we investigated whether a hyperspectral imaging camera mounted on a mobile platform could provide the capability to help resolve these challenges, focusing on three main approaches, that is, reflectance spectra-, spectral indices-, and numerical model inversions-based partial least square regression (PLSR) to estimate photosynthetic traits from canopy hyperspectral reflectance for 11 tobacco cultivars. Results showed that PLSR with inputs of reflectance spectra or spectral indices yielded an R2 of ~0.8 for predicting V cmax and J max , higher than an R2 of ~0.6 provided by PLSR of numerical inversions. Compared with PLSR of reflectance spectra, PLSR with spectral indices exhibited a better performance for predicting V cmax (R2 = 0.84 ± 0.02, RMSE = 33.8 ± 2.2 μmol m-2 s-1 ) while a similar performance for J max (R2 = 0.80 ± 0.03, RMSE = 22.6 ± 1.6 μmol m-2 s-1 ). Further analysis on spectral resampling revealed that V cmax and J max could be predicted with ~10 spectral bands at a spectral resolution of less than 14.7 nm. These results have important implications for improving photosynthetic pathways and mapping of photosynthesis across scales.
Collapse
Affiliation(s)
- Peng Fu
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Katherine Meacham‐Hensold
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Kaiyu Guan
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana ChampaignUrbanaIllinois
- National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana ChampaignUrbanaIllinois
| | - Jin Wu
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Carl Bernacchi
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA‐ARS Global Change and Photosynthesis Research UnitUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
129
|
Condon AG. Drying times: plant traits to improve crop water use efficiency and yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2239-2252. [PMID: 31912130 DOI: 10.1093/jxb/eraa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 05/13/2023]
Abstract
Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an increased irregularity and a downward trend in rainfall. In addition, irrigated cropping faces declining water availability and increased competition from other users. Crop WUE would be improved by, first, ensuring that as much water as possible is actually transpired by the crop rather than being wasted. Deeper roots and greater early crop vigour are two traits that should help achieve this. Crop WUE would also be improved by achieving greater biomass per unit water transpired. A host of traits has been proposed to address this outcome. Restricting crop transpiration through lower stomatal conductance is assessed as having limited utility compared with traits that improve carbon gain, such as enhancements to photosynthetic biochemistry and responsiveness, or greater mesophyll conductance. Ultimately, the most useful outcomes for improved crop WUE will probably be achieved by combining traits to achieve synergistic benefit. The potential utility of trait combinations is supported by the results of crop simulation modelling.
Collapse
|
130
|
Meacham-Hensold K, Fu P, Wu J, Serbin S, Montes CM, Ainsworth E, Guan K, Dracup E, Pederson T, Driever S, Bernacchi C. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2312-2328. [PMID: 32092145 PMCID: PMC7134947 DOI: 10.1093/jxb/eraa068] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 05/20/2023]
Abstract
Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400-900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (Vc,max, R2=0.79) maximum electron transport rate in given conditions (J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio (R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two cameras spanning 400-1800 nm, suggesting a robust, widely applicable and more 'cost-effective' pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.
Collapse
Affiliation(s)
- Katherine Meacham-Hensold
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Peng Fu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jin Wu
- Environmental & Climate Science Department, Brookhaven National Laboratory, Upton, New York, USA
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Shawn Serbin
- Environmental & Climate Science Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Elizabeth Ainsworth
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Kaiyu Guan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Evan Dracup
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Taylor Pederson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Steven Driever
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Center for Crop Systems Analysis, Wageningen University, The Netherlands
| | - Carl Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| |
Collapse
|
131
|
Beechey-Gradwell Z, Cooney L, Winichayakul S, Andrews M, Hea SY, Crowther T, Roberts N. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2351-2361. [PMID: 31679036 PMCID: PMC7134912 DOI: 10.1093/jxb/erz494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 05/22/2023]
Abstract
By modifying two genes involved in lipid biosynthesis and storage [cysteine oleosin (cys-OLE)/diacylglycerol O-acyltransferase (DGAT)], the accumulation of stable lipid droplets in perennial ryegrass (Lolium perenne) leaves was achieved. Growth, biomass allocation, leaf structure, gas exchange parameters, fatty acids, and water-soluble carbohydrates were quantified for a high-expressing cys-OLE/DGAT ryegrass transformant (HL) and a wild-type (WT) control grown under controlled conditions with 1-10 mM nitrogen (N) supply at ambient and elevated atmospheric CO2. A dramatic shift in leaf carbon (C) storage occurred in HL leaves, away from readily mobilizable carbohydrates and towards stable lipid droplets. HL exhibited an increased growth rate, mainly in non-photosynthetic organs, leading to a decreased leaf mass fraction. HL leaves, however, displayed an increased specific leaf area and photosynthetic rate per unit leaf area, delivering greater overall C capture and leaf growth at high N supply. HL also exhibited a greater photosynthesis response to elevated atmospheric CO2. We speculate that by behaving as uniquely stable microsinks for C, cys-OLE-encapsulated lipid droplets can reduce feedback inhibition of photosynthesis and drive greater C capture. Manipulation of many genes and gene combinations has been used to increase non-seed lipid content. However, the cys-OLE/DGAT technology remains the only reported case that increases plant biomass. We contrast cys-OLE/DGAT with other lipid accumulation strategies and discuss the implications of introducing lipid sinks into non-seed organs for plant energy homeostasis and growth.
Collapse
Affiliation(s)
- Zac Beechey-Gradwell
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
- Faculty of Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Luke Cooney
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | | | - Mitchell Andrews
- Faculty of Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Shen Y Hea
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | - Tracey Crowther
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | - Nick Roberts
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| |
Collapse
|
132
|
Paul MJ, Watson A, Griffiths CA. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2270-2280. [PMID: 31665486 PMCID: PMC7134924 DOI: 10.1093/jxb/erz480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 05/19/2023]
Abstract
Understanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited. Different approaches for improvement should be considered, namely is there genetic variation? Or if not, could genetic modification, genome editing, or alternative approaches be utilized? Currently, there are few examples where genetic modification has improved intrinsic yield in the field for commercial application in a major crop. Genome editing, particularly of negative yield regulators as a first step, is providing new opportunities. Here we highlight key mechanisms in source and sink, arguing that for large yield increases integration of key processes is likely to produce the biggest successes within the framework of crop ideotypes with optimized phenology. We highlight a plethora of recent papers that show breakthroughs in fundamental science and the promise of the trehalose 6-phosphate signalling pathway, which regulates carbohydrate allocation which is key for many crop traits.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
- Correspondence:
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Cara A Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
133
|
Furbank RT, Sharwood R, Estavillo GM, Silva-Perez V, Condon AG. Photons to food: genetic improvement of cereal crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2226-2238. [PMID: 32083680 PMCID: PMC7135014 DOI: 10.1093/jxb/eraa077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
Photosynthesis has become a major trait of interest for cereal yield improvement as breeders appear to have reached the theoretical genetic limit for harvest index, the mass of grain as a proportion of crop biomass. Yield improvements afforded by the adoption of green revolution dwarfing genes to wheat and rice are becoming exhausted, and improvements in biomass and radiation use efficiency are now sought in these crops. Exploring genetic diversity in photosynthesis is now possible using high-throughput techniques, and low-cost genotyping facilitates discovery of the genetic architecture underlying this variation. Photosynthetic traits have been shown to be highly heritable, and significant variation is present for these traits in available germplasm. This offers hope that breeding for improved photosynthesis and radiation use efficiency in cereal crops is tractable and a useful shorter term adjunct to genetic and genome engineering to boost yield potential.
Collapse
Affiliation(s)
- Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Robert Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
134
|
Evans JR, Lawson T. From green to gold: agricultural revolution for food security. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2211-2215. [PMID: 32251509 DOI: 10.1093/jxb/eraa110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
135
|
Zhu XG, Ort DR, Parry MAJ, von Caemmerer S. A wish list for synthetic biology in photosynthesis research. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2219-2225. [PMID: 32060550 PMCID: PMC7134917 DOI: 10.1093/jxb/eraa075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
This perspective summarizes the presentations and discussions at the ' International Symposium on Synthetic Biology in Photosynthesis Research', which was held in Shanghai in 2018. Leveraging the current advanced understanding of photosynthetic systems, the symposium brain-stormed about the redesign and engineering of photosynthetic systems for translational goals and evaluated available new technologies/tools for synthetic biology as well as technological obstacles and new tools that would be needed to overcome them. Four major research areas for redesigning photosynthesis were identified: (i) mining natural variations of photosynthesis; (ii) coordinating photosynthesis with pathways utilizing photosynthate; (iii) reconstruction of highly efficient photosynthetic systems in non-host species; and (iv) development of new photosynthetic systems that do not exist in nature. To expedite photosynthesis synthetic biology research, an array of new technologies and community resources need to be developed, which include expanded modelling capacities, molecular engineering toolboxes, model species, and phenotyping tools.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- Institute of Plant Physiology and Ecology and Center for Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald R Ort
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Susanne von Caemmerer
- Research School of Biological Sciences, Australian National University, Acton, Australia
| |
Collapse
|
136
|
Silva-Pérez V, De Faveri J, Molero G, Deery DM, Condon AG, Reynolds MP, Evans JR, Furbank RT. Genetic variation for photosynthetic capacity and efficiency in spring wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2299-2311. [PMID: 31565736 PMCID: PMC7134913 DOI: 10.1093/jxb/erz439] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
One way to increase yield potential in wheat is screening for natural variation in photosynthesis. This study uses measured and modelled physiological parameters to explore genotypic diversity in photosynthetic capacity (Pc, Rubisco carboxylation capacity per unit leaf area at 25 °C) and efficiency (Peff, Pc per unit of leaf nitrogen) in wheat in relation to fertilizer, plant stage, and environment. Four experiments (Aus1, Aus2, Aus3, and Mex1) were carried out with diverse wheat collections to investigate genetic variation for Rubisco capacity (Vcmax25), electron transport rate (J), CO2 assimilation rate, stomatal conductance, and complementary plant functional traits: leaf nitrogen, leaf dry mass per unit area, and SPAD. Genotypes for Aus1 and Aus2 were grown in the glasshouse with two fertilizer levels. Genotypes for Aus3 and Mex1 experiments were grown in the field in Australia and Mexico, respectively. Results showed that Vcmax25 derived from gas exchange measurements is a robust parameter that does not depend on stomatal conductance and was positively correlated with Rubisco content measured in vitro. There was significant genotypic variation in most of the experiments for Pc and Peff. Heritability of Pc reached 0.7 and 0.9 for SPAD. Genotypic variation and heritability of traits show that there is scope for these traits to be used in pre-breeding programmes to improve photosynthesis with the ultimate objective of raising yield potential.
Collapse
Affiliation(s)
- Viridiana Silva-Pérez
- CSIRO Agriculture & Food, Canberra, ACT, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology. The Australian National University, Canberra, ACT, Australia
| | | | - Gemma Molero
- International Maize and Wheat Improvement Centre (CIMMYT), México, DF, Mexico
| | | | - Anthony G Condon
- CSIRO Agriculture & Food, Canberra, ACT, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology. The Australian National University, Canberra, ACT, Australia
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT), México, DF, Mexico
| | - John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology. The Australian National University, Canberra, ACT, Australia
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology. The Australian National University, Canberra, ACT, Australia
- Agriculture Victoria, Horsham, VIC, Australia
| |
Collapse
|
137
|
Peng B, Guan K, Tang J, Ainsworth EA, Asseng S, Bernacchi CJ, Cooper M, Delucia EH, Elliott JW, Ewert F, Grant RF, Gustafson DI, Hammer GL, Jin Z, Jones JW, Kimm H, Lawrence DM, Li Y, Lombardozzi DL, Marshall-Colon A, Messina CD, Ort DR, Schnable JC, Vallejos CE, Wu A, Yin X, Zhou W. Towards a multiscale crop modelling framework for climate change adaptation assessment. NATURE PLANTS 2020; 6:338-348. [PMID: 32296143 DOI: 10.1038/s41477-020-0625-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Predicting the consequences of manipulating genotype (G) and agronomic management (M) on agricultural ecosystem performances under future environmental (E) conditions remains a challenge. Crop modelling has the potential to enable society to assess the efficacy of G × M technologies to mitigate and adapt crop production systems to climate change. Despite recent achievements, dedicated research to develop and improve modelling capabilities from gene to global scales is needed to provide guidance on designing G × M adaptation strategies with full consideration of their impacts on both crop productivity and ecosystem sustainability under varying climatic conditions. Opportunities to advance the multiscale crop modelling framework include representing crop genetic traits, interfacing crop models with large-scale models, improving the representation of physiological responses to climate change and management practices, closing data gaps and harnessing multisource data to improve model predictability and enable identification of emergent relationships. A fundamental challenge in multiscale prediction is the balance between process details required to assess the intervention and predictability of the system at the scales feasible to measure the impact. An advanced multiscale crop modelling framework will enable a gene-to-farm design of resilient and sustainable crop production systems under a changing climate at regional-to-global scales.
Collapse
Affiliation(s)
- Bin Peng
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jinyun Tang
- Climate Sciences Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth A Ainsworth
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Senthold Asseng
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Carl J Bernacchi
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark Cooper
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Evan H Delucia
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua W Elliott
- Department of Computer Science, University of Chicago, Chicago, IL, USA
| | - Frank Ewert
- Crop Science Group, INRES, University of Bonn, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | | - Graeme L Hammer
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - James W Jones
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | | | - Amy Marshall-Colon
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Donald R Ort
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James C Schnable
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - C Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The University of Queensland, Brisbane, Queensland, Australia
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Wang Zhou
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
138
|
Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol 2020; 61:102-109. [DOI: 10.1016/j.copbio.2019.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
139
|
Stöckle CO, Kemanian AR. Can Crop Models Identify Critical Gaps in Genetics, Environment, and Management Interactions? FRONTIERS IN PLANT SCIENCE 2020; 11:737. [PMID: 32595666 PMCID: PMC7303354 DOI: 10.3389/fpls.2020.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Increasing food demand under climate change constraints may challenge and strain agricultural systems. The use of crop models to assess genotypes performance across diverse target environments and management practices, i.e., the genetic × environment × management interaction (GEMI), can help understand suitability of genotype and agronomic practices, and possibly accelerate turnaround in plant breeding programs. However, the readiness of models to support these tasks can be debated. In this article, we point out modeling and data limitations and argue the need for evaluation and improvement of relevant process algorithms as well as model convergence. Under conditions suitable for plant growth, without meteorological extremes or soil limitation to root exploration, models can simulate resource capture, growth, and yield with relative ease. As stresses accumulate, the plant species- and genotype-specific attributes and their interactions with the soil and atmospheric environment generate a large range of responses, including conditions where resources become so limiting as to make yields very low. The space in between high and low yields is where most rainfed production occurs, and where the current model and user skill at representing GEMI varies. We also review studies comparing the performance of a large number of crop models and the lessons learned. The overall message is that improvement of models appears as a necessary condition for progress, and perhaps relevancy. Model ensembles help mitigate data input, model, and user-driven uncertainty for some but not all applications, sometimes at a very high cost. Successful model-based assessment of GEMI not only requires better crop models and knowledgeable users, but also a realistic representation of the environmental conditions of the landscape where crops are grown, which is not trivial given the 3D nature of water and nutrient transport. Models remain the best quantitative repository of our knowledge on crop functioning; they contain a narrative of plant, soil, and atmospheric functioning in computer language and train the mind to couple processes. But in our quest to tame GEMI, will they lead the way or just ride along history?
Collapse
Affiliation(s)
- Claudio O. Stöckle
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
- *Correspondence: Claudio O. Stöckle,
| | - Armen R. Kemanian
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
140
|
Simkin AJ. Genetic Engineering for Global Food Security: Photosynthesis and Biofortification. PLANTS (BASEL, SWITZERLAND) 2019; 8:E586. [PMID: 31835394 PMCID: PMC6963231 DOI: 10.3390/plants8120586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing demands for food and resources are challenging existing markets, driving a need to continually investigate and establish crop varieties with improved yields and health benefits. By the later part of the century, current estimates indicate that a >50% increase in the yield of most of the important food crops including wheat, rice and barley will be needed to maintain food supplies and improve nutritional quality to tackle what has become known as 'hidden hunger'. Improving the nutritional quality of crops has become a target for providing the micronutrients required in remote communities where dietary variation is often limited. A number of methods to achieve this have been investigated over recent years, from improving photosynthesis through genetic engineering, to breeding new higher yielding varieties. Recent research has shown that growing plants under elevated [CO2] can lead to an increase in Vitamin C due to changes in gene expression, demonstrating one potential route for plant biofortification. In this review, we discuss the current research being undertaken to improve photosynthesis and biofortify key crops to secure future food supplies and the potential links between improved photosynthesis and nutritional quality.
Collapse
Affiliation(s)
- Andrew John Simkin
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
141
|
Geetika G, van Oosterom EJ, George-Jaeggli B, Mortlock MY, Deifel KS, McLean G, Hammer GL. Genotypic variation in whole-plant transpiration efficiency in sorghum only partly aligns with variation in stomatal conductance. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1072-1089. [PMID: 31615621 DOI: 10.1071/fp18177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/01/2019] [Indexed: 05/13/2023]
Abstract
Water scarcity can limit sorghum (Sorghum bicolor (L.) Moench) production in dryland agriculture, but increased whole-plant transpiration efficiency (TEwp, biomass production per unit of water transpired) can enhance grain yield in such conditions. The objectives of this study were to quantify variation in TEwp for 27 sorghum genotypes and explore the linkages of this variation to responses of the underpinning leaf-level processes to environmental conditions. Individual plants were grown in large lysimeters in two well-watered experiments. Whole-plant transpiration per unit of green leaf area (TGLA) was monitored continuously and stomatal conductance and maximum photosynthetic capacity were measured during sunny conditions on recently expanded leaves. Leaf chlorophyll measurements of the upper five leaves of the main shoot were conducted during early grain filling. TEwp was determined at harvest. The results showed that diurnal patterns in TGLA were determined by vapour pressure deficit (VPD) and by the response of whole-plant conductance to radiation and VPD. Significant genotypic variation in the response of TGLA to VPD occurred and was related to genotypic differences in stomatal conductance. However, variation in TGLA explained only part of the variation in TEwp, with some of the residual variation explained by leaf chlorophyll readings, which were a reflection of photosynthetic capacity. Genotypes with different genetic background often differed in TEwp, TGLA and leaf chlorophyll, indicating potential differences in photosynthetic capacity among these groups. Observed differences in TEwp and its component traits can affect adaptation to drought stress.
Collapse
Affiliation(s)
- Geetika Geetika
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Qld 4072, Australia; and Corresponding author.
| | - Erik J van Oosterom
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Qld 4072, Australia
| | - Barbara George-Jaeggli
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, Warwick, Qld 4370, Australia; and Agri-Science Queensland, Department of Agriculture and Fisheries, Warwick, Qld 4370, Australia
| | - Miranda Y Mortlock
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Qld 4072, Australia
| | - Kurt S Deifel
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Qld 4072, Australia
| | - Greg McLean
- Agri-Science Queensland, Department of Agriculture and Fisheries, Toowoomba, Qld 4350, Australia
| | - Graeme L Hammer
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Qld 4072, Australia
| |
Collapse
|
142
|
Lekklar C, Suriya-Arunroj D, Pongpanich M, Comai L, Kositsup B, Chadchawan S, Buaboocha T. Comparative Genomic Analysis of Rice with Contrasting Photosynthesis and Grain Production under Salt Stress. Genes (Basel) 2019; 10:genes10080562. [PMID: 31349693 PMCID: PMC6722916 DOI: 10.3390/genes10080562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023] Open
Abstract
Unfavourable environmental conditions, including soil salinity, lead to decreased rice (Oryza sativa L.) productivity, especially at the reproductive stage. In this study, we examined 30 rice varieties, which revealed significant differences in the photosynthetic performance responses under salt stress conditions during the reproductive stage, which ultimately affected yield components after recovery. In rice with a correlation between net photosynthetic rate (PN) and intercellular CO2 concentration (Ci) under salt stress, PN was found to be negatively correlated with filled grain number after recovery. Applying stringent criteria, we identified 130,317 SNPs and 15,396 InDels between two “high-yield rice” varieties and two “low-yield rice” varieties with contrasting photosynthesis and grain yield characteristics. A total of 2089 genes containing high- and moderate-impact SNPs or InDels were evaluated by gene ontology (GO) enrichment analysis, resulting in over-represented terms in the apoptotic process and kinase activity. Among these genes, 262 were highly expressed in reproductive tissues, and most were annotated as receptor-like protein kinases. These findings highlight the importance of variations in signaling components in the genome and these loci can serve as potential genes in rice breeding to produce a variety with salt avoidance that leads to increased yield in saline soil.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangjai Suriya-Arunroj
- Nakohn Ratchasima Rice Research Center, Rice Department, Ministry of Agriculture and Cooperative, Nakohn Ratchasima 30110, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Boonthida Kositsup
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
143
|
Flamholz AI, Prywes N, Moran U, Davidi D, Bar-On YM, Oltrogge LM, Alves R, Savage D, Milo R. Revisiting Trade-offs between Rubisco Kinetic Parameters. Biochemistry 2019; 58:3365-3376. [PMID: 31259528 PMCID: PMC6686151 DOI: 10.1021/acs.biochem.9b00237] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Rubisco
is the primary carboxylase of the Calvin cycle, the most
abundant enzyme in the biosphere, and one of the best-characterized
enzymes. On the basis of correlations between Rubisco kinetic parameters,
it is widely posited that constraints embedded in the catalytic mechanism
enforce trade-offs between CO2 specificity, SC/O, and maximum carboxylation rate, kcat,C. However, the reasoning that established this view
was based on data from ≈20 organisms. Here, we re-examine models
of trade-offs in Rubisco catalysis using a data set from ≈300
organisms. Correlations between kinetic parameters are substantially
attenuated in this larger data set, with the inverse relationship
between kcat,C and SC/O being a key example. Nonetheless, measured kinetic parameters
display extremely limited variation, consistent with a view of Rubisco
as a highly constrained enzyme. More than 95% of kcat,C values are between 1 and 10 s–1, and no measured kcat,C exceeds 15 s–1. Similarly, SC/O varies
by only 30% among Form I Rubiscos and <10% among C3 plant
enzymes. Limited variation in SC/O forces
a strong positive correlation between the catalytic efficiencies (kcat/KM) for carboxylation
and oxygenation, consistent with a model of Rubisco catalysis in which
increasing the rate of addition of CO2 to the enzyme–substrate
complex requires an equal increase in the O2 addition rate.
Altogether, these data suggest that Rubisco evolution is tightly constrained
by the physicochemical limits of CO2/O2 discrimination.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States
| | - Noam Prywes
- Innovative Genomics Institute , University of California , Berkeley , California 94704 , United States
| | - Uri Moran
- Department of Plant and Environmental Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Dan Davidi
- Department of Plant and Environmental Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yinon M Bar-On
- Department of Plant and Environmental Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States
| | - Rui Alves
- Institute of Biomedical Research of Lleida , IRBLleida , 25198 Lleida , Catalunya , Spain.,Departament de Ciències Mèdiques Bàsiques , University of Lleida , 25198 Lleida , Catalunya , Spain
| | - David Savage
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States
| | - Ron Milo
- Department of Plant and Environmental Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
144
|
Ness J, Naurin S, Effinger K, Stadnytskyi V, Ibrahim IM, Puthiyaveetil S, Cramer WA. Structure‐based control of the rate limitation of photosynthetic electron transport. FEBS Lett 2019; 593:2103-2111. [PMID: 31198994 DOI: 10.1002/1873-3468.13484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jillian Ness
- Department of Biological Sciences Purdue University West Lafayette IN USA
| | - Sejuti Naurin
- Department of Biological Sciences Purdue University West Lafayette IN USA
| | | | | | | | | | - William A. Cramer
- Department of Biological Sciences Purdue University West Lafayette IN USA
| |
Collapse
|
145
|
Rodrigues J, Inzé D, Nelissen H, Saibo NJM. Source-Sink Regulation in Crops under Water Deficit. TRENDS IN PLANT SCIENCE 2019; 24:652-663. [PMID: 31109763 DOI: 10.1016/j.tplants.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 05/21/2023]
Abstract
To meet the food demands of an increasing world population, it is necessary to improve crop production; a task that is made more challenging by the changing climate. Several recent reports show that increasing the capacity of plants to assimilate carbon (source strength), or to tap into the internal carbon reservoir (sink strength), has the potential to improve plant productivity in the field under water-deficit conditions. Here, we review the effects of water deficit on the source-sink communication, as well as the respective regulatory mechanisms underpinning plant productivity. We also highlight stress-tolerant traits that can contribute to harness source and sink strengths towards producing high-yielding and drought-tolerant crops, depending on the drought scenario.
Collapse
Affiliation(s)
- Joana Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, UNL, 2780-157 Oeiras, Portugal; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, UNL, 2780-157 Oeiras, Portugal.
| |
Collapse
|