101
|
Parodi A, Evangelopoulos M, Arrighetti N, Cevenini A, Livingston M, Khaled SZ, Brown BS, Yazdi IK, Paradiso F, Campa-Carranza JN, De Vita A, Taraballi F, Tasciotti E. Endosomal Escape of Polymer-Coated Silica Nanoparticles in Endothelial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907693. [PMID: 32643290 DOI: 10.1002/smll.201907693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.
Collapse
Affiliation(s)
- Alessandro Parodi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Michael Evangelopoulos
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, 20133, Italy
| | - Armando Cevenini
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate S.C.R.L., Napoli, NA 80145, Italy
| | - Megan Livingston
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Sm Z Khaled
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brandon S Brown
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Iman K Yazdi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Francesca Paradiso
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jocelyn N Campa-Carranza
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, 47014, Italy
| | - Francesca Taraballi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
102
|
Shiekh FA, Hameed A, Farooq O, Lodhi MU. For (nano) rules and regulations: the learning curve. Nanomedicine (Lond) 2020; 15:2225-2228. [PMID: 32856527 DOI: 10.2217/nnm-2020-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Farooq A Shiekh
- Department of Biochemistry, Government Medical College (GMC), Baramulla, Kashmir, India
| | - Abdul Hameed
- Department of Anesthesia, Government Medical College (GMC), Baramulla, Kashmir, India
| | - Omar Farooq
- Department of Neurology, Government Medical College (GMC), Srinagar, Kashmir, India
| | - Mohammad Uzair Lodhi
- Department of Internal Medicine, Eastern Idaho Regional Medical Center, Idaho Falls, ID 83404, USA
| |
Collapse
|
103
|
Ferretti AM, Usseglio S, Mondini S, Drago C, La Mattina R, Chini B, Verderio C, Leonzino M, Cagnoli C, Joshi P, Boraschi D, Italiani P, Li Y, Swartzwelter BJ, Sironi L, Gelosa P, Castiglioni L, Guerrini U, Ponti A. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci 2020; 582:678-700. [PMID: 32911414 DOI: 10.1016/j.jcis.2020.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.
Collapse
Affiliation(s)
- Anna M Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sandro Usseglio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sara Mondini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Carmelo Drago
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Rosa La Mattina
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Bice Chini
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Claudia Verderio
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Marianna Leonzino
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cinzia Cagnoli
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Pooja Joshi
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Yang Li
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Benjamin J Swartzwelter
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Luigi Sironi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Paolo Gelosa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Laura Castiglioni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
104
|
Watjanatepin P, Castagnola V, Cetin Y, Linkov I, Skentelbery C, Prodanov D. Workshop Report: Governance of Emerging Nanotechnology Risks in the Semiconductor Industry. Front Public Health 2020; 8:275. [PMID: 32733835 PMCID: PMC7358517 DOI: 10.3389/fpubh.2020.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/27/2020] [Indexed: 01/30/2023] Open
Abstract
Assessment of risk in the field of nanotechnology requires an integrated multidisciplinary approach due to the complex and cross-disciplinary framework for materials and activities at the nanoscale. The present paper summarizes the workshop "Governance of emerging nano-risk in the semiconductor industry" held on April 26, 2018 in Brussels, Belgium. The event targeted representatives of stakeholder communities involved in the risk assessment and governance of the engineered nanomaterials. Nanoelectronics was selected as an impactful use case for risk assessment approaches and comparison to bottom-up nanofabrication. The workshop outlined key data gaps impeding successful assessment of risks associated with nanoparticle use in the industry, using the semiconductor industry as an example. The workshop outlined mitigation strategies informing future regulatory decisions and identified some directions for future efforts.
Collapse
Affiliation(s)
| | | | - Yüksel Cetin
- Genetic Engineering and Biotechnology Institute, TUBITAK, Kocaeli, Turkey
| | - Igor Linkov
- US Army Engineer Research and Development Center, Concord, CA, United States
- Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, United States
| | | | | |
Collapse
|
105
|
Ede JD, Lobaskin V, Vogel U, Lynch I, Halappanavar S, Doak SH, Roberts MG, Shatkin JA. Translating Scientific Advances in the AOP Framework to Decision Making for Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1229. [PMID: 32599945 PMCID: PMC7353114 DOI: 10.3390/nano10061229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Much of the current innovation in advanced materials is occurring at the nanoscale, specifically in manufactured nanomaterials (MNs). MNs display unique attributes and behaviors, and may be biologically and physically unique, making them valuable across a wide range of applications. However, as the number, diversity and complexity of MNs coming to market continue to grow, assessing their health and environmental risks with traditional animal testing approaches is too time- and cost-intensive to be practical, and is undesirable for ethical reasons. New approaches are needed that meet current requirements for regulatory risk assessment while reducing reliance on animal testing and enabling safer-by-design product development strategies to be implemented. The adverse outcome pathway (AOP) framework presents a sound model for the advancement of MN decision making. Yet, there are currently gaps in technical and policy aspects of AOPs that hinder the adoption and use for MN risk assessment and regulatory decision making. This review outlines the current status and next steps for the development and use of the AOP framework in decision making regarding the safety of MNs. Opportunities and challenges are identified concerning the advancement and adoption of AOPs as part of an integrated approach to testing and assessing (IATA) MNs, as are specific actions proposed to advance the development, use and acceptance of the AOP framework and associated testing strategies for MN risk assessment and decision making. The intention of this review is to reflect the views of a diversity of stakeholders including experts, researchers, policymakers, regulators, risk assessors and industry representatives on the current status, needs and requirements to facilitate the future use of AOPs in MN risk assessment. It incorporates the views and feedback of experts that participated in two workshops hosted as part of an Organization for Economic Cooperation and Development (OECD) Working Party on Manufactured Nanomaterials (WPMN) project titled, "Advancing AOP Development for Nanomaterial Risk Assessment and Categorization", as well as input from several EU-funded nanosafety research consortia.
Collapse
Affiliation(s)
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Shareen H. Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK;
| | - Megan G. Roberts
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
| | | |
Collapse
|
106
|
Bartucci R, Paramanandana A, Boersma YL, Olinga P, Salvati A. Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices. Nanotoxicology 2020; 14:847-865. [PMID: 32536243 DOI: 10.1080/17435390.2020.1771785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine responses to nanoparticles in a more comprehensive way, current efforts in nanosafety aim at combining the analysis of multiple endpoints and comparing outcomes in different models. To this end, here we used tissue slices from mice as 3D ex vivo models and performed for the first time a comparative study of uptake and impact in liver, lung, and kidney slices exposed under the same conditions to silica, carboxylated and amino-modified polystyrene. In all organs, only exposure to amino-modified polystyrene induced toxicity, with stronger effects in kidneys and lungs. Uptake and distribution studies by confocal microscopy confirmed nanoparticle uptake in all slices, and, in line with what observed in vivo, preferential accumulation in the macrophages. However, uptake levels in kidneys were minimal, despite the strong impact observed when exposed to the amino-modified polystyrene. On the contrary, nanoparticle uptake and accumulation in macrophages were particularly evident in lung slices. Thus, tissue digestion was used to recover all cells from lung slices at different exposure times and to determine by flow cytometry detailed uptake kinetics in lung macrophages and all other cells, confirming higher uptake by the macrophages. Finally, the expression levels of a panel of targets involved in inflammation and macrophage polarization were measured to determine potential effects induced in lung and liver tissue. Overall, this comparative study allowed us to determine uptake and impact of nanoparticles in real tissue and identify important differences in outcomes in the organs in which nanoparticles distribute.
Collapse
Affiliation(s)
- Roberta Bartucci
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Abhimata Paramanandana
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ykelien L Boersma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
107
|
Qu S, Sun F, Qiao Z, Li J, Shang L. In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907633. [PMID: 32162768 DOI: 10.1002/smll.201907633] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 05/28/2023]
Abstract
A fundamental understanding of nanoparticle-protein corona and its interactions with biological systems is essential for future application of engineered nanomaterials. In this work, fluorescence resonance energy transfer (FRET) is employed for studying the protein adsorption behavior of nanoparticles. The adsorption of human serum albumin (HSA) onto the surface of InP@ZnS quantum dots (QDs) with different chirality (d- and l-penicillamine) shows strong discernible differences in the binding behaviors including affinity and adsorption orientation that are obtained upon quantitative analysis of FRET data. Circular dichroism spectroscopy further confirms the differences in the conformational changes of HSA upon interaction with d- and l-chiral QD surfaces. Consequently, the formed protein corona on chiral surfaces may affect their following biological interactions, such as possible protein exchange with serum proteins plasma as well as cellular interactions. These results vividly illustrate the potential of the FRET method as a simple yet versatile platform for quantitatively investigating biological interactions of nanoparticles.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Fangying Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Zihan Qiao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Juanmin Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
- NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
108
|
Mukherjee SP, Gupta G, Klöditz K, Wang J, Rodrigues AF, Kostarelos K, Fadeel B. Next-Generation Sequencing Reveals Differential Responses to Acute versus Long-Term Exposures to Graphene Oxide in Human Lung Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907686. [PMID: 32227449 DOI: 10.1002/smll.201907686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Numerous studies have addressed the biological impact of graphene-based materials including graphene oxide (GO), yet few have focused on long-term effects. Here, RNA sequencing is utilized to unearth responses of human lung cells to GO. To this end, the BEAS-2B cell line derived from normal human bronchial epithelium is subjected to repeated, low-dose exposures of GO (1 or 5 µg mL-1 ) for 28 days or to the equivalent, cumulative amount of GO for 48 h. Then, samples are analyzed by using the NovaSeq 6000 sequencing system followed by pathway analysis and gene ontology enrichment analysis of the differentially expressed genes. Significant differences are seen between the low-dose, long-term exposures and the high-dose, short-term exposures. Hence, exposure to GO for 48 h results in mitochondrial dysfunction. In contrast, exposure to GO for 28 days is characterized by engagement of apoptosis pathways with downregulation of genes belonging to the inhibitor of apoptosis protein (IAP) family. Validation experiments confirm that long-term exposure to GO affects the apoptosis threshold in lung cells, accompanied by a loss of IAPs. These studies reveal the sensitivity of RNA-sequencing approaches and show that acute exposure to GO is not a good predictor of the long-term effects of GO.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Govind Gupta
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Katharina Klöditz
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Artur Filipe Rodrigues
- Nanomedicine Laboratory, Faculty of Biology, Medical and Human Sciences, and National Graphene Institute, University of Manchester, Manchester, M13 9PT, UK
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medical and Human Sciences, and National Graphene Institute, University of Manchester, Manchester, M13 9PT, UK
| | - Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
109
|
Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb DC, Haisch C, Zahler S, Vollmar AM, Wuttke S, Engelke H. Metal-Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907267. [PMID: 32182391 DOI: 10.1002/adfm.201909062] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Ion homeostasis is essential for cellular survival, and elevated concentrations of specific ions are used to start distinct forms of programmed cell death. However, investigating the influence of certain ions on cells in a controlled way has been hampered due to the tight regulation of ion import by cells. Here, it is shown that lipid-coated iron-based metal-organic framework nanoparticles are able to deliver and release high amounts of iron ions into cells. While high concentrations of iron often trigger ferroptosis, here, the released iron induces pyroptosis, a form of cell death involving the immune system. The iron release occurs only in slightly acidic extracellular environments restricting cell death to cells in acidic microenvironments and allowing for external control. The release mechanism is based on endocytosis facilitated by the lipid-coating followed by degradation of the nanoparticle in the lysosome via cysteine-mediated reduction, which is enhanced in slightly acidic extracellular environment. Thus, a new functionality of hybrid nanoparticles is demonstrated, which uses their nanoarchitecture to facilitate controlled ion delivery into cells. Based on the selectivity for acidic microenvironments, the described nanoparticles may also be used for immunotherapy: the nanoparticles may directly affect the primary tumor and the induced pyroptosis activates the immune system.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - David Bauer
- Department of Chemistry, TU Munich, Munich, 81377, Germany
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | | | - Stefan Zahler
- Department of Pharmacy, LMU Munich, Munich, 81377, Germany
| | | | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| |
Collapse
|
110
|
Mortimer M, Li D, Wang Y, Holden PA. Physical Properties of Carbon Nanomaterials and Nanoceria Affect Pathways Important to the Nodulation Competitiveness of the Symbiotic N 2 -Fixing Bacterium Bradyrhizobium diazoefficiens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906055. [PMID: 31899607 DOI: 10.1002/smll.201906055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 05/07/2023]
Abstract
The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2 nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2 fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here, Bradyrhizobium diazoefficiens associated with symbiotic N2 fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM-bacterial interactions and the effects of CeO2 NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L-1 CeO2 NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L-1 cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant-bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2 NPs inhibit the expression of genes conferring B. diazoefficiens nodulation competitiveness. Surprisingly, the transcriptomic effects on B. diazoefficiens are similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Dong Li
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ying Wang
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
111
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
112
|
Romeo D, Salieri B, Hischier R, Nowack B, Wick P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. ENVIRONMENT INTERNATIONAL 2020; 137:105505. [PMID: 32014789 DOI: 10.1016/j.envint.2020.105505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
In line with the 3R concept, nanotoxicology is shifting from a phenomenological to a mechanistic approach based on in vitro and in silico methods, with a consequent reduction in animal testing. Risk Assessment (RA) and Life Cycle Assessment (LCA) methodologies, which traditionally rely on in vivo toxicity studies, will not be able to keep up with the pace of development of new nanomaterials unless they adapt to use this new type of data. While tools and models are already available and show a great potential for future use in RA and LCA, currently none is able alone to quantitatively assess human hazards (i.e. calculate chronic NOAEL or ED50 values). By highlighting which models and approaches can be used in a quantitative way with the available knowledge and data, we propose an integrated pathway for the use of in vitro data in RA and LCA. Starting with the characterization of nanoparticles' properties, the pathway then investigates how to select relevant in vitro human data, and how to bridge in vitro dose-response relationships to in vivo effects. If verified, this approach would allow RA and LCA to stir up the development of nanotoxicology by giving indications about the data and quality requirements needed in risk methodologies.
Collapse
Affiliation(s)
- Daina Romeo
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Beatrice Salieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Roland Hischier
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
113
|
He H, Xiao S, Xu G, Wang B, Zou Z, Qin X, Yu C, Zhang J. The NADPH oxidase 4 protects vascular endothelial cells from copper oxide nanoparticles-induced oxidative stress and cell death. Life Sci 2020; 252:117571. [PMID: 32201278 DOI: 10.1016/j.lfs.2020.117571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023]
Abstract
AIMS Nanoparticles (NPs) exposure is associated with increased risk of cardiovascular diseases, but the underlying mechanism is still obscure. In this study, we investigated the role of NADPH oxidase 4 (NOX4) in copper oxide nanoparticles (CuONPs)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS Morphology changes were examined under the microscope. Cell viability was determined by MTS assay and Calcein AM assay. Apoptosis and the levels of superoxide anion (O2-) and hydrogen peroxide (H2O2) were measured by fluorescence activated cell sorting (FACS). Oxidative stress was detected by assaying the levels of glutathione/glutathione disulfide (GSH/GSSG) and malondialdehyde (MDA). Protein expression levels were determined by western blotting. KEY FINDINGS We revealed that O2- rather than H2O2 was the major component of reactive oxygen species (ROS) in CuONPs-treated HUVECs. Meanwhile, CuONPs downregulated expression of O2--eliminating enzyme NOX4 both at mRNA and protein levels, but did not affect the expression of SOD2 and catalase. NOX4 knockdown caused more accumulation of O2-, and a further decrease of H2O2 in CuONPs-treated HUVECs, suggesting that NOX4 regulates the conversion of O2- to H2O2 in CuONPs-treated HUVECs. Furthermore, we revealed that NOX4 knockdown aggravated CuONPs-induced oxidative stress, characterized by a decrease of GSH/GSSG ratio, an increase of MDA level, and upregulation of HSPA5 and γH2AX. Finally, we showed that NOX4 knockdown exacerbated CuONPs-induced apoptotic cell death in HUVECs, indicating that NOX4 could protect ECs from CuONPs-induced cell death. SIGNIFICANCE Our study provides the evidence that NOX4 protects vascular endothelial cells from CuONPs-induced oxidative stress and cell death.
Collapse
Affiliation(s)
- Hui He
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Shiquan Xiao
- Reproductive Medicine Center, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xia Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
114
|
Gu X, Song Q, Zhang Q, Huang M, Zheng M, Chen J, Wei D, Chen J, Wei X, Chen H, Zheng G, Gao X. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J Control Release 2020; 322:31-41. [PMID: 32165238 DOI: 10.1016/j.jconrel.2020.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
The elaboration of nanotechnology offers valuable therapeutic options to overcome the blood-brain barrier and enable the treatment of brain diseases. However, to date, limit work has been done to reveal the fate of nanoparticles within the brain, which largely hinders their safe and effective applications. Here we demonstrated that the commonly-used organic nanoparticles reconstituted high density lipoprotein and poly(ethylene glycol)-b-poly(lactic acid) nanoparticles were cleared relatively fast from the brain (half-life <5 h). Notably, through various transgenic mice and pharmacological inhibition approaches, we revealed that the paravascular glymphatic pathway plays a key role (about 80%) in the brain clearance of the nanoparticles, and disclosed that microglia-mediated transportation is essential for facilitating nanoparticles elimination through the paravascular route. In addition, we witnessed a significant decline in the brain clearance of both of the nanoparticles in Alzheimer's model mice where the glymphatic system is impaired. These findings provide insightful data on the fate of nanoparticles in the brain, which would shed new light into the rational design and safe application of nanoparticles for brain drug delivery.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dan Wei
- Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
115
|
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 2020; 18:583-602. [PMID: 32226594 PMCID: PMC7090366 DOI: 10.1016/j.csbj.2020.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023] Open
Abstract
Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.
Collapse
Key Words
- (quantitative) Structure–activity relationships
- AI, Artificial Intelligence
- AOPs, Adverse Outcome Pathways
- API, Application Programming interface
- CG, coarse-grained (model)
- CNTs, carbon nanotubes
- Computational toxicology
- Engineered nanomaterials
- FAIR, Findable Accessible Inter-operable and Re-usable
- GUI, Graphical Processing Unit
- HOMO-LUMO, Highest Occupied Molecular Orbital Lowest Unoccupied Molecular Orbital
- Hazard assessment
- IATA, Integrated Approaches to Testing and Assessment
- Integrated approach for testing and assessment
- KE, key events
- MIE, molecular initiating events
- ML, machine learning
- MOA, mechanism (mode) of action
- MWCNT, multi-walled carbon nanotubes
- Machine learning
- NMs, nanomaterials
- Nanoinformatics
- OECD, Organisation for Economic Co-operation and Development
- PBPK, Physiologically Based PharmacoKinetics
- PC, Protein Corona
- PChem, Physicochemical
- PTGS, Predictive Toxicogenomics Space
- Predictive modelling
- QC, quantum-chemical
- QM, quantum-mechanical
- QSAR, quantitative structure-activity relationship
- QSPR, quantitative structure-property relationship
- RA, risk assessment
- REST, Representational State Transfer
- ROS, reactive oxygen species
- Read across
- SAR, structure-activity relationship
- SMILES, Simplified Molecular Input Line Entry System
- SOPs, standard operating procedures
- Safe-by-design
- Toxicogenomics
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Anastasios Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Periklis Tsiros
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dario Greco
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | | | | | - Roland Grafström
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Pekka Kohonen
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Penny Nymark
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Egon Willighagen
- Department of Bioinformatics – BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Alexander Lyubartsev
- Institutionen för material- och miljökemi, Stockholms Universitet, 106 91 Stockholm, Sweden
| | - Keld Alstrup Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
- Chief Digital Organization, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Samuel Harrison
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany
| | - Kaido Tamm
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Jaak Jänes
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Lauri Sikk
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Wolfgang Unger
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Alexander Tropsha
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, 100K Beard Hall, CB# 7568, Chapel Hill, NC 27955-7568, USA
| | - Yoram Cohen
- Samueli School Of Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217, USA
| | - Christine Ogilvie Hendren
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - Mark Wiesner
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - David Winkler
- La Trobe Institute of Molecular Sciences, La Trobe University, Plenty Rd & Kingsbury Dr, Bundoora, VIC 3086, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- CSIRO Data61, Clayton 3168, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Noriyuki Suzuki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Sik Choi
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
116
|
Fadeel B, Kostarelos K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. NATURE NANOTECHNOLOGY 2020; 15:164. [PMID: 32123379 DOI: 10.1038/s41565-020-0654-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kostas Kostarelos
- University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| |
Collapse
|
117
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
118
|
Yuan P, Zhou Q, Hu X. WS 2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1698-1709. [PMID: 31916439 DOI: 10.1021/acs.est.9b05537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging transition-metal dichalcogenide (TMDC) nanosheets, such as WS2 nanosheets, have shown tremendous potential for use in many fields such as intelligent manufacturing and environmental protection. However, considerable knowledge gaps still exist regarding the impact of TMDCs on environmental risks, especially risks involving organic pollutants. Here, a synergistic toxicity between WS2 nanosheets and organic pollutants (triclosan or tris(1,3-dichloro-2-propyl) phosphate) was found using the median-effect and combination index equations. In particular, the effect of synergy had a higher magnitude at low cytotoxicity levels and a noncytotoxic concentration of WS2 nanosheets clearly enhanced the cytotoxicity and intracellular accumulation of organic pollutants. On the one hand, WS2 nanosheets damaged the plasma membrane and cytoskeleton, resulting in increased membrane permeability and organic pollutant uptake. On the other hand, as shown by fluorescence substrate accumulation experiments and molecular dynamics simulations, WS2 nanosheets affected the secondary structure of the efflux pumps and competitively bound with efflux pumps, blocking xenobiotic removal. This work emphasized that TMDCs, especially at the noncytotoxic level, in combination with organic pollutants caused damage that cannot be ignored, providing insight into comprehensive safety assessment and the specific toxicological mechanisms of TMDCs that accompany organic pollutant exposure.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
119
|
Risk assessments in nanotoxicology: bioinformatics and computational approaches. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
120
|
Kadziński M, Martyn K, Cinelli M, Słowiński R, Corrente S, Greco S. Preference disaggregation for multiple criteria sorting with partial monotonicity constraints: Application to exposure management of nanomaterials. Int J Approx Reason 2020. [DOI: 10.1016/j.ijar.2019.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
121
|
|
122
|
MARTINS VITORL, NEVES HERBERTR, MONJE IVONNEE, LEITE MARINAM, OLIVEIRA PAULOFDE, ANTONIASSI RODOLFOM, CHAUQUE SUSANA, MORAIS WILLIAMG, MELO EDUARDOC, OBANA THIAGOT, SOUZA BRENOL, TORRESI ROBERTOM. An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. ACTA ACUST UNITED AC 2020; 92:e20200796. [DOI: 10.1590/0001-3765202020200796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/30/2023]
Affiliation(s)
| | - HERBERT R. NEVES
- Universidade de São Paulo, Brazil; Catarinense Federal Institute for Education Science and Technology – IFC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
124
|
Fadeel B. The Right Stuff: On the Future of Nanotoxicology. FRONTIERS IN TOXICOLOGY 2019; 1:1. [PMID: 35295768 PMCID: PMC8915828 DOI: 10.3389/ftox.2019.00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
|
125
|
An Assessment of the Effect of Green Synthesized Silver Nanoparticles Using Sage Leaves ( Salvia officinalis L.) on Germinated Plants of Maize ( Zea mays L.). NANOMATERIALS 2019; 9:nano9111550. [PMID: 31683686 PMCID: PMC6915364 DOI: 10.3390/nano9111550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022]
Abstract
AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.
Collapse
|
126
|
Gazzi A, Fusco L, Khan A, Bedognetti D, Zavan B, Vitale F, Yilmazer A, Delogu LG. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front Bioeng Biotechnol 2019; 7:295. [PMID: 31709252 PMCID: PMC6823231 DOI: 10.3389/fbioe.2019.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer is one of the leading causes of death in the world. Therefore, the development of new advanced and targeted strategies in cancer research for early diagnosis and treatment has become essential to improve diagnosis outcomes and reduce therapy side effects. Graphene and more recently, MXene, are the main representatives of the family of two-dimensional (2D) materials and are widely studied as multimodal nanoplatforms for cancer diagnostics and treatment, in particular leveraging their potentialities as photodynamic therapeutic agents. Indeed, due to their irreplaceable physicochemical properties, they are virtuous allies for photodynamic therapy (PDT) in combination with bioimaging, photothermal therapy, as well as drug and gene delivery. In this review, the rapidly progressing literature related to the use of these promising 2D materials for cancer theranostics is described in detail, highlighting all their possible future advances in PDT.
Collapse
Affiliation(s)
- Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Sidra Medical and Research Center, Doha, Qatar
| | - Anooshay Khan
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey
| | | | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Acelya Yilmazer
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey.,Stem Cell Institute, University of Ankara, Ankara, Turkey
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
127
|
Sandler SE, Fellows B, Mefford OT. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal Chem 2019; 91:14159-14169. [DOI: 10.1021/acs.analchem.9b03518] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sarah E. Sandler
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - O. Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
128
|
Ndika J, Seemab U, Poon WL, Fortino V, El-Nezami H, Karisola P, Alenius H. Silver, titanium dioxide, and zinc oxide nanoparticles trigger miRNA/isomiR expression changes in THP-1 cells that are proportional to their health hazard potential. Nanotoxicology 2019; 13:1380-1395. [PMID: 31519129 DOI: 10.1080/17435390.2019.1661040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After over a decade of nanosafety research, it is indisputable that the vast majority of nano-sized particles induce a plethora of adverse cellular responses - the severity of which is linked to the material's physicochemical properties. Differentiated THP-1 cells were previously exposed for 6 h and 24 h to silver, titanium dioxide, and zinc oxide nanoparticles at the maximum molar concentration at which no more than 15% cellular cytotoxicity was observed. All three nanoparticles differed in extent of induction of biological pathways corresponding to immune response signaling and metal ion homeostasis. In this study, we integrated gene and miRNA expression profiles from the same cells to propose miRNA biomarkers of adverse exposure to metal-based nanoparticles. We employed RNA sequencing together with a quantitative strategy that also enables analysis of the overlooked repertoire of length and sequence miRNA variants called isomiRs. Whilst only modest changes in expression were observed within the first 6 h of exposure, the miRNA/isomiR (miR) profiles of each nanoparticle were unique. Via canonical correlation and pathway enrichment analyses, we identified a co-regulated miR-mRNA cluster, predicted to be highly relevant for cellular response to metal ion homeostasis. These miRs were annotated to be canonical or variant isoforms of hsa-miR-142-5p, -342-3p, -5100, -6087, -6894-3p, and -7704. Hsa-miR-5100 was differentially expressed in response to each nanoparticle in both the 6 h and 24 h exposures. Taken together, this co-regulated miR-mRNA cluster could represent potential biomarkers of sub-toxic metal-based nanoparticle exposure.
Collapse
Affiliation(s)
- Joseph Ndika
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Umair Seemab
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wing-Lam Poon
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, the University of Hong Kong, Hong Kong, Hong Kong.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
129
|
Stueckle TA, Roberts JR. Perspective on Current Alternatives in Nanotoxicology Research. ACTA ACUST UNITED AC 2019. [DOI: 10.1089/aivt.2019.29020.jrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Todd A. Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
130
|
Bettazzi F, Palchetti I. Nanotoxicity assessment: A challenging application for cutting edge electroanalytical tools. Anal Chim Acta 2019; 1072:61-74. [DOI: 10.1016/j.aca.2019.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
|
131
|
Aengenheister L, Dugershaw BB, Manser P, Wichser A, Schoenenberger R, Wick P, Hesler M, Kohl Y, Straskraba S, Suter MJF, Buerki-Thurnherr T. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Eur J Pharm Biopharm 2019; 142:488-497. [PMID: 31330257 DOI: 10.1016/j.ejpb.2019.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely incorporated in various consumer products such as cosmetics and food. Despite known human exposure, the potential risks of TiO2 NPs during pregnancy are not fully understood, but several studies in mice elucidated toxic effects on fetal development. It has also been shown that modifying NPs with positive or negative surface charge alters cellular uptake and abolishes fetotoxicity of silicon dioxide (SiO2) NPs in mice. Here, we investigated accumulation and translocation of positively charged TiO2-NH2 and negatively charged TiO2-COOH NPs at the placental barrier, to clarify whether surface charge provides a means to control TiO2 NP distribution at the placental barrier. To ensure outcome relevant for humans, the recently developed in vitro human placental co-culture model and the gold standard amongst placental translocation models - the ex vivo perfusion of human term placental tissue - were employed during this study. Sector field-ICP-MS analysis of maternal and fetal supernatants as well as placental cells/tissues revealed a substantial accumulation of both TiO2 NP types while no considerable placental translocation was apparent in both models. Characterization of agglomeration behavior demonstrated a strong and fast agglomeration of TiO2-NH2 and TiO2-COOH NPs in the different culture media. Overall, our results indicate that surface charge is not a key factor to steer placental uptake and transfer of TiO2. Moreover, the negligible placental transfer but high accumulation of TiO2 NPs in placental tissue suggests that potential effects on fetal health may occur indirectly, which calls for further studies elucidating the impact of TiO2 NPs on placental tissue functionality and signaling.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Battuja Batbajar Dugershaw
- Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Pius Manser
- Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Adrian Wichser
- Empa, Laboratory for Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf, Switzerland
| | - Rene Schoenenberger
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 1233, 8600 Duebendorf, Switzerland
| | - Peter Wick
- Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, Department Bioprocessing and Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Department Bioprocessing and Bioanalytics, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Susanne Straskraba
- J.W. Goethe University, Institute of Molecular Biosciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Marc J-F Suter
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 1233, 8600 Duebendorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
132
|
Brancolini G, Bellucci L, Maschio MC, Di Felice R, Corni S. The interaction of peptides and proteins with nanostructures surfaces: a challenge for nanoscience. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
133
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
134
|
Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:363-377. [PMID: 30948072 DOI: 10.1016/j.msec.2019.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.
Collapse
|
135
|
Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul Toxicol Pharmacol 2019; 104:74-83. [PMID: 30831158 PMCID: PMC6486396 DOI: 10.1016/j.yrtph.2019.02.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/17/2019] [Accepted: 02/10/2019] [Indexed: 11/22/2022]
Abstract
The OECD Working Party on Manufactured Nanomaterials (WPMN) provides a global forum for discussion of nano-safety issues. Together with the OECD Test Guidelines Programme (TGP) the WPMN has explored the need for adaptation of some of the existing OECD Test Guidelines (TGs) and Guidance Documents (GDs) as well as developing new TGs and GDs to specifically address NM issues. An overview is provided of progress in the TGP and WPMN, and information on supporting initiatives, regarding the development of TGs for nanomaterials addressing Physical Chemical Properties, Effects on Biotic Systems, Environmental Fate and Behaviour, and Health Effects. Three TGs specifically addressing manufactured nanomaterials have been adopted: a new TG318 ″Dispersion Stability of Nanomaterials in Simulated Environmental Media", and adaptation of TG412 and TG413 on Subacute Inhalation Toxicity: 28-Day Study/90-day Study. The associated GD39 on Inhalation Toxicity Testing has also been revised. The TGP current develops four new TGs and four GDs. One new TG and six GDs are developed in the WPMN. Six new proposals were submitted to the TGP in 2018. Furthermore, as TGs are accompanied by OECD harmonised templates (OHTs) for data collection, an outline of recently developed OHTs particularly relevant for NMs is also included.
Collapse
|
136
|
Wigger H, Nowack B. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts. Nanotoxicology 2019; 13:623-643. [PMID: 30727799 DOI: 10.1080/17435390.2019.1568604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Engineered nanomaterials (ENMs) are intentionally designed in different nano-forms of the same parent material in order to meet application requirements. Different grouping and read-across concepts are proposed to streamline risk assessments by pooling nano-forms in one category. Environmental grouping concepts still are in their infancy and mainly focus on grouping by hazard categories. Complete risk assessments require data on environmental release and exposure not only for ENMs but also for their nano-forms. The key requirement is to identify and to distinguish the production volumes of the ENMs regarding nano-form-specific applications. The aim of our work was to evaluate whether such a grouping is possible with the available data and which influence it has on the environmental risk assessment of ENMs. A functionality-driven approach was applied to match the material-specific property (i.e. crystal form/morphology) with the functions employed in the applications. We demonstrate that for nano-TiO2, carbon nanotubes (CNTs), and nano-Al2O3 the total production volume can be allocated to specific nano-forms based on their functionalities. The differentiated assessments result in a variation of the predicted environmental concentrations for anatase vs. rutile nano-TiO2, single-wall vs. multi-wall CNTs and α- vs. γ-nano-Al2O3 by a factor of 2 to 13. Additionally, the nano-form-specific predicted no-effect concentrations for these ENMs were derived. The risk quotients for all nano-forms indicated no immediate risk in freshwaters. Our results suggest that grouping and read-across concepts should include both a nano-form release potential for estimating the environmental exposure and separately consider the nano-forms in environmental risk assessments.
Collapse
Affiliation(s)
- Henning Wigger
- a Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory , St. Gallen , Switzerland
| | - Bernd Nowack
- a Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory , St. Gallen , Switzerland
| |
Collapse
|
137
|
Lakhe P, Prehn EM, Habib T, Lutkenhaus JL, Radovic M, Mannan MS, Green MJ. Process Safety Analysis for Ti3C2Tx MXene Synthesis and Processing. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05416] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
138
|
Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, Prina‐Mello A, Resch S, Schimpel C, Vrček IV, Wysokińska E, Gorris HH. Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Adv Healthc Mater 2019; 8:e1801233. [PMID: 30536962 DOI: 10.1002/adhm.201801233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Indexed: 11/07/2022]
Abstract
The unique photoluminescent properties of upconversion nanoparticles (UCNPs) have attracted worldwide research interest and inspired many bioanalytical applications. The anti-Stokes emission with long luminescence lifetimes, narrow and multiple absorption and emission bands, and excellent photostability enable background-free and multiplexed detection in deep tissues. So far, however, in vitro and in vivo applications of UCNPs are restricted to the laboratory use due to safety concerns. Possible harmful effects may originate from the chemical composition but also from the small size of UCNPs. Potential end users must rely on well-founded safety data. Thus, a risk to benefit assessment of the envisioned combined therapeutic and diagnostic ("theranostic") applications is fundamentally important to bridge the translational gap between laboratory and clinics. The COST Action CM1403 "The European Upconversion Network-From the Design of Photon-Upconverting Nanomaterials to Biomedical Applications" integrates research on UCNPs ranging from fundamental materials synthesis and research, detection instrumentation, biofunctionalization, and bioassay development to toxicity testing. Such an interdisciplinary approach is necessary for a better and safer theranostic use of UCNPs. Here, the status of nanotoxicity research on UCNPs is compared to other nanomaterials, and routes for the translation of UCNPs into clinical applications are delineated.
Collapse
Affiliation(s)
- Helena Oliveira
- Department of BiologyCESAM‐Centre for Environmental and Marine StudiesCICECO‐Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences ul.Okolna 2 50422 Wroclaw Poland
- PORT Sp. z o.o. Stablowicka 147 Str. 54‐066 Wroclaw Poland
| | - Andreas Falk
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Eleonore Fröhlich
- Center for Medical ResearchMedical University of Graz Stiftingtalstrasse 24 8010 Graz Austria
| | - Darja Lisjak
- Department for Materials SynthesisJožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Adriele Prina‐Mello
- LBCAM and Nanomedicine LaboratoryTrinity Translational Medicine InstituteTrinity College Dublin Dublin 8 Republic of Ireland
| | - Susanne Resch
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Christa Schimpel
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health Ksaverska cesta 2 10000 Zagreb Croatia
| | - Edyta Wysokińska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | - Hans H. Gorris
- Institute of Analytical ChemistryChemo‐ and BiosensorsUniversity of Regensburg 93040 Regensburg Germany
| |
Collapse
|
139
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
140
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
141
|
Jantunen APK, Gottardo S, Rasmussen K, Crutzen HP. An inventory of ready-to-use and publicly available tools for the safety assessment of nanomaterials. NANOIMPACT 2018; 12:18-28. [PMID: 30505982 PMCID: PMC6255795 DOI: 10.1016/j.impact.2018.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/02/2023]
Abstract
Legislation addressing environmental, health and safety aspects of nanomaterials in consumer products and ensuring their safe use is being continuously updated in the European Union and globally. This leads to a growing need for tools to implement this developing legislation. A freely accessible inventory of ready-to-use and publicly available tools that together cover the tasks within a nanomaterial safety assessment process was built in the presented work. This inventory is a unique metadata set in Excel® format: the 'NANoREG Toolbox', which assembles information needed for selecting and accessing instruments that meet specific goals. The recorded tools are categorised according to their purpose, type and regulatory status. The Toolbox covers an unprecedented and broad range of over 500 current tools, developed in Europe and beyond. While NANoREG focussed on safety assessment under the EU Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), the instruments in the Toolbox are relevant and useful for nanomaterial safety assessments worldwide.
Collapse
Affiliation(s)
| | | | | | - Hugues P. Crutzen
- European Commission, Joint Research Centre, Via E. Fermi 2479, I-21027 Ispra, Italy
| |
Collapse
|