101
|
Greiner D, Scott TM, Olson GS, Aderem A, Roh-Johnson M, Johnson JS. Genetic Modification of Primary Human Myeloid Cells to Study Cell Migration, Activation, and Organelle Dynamics. Curr Protoc 2022; 2:e514. [PMID: 36018279 PMCID: PMC9476234 DOI: 10.1002/cpz1.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myeloid dendritic cells (DCs) and macrophages are mononuclear phagocytes with key roles in the immune system. As antigen-presenting cells, they link innate detection of microbes with programming adaptive immune responses. Myeloid DCs and macrophages also play critical roles in development, promote tissue homeostasis, and direct repair in response to injury and inflammation. As cellular migration and organelle dynamics are intimately connected with these processes, it is necessary to develop tools to track myeloid cell behavior and function. Here, we build on previously established protocols to isolate primary human myeloid cells from peripheral blood and report an optimized method for their genetic modification with lentiviral vectors to study processes related to cell migration, activation, and organelle dynamics. Specifically, we provide a protocol for delivering genetically encoded fluorescent markers into primary monocyte-derived DCs (MDDCs) and monocyte-derived macrophages (MDMs) to label mitochondria, peroxisomes, and whole cells. We describe the isolation of primary CD14+ monocytes from peripheral blood using positive selection with magnetic beads and, alternatively, isolation based on plastic adherence. Isolated CD14+ cells can be transduced with lentiviral vectors and subsequently cultured in the presence of cytokines to derive MDDCs or MDMs. This protocol is highly adaptable for cotransduction with vectors to knock down or overexpress genes of interest. These tools enable mechanistic studies of genetically modified myeloid cells through flow cytometry, fluorescence microscopy, and other downstream assays. © 2022 Wiley Periodicals LLC. Basic Protocol: Transduction of MDDCs and MDMs with lentiviral vectors encoding fluorescent markers Alternate Protocol 1: Isolation of monocytes by plastic adhesion Alternate Protocol 2: Transduction of MDDCs and MDMs with lentiviral vectors to knock down or overexpress genes of interest Support Protocol 1: Production and purification of lentiviral vectors for transduction into primary human myeloid cells Support Protocol 2: Flow cytometry of MDDCs and MDMs Support Protocol 3: Fixed and live-cell imaging of fluorescent markers in MDMs and MDDCs.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Tiana M. Scott
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Gregory S. Olson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Jarrod S. Johnson
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| |
Collapse
|
102
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
103
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
104
|
Tai J, Kwak J, Han M, Kim TH. Different Roles of Dendritic Cells for Chronic Rhinosinusitis Treatment According to Phenotype. Int J Mol Sci 2022; 23:ijms23148032. [PMID: 35887379 PMCID: PMC9323853 DOI: 10.3390/ijms23148032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells derived from the bone marrow that play an important role in the association between the innate and adaptive immune responses. The onset and development of chronic rhinosinusitis (CRS) involve a serious imbalance in immune regulation and mechanical dysfunction caused by an abnormal remodeling process. Recent studies have shown that an increase in DCs in CRS and their function of shaping the nasal mucosal immune response may play an important role in the pathogenesis of CRS. In this review, we discuss DC subsets in mice and humans, as well as the function of DCs in the nasal sinus mucosa. In addition, the mechanism by which DCs can be used as targets for therapeutic intervention for CRS and potential future research directions are also discussed.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Jiwon Kwak
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
| | - Munsoo Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (J.T.); (J.K.); (M.H.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
105
|
Porrata LF. The Impact of Infused Autograft Absolute Numbers of Immune Effector Cells on Survival Post-Autologous Stem Cell Transplantation. Cells 2022; 11:cells11142197. [PMID: 35883639 PMCID: PMC9315986 DOI: 10.3390/cells11142197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Autologous stem cell transplantation treatment has been viewed as a therapeutic modality to enable the infusion of higher doses of chemotherapy to eradicate tumor cells. Nevertheless, recent reports have shown that, in addition to stem cells, infusion of autograft immune effector cells produces an autologous graft-versus-tumor effect, similar to the graft-versus-tumor effect observed in allogeneic-stem cell transplantation, but without the clinical complications of graft-versus-host disease. In this review, I assess the impact on clinical outcomes following infusions of autograft-antigen presenting cells, autograft innate and adaptive immune effector cells, and autograft immunosuppressive cells during autologous stem cell transplantation. This article is intended to provide a platform to change the current paradigmatic view of autologous stem cell transplantation, from a high-dose chemotherapy-based treatment to an adoptive immunotherapeutic intervention.
Collapse
Affiliation(s)
- Luis F Porrata
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
106
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
107
|
Liu TT, Kim S, Desai P, Kim DH, Huang X, Ferris ST, Wu R, Ou F, Egawa T, Van Dyken SJ, Diamond MS, Johnson PF, Kubo M, Murphy TL, Murphy KM. Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 2022; 607:142-148. [PMID: 35732734 PMCID: PMC10358283 DOI: 10.1038/s41586-022-04866-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2022] [Indexed: 12/17/2022]
Abstract
The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPβ. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
| |
Collapse
|
108
|
English K, Tan SY, Kwan R, Holz LE, Sierro F, McGuffog C, Kaisho T, Heath WR, MacDonald KPA, McCaughan GW, Bowen DG, Bertolino P. The liver contains distinct interconnected networks of
CX3CR1
+
macrophages,
XCR1
+
type 1 and
CD301a
+
type 2 conventional dendritic cells embedded within portal tracts. Immunol Cell Biol 2022; 100:394-408. [PMID: 35718354 PMCID: PMC9541163 DOI: 10.1111/imcb.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022]
Abstract
Portal tracts are key intrahepatic structures where leukocytes accumulate during immune responses. They contain the blood inflow, which includes portal blood from the gut, and lymphatic and biliary outflow of the liver, and as such represent a key interface for potential pathogen entry to the liver. Myeloid cells residing in the interstitium of the portal tract might play an important role in the surveillance or prevention of pathogen dissemination; however, the exact composition and localization of this population has not been explored fully. Our in‐depth characterization of portal tract myeloid cells revealed that in addition to T lymphocytes, portal tracts contain a heterogeneous population of MHCIIhigh myeloid cells with potential antigen presenting cell (APC) function. These include a previously unreported subset of CSF1R‐dependent CX3CR1+ macrophages that phenotypically and morphologically resemble liver capsular macrophages, as well as the two main dendritic cell subsets (cDC1 and cDC2). These cells are not randomly distributed, but each subset forms interconnected networks intertwined with specific components of the portal tract. The CX3CR1+ cells were preferentially detected along the outer border of the portal tracts, and also in the portal interstitium adjacent to the portal vein, bile duct, lymphatic vessels and hepatic artery. cDC1s abounded along the lymphatic vessels, while cDC2s mostly surrounded the biliary tree. The specific distributions of these discrete subsets predict that they may serve distinct functions in this compartment. Overall, our findings suggest that portal tracts and their embedded cellular networks of myeloid cells form a distinctive lymphoid compartment in the liver that has the potential to orchestrate immune responses in this organ.
Collapse
Affiliation(s)
- Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Sioh Yang Tan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Rain Kwan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity at the University of Melbourne Melbourne VIC Australia
| | - Frederic Sierro
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Claire McGuffog
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine Wakayama Medical University Wakayama Japan
| | - William R Heath
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity at the University of Melbourne Melbourne VIC Australia
| | - Kelli PA MacDonald
- Antigen Presentation and Immunoregulation Laboratory QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Geoffrey W McCaughan
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - David G Bowen
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre Royal Prince Alfred Hospital Sydney NSW Australia
| |
Collapse
|
109
|
Abstract
PURPOSE OF REVIEW Myeloid cells - granulocytes, monocytes, macrophages and dendritic cells (DCs) - are innate immune cells that play key roles in pathogen defense and inflammation, as well as in tissue homeostasis and repair. Over the past 5 years, in part due to more widespread use of single cell omics technologies, it has become evident that these cell types are significantly more heterogeneous than was previously appreciated. In this review, we consider recent studies that have demonstrated heterogeneity among neutrophils, monocytes, macrophages and DCs in mice and humans. We also discuss studies that have revealed the sources of their heterogeneity. RECENT FINDINGS Recent studies have confirmed that ontogeny is a key determinant of diversity, with specific subsets of myeloid cells arising from distinct progenitors. However, diverse microenvironmental cues also strongly influence myeloid fate and function. Accumulating evidence therefore suggests that a combination of these mechanisms underlies myeloid cell diversity. SUMMARY Consideration of the heterogeneity of myeloid cells is critical for understanding their diverse activities, such as the role of macrophages in tissue damage versus repair, or tumor growth versus elimination. Insights into these mechanisms are informing the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Yáñez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Cristina Bono
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
110
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
111
|
Shao T, Ji JF, Zheng JY, Li C, Zhu LY, Fan DD, Lin AF, Xiang LX, Shao JZ. Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2686-2701. [PMID: 35675955 DOI: 10.4049/jimmunol.2100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Chen Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Lv-Yun Zhu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
112
|
MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8 + T cell responses through major histocompatibility complex cross-dressing. Immunity 2022; 55:982-997.e8. [PMID: 35617964 PMCID: PMC9883788 DOI: 10.1016/j.immuni.2022.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
Antigen cross-presentation, wherein dendritic cells (DCs) present exogenous antigen on major histocompatibility class I (MHC-I) molecules, is considered the primary mechanism by which DCs initiate tumor-specific CD8+ T cell responses. Here, we demonstrate that MHC-I cross-dressing, an antigen presentation pathway in which DCs acquire and display intact tumor-derived peptide:MHC-I molecules, is also important in orchestrating anti-tumor immunity. Cancer cell MHC-I expression was required for optimal CD8+ T cell activation in two subcutaneous tumor models. In vivo acquisition of tumor-derived peptide:MHC-I molecules by DCs was sufficient to induce antigen-specific CD8+ T cell priming. Transfer of tumor-derived human leukocyte antigen (HLA) molecules to myeloid cells was detected in vitro and in human tumor xenografts. In conclusion, MHC-I cross-dressing is crucial for anti-tumor CD8+ T cell priming by DCs. In addition to quantitatively enhancing tumor antigen presentation, MHC cross-dressing might also enable DCs to more faithfully and efficiently mirror the cancer cell peptidome.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James Godfrey
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Douglas E Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Justin Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
113
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
114
|
Yan H, Shi J, Dai Y, Li X, Wu Y, Zhang J, Gu Z, Zhang C, Leng J. Technique integration of single-cell RNA sequencing with spatially resolved transcriptomics in the tumor microenvironment. Cancer Cell Int 2022; 22:155. [PMID: 35440049 PMCID: PMC9020011 DOI: 10.1186/s12935-022-02580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background The tumor microenvironment contributes to tumor initiation, growth, invasion, and metastasis. The tumor microenvironment is heterogeneous in cellular and acellular components, particularly structural features and their gene expression at the inter-and intra-tumor levels. Main text Single-cell RNA sequencing profiles single-cell transcriptomes to reveal cell proportions and trajectories while spatial information is lacking. Spatially resolved transcriptomics redeems this lack with limited coverage or depth of transcripts. Hence, the integration of single-cell RNA sequencing and spatial data makes the best use of their strengths, having insights into exploring diverse tissue architectures and interactions in a complicated network. We review applications of integrating the two methods, especially in cellular components in the tumor microenvironment, showing each role in cancer initiation and progression, which provides clinical relevance in prognosis, optimal treatment, and potential therapeutic targets. Conclusion The integration of two approaches may break the bottlenecks in the spatial resolution of neighboring cell subpopulations in cancer, and help to describe the signaling circuitry about the intercommunication and its exact mechanisms in producing different types and malignant stages of tumors.
Collapse
Affiliation(s)
- Hailan Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Yushi Wu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Zhiyue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China. .,National Clinical Research Center for Obstetric & Gynecologic Diseases, No.1 Shuaifuyuan Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
115
|
Paschen A, Melero I, Ribas A. Central Role of the Antigen-Presentation and Interferon-γ Pathways in Resistance to Immune Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070220-111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistance to immunotherapy is due in some instances to the acquired stealth mechanisms of tumor cells that lose expression of MHC class I antigen–presenting molecules or downregulate their class I antigen–presentation pathways. Most dramatically, biallelic β2-microglobulin (B2M) loss leads to complete loss of MHC class I expression and to invisibility to CD8+ T cells. MHC class I expression and antigen presentation are potently upregulated by interferon-γ (IFNγ) in a manner that depends on IFNγ receptor (IFNGR) signaling via JAK1 and JAK2. Mutations in these molecules lead to IFNγ unresponsiveness and mediate loss of recognition and killing by cytotoxic T lymphocytes. Loss of MHC class I augments sensitivity of tumor cells to be killed by natural killer (NK) lymphocytes, and this mechanism could be exploited to revert resistance, for instance, with interleukin-2 (IL-2)-based agents. Moreover, in some experimental models,potent local type I interferon responses, such as those following intratumoral injection of Toll-like receptor 9 (TLR9) or TLR3 agonists, revert resistance due to mutations of JAKs.
Collapse
Affiliation(s)
- Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Ignacio Melero
- University Clinic of Navarre (CUN) and Centre of Applied Medical Research (CIMA), University of Navarre, Pamplona, Spain
- CIBERONC (Consorcio Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Antoni Ribas
- Department of Medicine, Department of Surgery, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
116
|
Zhu Q, He J, Cao Y, Liu X, Nie W, Han F, Shi P, Shen XZ. Analysis of Mononuclear Phagocytes Disclosed the Establishment Processes of Two Macrophage Subsets in the Adult Murine Kidney. Front Immunol 2022; 13:805420. [PMID: 35359928 PMCID: PMC8960422 DOI: 10.3389/fimmu.2022.805420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The interstitium of kidney involves a variety of components including resident immune cells, in particular mononuclear phagocytes. However, many proposed markers for distinguishing macrophages or dendritic cells are, in fact, shared by the majority of renal mononuclear phagocytes, which impedes the research of kidney diseases. Here, by employing a flow cytometry strategy and techniques of fate mapping, imaging and lineage depletion, we were able to demarcate renal monocytes, macrophages and dendritic cells and their subsets in mice. In particular, using this strategy, we found that even in steady state, the renal macrophage pool was continuously replenished by bone marrow-derived monocytes in a stepwise process, i.e., from infiltration of classical monocyte, to development of nonclassical monocyte and eventually to differentiation to macrophages. In mechanism, we demonstrated that the ligation of tissue-anchored CX3CL1 and monocytic CX3CR1 was required for promoting monocyte differentiation to macrophages in the kidney, but CX3CL1-CX3CR1 signaling was dispensable in monocyte infiltrating into the kidney. In addition to the bone marrow-derived macrophages, fate mapping in adult mice revealed another population of renal resident macrophages which were embryo-derived and self-maintaining. Thus, the dissecting strategies developed by us would assist in exploration of the biology of renal mononuclear phagocytes.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian He
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyun Nie
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Cardiology, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
117
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, orchestrating innate and adaptive immunity during infections, autoimmune diseases, and malignancies. Since the discovery of DCs almost 50 years ago, our understanding of their biology in humans has increased substantially. Here, we review both antitumor and tolerogenic DC responses in cancer and discuss lineage-specific contributions by their functionally specialized subsets, including the conventional DC (cDC) subsets cDC1 and cDC2, the newly described DC3, and the plasmacytoid DCs (pDCs), focusing on the human setting. In addition, we review the lineage-unrestricted "mature DCs enriched in immunoregulatory molecules" (mregDC) state recently described across different human tumors.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore.,Inserm U1015, Gustave Roussy, Villejuif 94800, France.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
118
|
Swartz AM, Nair SK. The In Vitro Differentiation of Human CD141+CLEC9A+ Dendritic Cells from Mobilized Peripheral Blood CD34+ Hematopoietic Stem Cells. Curr Protoc 2022; 2:e410. [PMID: 35435334 DOI: 10.1002/cpz1.410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As shown in various preclinical studies, conventional type-1 dendritic cells, or cDC1s, play a critical role in the immunological rejection of tumors and in the defense against pathogens. This indispensability stems from their potent capacity to activate cytotoxic T cells, especially via the cross-presentation of exogenous antigens. For this reason, cDC1s have become an attractive target for immunotherapy. Here we report a simplified method for generating large numbers of cDC1-like cells in vitro from mobilized human peripheral blood CD34+ hematopoietic stem cells using FMS-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony-stimulating factor (GM-CSF). An important aspect of this Protocol is the growth of cells on a non-tissue culture-treated surface rather than on a tissue culture-treated surface since the latter suppresses cDC1-marker expression. The resulting CD11c+ DCs express high levels of cDC1-specific markers such as CD141, CLEC9A, TLR3, and several DC maturation markers. Compared to alternative differentiation methods, this method generates large numbers of cDC1-like cells without the need for immortalized feeder cells and should prove useful for studying cDC1 immunobiology and clinical applications of this DC subset. © 2022 Wiley Periodicals LLC. Basic Protocol: Generation of human CD141+CLEC9A+ dendritic cells from mobilized peripheral blood CD34+ hematopoietic stem cells Support Protocol: Flow cytometric immunophenotyping of CD141+ dendritic cells.
Collapse
Affiliation(s)
- Adam M Swartz
- Department of Surgery, Duke University, Durham, North Carolina
| | - Smita K Nair
- Department of Surgery, Department of Neurosurgery, Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
119
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
120
|
Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. NATURE CANCER 2022; 3:287-302. [PMID: 35190724 DOI: 10.1038/s43018-022-00329-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Therapeutic use of agonistic anti-CD40 antibodies is a potentially powerful approach for activation of the immune response to eradicate tumors. However, the translation of this approach to clinical practice has been substantially restricted due to the severe dose-limiting toxicities observed in multiple clinical trials. Here, we demonstrate that conventional type 1 dendritic cells are essential for triggering antitumor immunity but not the toxicity of CD40 agonists, while macrophages, platelets and monocytes lead to toxic events. Therefore, we designed bispecific antibodies that target CD40 activation preferentially to dendritic cells, by coupling the CD40 agonist arm with CD11c-, DEC-205- or CLEC9A-targeting arms. These bispecific reagents demonstrate a superior safety profile compared to their parental CD40 monospecific antibody while triggering potent antitumor activity. We suggest such cell-selective bispecific agonistic antibodies as a drug platform to bypass the dose-limiting toxicities of anti-CD40, and of additional types of agonistic antibodies used for cancer immunotherapy.
Collapse
|
121
|
Ryu SH, Shin HS, Eum HH, Park JS, Choi W, Na HY, In H, Kim TG, Park S, Hwang S, Sohn M, Kim ED, Seo KY, Lee HO, Lee MG, Chu MK, Park CG. Granulocyte Macrophage-Colony Stimulating Factor Produces a Splenic Subset of Monocyte-Derived Dendritic Cells That Efficiently Polarize T Helper Type 2 Cells in Response to Blood-Borne Antigen. Front Immunol 2022; 12:767037. [PMID: 35069539 PMCID: PMC8778578 DOI: 10.3389/fimmu.2021.767037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that prime naive T cells and initiate adaptive immunity. Although the genetic deficiency and transgenic overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) signaling were reported to influence the homeostasis of DCs, the in vivo development of DC subsets following injection of GM-CSF has not been analyzed in detail. Among the treatment of mice with different hematopoietic cytokines, only GM-CSF generates a distinct subset of XCR1-33D1- DCs which make up the majority of DCs in the spleen after three daily injections. These GM-CSF-induced DCs (GMiDCs) are distinguished from classical DCs (cDCs) in the spleen by their expression of CD115 and CD301b and by their superior ability to present blood-borne antigen and thus to stimulate CD4+ T cells. Unlike cDCs in the spleen, GMiDCs are exceptionally effective to polarize and expand T helper type 2 (Th2) cells and able to induce allergic sensitization in response to blood-borne antigen. Single-cell RNA sequencing analysis and adoptive cell transfer assay reveal the sequential differentiation of classical monocytes into pre-GMiDCs and GMiDCs. Interestingly, mixed bone marrow chimeric mice of Csf2rb+/+ and Csf2rb-/- demonstrate that the generation of GMiDCs necessitates the cis expression of GM-CSF receptor. Besides the spleen, GMiDCs are generated in the CCR7-independent resident DCs of the LNs and in some peripheral tissues with GM-CSF treatment. Also, small but significant numbers of GMiDCs are generated in the spleen and other tissues during chronic allergic inflammation. Collectively, our present study identifies a splenic subset of CD115hiCD301b+ GMiDCs that possess a strong capacity to promote Th2 polarization and allergic sensitization against blood-borne antigen.
Collapse
Affiliation(s)
- Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyun Soo Shin
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Hyeon Eum
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sejung Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soomin Hwang
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hae-Ock Lee
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, South Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Therapeutic Antibody Research Center, Genuv Inc., Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
122
|
Abstract
Tumor cell spheroids are one of the three-dimensional (3D) culture systems that can be used to study the features of tumor cells in a more physiologic condition. Indeed, this 3D culture system has been validated in preclinical studies to select anticancer drugs. Tumor cell spheroids can be obtained through employing different procedures, and here I describe in detail how to obtain spheroids from tumor cell lines of colorectal carcinoma (CRC). I analyze the procedures employed to evaluate the phenotype and growth of tumor cells in this 3D culture system. Also, interaction with immune cells is considered. Indeed, it is relevant to define whether the antitumor effects exerted by different cytotoxic lymphocyte subsets are similar when tumor cells are used either as cells adherent to a plastic substrate or floating spheroids. To obtain optimal results in this complex system, some parameters must be considered, such as those related to poorly defined experimental variables including biological and biophysical features of tumor cell lines and the quality (purity and time to use after generation) of antitumor effector lymphocyte subsets. Also, I describe in detail the methods to generate these lymphocyte subsets and to characterize their cytotoxic potential and effectiveness in killing tumor cells. Human natural killer cells and T lymphocytes expressing the γδ T cell receptor (in particular Vδ2 T cells) are considered among the cytotoxic lymphocyte populations. Eventually, it should be possible to obtain reliable and feasible results to study the molecular mechanisms involved in recognition and killing of CRC spheroids exerted by effector lymphocytes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Generation of tumor cell spheroids Basic Protocol 2: Evaluation of ATP content of spheroids Basic Protocol 3: Evaluation of antigen expression by cell spheroids Basic Protocol 4: Generation of effector lymphocytes Basic Protocol 5: Coculture of spheroids and lymphocytes Basic Protocol 6: Evaluation of lymphocyte cytotoxicity using crystal violet staining.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
123
|
Liu D, Duan L, Rodda LB, Lu E, Xu Y, An J, Qiu L, Liu F, Looney MR, Yang Z, Allen CDC, Li Z, Marson A, Cyster JG. CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science 2022; 375:eabi5965. [PMID: 35143305 PMCID: PMC9310086 DOI: 10.1126/science.abi5965] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are crucial for initiating adaptive immune responses. However, the factors that control DC positioning and homeostasis are incompletely understood. We found that type-2 conventional DCs (cDC2s) in the spleen depend on Gα13 and adhesion G protein-coupled receptor family member-E5 (Adgre5, or CD97) for positioning in blood-exposed locations. CD97 function required its autoproteolytic cleavage. CD55 is a CD97 ligand, and cDC2 interaction with CD55-expressing red blood cells (RBCs) under shear stress conditions caused extraction of the regulatory CD97 N-terminal fragment. Deficiency in CD55-CD97 signaling led to loss of splenic cDC2s into the circulation and defective lymphocyte responses to blood-borne antigens. Thus, CD97 mechanosensing of RBCs establishes a migration and gene expression program that optimizes the antigen capture and presentation functions of splenic cDC2s.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lihui Duan
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lauren B Rodda
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erick Lu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fengchun Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
124
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
125
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
126
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
127
|
Bourque J, Hawiger D. Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies (Basel) 2022; 11:antib11010008. [PMID: 35225867 PMCID: PMC8884005 DOI: 10.3390/antib11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Correspondence: ; Tel.: +1-314-977-8875; Fax: +1-314-977-8717
| |
Collapse
|
128
|
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D, De Veirman K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int J Mol Sci 2022; 23:904. [PMID: 35055096 PMCID: PMC8778019 DOI: 10.3390/ijms23020904] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.
Collapse
Affiliation(s)
- Emma Verheye
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jesús Bravo Melgar
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anke Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kim De Veirman
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
129
|
Sun Z, Liu X, Liu Y, Zhao X, Zang X, Wang F. Immunosuppressive effects of dimethyl fumarate on dendritic cell maturation and migration: a potent protector for coronary heart disease. Immunopharmacol Immunotoxicol 2022; 44:178-185. [PMID: 35016591 DOI: 10.1080/08923973.2021.2025245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), as a bridge between innate and adaptive immunity, play key roles in atherogenesis, particularly in plaque rupture, the underlying pathophysiologic cause of myocardial infarction. Targeting DC functions, including maturation and migration to atherosclerotic plaques, may be a novel therapeutic approach to atherosclerotic disease. Dimethyl fumarate (DMF), an agent consisting of a combination of fumaric acid esters, in current study were found to be able to suppress DC maturation by reducing the expression of costimulatory molecules and MHC class II and by blocking cytokine secretion. In addition, DMF efficiently inhibited the migration of activated DCs in vitro and in vivo by reducing the expression of chemokine receptor 7 (CCR7). Additionally, DMF efficiently inhibited the expression of the costimulatory molecule CD86, as well as the chemokine receptor CCR7 and the C-X-C motif chemokine receptor 4 (CXCR4), in healthy donor-derived purified DCs that had been stimulated by ST-segment elevation myocardial infarction (STEMI) patient serum. This study points to the potent therapeutic value of DMF for protecting against cardiovascular disease by suppressing DC functions.
Collapse
Affiliation(s)
- Zikai Sun
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xin Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zang
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
130
|
Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid Dendritic Cells and Cancer Immunotherapy. Cells 2022; 11:222. [PMID: 35053338 PMCID: PMC8773673 DOI: 10.3390/cells11020222] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite largely disappointing clinical trials of dendritic cell (DC)-based vaccines, recent studies have shown that DC-mediated cross-priming plays a critical role in generating anti-tumor CD8 T cell immunity and regulating anti-tumor efficacy of immunotherapies. These new findings thus support further development and refinement of DC-based vaccines as mono-immunotherapy or combinational immunotherapies. One exciting development is recent clinical studies with naturally circulating DCs including plasmacytoid DCs (pDCs). pDC vaccines were particularly intriguing, as pDCs are generally presumed to play a negative role in regulating T cell responses in tumors. Similarly, DC-derived exosomes (DCexos) have been heralded as cell-free therapeutic cancer vaccines that are potentially superior to DC vaccines in overcoming tumor-mediated immunosuppression, although DCexo clinical trials have not led to expected clinical outcomes. Using a pDC-targeted vaccine model, we have recently reported that pDCs required type 1 conventional DCs (cDC1s) for optimal cross-priming by transferring antigens through pDC-derived exosomes (pDCexos), which also cross-prime CD8 T cells in a bystander cDC-dependent manner. Thus, pDCexos could combine the advantages of both cDC1s and pDCs as cancer vaccines to achieve better anti-tumor efficacy. In this review, we will focus on the pDC-based cancer vaccines and discuss potential clinical application of pDCexos in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
131
|
Nutt SL, Chopin M. ILC2-derived IL-13 promotes skin cDC2 diversity. Immunol Cell Biol 2021; 100:141-143. [PMID: 34962666 DOI: 10.1111/imcb.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
In a new study, researchers have identified a new population of type 2 conventional dendritic cells in the skin that depend on IL-13 and promote Th2 mediated immunity.
Collapse
Affiliation(s)
- Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
132
|
Zachariah NN, Basu A, Gautam N, Ramamoorthi G, Kodumudi KN, Kumar NB, Loftus L, Czerniecki BJ. Intercepting Premalignant, Preinvasive Breast Lesions Through Vaccination. Front Immunol 2021; 12:786286. [PMID: 34899753 PMCID: PMC8652247 DOI: 10.3389/fimmu.2021.786286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) prevention remains the ultimate cost-effective method to reduce the global burden of invasive breast cancer (IBC). To date, surgery and chemoprevention remain the main risk-reducing modalities for those with hereditary cancer syndromes, as well as high-risk non-hereditary breast lesions such as ADH, ALH, or LCIS. Ductal carcinoma in situ (DCIS) is a preinvasive malignant lesion of the breast that closely mirrors IBC and, if left untreated, develops into IBC in up to 50% of lesions. Certain high-risk patients with DCIS may have a 25% risk of developing recurrent DCIS or IBC, even after surgical resection. The development of breast cancer elicits a strong immune response, which brings to prominence the numerous advantages associated with immune-based cancer prevention over drug-based chemoprevention, supported by the success of dendritic cell vaccines targeting HER2-expressing BC. Vaccination against BC to prevent or interrupt the process of BC development remains elusive but is a viable option. Vaccination to intercept preinvasive or premalignant breast conditions may be possible by interrupting the expression pattern of various oncodrivers. Growth factors may also function as potential immune targets to prevent breast cancer progression. Furthermore, neoantigens also serve as effective targets for interception by virtue of strong immunogenicity. It is noteworthy that the immune response also needs to be strong enough to result in target lesion elimination to avoid immunoediting as it may occur in IBC arising from DCIS. Overall, if the issue of vaccine targets can be solved by interrupting premalignant lesions, there is a potential to prevent the development of IBC.
Collapse
Affiliation(s)
| | - Amrita Basu
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Namrata Gautam
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ganesan Ramamoorthi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika N Kodumudi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nagi B Kumar
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Loretta Loftus
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Department of Breast Surgery, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
133
|
Uraki R, Imai M, Ito M, Shime H, Odanaka M, Okuda M, Kawaoka Y, Yamazaki S. Foxp3+ CD4+ regulatory T cells control dendritic cells in inducing antigen-specific immunity to emerging SARS-CoV-2 antigens. PLoS Pathog 2021; 17:e1010085. [PMID: 34882757 PMCID: PMC8659413 DOI: 10.1371/journal.ppat.1010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Regulatory T (Treg) cells, which constitute about 5-10% of CD4+T cells expressing Foxp3 transcription factor and CD25(IL-2 receptor α chain), are key regulators in controlling immunological self-tolerance and various immune responses. However, how Treg cells control antigen-specific immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear. In this study, we examined the effect of transient breakdown of the immunological tolerance induced by Treg-cell depletion on adaptive immune responses against administered SARS-CoV-2 antigen, spike protein 1 (S1). Notably, without the use of adjuvants, transient Treg-cell depletion in mice induced anti-S1 antibodies that neutralized authentic SARS-CoV-2, follicular helper T cell formation and S1-binding germinal center B cell responses, but prevented the onset of developing autoimmune diseases. To further clarify the mechanisms, we investigated maturation of dendritic cells (DCs), which is essential to initiate antigen-specific immunity. We found that the transient Treg-cell depletion resulted in maturation of both migratory and resident DCs in draining lymph nodes that captured S1-antigen. Moreover, we observed S1-specific CD4+ T cells and CD8+ T cells with interferon-γ production. Thus, captured S1 was successfully presented by DCs, including cross-presentation to CD8+ T cells. These data indicate that transient Treg-cell depletion in the absence of adjuvants induces maturation of antigen-presenting DCs and succeeds in generating antigen-specific humoral and cellular immunity against emerging SARS-CoV-2 antigens. Finally, we showed that SARS-CoV-2 antigen-specific immune responses induced by transient Treg-cell depletion in the absence of adjuvants were compatible with those induced with an effective adjuvant, polyriboinosinic:polyribocytidyl acid (poly IC) and that the combination of transient Treg-cell depletion with poly IC induced potent responses. These findings highlight the capacity for manipulating Treg cells to induce protective adaptive immunity to SARS-CoV-2 with activating antigen-presenting DCs, which may improve the efficacy of ongoing vaccine therapies and help enhance responses to emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ryuta Uraki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroaki Shime
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mizuyu Odanaka
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Moe Okuda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, Japan
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
134
|
Ma J, Han M, Yang D, Zheng T, Hu R, Wang B, Ye Y, Liu J, Huang G. Vps33B in Dendritic Cells Regulates House Dust Mite-Induced Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:2649-2659. [PMID: 34732466 DOI: 10.4049/jimmunol.2100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are the most specialized APCs that play a critical role in driving Th2 differentiation, but the mechanism is not fully understood. Here we show that vacuolar protein sorting 33B (Vps33B) plays an important role in this process. Mice with Vps33b-specific deletion in DCs, but not in macrophages or T cells, were more susceptible to Th2-mediated allergic lung inflammation than wild-type mice. Deletion of Vps33B in DCs led to enhanced CD4+ T cell proliferation and Th2 differentiation. Moreover, Vps33B specifically restrained reactive oxygen species production in conventional DC1s to inhibit Th2 responses in vitro, whereas Vps33B in monocyte-derived DCs and conventional DC2s was dispensable for Th2 development in asthma pathogenesis. Taken together, our results identify Vps33B as an important molecule that mediates the cross-talk between DCs and CD4+ T cells to further regulate allergic asthma pathogenesis.
Collapse
Affiliation(s)
- Jingyu Ma
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Di Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Ran Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| |
Collapse
|
135
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
136
|
Xu H, Look T, Prithiviraj S, Lennartz D, Cáceres MD, Götz K, Wanek P, Häcker H, Kramann R, Seré K, Zenke M. CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells. Eur J Immunol 2021; 52:1859-1862. [PMID: 34826338 DOI: 10.1002/eji.202149482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022]
Abstract
HoxB8 multipotent progenitors (MPP) are obtained by expression of the estrogen receptor hormone binding domain (ERHBD) HoxB8 fusion gene in mouse BM cells. HoxB8 MPP generate (i) the full complement of DC subsets (cDC1, cDC2, and pDC) in vitro and in vivo and (ii) allow CRISPR/Cas9-mediated gene editing, for example, generating homozygous deletions in cis-acting DNA elements at high precision, and (iii) efficient gene repression by dCas9-KRAB for studying gene regulation in DC differentiation.
Collapse
Affiliation(s)
- Huaming Xu
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Look
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sujeethkumar Prithiviraj
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Daniel Lennartz
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Manuel Delgado Cáceres
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Katrin Götz
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Paul Wanek
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Hans Häcker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Utah, USA
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Kristin Seré
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
137
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
138
|
Wu Z, Hu T, Chintoan-Uta C, Macdonald J, Stevens MP, Sang H, Hume DA, Kaiser P, Balic A. Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology 2021; 165:171-194. [PMID: 34767637 DOI: 10.1111/imm.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Hume
- Translational Research Institute, Mater Research Institute-University of Queensland, Woolloongabba, Qld, Australia
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
139
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
140
|
Robertson H, Li J, Kim HJ, Rhodes JW, Harman AN, Patrick E, Rogers NM. Transcriptomic Analysis Identifies A Tolerogenic Dendritic Cell Signature. Front Immunol 2021; 12:733231. [PMID: 34745103 PMCID: PMC8564488 DOI: 10.3389/fimmu.2021.733231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials. The classical phenotypic characterization of tolDC is limited to cell-surface marker expression and anti-inflammatory cytokine production, although these are not specific. TolDC may be better defined using gene signatures, but there is no consensus definition regarding genotypic markers. We address this shortcoming by analyzing available transcriptomic data to yield an independent set of differentially expressed genes that characterize human tolDC. We validate this transcriptomic signature and also explore gene differences according to the method of tolDC generation. As well as establishing a novel characterization of tolDC, we interrogated its translational utility in vivo, demonstrating this geneset was enriched in the liver, a known tolerogenic organ. Our gene signature will potentially provide greater understanding regarding transcriptional regulators of tolerance and allow researchers to standardize identification of tolDC used for cellular therapy in clinical trials.
Collapse
Affiliation(s)
- Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW, Australia.,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
141
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
142
|
Lam JH, Khan AK, Cornell TA, Chia TW, Dress RJ, Yeow WWW, Mohd-Ismail NK, Venkataraman S, Ng KT, Tan YJ, Anderson DE, Ginhoux F, Nallani M. Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS NANO 2021; 15:15754-15770. [PMID: 34618423 PMCID: PMC8525042 DOI: 10.1021/acsnano.1c01243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
Multiple successful vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to address the ongoing coronavirus disease 2019 (Covid-19) pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein coadministered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising poly(butadiene)-b-poly(ethylene glycol) and a cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells (DC1 and DC2), which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing antibody titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of functional memory CD4+ and CD8+ T cells that produce T helper type 1 cytokines. This study is an important step toward the development of an efficacious vaccine in humans.
Collapse
Affiliation(s)
| | - Amit K. Khan
- ACM
Biolabs Pte Ltd, Singapore 638075, Singapore
| | | | | | - Regine J. Dress
- Singapore Immunology
Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | | | - Nur Khairiah Mohd-Ismail
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
| | | | - Kim Tien Ng
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
| | - Yee-Joo Tan
- Infectious
Diseases Translational Research Program, Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, Singapore 117545, Singapore
- Institute
of Molecular and Cell Biology, Agency for Science, Technology
and Research, Singapore 138673, Singapore
| | - Danielle E. Anderson
- Program
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Florent Ginhoux
- Singapore Immunology
Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- SingHealth
Translational Immunology and Inflammation Centre, Singapore 169856, Singapore
| | | |
Collapse
|
143
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
144
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
145
|
Zhao L, Liu P, Xie W, Zhang S, Thieme S, Zitvogel L, Kroemer G, Kepp O. A genotype-phenotype screening system using conditionally immortalized immature dendritic cells. STAR Protoc 2021; 2:100732. [PMID: 34430908 PMCID: PMC8365513 DOI: 10.1016/j.xpro.2021.100732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here, we describe a protocol for CRISPR/Cas9-mediated gene knockout in conditionally immortalized immature dendritic cells (DCs), which can be limitlessly expanded before differentiation. This facilitates the genetic screening of DC functions in vitro including assessment of phagocytosis, cytokine production, expression of co-stimulatory or co-inhibitory molecules, and antigen presentation, as well as evaluation of the capacity to elicit anticancer immune responses in vivo. Altogether, these approaches described in this protocol allow investigators to link the genotype of DCs to their phenotype. For complete details on the use and execution of this protocol, please refer to Le Naour et al. (2020). Conditionally immortalized immature dendritic cells (DCs) can be expanded without limits A CRISPR/Cas9 system allows for genetic screening of DC functions Different DC functions are assessed in vitro DC genotype-dependent anticancer immunity can be determined in mice
Collapse
Affiliation(s)
- Liwei Zhao
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Corresponding author
| | - Wei Xie
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
| | - Shuai Zhang
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Université Paris Sud, Paris Saclay, Faculty of Medicine, Kremlin Bicêtre, France
| | - Sebastian Thieme
- Department of Pediatrics, University Clinic ‘Carl Gustav Carus’ Dresden, Dresden, Germany
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale, U1015, Gustave Roussy, Villejuif, France
- Center of clinical investigations BIOTHERIS, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Corresponding author
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Corresponding author
| |
Collapse
|
146
|
Droho S, Perlman H, Lavine JA. Dendritic cells play no significant role in the laser-induced choroidal neovascularization model. Sci Rep 2021; 11:17254. [PMID: 34446787 PMCID: PMC8390527 DOI: 10.1038/s41598-021-96704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is genetically associated with complement. Dendritic cells (DCs) play key roles during innate and adaptive immunity, and express complement components and their receptors. We investigated ocular DC heterogeneity and the role of DCs in the laser-induced choroidal neovascularization (CNV) model. In order to determine the function of DCs, we used two models of DC deficiency: the Flt3-/- and Flt3l-/- mouse. We identified three types of ocular DCs: plasmacytoid DC, classical DC-1, and classical DC-2. At steady-state, classical DCs were found in the iris and choroid but were not detectable in the retina. Plasmacytoid DCs existed at very low levels in iris, choroid, and retina. After laser injury, the number of each DC subset was up-regulated in the choroid and retina. In Flt3-/- mice, we found reduced numbers of classical DCs at steady-state, but each DC subset equally increased after laser injury between wildtype and Flt3-/- mice. In Flt3l-/- mice, each DC subsets was severely reduced after laser injury. Neither Flt3-/- or Flt3l-/- mice demonstrated reduced CNV area compared to wildtype mice. DCs do not play any significant role during the laser-induced CNV model of neovascular AMD.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
147
|
Quercetin Administration Suppresses the Cytokine Storm in Myeloid and Plasmacytoid Dendritic Cells. Int J Mol Sci 2021; 22:ijms22158349. [PMID: 34361114 PMCID: PMC8348289 DOI: 10.3390/ijms22158349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) can be divided by lineage into myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). They both are present in mucosal tissues and regulate the immune response by secreting chemokines and cytokines. Inflammatory bowel diseases (IBDs) are characterized by a leaky intestinal barrier and the consequent translocation of bacterial lipopolysaccharide (LPS) to the basolateral side. This results in DCs activation, but the response of pDCs is still poorly characterized. In the present study, we compared mDCs and pDCs responses to LPS administration. We present a broad panel of DCs secreted factors, including cytokines, chemokines, and growth factors. Our recent studies demonstrated the anti-inflammatory effects of quercetin administration, but to date, there is no evidence about quercetin’s effects on pDCs. The results of the present study demonstrate that pDCs can respond to LPS and that quercetin exposure modulates soluble factors release through the same molecular pathway used by mDCs (Slpi, Hmox1, and AP-1).
Collapse
|
148
|
Marongiu L, Protti G, Facchini FA, Valache M, Mingozzi F, Ranzani V, Putignano AR, Salviati L, Bevilacqua V, Curti S, Crosti M, Sarnicola ML, D'Angiò M, Bettini LR, Biondi A, Nespoli L, Tamini N, Clementi N, Mancini N, Abrignani S, Spreafico R, Granucci F. Maturation signatures of conventional dendritic cell subtypes in COVID-19 suggest direct viral sensing. Eur J Immunol 2021; 52:109-122. [PMID: 34333764 PMCID: PMC8420462 DOI: 10.1002/eji.202149298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID‐19, which negatively affects T‐cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T‐cell responses limit disease severity. Understanding how cDCs cope with SARS‐CoV‐2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection‐induced gene signatures, with the upregulation of IFN‐stimulated genes and IL‐6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti‐apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS‐CoV‐2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T‐cell activation.
Collapse
Affiliation(s)
- Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mihai Valache
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Mingozzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Valeria Ranzani
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Anna Rita Putignano
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Lorenzo Salviati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Bevilacqua
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Serena Curti
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariacristina Crosti
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | - Mariella D'Angiò
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Italy
| | - Laura Rachele Bettini
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Italy
| | - Luca Nespoli
- ASST san Gerardo Hospital, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nicolò Tamini
- ASST san Gerardo Hospital, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.,IRCCS San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.,IRCCS San Raffaele Hospital, Milan, Italy
| | - Sergio Abrignani
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| |
Collapse
|
149
|
Yao Y, Fu C, Zhou L, Mi QS, Jiang A. DC-Derived Exosomes for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13153667. [PMID: 34359569 PMCID: PMC8345209 DOI: 10.3390/cancers13153667] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
As the initiators of adaptive immune responses, DCs play a central role in regulating the balance between CD8 T cell immunity versus tolerance to tumor antigens. Exploiting their function to potentiate host anti-tumor immunity, DC-based vaccines have been one of most promising and widely used cancer immunotherapies. However, DC-based cancer vaccines have not achieved the promised success in clinical trials, with one of the major obstacles being tumor-mediated immunosuppression. A recent discovery on the critical role of type 1 conventional DCs (cDC1s) play in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies, however, has highlighted the need to further develop and refine DC-based vaccines either as monotherapies or in combination with other therapies. DC-derived exosomes (DCexos) have been heralded as a promising alternative to DC-based vaccines, as DCexos are more resistance to tumor-mediated suppression and DCexo vaccines have exhibited better anti-tumor efficacy in pre-clinical animal models. However, DCexo vaccines have only achieved limited clinical efficacy and failed to induce tumor-specific T cell responses in clinical trials. The lack of clinical efficacy might be partly due to the fact that all current clinical trials used peptide-loaded DCexos from monocyte-derived DCs. In this review, we will focus on the perspective of expanding current DCexo research to move DCexo cancer vaccines forward clinically to realize their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Yao
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| |
Collapse
|
150
|
β-(1→4)-Mannobiose Acts as an Immunostimulatory Molecule in Murine Dendritic Cells by Binding the TLR4/MD-2 Complex. Cells 2021; 10:cells10071774. [PMID: 34359943 PMCID: PMC8305851 DOI: 10.3390/cells10071774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Some β-mannans, including those in coffee bean and soy, contain a mannose backbone with β-(1→4) bonds. Such mannooligosaccharides could have immunological functions involving direct interaction with immune cells, in addition to acting as prebiotics. This study aimed at assessing the immunological function of mannooligosaccharides with β-(1→4) bond, and elucidating their mechanism of action using bone marrow-derived murine dendritic cells (BMDCs). When BMDCs were stimulated with the mannooligosaccharides, only β-Man-(1→4)-Man significantly induced production of cytokines that included IL-6, IL-10, TNF-α, and IFN-β, and enhanced CD4+ T-cell stimulatory capacity. Use of putative receptor inhibitors revealed the binding of β-Man-(1→4)-Man to TLR4/MD2 complex and involvement with the complement C3a receptor (C3aR) for BMDC activation. Interestingly, β-Man-(1→4)-Man prolonged the production of pro-inflammatory cytokines (IL-6 and TNF-α), but not of the IL-10 anti-inflammatory cytokine during extended culture of BMDCs, associated with high glucose consumption. The results suggest that β-Man-(1→4)-Man is an immunostimulatory molecule, and that the promotion of glycolysis could be involved in the production of pro-inflammatory cytokine in β-Man-(1→4)-Man-stimulated BMDCs. This study could contribute to development of immune-boosting functional foods and a novel vaccine adjuvant.
Collapse
|