101
|
Boukovala M, Westphalen CB, Probst V. Liquid biopsy into the clinics: Current evidence and future perspectives. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100146. [PMID: 40027149 PMCID: PMC11863819 DOI: 10.1016/j.jlb.2024.100146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2025]
Abstract
As precision oncology has become a major part of the treatment landscape in oncology, liquid biopsies have developed as a particularly powerful tool as it surmounts several limitations of traditional tissue biopsies. These biopsies involve most commonly the isolation of circulating extracellular nucleic acids, including cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), as well as circulating tumor cells (CTCs), typically from blood. The clinical applications of liquid biopsies are diverse, encompassing the initial diagnosis and cancer detection, the application as a tool for prognostication in early and advanced tumor settings, the identification of potentially actionable alterations, the monitoring of response and resistance under systemic therapy and the detection of resistance mechanisms, the differentiation of distinct immune checkpoint blockade response patterns through serial samples, the prediction of immune checkpoint blockade responses based on initial liquid biopsy characteristics and the assessment of tumor heterogeneity. Moreover, molecular relapse monitoring in early-stage cancers and the personalization of adjuvant or additive therapy via MRD have become a major field of research in recent years. Compared to tissue biopsies, liquid biopsies are less invasive and can be collected serially, offering real-time molecular insights. Furthermore, liquid biopsies may allow for a more holistic evaluation of a patient's disease, as they assess material from all tumor sites and can theoretically reflect tumor heterogeneity. Furthermore, quicker turnaround-time also constitutes an advantage of liquid biopsies. Disadvantages or hurdles include the challenge of detecting low amounts of tumor deposits in peripheral blood or other fluids and the potential of different amounts tumor-shedding from different metastatic sites, as well as potentially false-positive from clonal hematopoietic mutations of indeterminate potential (CHIP) mutations. The clinical utility of liquid biopsies still must be validated in most settings and further research has to be done. Clinal trials including alternate bodily fluids and leveraging AI-technology are expected to revolutionize the field of liquid biopsies.
Collapse
|
102
|
Liu Y, Liu S, Zhen D, Huang J, He F. Ultrasensitive Detection of Tumor Suppressor Gene Methylation by Piezoelectric Sensing Based on Enrichment of Transcription Activator-Like Effectors. Anal Chem 2024; 96:8534-8542. [PMID: 38743638 DOI: 10.1021/acs.analchem.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The detection of DNA methylation at cytosine/guanine dinucleotide (CpG) islands in promoter regions of tumor suppressor genes has great potential for early cancer screening, diagnosis, and prognosis monitoring. Nevertheless, achieving accurate, sensitive, cost-effective, and quantitative detection of target methylated DNA remains challenging. Herein, we propose a novel piezoelectric sensor (series piezoelectric quartz crystal (SPQC)) based on transcription activator-like effectors (TALEs) for detecting DNA methylation of Ras association domain family 1 isoform A (RASSF1A) tumor suppressor genes (R-5mC). The sensor employs TALEs-Ni magnetic beads to specifically recognize and separate the R-5mC, thereby improving the detection selectivity. The TALEs-Ni magnetic beads-R-5mC complex is sheared by a nucleic acid enzyme (DNAzyme) to release the single-stranded DNA (ST). ST initiates a catalyzed hairpin assembly (CHA) reaction on the surface of the electrode, which in turn triggers the hybridization chain reaction (HCR) and silver staining for enhanced detection sensitivity. The strategy exhibits a linear response in the detection of R-5mC in the range of 1 fM to 1 nM with a detection limit of 0.79 fM. R-5mC as low as 0.01% can be detected, even in the presence of large numbers of unmethylated DNA. The detection of R-5mC in circulating cell-free DNA (cfDNA) derived from clinical plasma specimens of lung cancer patients yielded satisfactory results.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Shuyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, College of Public Health, University of South China, Hengyang 421001, PR China
| | - Ji Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
103
|
Zhu T, Tong H, Du Z, Beck S, Teschendorff AE. An improved epigenetic counter to track mitotic age in normal and precancerous tissues. Nat Commun 2024; 15:4211. [PMID: 38760334 PMCID: PMC11101651 DOI: 10.1038/s41467-024-48649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.
Collapse
Affiliation(s)
- Tianyu Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zhaozhen Du
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6BT, London, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
104
|
Bahrambeigi V, Lee JJ, Branchi V, Rajapakshe KI, Xu Z, Kui N, Henry JT, Kun W, Stephens BM, Dhebat S, Hurd MW, Sun R, Yang P, Ruppin E, Wang W, Kopetz S, Maitra A, Guerrero PA. Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-Specific Transcriptome and Molecular Subtype. Cancer Res 2024; 84:1719-1732. [PMID: 38451249 PMCID: PMC11096054 DOI: 10.1158/0008-5472.can-23-4070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. SIGNIFICANCE The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.
Collapse
Affiliation(s)
- Vahid Bahrambeigi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaewon J. Lee
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vittorio Branchi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal I. Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhichao Xu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naishu Kui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T. Henry
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wang Kun
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bret M. Stephens
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Dhebat
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Yang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics Rice University, Houston, TX, USA
| | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wenyi Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A. Guerrero
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
105
|
Lao Z, Ding LW, Sun QY, Jia L, Yan B, Ng AYJ, Capinpin SM, Wang R, Ying L, Chng WJ, Phillip Koeffler H, Koh WP, Yuan JM, Yang H, Goh YT, Grigoropoulos N. A Pre-Leukemic DNA Methylation Signature in Healthy Individuals at Higher Risk for Developing Myeloid Malignancy. Clin Cancer Res 2024; 30:2170-2180. [PMID: 38437679 PMCID: PMC11096012 DOI: 10.1158/1078-0432.ccr-22-3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/23/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE DNA methylation alterations are widespread in acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS), some of which appear to have evolved independently of somatic mutations in epigenetic regulators. Although the presence of somatic mutations in peripheral blood can predict the risk of development of AML and MDS, its accuracy remains unsatisfactory. EXPERIMENTAL DESIGN We performed global DNA methylation profiling in a case control study nested within the Singapore Chinese Health Study to evaluate whether DNA methylation alterations were associated with AML/MDS development. Targeted deep sequencing and methylated DNA immunoprecipitation sequencing (MeDIP-seq) were performed on peripheral blood collected a median of 9.9 years before diagnosis of AML or MDS, together with age-matched still-healthy individuals as controls. RESULTS Sixty-six individuals who developed AML or MDS displayed significant DNA methylation changes in the peripheral blood compared with 167 age- and gender-matched controls who did not develop AML/MDS during the follow-up period. Alterations in methylation in the differentially methylation regions were associated with increased odds of developing AML/MDS. CONCLUSIONS The epigenetic changes may be acquired independently and before somatic mutations that are relevant for AML/MDS development. The association between methylation changes and the risk of pre-AML/MDS in these individuals was considerably stronger than somatic mutations, suggesting that methylation changes could be used as biomarkers for pre-AML/MDS screening.
Collapse
Affiliation(s)
- Zhentang Lao
- Department of Haematology, Singapore General Hospital, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pathology, National University of Singapore; Nanomedicine Translational Research Programme, Yong Yoo Lin School of Medicine, National University of Singapore. Singapore
| | - Qiao-Yang Sun
- Department of Haematology, Singapore General Hospital, Singapore
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Singapore
| | - Li Jia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, National University Hospital, Singapore
| | | | - Sharah Mae Capinpin
- Healthy Longitudinal Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University of Singapore, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Ying
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research and Dept of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore
| | - H Phillip Koeffler
- National University Cancer Institute, National University Health System, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania. USA
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yeow Tee Goh
- Department of Haematology, Singapore General Hospital, Singapore
| | | |
Collapse
|
106
|
Liu J, Dai L, Wang Q, Li C, Liu Z, Gong T, Xu H, Jia Z, Sun W, Wang X, Lu M, Shang T, Zhao N, Cai J, Li Z, Chen H, Su J, Liu Z. Multimodal analysis of cfDNA methylomes for early detecting esophageal squamous cell carcinoma and precancerous lesions. Nat Commun 2024; 15:3700. [PMID: 38697989 PMCID: PMC11065998 DOI: 10.1038/s41467-024-47886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lijun Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Chenghao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hengyi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Wanyuan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Minyi Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Tongxuan Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ning Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jiahui Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
107
|
Dang Y, Wang W, Lyu A, Wang L, Ji G. Editorial: Application of genomics and epigenetics in disease and syndrome classification. Front Genet 2024; 15:1421163. [PMID: 38752183 PMCID: PMC11094338 DOI: 10.3389/fgene.2024.1421163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Yanqi Dang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
108
|
Hashimoto T, Nakamura Y, Oki E, Kobayashi S, Yuda J, Shibuki T, Bando H, Yoshino T. Bridging horizons beyond CIRCULATE-Japan: a new paradigm in molecular residual disease detection via whole genome sequencing-based circulating tumor DNA assay. Int J Clin Oncol 2024; 29:495-511. [PMID: 38551727 PMCID: PMC11043144 DOI: 10.1007/s10147-024-02493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
Circulating tumor DNA (ctDNA) is the fraction of cell-free DNA in patient blood that originates from a tumor. Advances in DNA sequencing technologies and our understanding of the molecular biology of tumors have increased interest in exploiting ctDNA to facilitate detection of molecular residual disease (MRD). Analysis of ctDNA as a promising MRD biomarker of solid malignancies has a central role in precision medicine initiatives exemplified by our CIRCULATE-Japan project involving patients with resectable colorectal cancer. Notably, the project underscores the prognostic significance of the ctDNA status at 4 weeks post-surgery and its correlation to adjuvant therapy efficacy at interim analysis. This substantiates the hypothesis that MRD is a critical prognostic indicator of relapse in patients with colorectal cancer. Despite remarkable advancements, challenges endure, primarily attributable to the exceedingly low ctDNA concentration in peripheral blood, particularly in scenarios involving low tumor shedding and the intrinsic error rates of current sequencing technologies. These complications necessitate more sensitive and sophisticated assays to verify the clinical utility of MRD across all solid tumors. Whole genome sequencing (WGS)-based tumor-informed MRD assays have recently demonstrated the ability to detect ctDNA in the parts-per-million range. This review delineates the current landscape of MRD assays, highlighting WGS-based approaches as the forefront technique in ctDNA analysis. Additionally, it introduces our upcoming endeavor, WGS-based pan-cancer MRD detection via ctDNA, in our forthcoming project, SCRUM-Japan MONSTAR-SCREEN-3.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
109
|
Nassiri F, Ajisebutu A, Patil V, Mamatjan Y, Liu J, Wang JZ, Voisin MR, Nejad R, Mansouri S, Karimi S, Chakravarthy A, Chen E, De Carvalho DD, Aldape K, Zadeh G. Metabologenomic characterization uncovers a clinically aggressive IDH mutant glioma subtype. Acta Neuropathol 2024; 147:68. [PMID: 38583102 PMCID: PMC11973830 DOI: 10.1007/s00401-024-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.
Collapse
Affiliation(s)
- Farshad Nassiri
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Andrew Ajisebutu
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Vikas Patil
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yasin Mamatjan
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Jeff Liu
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Justin Z Wang
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mathew R Voisin
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Romina Nejad
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Sheila Mansouri
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Shirin Karimi
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
110
|
Anagnostou V, Velculescu VE. Pushing the Boundaries of Liquid Biopsies for Early Precision Intervention. Cancer Discov 2024; 14:615-619. [PMID: 38571422 DOI: 10.1158/2159-8290.cd-24-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Liquid biopsies are emerging as powerful minimally invasive approaches that have the potential to solve several long-standing problems spanning the continuum of cancer care: early detection of cancer, minimal residual disease tracking, and refinement of the heterogeneity of clinical responses together with therapeutic response monitoring in the metastatic setting. Existing challenges driven by technical limitations and establishment of the clinical value of liquid biopsies represent fields of active research that call for convergence science approaches to bridge scientific discovery with clinical care.
Collapse
Affiliation(s)
- Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
111
|
Wu G, Li Z, Huang P, Lin W. Shedding light on ONOO - detection: the emergence of a fast-response fluorescent probe for biological systems. J Mater Chem B 2024; 12:3436-3444. [PMID: 38497466 DOI: 10.1039/d3tb02994h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Guoliang Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Ping Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
112
|
Zhang X, Li J, Lan X, Li J. Cell‐free DNA‐associated multi‐feature applications in cancer diagnosis and treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractMalignant tumours pose significant challenges in terms of high morbidity and mortality rates, primarily due to the lack of large‐scale applicable screening methods and efficient treatment strategies. However, the development of liquid biopsies, particularly circulating cell‐free DNA (cfDNA), offers promising solutions characterised by their non‐invasiveness and cost‐effectiveness, providing comprehensive tumour information on a global scale. The release of cfDNA is predominantly associated with cell death and turnover, while its elimination occurs through nuclease digestion, renal excretion into the urine and uptake by the liver and spleen. Extensive research into the biological properties of cfDNA has led to the identification of novel applications, including non‐invasive cancer screening, cancer subtype classification, tissue‐of‐origin detection and monitoring of treatment efficacy. Additionally, emerging fields such as methylation‐omics, fragment‐omics and nucleosome‐omics show immense potential as tissue‐ and disease‐specific markers. Therefore, this review aims to comprehensively introduce the latest detection techniques of cfDNA, along with detailed information on its characteristics and applications, providing valuable insights for cancer diagnosis and monitoring, which will assist us in purposefully enhancing relevant features for a more comprehensive application in clinical practice.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jingwei Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
| | - Xun Lan
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jie Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- Academy of Biomedical Engineering Kunming Medical University Kunming China
| |
Collapse
|
113
|
Sun T, Chen J, Yang F, Zhang G, Chen J, Wang X, Zhang J. Lipidomics reveals new lipid-based lung adenocarcinoma early diagnosis model. EMBO Mol Med 2024; 16:854-869. [PMID: 38467839 PMCID: PMC11018865 DOI: 10.1038/s44321-024-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Lung adenocarcinoma (LUAD) continues to pose a significant mortality risk with a lack of dependable biomarkers for early noninvasive cancer detection. Here, we find that aberrant lipid metabolism is significantly enriched in lung cancer cells. Further, we identified four signature lipids highly associated with LUAD and developed a lipid signature-based scoring model (LSRscore). Evaluation of LSRscore in a discovery cohort reveals a robust predictive capability for LUAD (AUC: 0.972), a result further validated in an independent cohort (AUC: 0.92). We highlight one lipid signature biomarker, PE(18:0/18:1), consistently exhibiting altered levels both in cancer tissue and in plasma of LUAD patients, demonstrating significant predictive power for early-stage LUAD. Transcriptome analysis reveals an association between increased PE(18:0/18:1) levels and dysregulated glycerophospholipid metabolism, which consistently displays strong prognostic value across two LUAD cohorts. The combined utility of LSRscore and PE(18:0/18:1) holds promise for early-stage diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100083, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 100044, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, 100044, Beijing, China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 100190, Beijing, China
| | - Jiahao Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Xun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 100044, Beijing, China.
- Thoracic Oncology Institute, Peking University People's Hospital, 100044, Beijing, China.
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China.
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100083, Beijing, China.
| |
Collapse
|
114
|
Ewongwo A, Hui C, Moding EJ. Opportunity in Complexity: Harnessing Molecular Biomarkers and Liquid Biopsies for Personalized Sarcoma Care. Semin Radiat Oncol 2024; 34:195-206. [PMID: 38508784 DOI: 10.1016/j.semradonc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Due to their rarity and complexity, sarcomas represent a substantial therapeutic challenge. However, the incredible diversity within and across sarcoma subtypes presents an opportunity for personalized care to maximize efficacy and limit toxicity. A deeper understanding of the molecular alterations that drive sarcoma development and treatment response has paved the way for molecular biomarkers to shape sarcoma treatment. Genetic, transcriptomic, and protein biomarkers have become critical tools for diagnosis, prognostication, and treatment selection in patients with sarcomas. In the future, emerging biomarkers like circulating tumor DNA analysis offer the potential to improve early detection, monitoring response to treatment, and identifying mechanisms of resistance to personalize sarcoma treatment. Here, we review the current state of molecular biomarkers for sarcomas and highlight opportunities and challenges for the implementation of new technologies in the future.
Collapse
Affiliation(s)
- Agnes Ewongwo
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA.; Stanford Cancer Institute, Stanford University, Stanford, CA..
| |
Collapse
|
115
|
Liu Y, Reed SC, Lo C, Choudhury AD, Parsons HA, Stover DG, Ha G, Gydush G, Rhoades J, Rotem D, Freeman S, Katz DW, Bandaru R, Zheng H, Fu H, Adalsteinsson VA, Kellis M. FinaleMe: Predicting DNA methylation by the fragmentation patterns of plasma cell-free DNA. Nat Commun 2024; 15:2790. [PMID: 38555308 PMCID: PMC10981715 DOI: 10.1038/s41467-024-47196-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing. We validate the performance with 80 pairs of deep and shallow-coverage whole-genome sequencing and whole-genome bisulfite sequencing data.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- University of Cincinnati Center for Environmental Genetics, Cincinnati, OH, 45229, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, 45229, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.
| | - Sarah C Reed
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christopher Lo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Atish D Choudhury
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Gavin Ha
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gregory Gydush
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Justin Rhoades
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Denisse Rotem
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Samuel Freeman
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David W Katz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ravi Bandaru
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Haizi Zheng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hailu Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA.
| |
Collapse
|
116
|
Annapragada AV, Niknafs N, White JR, Bruhm DC, Cherry C, Medina JE, Adleff V, Hruban C, Mathios D, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci Transl Med 2024; 16:eadj9283. [PMID: 38478628 PMCID: PMC11323656 DOI: 10.1126/scitranslmed.adj9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.
Collapse
Affiliation(s)
- Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. White
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Bruhm
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Cherry
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jamie E. Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carolyn Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachariah H. Foda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
117
|
Ben-Ami R, Wang QL, Zhang J, Supplee JG, Fahrmann JF, Lehmann-Werman R, Brais LK, Nowak J, Yuan C, Loftus M, Babic A, Irajizad E, Davidi T, Zick A, Hubert A, Neiman D, Piyanzin S, Gal-Rosenberg O, Horn A, Shemer R, Glaser B, Boos N, Jajoo K, Lee L, Clancy TE, Rubinson DA, Ng K, Chabot JA, Kastrinos F, Kluger M, Aguirre AJ, Jänne PA, Bardeesy N, Stanger B, O'Hara MH, Till J, Maitra A, Carpenter EL, Bullock AJ, Genkinger J, Hanash SM, Paweletz CP, Dor Y, Wolpin BM. Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer. Gut 2024; 73:639-648. [PMID: 38123998 PMCID: PMC10958271 DOI: 10.1136/gutjnl-2023-331074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.
Collapse
Affiliation(s)
- Roni Ben-Ami
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Qiao-Li Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Julianna G Supplee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roni Lehmann-Werman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Nowak
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Loftus
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tal Davidi
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Aviad Zick
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofer Gal-Rosenberg
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Horn
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel
| | - Natalia Boos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunal Jajoo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas E Clancy
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John A Chabot
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Michael Kluger
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ben Stanger
- Department of Medicine, Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark H O'Hara
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob Till
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Erica L Carpenter
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea J Bullock
- Division of Hematology and Oncology, Beth-Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanine Genkinger
- Department of epidemiology, Mailman school of public health, Columbia university, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia university Irving Medical Center, New York, New York, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
118
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
119
|
Yang Q, Zhu X, Liu Y, He Z, Xu H, Zheng H, Huang Z, Wang D, Lin X, Guo P, Chen H. Reduced representative methylome profiling of cell-free DNA for breast cancer detection. Clin Epigenetics 2024; 16:33. [PMID: 38414041 PMCID: PMC10898043 DOI: 10.1186/s13148-024-01641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Whole-genome methylation sequencing of cfDNA is not cost-effective for tumor detection. Here, we introduce reduced representative methylome profiling (RRMP), which employs restriction enzyme for depletion of AT-rich sequence to achieve enrichment and deep sequencing of CG-rich sequences. METHODS We first verified the ability of RRMP to enrich CG-rich sequences using tumor cell genomic DNA and analyzed differential methylation regions between tumor cells and normal whole blood cells. We then analyzed cfDNA from 29 breast cancer patients and 27 non-breast cancer individuals to detect breast cancer by building machine learning models. RESULTS RRMP captured 81.9% CpG islands and 75.2% gene promoters when sequenced to 10 billion base pairs, with an enrichment efficiency being comparable to RRBS. RRMP allowed us to assess DNA methylation changes between tumor cells and whole blood cells. Applying our approach to cfDNA from 29 breast cancer patients and 27 non-breast cancer individuals, we developed machine learning models that could discriminate between breast cancer and non-breast cancer controls (AUC = 0.85), suggesting possibilities for truly non-invasive cancer detection. CONCLUSIONS We developed a new method to achieve reduced representative methylome profiling of cell-free DNA for tumor detection.
Collapse
Affiliation(s)
- Qingmo Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xingqiang Zhu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Yulu Liu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Zhi He
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Huan Xu
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Hailing Zheng
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Zhiming Huang
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Dan Wang
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Xiaofang Lin
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China
| | - Ping Guo
- Xiamen Huazao Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China.
| | - Hongliang Chen
- Xiamen Vangenes Biotechnology Co., Ltd, Xiamen, 361015, Fujian, China.
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
120
|
Lyskjær I, Iisager L, Axelsen CT, Nielsen TK, Dyrskjøt L, Fristrup N. Management of Renal Cell Carcinoma: Promising Biomarkers and the Challenges to Reach the Clinic. Clin Cancer Res 2024; 30:663-672. [PMID: 37874628 PMCID: PMC10870122 DOI: 10.1158/1078-0432.ccr-23-1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
The incidence of renal cell carcinoma (RCC) is increasing worldwide, yet research within this field is lagging behind other cancers. Despite increased detection of early disease as a consequence of the widespread use of diagnostic CT scans, 25% of patients have disseminated disease at diagnosis. Similarly, around 25% progress to metastatic disease following curatively intended surgery. Surgery is the cornerstone in the treatment of RCC; however, when the disease is disseminated, immunotherapy or immunotherapy in combination with a tyrosine kinase inhibitor is the patient's best option. Immunotherapy is a potent treatment, with durable treatment responses and potential to cure the patient, but only half of the patients benefit from the administered treatment, and there are currently no methods that can identify which patients will respond to immunotherapy. Moreover, there is a need to identify the patients in greatest risk of relapsing after surgery for localized disease and direct adjuvant treatment there. Even though several molecular biomarkers have been published to date, we are still lacking routinely used biomarkers to guide optimal clinical management. The purpose of this review is to highlight some of the most promising biomarkers, discuss the efforts made within this field to date, and describe the barriers needed to be overcome to have reliable and robust predictive and prognostic biomarkers in the clinic for renal cancer.
Collapse
Affiliation(s)
- Iben Lyskjær
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Laura Iisager
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Fristrup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
121
|
Hartwig C, Müller J, Klett H, Kouhestani D, Mittelstädt A, Anthuber A, David P, Brunner M, Jacobsen A, Glanz K, Swierzy I, Roßdeutsch L, Klösch B, Grützmann R, Wittenberger T, Sohn K, Weber GF. Discrimination of pancreato-biliary cancer and pancreatitis patients by non-invasive liquid biopsy. Mol Cancer 2024; 23:28. [PMID: 38308296 PMCID: PMC10836044 DOI: 10.1186/s12943-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Current diagnostics for the detection of pancreato-biliary cancers (PBCs) need to be optimized. We therefore propose that methylated cell-free DNA (cfDNA) derived from non-invasive liquid biopsies serves as a novel biomarker with the ability to discriminate pancreato-biliary cancers from non-cancer pancreatitis patients. METHODS Differentially methylated regions (DMRs) from plasma cfDNA between PBCs, pancreatitis and clinical control samples conditions were identified by next-generation sequencing after enrichment using methyl-binding domains and database searches to generate a discriminatory panel for a hybridization and capture assay with subsequent targeted high throughput sequencing. RESULTS The hybridization and capture panel, covering around 74 kb in total, was applied to sequence a cohort of 25 PBCs, 25 pancreatitis patients, 25 clinical controls, and seven cases of Intraductal Papillary Mucinous Neoplasia (IPMN). An unbiased machine learning approach identified the 50 most discriminatory methylation markers for the discrimination of PBC from pancreatitis and controls resulting in an AUROC of 0.85 and 0.88 for a training (n = 45) and a validation (n = 37) data set, respectively. The panel was also able to distinguish high grade from low grade IPMN samples. CONCLUSIONS We present a proof of concept for a methylation biomarker panel with better performance and improved discriminatory power than the current clinical marker CA19-9 for the discrimination of pancreato-biliary cancers from non-cancerous pancreatitis patients and clinical controls. This workflow might be used in future diagnostics for the detection of precancerous lesions, e.g. the identification of high grade IPMNs vs. low grade IPMNs.
Collapse
Affiliation(s)
- Christina Hartwig
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Jan Müller
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | - Dina Kouhestani
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paul David
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Karolina Glanz
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Izabela Swierzy
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lotta Roßdeutsch
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | | | - Kai Sohn
- Innovation Field In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
- Comprehensive Cancer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
122
|
Mishra S, Srivastava P, Pandey A, Shukla S, Agarwal A, Husain N. Diagnostic Utility of Next-Generation Sequencing in Circulating Free DNA and a Comparison With Matched Tissue in Gallbladder Carcinoma. J Transl Med 2024; 104:100301. [PMID: 38092180 DOI: 10.1016/j.labinv.2023.100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024] Open
Abstract
Mutation detection for therapy monitoring in cell-free DNA (cfDNA) is used clinically for some malignancies. Gallbladder carcinoma (GBC) presents a diagnostic challenge and has limited late-stage treatment options. To our knowledge, this novel study examines, for the first time, genomic alterations in cfDNA from GBC to assess diagnostic accuracy and therapeutic options. The concordance of somatic genomic changes in cfDNA and DNA from paired tumor tissue was analyzed. Paired serum and tissue samples from 40 histologically proven GBC, 20 cholecystitis, and 4 normal (noninflamed gallbladder) controls were included. Targeted next-generation sequencing with a 22-gene panel (Colon and Lung Cancer Research Panel v2, Thermo Scientific) in cfDNA and tumor tissue with high depth and uniform coverage on ION Personal Genome Machine (ION, PGM) was performed. A spectrum of 223 mutations in cfDNA and 225 mutations in formalin-fixed paraffin-embedded tissue DNA were identified in 22 genes. Mutations ranged from 1 to 17 per case. In cfDNA frequent alterations were in TP53 (85.0%), EGFR (52.5%), MET (35%) CTNNB1, SMAD4, BRAF (32.5%), PTEN (30%), FGFR3 and PIK3CA (27.5%), NOTCH1 (25.0%), and FBXW7 and ERBB4 (22.5%). At least one clinically actionable mutation was identified in all cfDNA samples. Paired samples shared 149 of 225 genetic abnormalities (66.2%). Individual gene mutation concordance ranged from 44.44% to 82.0% and was highest for EGFR (82.0%), BRAF and NOTCH1 (80.0%), TP53 (73.08%), MET (72.22%), and ERBB4 (71.42%) with a significant level of correlation (Spearman r = 0.91, P ≤ .0001). The sensitivity and specificity of the TP53 gene at the gene level was the highest (94.44% and 100.0%, respectively). Overall survival was higher for ERBB4 and ERBB2 mutant tumors. The adenocarcinoma subtype revealed specific genetic changes in ERBB4, SMAD4, ERBB2, PTEN, KRAS, and NRAS. NGS-based cfDNA mutation profiling can be used to diagnose GBC before surgery to guide treatment decisions. Targeted therapy identified in GBC included SMAD4, ERBB2, ERBB4, EGFR, KRAS, BRAF, PIK3CA, MET, and NRAS.
Collapse
Affiliation(s)
- Sridhar Mishra
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Pallavi Srivastava
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anshuman Pandey
- Department of Gastrosurgery, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Saumya Shukla
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Akash Agarwal
- Department of Surgical Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
123
|
Zhang K, Fu R, Liu R, Su Z. Circulating cell-free DNA-based multi-cancer early detection. Trends Cancer 2024; 10:161-174. [PMID: 37709615 DOI: 10.1016/j.trecan.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Patients benefit considerably from early detection of cancer. Existing single-cancer tests have various limitations, which could be effectively addressed by circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED). With sensitive detection and accurate localization of multiple cancer types at a very low and fixed false-positive rate (FPR), MCED has great potential to revolutionize early cancer detection. Herein, we review state-of-the-art approaches for cfDNA-based MCED and their limitations and discuss both technical and clinical challenges in the development and application of MCED tests. Given the constant improvements in technology and understanding of cancer biology, we propose that a cfDNA-based targeted sequencing assay that integrates multimodal features should be optimized for MCED.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 South Panjiayuan Lane, Chaoyang District, Beijing 100021, China
| | - Ruiqing Fu
- Singlera Genomics Ltd, Shanghai 201203, China
| | - Rui Liu
- Singlera Genomics Ltd, Shanghai 201203, China
| | - Zhixi Su
- Singlera Genomics Ltd, Shanghai 201203, China.
| |
Collapse
|
124
|
Farooq M, Leevan E, Ahmed J, Ko B, Shin S, De Souza A, Takebe N. Blood-based multi-cancer detection: A state-of-the-art update. Curr Probl Cancer 2024; 48:101059. [PMID: 38181630 DOI: 10.1016/j.currproblcancer.2023.101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
The early detection of cancer is a key goal of the National Cancer Plan formally released by the National Institutes of Health's (NIH) National Cancer Institute (NCI) in April 2023. To support this effort, many laboratories and vendors are developing multi-cancer detection (MCD) assays that interrogate blood and other bodily fluids for cancer-related biomarkers, most commonly circulating tumor DNA (ctDNA). While this approach holds promise for non-invasively detecting early signals of multiple different cancers and potentially reducing cancer-related mortality, there is a dearth of prospective clinical data to inform the deployment of MCD assays for cancer screening in the general adult population. In this review we highlight differing technologies that underpin various MCD assays in clinical development, the importance of achieving adequate performance specifications for MCD assays, ongoing clinical studies investigating the utility of MCD assays in cancer screening and detection, and efforts by the NCI's Division of Cancer Prevention (DCP) to establish a network infrastructure that has the capacity to comprehensively address the scientific and logistical challenges of evaluating blood-based MCD approaches and other cancer screening tools.
Collapse
Affiliation(s)
- Maria Farooq
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elyse Leevan
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jibran Ahmed
- Developmental Therapeutics Clinic, Early Phase Clinical Trials Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Ko
- Developmental Therapeutics Clinic, Early Phase Clinical Trials Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Shin
- Developmental Therapeutics Clinic, Early Phase Clinical Trials Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andre De Souza
- Developmental Therapeutics Clinic, Early Phase Clinical Trials Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, Early Phase Clinical Trials Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
125
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
126
|
Sundby RT, Rhodes SD, Komlodi-Pasztor E, Sarnoff H, Grasso V, Upadhyaya M, Kim A, Evans DG, Blakeley JO, Hanemann CO, Bettegowda C. Recommendations for the collection and annotation of biosamples for analysis of biomarkers in neurofibromatosis and schwannomatosis clinical trials. Clin Trials 2024; 21:40-50. [PMID: 37904489 PMCID: PMC10922556 DOI: 10.1177/17407745231203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Neurofibromatosis 1 and schwannomatosis are characterized by potential lifelong morbidity and life-threatening complications. To date, however, diagnostic and predictive biomarkers are an unmet need in this patient population. The inclusion of biomarker discovery correlatives in neurofibromatosis 1/schwannomatosis clinical trials enables study of low-incidence disease. The implementation of a common data model would further enhance biomarker discovery by enabling effective concatenation of data from multiple studies. METHODS The Response Evaluation in Neurofibromatosis and Schwannomatosis biomarker working group reviewed published data on emerging trends in neurofibromatosis 1 and schwannomatosis biomarker research and developed recommendations in a series of consensus meetings. RESULTS Liquid biopsy has emerged as a promising assay for neurofibromatosis 1/schwannomatosis biomarker discovery and validation. In addition, we review recommendations for a range of biomarkers in clinical trials, neurofibromatosis 1/schwannomatosis-specific data annotations, and common data models for data integration. CONCLUSION These Response Evaluation in Neurofibromatosis and Schwannomatosis consensus guidelines are intended to provide best practices for the inclusion of biomarker studies in neurofibromatosis 1/schwannomatosis clinical trials, data, and sample annotation and to lay a framework for data harmonization and concatenation between trials.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Steven D Rhodes
- Division of Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Herman B Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Edina Komlodi-Pasztor
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Herb Sarnoff
- Research and Development, Infixion Bioscience, Inc., San Diego, CA, USA
- Patient Representative, REiNS International Collaboration, San Diego, CA, USA
| | - Vito Grasso
- Neural Stem Cell Institute, Rensselaer, NY, USA
- Patient Representative, REiNS International Collaboration, Troy, NY, USA
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Wales, UK
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester Academic Health Sciences Centre (MAHSC), ERN GENTURIS, Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Jaishri O Blakeley
- Division of Neuro-Oncology, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
127
|
Qu Y, Zhang X, Qiao R, Di F, Song Y, Wang J, Ji L, Zhang J, Gu W, Fang Y, Han B, Yang R, Dai L, Ouyang S. Blood FOLR3 methylation dysregulations and heterogeneity in non-small lung cancer highlight its strong associations with lung squamous carcinoma. Respir Res 2024; 25:59. [PMID: 38273401 PMCID: PMC10809478 DOI: 10.1186/s12931-024-02691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for the vast majority of lung cancers. Early detection is crucial to reduce lung cancer-related mortality. Aberrant DNA methylation occurs early during carcinogenesis and can be detected in blood. It is essential to investigate the dysregulated blood methylation markers for early diagnosis of NSCLC. METHODS NSCLC-associated methylation gene folate receptor gamma (FOLR3) was selected from an Illumina 850K array analysis of peripheral blood samples. Mass spectrometry was used for validation in two independent case-control studies (validation I: n = 2548; validation II: n = 3866). Patients with lung squamous carcinoma (LUSC) or lung adenocarcinoma (LUAD), normal controls (NCs) and benign pulmonary nodule (BPN) cases were included. FOLR3 methylations were compared among different populations. Their associations with NSCLC clinical features were investigated. Receiver operating characteristic analyses, Kruskal-Wallis test, Wilcoxon test, logistics regression analysis and nomogram analysis were performed. RESULTS Two CpG sites (CpG_1 and CpG_2) of FOLR3 was significantly lower methylated in NSCLC patients than NCs in the discovery round. In the two validations, both LUSC and LUAD patients presented significant FOLR3 hypomethylations. LUSC patients were highlighted to have significantly lower methylation levels of CpG_1 and CpG_2 than BPN cases and LUAD patients. Both in the two validations, CpG_1 methylation and CpG_2 methylation could discriminate LUSC from NCs well, with areas under the curve (AUCs) of 0.818 and 0.832 in validation I, and 0.789 and 0.780 in validation II. They could also differentiate LUAD from NCs, but with lower efficiency. CpG_1 and CpG_2 methylations could also discriminate LUSC from BPNs well individually in the two validations. With the combined dataset of two validations, the independent associations of age, gender, and FOLR3 methylation with LUSC and LUAD risk were shown and the age-gender-CpG_1 signature could discriminate LUSC and LUAD from NCs and BPNs, with higher efficiency for LUSC. CONCLUSIONS Blood-based FOLR3 hypomethylation was shown in LUSC and LUAD. FOLR3 methylation heterogeneity between LUSC and LUAD highlighted its stronger associations with LUSC. FOLR3 methylation and the age-gender-CpG_1 signature might be novel diagnostic markers for the early detection of NSCLC, especially for LUSC.
Collapse
Affiliation(s)
- Yunhui Qu
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University and the Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Xiuzhi Zhang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
| | - Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Feifei Di
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, 210000, China
| | - Yakang Song
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, 210000, China
| | - Jun Wang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, 210000, China
| | - Longtao Ji
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210000, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210000, China
| | - Yifei Fang
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Rongxi Yang
- Nanjing TANTICA Biotechnology Co. Ltd, Nanjing, 210000, China.
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China.
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, China.
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
128
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
129
|
Li Y, Xu J, Chen C, Lu Z, Wan D, Li D, Li JS, Sorg AJ, Roberts CC, Mahajan S, Gallant MA, Pinkoviezky I, Cui Y, Taggart DJ, Li W. Multimodal epigenetic sequencing analysis (MESA) of cell-free DNA for non-invasive colorectal cancer detection. Genome Med 2024; 16:9. [PMID: 38225592 PMCID: PMC10790422 DOI: 10.1186/s13073-023-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Detecting human cancers through cell-free DNA (cfDNA) in blood is a sensitive and non-invasive option. However, capturing multiple forms of epigenetic information remains a technical and financial challenge. METHODS To address this, we developed multimodal epigenetic sequencing analysis (MESA), a flexible and sensitive approach to capturing and integrating a diverse range of epigenetic features in cfDNA using a single experimental assay, i.e., non-disruptive bisulfite-free methylation sequencing, such as Enzymatic Methyl-seq. MESA enables simultaneous inference of four epigenetic modalities: cfDNA methylation, nucleosome occupancy, nucleosome fuzziness, and windowed protection score for regions surrounding gene promoters and polyadenylation sites. RESULTS When applied to 690 cfDNA samples from 3 colorectal cancer clinical cohorts, MESA's novel modalities, which include nucleosome fuzziness, and genomic features, including polyadenylation sites, improve cancer detection beyond the traditional epigenetic markers of promoter DNA methylation. CONCLUSIONS Together, MESA stands as a major advancement in the field by utilizing comprehensive and complementary epigenetic profiles of cfDNA for effective non-invasive cancer detection.
Collapse
Affiliation(s)
- Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | | | - Chaorong Chen
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zhenhai Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Desen Wan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Diange Li
- Guangzhou Youze Biological Pharmaceutical Technology Company Ltd, Guangzhou, 510005, P. R. China
| | - Jason S Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | | | | | | | | | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
130
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
131
|
Wong D, Luo P, Oldfield LE, Gong H, Brunga L, Rabinowicz R, Subasri V, Chan C, Downs T, Farncombe KM, Luu B, Norman M, Sobotka JA, Uju P, Eagles J, Pedersen S, Wellum J, Danesh A, Prokopec SD, Stutheit-Zhao EY, Znassi N, Heisler LE, Jovelin R, Lam B, Lujan Toro BE, Marsh K, Sundaravadanam Y, Torti D, Man C, Goldenberg A, Xu W, Veit-Haibach P, Doria AS, Malkin D, Kim RH, Pugh TJ. Early Cancer Detection in Li-Fraumeni Syndrome with Cell-Free DNA. Cancer Discov 2024; 14:104-119. [PMID: 37874259 PMCID: PMC10784744 DOI: 10.1158/2159-8290.cd-23-0456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Leslie E. Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Haifan Gong
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Vallijah Subasri
- The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Clarissa Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tiana Downs
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Beatrice Luu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Maia Norman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Julia A. Sobotka
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Precious Uju
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Johanna Wellum
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Nadia Znassi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Carina Man
- The Hospital for Sick Children, Toronto, Canada
| | - Anna Goldenberg
- The Hospital for Sick Children, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | - David Malkin
- The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Raymond H. Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- The Hospital for Sick Children, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
132
|
Guler GD, Ning Y, Coruh C, Mognol GP, Phillips T, Nabiyouni M, Hazen K, Scott A, Volkmuth W, Levy S. Plasma cell-free DNA hydroxymethylation profiling reveals anti-PD-1 treatment response and resistance biology in non-small cell lung cancer. J Immunother Cancer 2024; 12:e008028. [PMID: 38212123 PMCID: PMC10806554 DOI: 10.1136/jitc-2023-008028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.
Collapse
Affiliation(s)
| | - Yuhong Ning
- ClearNote Health Inc, San Diego, California, USA
| | - Ceyda Coruh
- ClearNote Health Inc, San Diego, California, USA
| | | | | | | | - Kyle Hazen
- ClearNote Health Inc, San Diego, California, USA
| | - Aaron Scott
- ClearNote Health Inc, San Diego, California, USA
| | | | - Samuel Levy
- ClearNote Health Inc, San Diego, California, USA
| |
Collapse
|
133
|
Röner S, Burkard L, Speicher MR, Kircher M. cfDNA UniFlow: a unified preprocessing pipeline for cell-free DNA data from liquid biopsies. Gigascience 2024; 13:giae102. [PMID: 39704700 DOI: 10.1093/gigascience/giae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/30/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA), a broadly applicable biomarker commonly sourced from urine or blood, is extensively used for research and diagnostic applications. In various settings, genetic and epigenetic information is derived from cfDNA. However, a unified framework for its processing is lacking, limiting the universal application of innovative analysis strategies and the joining of data sets. FINDINGS Here, we describe cfDNA UniFlow, a unified, standardized, and ready-to-use workflow for processing cfDNA samples. The workflow is written in Snakemake and can be scaled from stand-alone computers to cluster environments. It includes methods for processing raw genome sequencing data as well as specialized approaches for correcting sequencing errors, filtering, and quality control. Sophisticated methods for detecting copy number alterations and estimating and correcting GC-related biases are readily incorporated. Furthermore, it includes methods for extracting, normalizing, and visualizing coverage signals around user-defined regions in case-control settings. Ultimately, all results and metrics are aggregated in a unified report, enabling easy access to a wide variety of information for further research and downstream analysis. CONCLUSIONS We provide an automated pipeline for processing cell-free DNA sampled from liquid biopsies, including a wide variety of additional functionalities like bias correction and signal extraction. With our focus on scalability and extensibility, we provide a foundation for future cfDNA research and faster clinical applications. The source code and extensive documentation are available on our GitHub repository (https://github.com/kircherlab/cfDNA-UniFlow).
Collapse
Affiliation(s)
- Sebastian Röner
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Lea Burkard
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- University of Potsdam, Institute for Biochemistry and Biology, 14469 Potsdam, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Martin Kircher
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
134
|
Liu Y, Reed SC, Lo C, Choudhury AD, Parsons HA, Stover DG, Ha G, Gydush G, Rhoades J, Rotem D, Freeman S, Katz D, Bandaru R, Zheng H, Fu H, Adalsteinsson VA, Kellis M. FinaleMe: Predicting DNA methylation by the fragmentation patterns of plasma cell-free DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573710. [PMID: 38260558 PMCID: PMC10802291 DOI: 10.1101/2024.01.02.573710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Analysis of DNA methylation in cell-free DNA (cfDNA) reveals clinically relevant biomarkers but requires specialized protocols and sufficient input material that limits its applicability. Millions of cfDNA samples have been profiled by genomic sequencing. To maximize the gene regulation information from the existing dataset, we developed FinaleMe, a non-homogeneous Hidden Markov Model (HMM), to predict DNA methylation of cfDNA and, therefore, tissues-of-origin directly from plasma whole-genome sequencing (WGS). We validated the performance with 80 pairs of deep and shallow-coverage WGS and whole-genome bisulfite sequencing (WGBS) data.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
- University of Cincinnati Center for Environmental Genetics, Cincinnati, OH 45229
- University of Cincinnati Cancer Center, Cincinnati, OH 45229
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139
| | - Sarah C. Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - Atish D. Choudhury
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Gavin Ha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | | | - Denisse Rotem
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | | | - David Katz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Ravi Bandaru
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Haizi Zheng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Hailu Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | | | - Manolis Kellis
- University of Cincinnati Center for Environmental Genetics, Cincinnati, OH 45229
- University of Cincinnati Cancer Center, Cincinnati, OH 45229
| |
Collapse
|
135
|
Wang J, Huang J, Hu Y, Guo Q, Zhang S, Tian J, Niu Y, Ji L, Xu Y, Tang P, He Y, Wang Y, Zhang S, Yang H, Kang K, Chen X, Li X, Yang M, Gou D. Terminal modifications independent cell-free RNA sequencing enables sensitive early cancer detection and classification. Nat Commun 2024; 15:156. [PMID: 38168054 PMCID: PMC10761679 DOI: 10.1038/s41467-023-44461-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cell-free RNAs (cfRNAs) offer an opportunity to detect diseases from a transcriptomic perspective, however, existing techniques have fallen short in generating a comprehensive cell-free transcriptome profile. We develop a sensitive library preparation method that is robust down to 100 µl input plasma to analyze cfRNAs independent of their 5'-end modifications. We show that it outperforms adapter ligation-based method in detecting a greater number of cfRNA species. We perform transcriptome-wide characterizations in 165 lung cancer, 30 breast cancer, 37 colorectal cancer, 55 gastric cancer, 15 liver cancer, and 133 cancer-free participants and demonstrate its ability to identify transcriptomic changes occurring in early-stage tumors. We also leverage machine learning analyses on the differentially expressed cfRNA signatures and reveal their robust performance in cancer detection and classification. Our work sets the stage for in-depth study of the cfRNA repertoire and highlights the value of cfRNAs as cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Jun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinyong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yunlong Hu
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qianwen Guo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shasha Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinglin Tian
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanqin Niu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ling Ji
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, People's Hospital of Bao'an Shenzhen, Shenzhen, Guangdong, China
| | - Peijun Tang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Yaqin He
- Surgical Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuna Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuya Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hao Yang
- Department of Clinical Laboratory, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Kang Kang
- College of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinchun Chen
- College of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinying Li
- Shenzhen Geneups Biotechnology Co., Shenzhen, Guangdong, China
| | - Ming Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Deming Gou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
136
|
Melton CA, Freese P, Zhou Y, Shenoy A, Bagaria S, Chang C, Kuo CC, Scott E, Srinivasan S, Cann G, Roychowdhury-Saha M, Chang PY, Singh AH. A Novel Tissue-Free Method to Estimate Tumor-Derived Cell-Free DNA Quantity Using Tumor Methylation Patterns. Cancers (Basel) 2023; 16:82. [PMID: 38201510 PMCID: PMC10777919 DOI: 10.3390/cancers16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Estimating the abundance of cell-free DNA (cfDNA) fragments shed from a tumor (i.e., circulating tumor DNA (ctDNA)) can approximate tumor burden, which has numerous clinical applications. We derived a novel, broadly applicable statistical method to quantify cancer-indicative methylation patterns within cfDNA to estimate ctDNA abundance, even at low levels. Our algorithm identified differentially methylated regions (DMRs) between a reference database of cancer tissue biopsy samples and cfDNA from individuals without cancer. Then, without utilizing matched tissue biopsy, counts of fragments matching the cancer-indicative hyper/hypo-methylated patterns within DMRs were used to determine a tumor methylated fraction (TMeF; a methylation-based quantification of the circulating tumor allele fraction and estimate of ctDNA abundance) for plasma samples. TMeF and small variant allele fraction (SVAF) estimates of the same cancer plasma samples were correlated (Spearman's correlation coefficient: 0.73), and synthetic dilutions to expected TMeF of 10-3 and 10-4 had estimated TMeF within two-fold for 95% and 77% of samples, respectively. TMeF increased with cancer stage and tumor size and inversely correlated with survival probability. Therefore, tumor-derived fragments in the cfDNA of patients with cancer can be leveraged to estimate ctDNA abundance without the need for a tumor biopsy, which may provide non-invasive clinical approximations of tumor burden.
Collapse
|
137
|
Spiliopoulou P, Holanda Lopes CD, Spreafico A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2023; 13:19. [PMID: 38201222 PMCID: PMC10777980 DOI: 10.3390/cells13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic landscape of malignant melanoma has been radically reformed in recent years, with novel treatments emerging in both the field of cancer immunotherapy and signalling pathway inhibition. Large-scale tumour genomic characterization has accurately classified malignant melanoma into four different genomic subtypes so far. Despite this, only somatic mutations in BRAF oncogene, as assessed in tumour biopsies, has so far become a validated predictive biomarker of treatment with small molecule inhibitors. The biology of tumour evolution and heterogeneity has uncovered the current limitations associated with decoding genomic drivers based only on a single-site tumour biopsy. There is an urgent need to develop minimally invasive biomarkers that accurately reflect the real-time evolution of melanoma and that allow for streamlined collection, analysis, and interpretation. These will enable us to face challenges with tumour tissue attainment and process and will fulfil the vision of utilizing "liquid biopsy" to guide clinical decisions, in a manner akin to how it is used in the management of haematological malignancies. In this review, we will summarize the most recent published evidence on the role of minimally invasive biomarkers in melanoma, commenting on their future potential to lead to practice-changing discoveries.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| |
Collapse
|
138
|
Xu Z, Wu Y, Zhao G, Jin B, Jiang P. A novel DNA methylation signature revealed GDF6 and RCC1 as potential prognostic biomarkers correlated with cell proliferation in clear cell renal cell carcinoma. Mol Biol Rep 2023; 51:16. [PMID: 38087057 DOI: 10.1007/s11033-023-09003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) accounts for the majority (80%-90%) of renal cell carcinoma (RCC) patients at the time of diagnosis, and approximately 15% of ccRCC patients will develop distant metastasis or recurrence during their lifetime. Increasing number of studies have revealed that the aberrant DNA methylations is closely correlated with the tumorigenesis in ccRCC. RESULTS In this study, we utilized a LASSO (least absolute shrinkage and selection operator) model to identify a combination of 13 probes-based DNA methylation signature that associated with the progression-free survival (PFS) of ccRCC patients. First, differentially methylated regions (CpGs) related to PFS and phenotypes were identified. Next, prognostic DNA methylation probes were selected from the differentially methylated probes (DMPs) and calculated risk scores to stratify patients with ccRCC. The performance of this signature was validated in an independent testing set using various analyses, including Kaplan-Meier analysis for PFS and receiver operating characteristic (ROC) curve analysis. Based on our 13-DNA methylation probes signature, ccRCC patients were successfully stratified into high- and low-risk groups. Combining DNA methylation signature with clinical variables such as T stage, M stage and tumor grade could further improve the accuracy of prediction. Moreover, we highlight two molecular biomarkers (RCC1 and GDF6) corresponding to our probes. Invitro experiments showed that knockdown of RCC1 or GDF6 in ccRCC cell lines reduced cell proliferation, which indicated that both biomarkers are associated with tumorigenesis. CONCLUSIONS The 13-probes-based DNA methylation signature has the potential to serve as an independent tool for survival outcome improvement and treatment strategy selection for ccRCC patients. In addition, our findings suggest that RCC1 and GDF6 may serve as promising markers for ccRCC.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Guanan Zhao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Urology, Lishui People's Hospital, Lishui, 323050, Zhejiang, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Peng Jiang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China.
| |
Collapse
|
139
|
van der Pol Y, Tantyo NA, Evander N, Hentschel AE, Wever BM, Ramaker J, Bootsma S, Fransen MF, Lenos KJ, Vermeulen L, Schneiders FL, Bahce I, Nieuwenhuijzen JA, Steenbergen RD, Pegtel DM, Moldovan N, Mouliere F. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol Med 2023; 15:e17282. [PMID: 37942753 DOI: 10.15252/emmm.202217282] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Cell-free DNA (cfDNA) can be isolated and sequenced from blood and/or urine of cancer patients. Conventional short-read sequencing lacks deployability and speed and can be biased for short cfDNA fragments. Here, we demonstrate that with Oxford Nanopore Technologies (ONT) sequencing we can achieve delivery of genomic and fragmentomic data from liquid biopsies. Copy number aberrations and cfDNA fragmentation patterns can be determined in less than 24 h from sample collection. The tumor-derived cfDNA fraction calculated from plasma of lung cancer patients and urine of bladder cancer patients was highly correlated (R = 0.98) with the tumor fraction calculated from short-read sequencing of the same samples. cfDNA size profile, fragmentation patterns, fragment-end composition, and nucleosome profiling near transcription start sites in plasma and urine exhibited the typical cfDNA features. Additionally, a high proportion of long tumor-derived cfDNA fragments (> 300 bp) are recovered in plasma and urine using ONT sequencing. ONT sequencing is a cost-effective, fast, and deployable approach for obtaining genomic and fragmentomic results from liquid biopsies, allowing the analysis of previously understudied cfDNA populations.
Collapse
Affiliation(s)
- Ymke van der Pol
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Normastuti Adhini Tantyo
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Nils Evander
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Anouk E Hentschel
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Urology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Birgit Mm Wever
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jip Ramaker
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Marieke F Fransen
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Pulmonology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Famke L Schneiders
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Pulmonology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Idris Bahce
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Pulmonology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jakko A Nieuwenhuijzen
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Urology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Renske Dm Steenbergen
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Norbert Moldovan
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Florent Mouliere
- Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
140
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
141
|
Li C, Shao J, Li P, Feng J, Li J, Wang C. Circulating tumor DNA as liquid biopsy in lung cancer: Biological characteristics and clinical integration. Cancer Lett 2023; 577:216365. [PMID: 37634743 DOI: 10.1016/j.canlet.2023.216365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Lung cancer maintains high morbidity and mortality rate globally despite significant advancements in diagnosis and treatment in the era of precision medicine. Pathological analysis of tumor tissue, the current gold standard for lung cancer diagnosis, is intrusive and intrinsically confined to evaluating the limited amount of tissues that could be physically extracted. However, tissue biopsy has several limitations, including the invasiveness of the procedure and difficulty in obtaining samples for patients at advanced stages., there Additionally,has been no major breakthrough in tumor biomarkers with high specificity and sensitivity, particularly for early-stage lung cancer. Liquid biopsy has been considered a feasible auxiliary tool for tearly dianosis, evaluating treatment responses and monitoring prognosis of lung cancer. Circulating tumor DNA (ctDNA), an ideal biomarker of liquid biopsy, has emerged as one of the most reliable tools for monitoring tumor processes at molecular levels. Herein, this review focuses on tumor heterogeneity to elucidate the superiority of liquid biopsy and retrospectively discussdeciphersolution. We systematically elaborate ctDNA biological characteristics, introduce methods for ctDNA detection, and discuss the current role of plasma ctDNA in lung cancer management. Finally, we summarize the drawbacks of ctDNA analysis and highlight its potential clinical application in lung cancer.
Collapse
Affiliation(s)
- Changshu Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
142
|
Yang J, Qiu L, Wang X, Chen X, Cao P, Yang Z, Wen Q. Liquid biopsy biomarkers to guide immunotherapy in breast cancer. Front Immunol 2023; 14:1303491. [PMID: 38077355 PMCID: PMC10701691 DOI: 10.3389/fimmu.2023.1303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy has emerged as a promising treatment strategy for breast cancer (BC). However, current reliance on immunohistochemical (IHC) detection of PD-L1 expression alone has limited predictive capability, resulting in suboptimal efficacy of ICIs for some BC patients. Hence, developing novel predictive biomarkers is indispensable to enhance patient selection for immunotherapy. In this context, utilizing liquid biopsy (LB) can provide supplementary or alternative value to PD-L1 IHC testing for identifying patients most likely to benefit from immunotherapy and exhibit favorable responses. This review discusses the predictive and prognostic value of LB in breast cancer immunotherapy, as well as its limitations and future directions. We aim to promote the individualization and precision of immunotherapy in BC by elucidating the role of LB in clinical practice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Biological Science, Vanderbilt University, Nashville, TN, United States
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Human Resource, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingdong Cao
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
143
|
Erez N, Furth N, Fedyuk V, Wadden J, Aittaleb R, Schwark K, Niculcea M, Miclea M, Mody R, Franson A, Eze A, Nourmohammadi N, Nazarian J, Venneti S, Koschmann C, Shema E. Single-molecule systems for detection and monitoring of plasma circulating nucleosomes and oncoproteins in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568019. [PMID: 38045418 PMCID: PMC10690213 DOI: 10.1101/2023.11.21.568019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of cancer patients potentiates a new generation of non-invasive diagnostics and treatment monitoring approaches. However, confident detection of these tumor-originating markers is challenging, especially in the context of brain tumors, in which extremely low amounts of these analytes circulate in the patient's plasma. Here, we applied a sensitive single-molecule technology to profile multiple histone modifications on millions of individual nucleosomes from the plasma of Diffuse Midline Glioma (DMG) patients. The system reveals epigenetic patterns that are unique to DMG, significantly differentiating this group of patients from healthy subjects or individuals diagnosed with other cancer types. We further develop a method to directly capture and quantify the tumor-originating oncoproteins, H3-K27M and mutant p53, from the plasma of children diagnosed with DMG. This single-molecule system allows for accurate molecular classification of patients, utilizing less than 1ml of liquid-biopsy material. Furthermore, we show that our simple and rapid detection strategy correlates with MRI measurements and droplet-digital PCR (ddPCR) measurements of ctDNA, highlighting the utility of this approach for non-invasive treatment monitoring of DMG patients. This work underscores the clinical potential of single-molecule-based, multi-parametric assays for DMG diagnosis and treatment monitoring.
Collapse
|
144
|
Tao Y, Xing S, Zuo S, Bao P, Jin Y, Li Y, Li M, Wu Y, Chen S, Wang X, Zhu Y, Feng Y, Zhang X, Wang X, Xi Q, Lu Q, Wang P, Lu ZJ. Cell-free multi-omics analysis reveals potential biomarkers in gastrointestinal cancer patients' blood. Cell Rep Med 2023; 4:101281. [PMID: 37992683 PMCID: PMC10694666 DOI: 10.1016/j.xcrm.2023.101281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
During cancer progression, tumorigenic and immune signals are spread through circulating molecules, such as cell-free DNA (cfDNA) and cell-free RNA (cfRNA) in the blood. So far, they have not been comprehensively investigated in gastrointestinal cancers. Here, we profile 4 categories of cell-free omics data from patients with colorectal cancer and patients with stomach adenocarcinoma and then assay 15 types of genomic, epigenomic, and transcriptomic variations. We find that multi-omics data are more appropriate for detection of cancer genes compared with single-omics data. In particular, cfRNAs are more sensitive and informative than cfDNAs in terms of detection rate, enriched functional pathways, etc. Moreover, we identify several peripheral immune signatures that are suppressed in patients with cancer. Specifically, we establish a γδ-T cell score and a cancer-associated-fibroblast (CAF) score, providing insights into clinical statuses like cancer stage and survival. Overall, we reveal a cell-free multi-molecular landscape that is useful for blood monitoring in personalized cancer treatment.
Collapse
Affiliation(s)
- Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Shuai Zuo
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yunfan Jin
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingchao Wu
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Shanwen Chen
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yumin Zhu
- Medical school, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ying Feng
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaohua Zhang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xianbo Wang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China; Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China.
| | - Pengyuan Wang
- Gastro-Intestinal Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute for Precision Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
145
|
Deng Z, Ji Y, Han B, Tan Z, Ren Y, Gao J, Chen N, Ma C, Zhang Y, Yao Y, Lu H, Huang H, Xu M, Chen L, Zheng L, Gu J, Xiong D, Zhao J, Gu J, Chen Z, Wang K. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network. Genome Med 2023; 15:93. [PMID: 37936230 PMCID: PMC10631027 DOI: 10.1186/s13073-023-01238-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Early detection of hepatocellular carcinoma (HCC) is important in order to improve patient prognosis and survival rate. Methylation sequencing combined with neural networks to identify cell-free DNA (cfDNA) carrying aberrant methylation offers an appealing and non-invasive approach for HCC detection. However, some limitations exist in traditional methylation detection technologies and models, which may impede their performance in the read-level detection of HCC. METHODS We developed a low DNA damage and high-fidelity methylation detection method called No End-repair Enzymatic Methyl-seq (NEEM-seq). We further developed a read-level neural detection model called DeepTrace that can better identify HCC-derived sequencing reads through a pre-trained and fine-tuned neural network. After pre-training on 11 million reads from NEEM-seq, DeepTrace was fine-tuned using 1.2 million HCC-derived reads from tumor tissue DNA after noise reduction, and 2.7 million non-tumor reads from non-tumor cfDNA. We validated the model using data from 130 individuals with cfDNA whole-genome NEEM-seq at around 1.6X depth. RESULTS NEEM-seq overcomes the drawbacks of traditional enzymatic methylation sequencing methods by avoiding the introduction of unmethylation errors in cfDNA. DeepTrace outperformed other models in identifying HCC-derived reads and detecting HCC individuals. Based on the whole-genome NEEM-seq data of cfDNA, our model showed high accuracy of 96.2%, sensitivity of 93.6%, and specificity of 98.5% in the validation cohort consisting of 62 HCC patients, 48 liver disease patients, and 20 healthy individuals. In the early stage of HCC (BCLC 0/A and TNM I), the sensitivity of DeepTrace was 89.6 and 89.5% respectively, outperforming Alpha Fetoprotein (AFP) which showed much lower sensitivity in both BCLC 0/A (50.5%) and TNM I (44.7%). CONCLUSIONS By combining high-fidelity methylation data from NEEM-seq with the DeepTrace model, our method has great potential for HCC early detection with high sensitivity and specificity, making it potentially suitable for clinical applications. DeepTrace: https://github.com/Bamrock/DeepTrace.
Collapse
Affiliation(s)
- Zhenzhong Deng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongkun Ji
- BamRock Research Department, Suzhou BamRock Biotechnology Ltd., Suzhou, Jiangsu Province, China
| | - Bing Han
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongming Tan
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuqi Ren
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jinghan Gao
- Department of Software Engineering, Tsinghua University, Beijing, China
| | - Nan Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Cong Ma
- Suzhou Known Biotechnology Ltd, Suzhou, Jiangsu Province, China
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhai Yao
- Infectious Disease Department, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Lu
- Infectious Disease Department, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Heqing Huang
- Infectious Disease Department, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Deyi Xiong
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| | - Jianxin Zhao
- Department of Interventional Medicine, the affiliated hospital of infectious diseases of Soochow University, Suzhou, 215131, Jiangsu Province, China.
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Zutao Chen
- Infectious Disease Department, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Suzhou, Jiangsu Province, China.
| | - Ke Wang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
146
|
Gupta A, Siddiqui Z, Sagar G, Rao KVS, Saquib N. A non-invasive method for concurrent detection of multiple early-stage cancers in women. Sci Rep 2023; 13:19083. [PMID: 37925521 PMCID: PMC10625604 DOI: 10.1038/s41598-023-46553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Untargeted serum metabolomics was combined with machine learning-powered data analytics to develop a test for the concurrent detection of multiple cancers in women. A total of fifteen cancers were tested where the resulting metabolome data was sequentially analysed using two separate algorithms. The first algorithm successfully identified all the cancer-positive samples with an overall accuracy of > 99%. This result was particularly significant given that the samples tested were predominantly from early-stage cancers. Samples identified as cancer-positive were next analysed using a multi-class algorithm, which then enabled accurate discernment of the tissue of origin for the individual samples. Integration of serum metabolomics with appropriate data analytical tools, therefore, provides a powerful screening platform for early-stage cancers.
Collapse
Affiliation(s)
- Ankur Gupta
- PredOmix Health Sciences Private Limited, 10 Anson Road, #22-02 International Plaza, Singapore, 079903, Singapore
- PredOmix Technologies Private Limited, Tower B, SAS Tower, Medicity, Sector-38, Gurugram, 122002, India
| | - Zaved Siddiqui
- PredOmix Health Sciences Private Limited, 10 Anson Road, #22-02 International Plaza, Singapore, 079903, Singapore
- PredOmix Technologies Private Limited, Tower B, SAS Tower, Medicity, Sector-38, Gurugram, 122002, India
| | - Ganga Sagar
- PredOmix Technologies Private Limited, Tower B, SAS Tower, Medicity, Sector-38, Gurugram, 122002, India
| | - Kanury V S Rao
- PredOmix Health Sciences Private Limited, 10 Anson Road, #22-02 International Plaza, Singapore, 079903, Singapore
- PredOmix Technologies Private Limited, Tower B, SAS Tower, Medicity, Sector-38, Gurugram, 122002, India
| | - Najmuddin Saquib
- PredOmix Health Sciences Private Limited, 10 Anson Road, #22-02 International Plaza, Singapore, 079903, Singapore.
- PredOmix Technologies Private Limited, Tower B, SAS Tower, Medicity, Sector-38, Gurugram, 122002, India.
| |
Collapse
|
147
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
148
|
Bartemes KR, Gochanour BR, Routman DM, Ma DJ, Doering KA, Burger KN, Foote PH, Taylor WR, Mahoney DW, Berger CK, Cao X, Then SS, Haller TJ, Larish AM, Moore EJ, Garcia JJ, Graham RP, Bakkum-Gamez JN, Kisiel JB, Van Abel KM. Assessing the capacity of methylated DNA markers of cervical squamous cell carcinoma to discriminate oropharyngeal squamous cell carcinoma in human papillomavirus mediated disease. Oral Oncol 2023; 146:106568. [PMID: 37717549 PMCID: PMC10591712 DOI: 10.1016/j.oraloncology.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE Early identification of human papillomavirus associated oropharyngeal squamous cell carcinoma (HPV(+)OPSCC) is challenging and novel biomarkers are needed. We hypothesized that a panel of methylated DNA markers (MDMs) found in HPV(+) cervical squamous cell carcinoma (CSCC) will have similar discrimination in HPV(+)OPSCC tissues. MATERIALS AND METHODS Formalin-fixed, paraffin-embedded tissues were obtained from patients with primary HPV(+)OPSCC or HPV(+)CSCC; control tissues included normal oropharynx palatine tonsil (NOP) and cervix (NCS). Using a methylation-specific polymerase chain reaction, 21 previously validated cervical MDMs were evaluated on tissue-extracted DNA. Discrimination between case and control cervical and oropharynx tissue was assessed using area under the curve (AUC). RESULTS 34 HPV(+)OPSCC, 36 HPV(+)CSCC, 26 NOP, and 24 NCS patients met inclusion criteria. Within HPV(+)CSCC, 18/21 (86%) of MDMs achieved an AUC ≥ 0.9 and all MDMs exhibited better than chance classifications relative to control cervical tissue (all p < 0.001). In contrast, within HPV(+)OPSCC only 5/21 (24%) MDMs achieved an AUC ≥ 0.90 but 19/21 (90%) exhibited better than chance classifications relative to control tonsil tissue (all p < 0.001). Overall, 13/21 MDMs had statistically significant lower AUCs in the oropharyngeal cohort compared to the cervical cohort, and only 1 MDM exhibited a statistically significant increase in AUC. CONCLUSIONS Previously validated MDMs exhibited robust performance in independent HPV(+)CSCC patients. However, most of these MDMs exhibited higher discrimination for HPV(+)CSCC than for HPV(+)OPSCC. This suggests that each SCC subtype requires a unique set of MDMs for optimal discrimination. Future studies are necessary to establish an MDM panel for HPV(+)OPSCC.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Department of Otolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Daniel J Ma
- Department of Radiation Oncology, Rochester, MN, USA
| | | | - Kelli N Burger
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Douglas W Mahoney
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Xiaoming Cao
- Department of Gastroenterology, Rochester, MN, USA
| | - Sara S Then
- Department of Gastroenterology, Rochester, MN, USA
| | - Travis J Haller
- Department of Otolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alyssa M Larish
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Eric J Moore
- Department of Otolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
| | - Joaquin J Garcia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kathryn M Van Abel
- Department of Otolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
149
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
150
|
Kim SY, Jeong S, Lee W, Jeon Y, Kim YJ, Park S, Lee D, Go D, Song SH, Lee S, Woo HG, Yoon JK, Park YS, Kim YT, Lee SH, Kim KH, Lim Y, Kim JS, Kim HP, Bang D, Kim TY. Cancer signature ensemble integrating cfDNA methylation, copy number, and fragmentation facilitates multi-cancer early detection. Exp Mol Med 2023; 55:2445-2460. [PMID: 37907748 PMCID: PMC10689759 DOI: 10.1038/s12276-023-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/02/2023] Open
Abstract
Cell-free DNA (cfDNA) sequencing has demonstrated great potential for early cancer detection. However, most large-scale studies have focused only on either targeted methylation sites or whole-genome sequencing, limiting comprehensive analysis that integrates both epigenetic and genetic signatures. In this study, we present a platform that enables simultaneous analysis of whole-genome methylation, copy number, and fragmentomic patterns of cfDNA in a single assay. Using a total of 950 plasma (361 healthy and 589 cancer) and 240 tissue samples, we demonstrate that a multifeature cancer signature ensemble (CSE) classifier integrating all features outperforms single-feature classifiers. At 95.2% specificity, the cancer detection sensitivity with methylation, copy number, and fragmentomic models was 77.2%, 61.4%, and 60.5%, respectively, but sensitivity was significantly increased to 88.9% with the CSE classifier (p value < 0.0001). For tissue of origin, the CSE classifier enhanced the accuracy beyond the methylation classifier, from 74.3% to 76.4%. Overall, this work proves the utility of a signature ensemble integrating epigenetic and genetic information for accurate cancer detection.
Collapse
Affiliation(s)
| | | | | | - Yujin Jeon
- IMBdx Inc., Seoul, 08506, Republic of Korea
| | | | | | - Dongin Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dayoung Go
- IMBdx Inc., Seoul, 08506, Republic of Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sanghoo Lee
- Seoul Clinical Laboratories Healthcare Inc., Yongin-si, Gyenggi-do, 16954, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jung-Ki Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Young Sik Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Young Tae Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, 03063, Republic of Korea
| | - Kwang Hyun Kim
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul, 07804, Republic of Korea
| | - Yoojoo Lim
- IMBdx Inc., Seoul, 08506, Republic of Korea
| | - Jin-Soo Kim
- IMBdx Inc., Seoul, 08506, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | | | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Tae-You Kim
- IMBdx Inc., Seoul, 08506, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|