101
|
Hoenig LJ. The rabbi who turned gray overnight. Clin Dermatol 2021; 39:733-735. [PMID: 34809783 DOI: 10.1016/j.clindermatol.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rabbi Elazar ben Azaryah, a great Torah scholar during the first century ce, turned rapidly gray at the age of 18. This contribution presents details of his case history in light of the current medical understanding of canities subita and recent scientific evidence showing that acute stress can lead to accelerated graying.
Collapse
Affiliation(s)
- Leonard J Hoenig
- Private Practice, 601 N. Flamingo Rd. #201, Pembroke Pines, FL 33028.
| |
Collapse
|
102
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
103
|
Chen J, Fan ZX, Zhu DC, Guo YL, Ye K, Dai D, Guo Z, Hu ZQ, Miao Y, Qu Q. Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Front Cell Dev Biol 2021; 9:728188. [PMID: 34722509 PMCID: PMC8554130 DOI: 10.3389/fcell.2021.728188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Hair follicle stem cells are extensively reprogrammed by the aging process, manifesting as diminished self-renewal and delayed responsiveness to activating cues, orchestrated by both intrinsic microenvironmental and extrinsic macroenvironmental regulators. Dermal white adipose tissue (dWAT) is one of the peripheral tissues directly adjacent to hair follicles (HFs) and acts as a critical macroenvironmental niche of HF. dWAT directly contributes to HF aging by paracrine signal secretion. However, the altered interrelationship between dWAT and HF with aging has not been thoroughly understood. Here, through microdissection, we separated dWAT from the skin of aged mice (18 months) and young mice (2 months) in telogen and depilation-induced anagen for transcriptome comparing. Notably, compared with young dWAT, aberrant inflammatory regulators were recapitulated in aging dWAT in telogen, including substantial overexpressed inflammatory cytokines, matrix metalloproteinases, and prostaglandin members. Nonetheless, with anagen initiation, inflammation programs were mostly abolished in aging dWAT, and instead of which, impaired collagen biosynthesis, angiogenesis, and melanin synthesis were identified. Furthermore, we confirmed the inhibitory effect on hair growth of CXCL1, one of the most significantly upregulated inflammation cytokines in aging dWAT. Besides this, we also identified the under-expressed genes related to Wnt signaling fibroblast growth factor family members and increased BMP signaling in aging dWAT, further unraveling the emerging role of dWAT in aging HFs malfunction. Finally, we proved that relieving inflammation of aging dWAT by injecting high-level veratric acid stimulated HF regenerative behavior in aged mice. Concomitantly, significantly decreased TNF-a, CCL2, IL-5, CSF2, and increased IL10 in dWAT was identified. Overall, the results elaborated on the complex physiological cycling changes of dWAT during aging, providing a basis for the potential regulatory effect of dWAT on aging HFs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhe-Xiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - De-Cong Zhu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yi-Long Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ke Ye
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi-Qi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
104
|
Chachar S, Chen J, Qin Y, Wu X, Yu H, Zhou Q, Fan X, Wang C, Brownell I, Xiao Y. Reciprocal signals between nerve and epithelium: how do neurons talk with epithelial cells? AMERICAN JOURNAL OF STEM CELLS 2021; 10:56-67. [PMID: 34849302 PMCID: PMC8610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Most epithelium tissues continuously undergo self-renewal through proliferation and differentiation of epithelial stem cells (known as homeostasis), within a specialized stem cell niche. In highly innervated epithelium, peripheral nerves compose perineural niche and support stem cell homeostasis by releasing a variety of neurotransmitters, hormones, and growth factors and supplying trophic factors to the stem cells. Emerging evidence has shown that both sensory and motor nerves can regulate the fate of epithelial stem cells, thus influencing epithelium homeostasis. Understanding the mechanism of crosstalk between epithelial stem cells and neurons will reveal the important role of the perineural niche in physiological and pathological conditions. Herein, we review recent discoveries of the perineural niche in epithelium mainly in tissue homeostasis, with a limited touch in wound repair and pathogenesis.
Collapse
Affiliation(s)
- Sadaruddin Chachar
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
- Department of Biotechnology, Faculty of Crop Production, Sindh Agriculture UniversityTandojam 70060, Pakistan
| | - Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Yumei Qin
- School of Food Science and Bioengineering, Zhejiang Gongshang UniversityHangzhou 310018, Zhejiang, China
| | - Xia Wu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| | - Xiaojiao Fan
- School of Pharmacy, Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang UniversityHaining 314400, Zhejiang, China
| | - Isaac Brownell
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda 20892, Maryland, USA
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou 310020, Zhejiang, China
| |
Collapse
|
105
|
Hinterdobler J, Schott ,S, Jin H, Meesmann A, Steinsiek AL, Zimmermann AS, Wobst J, Müller P, Mauersberger C, Vilne B, Baecklund A, Chen CS, Moggio A, Braster Q, Molitor M, Krane M, Kempf WE, Ladwig KH, Hristov M, Hulsmans M, Hilgendorf I, Weber C, Wenzel P, Scheiermann C, Maegdefessel L, Soehnlein O, Libby P, Nahrendorf M, Schunkert H, Kessler T, Sager HB. Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. Eur Heart J 2021; 42:4077-4088. [PMID: 34279021 PMCID: PMC8516477 DOI: 10.1093/eurheartj/ehab371] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/15/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. METHODS AND RESULTS Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. CONCLUSION Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.
Collapse
Affiliation(s)
- Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - , Simin Schott
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Almut Meesmann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Anna-Lena Steinsiek
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Anna-Sophia Zimmermann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jana Wobst
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Philipp Müller
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Carina Mauersberger
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Baiba Vilne
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- Bioinformatics Unit, Riga Stradiņš University, Riga, Latvia
- SIA net-OMICS, Riga, Latvia
| | | | - Chien-Sin Chen
- Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University Munich, BioMedical Centre, Planegg-Martinsried, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis and Department of Cardiology, University Medical Center, Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Markus Krane
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiac Surgery, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Wolfgang E Kempf
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Karl-Heinz Ladwig
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology Mental Health Research Unit, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Michael Hristov
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| | - Maarten Hulsmans
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Weber
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis and Department of Cardiology, University Medical Center, Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Christoph Scheiermann
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University Munich, BioMedical Centre, Planegg-Martinsried, Germany
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Oliver Soehnlein
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
106
|
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II. Acta Naturae 2021; 13:17-32. [PMID: 35127143 PMCID: PMC8807539 DOI: 10.32607/actanaturae.11415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
In modern life sciences, the issue of a specific, exogenously directed manipulation of a cell's biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells' electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (overviewed in Part I), as well as chemogenetics and thermogenetics (described here, in Part II), which is significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.
Collapse
Affiliation(s)
- D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
107
|
Fahy EJ, Griffin M, Lavin C, Abbas D, Longaker MT, Wan D. The Adrenergic System in Plastic and Reconstructive Surgery: Physiology and Clinical Considerations. Ann Plast Surg 2021; 87:e62-e70. [PMID: 33833152 DOI: 10.1097/sap.0000000000002706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT The primary organ systems and tissues concerning plastic and reconstructive surgery include the integument, vasculature, subcutis, and peripheral nerves, because these may individually or collectively be injured requiring reconstruction, or indeed be used in reconstruction themselves through grafts, flaps, or anastomoses. Adrenergic receptors are present throughout these anatomic components on the vasculature, adipose, platelets, immune cells, keratinocytes, melanocytes, fibroblasts, peripheral nerves, and tendons. Herein, the influence of adrenergic signaling on the physiology of anatomic components related to plastic surgery is discussed, along with clinical considerations of this systems involvement in procedures, such as free flap reconstruction, skin grafting, fat grafting, and other areas relevant to plastic and reconstructive surgery. Current evidence as well as potential for further investigation is discussed.
Collapse
Affiliation(s)
- Evan J Fahy
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Michelle Griffin
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Christopher Lavin
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | - Darren Abbas
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| | | | - Derrick Wan
- From the Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine
| |
Collapse
|
108
|
A Genome-Wide Scan on Individual Typology Angle Found Variants at SLC24A2 Associated with Skin Color Variation in Chinese Populations. J Invest Dermatol 2021; 142:1223-1227.e14. [PMID: 34570997 DOI: 10.1016/j.jid.2021.07.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022]
|
109
|
Zhang J, Chen R, Wen L, Fan Z, Guo Y, Hu Z, Miao Y. Recent Progress in the Understanding of the Effect of Sympathetic Nerves on Hair Follicle Growth. Front Cell Dev Biol 2021; 9:736738. [PMID: 34513851 PMCID: PMC8427189 DOI: 10.3389/fcell.2021.736738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Clinical observation and experimental studies have long suggested that the perifollicular nerves have nutritional and regulatory effects on the growth, development, and physiological cycle of hair follicles (HFs), even though the concrete mechanism remains obscure. Recently, with the progress of immunohistochemistry and molecular biology techniques, more innovation has been made in the study of the follicular sympathetic nerves and its nerve-effect factor norepinephrine affecting hair follicle stem cells. This review highlights the progress in the regulation of the sympathetic nervous system toward the growth of HFs.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
110
|
Wikramanayake TC, Nicu C, Chéret J, Czyzyk TA, Paus R. Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. Bioessays 2021; 43:e2100126. [PMID: 34486148 DOI: 10.1002/bies.202100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
MPZL3 is a nuclear-encoded, mitochondrially localized, immunoglobulin-like V-type protein that functions as a key regulator of epithelial cell differentiation, lipid metabolism, ROS production, glycemic control, and energy expenditure. Recently, MPZL3 has surfaced as an important modulator of sebaceous gland function and of hair follicle cycling, an organ transformation process that is also governed by peripheral clock gene activity and PPARγ. Given the phenotype similarities and differences between Mpzl3 and Pparγ knockout mice, we propose that MPZL3 serves as a signaling hub that is regulated by core clock gene products and/or PPARγ to translate signals from these nuclear transcription factors to the mitochondria to modulate circadian and metabolic regulation. Conservation between murine and human MPZL3 suggests that human MPZL3 may have similarly complex functions in health and disease. We summarize current knowledge and discuss future directions to elucidate the full spectrum of MPZL3 functions in mammalian physiology.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carina Nicu
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Metabolic Health Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Discovery Biology-CMD, Merck & Co., Inc., South San Francisco, California, USA
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
111
|
Scott-Solomon E, Shwartz Y, Hsu YC. Healing takes nerve. Cell Stem Cell 2021; 28:1501-1502. [PMID: 34478625 DOI: 10.1016/j.stem.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidermal stem cells display remarkable capacities to restore the barrier upon skin injury. In this issue of Cell Stem Cell, Huang et al. (2021) use innovative high-resolution intravital imaging to identify a vital function of sensory nerves in regulating a subset of epidermal stem cells for wound repair.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
112
|
Wang F, Luo Q, Chen Y, Liu Y, Xu K, Adhikari K, Cai X, Liu J, Li Y, Liu X, Ramirez-Aristeguieta LM, Yuan Z, Zhou Y, Li FF, Jiang B, Jin L, Ruiz-Linares A, Yang Z, Liu F, Wang S. A Genome-Wide Scan on Individual Typology Angle Found Variants at SLC24A2 Associated with Skin Color Variation in Chinese Populations. J Invest Dermatol 2021. [DOI: https://doi.org/10.1016/j.jid.2021.07.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
113
|
Parikh R, Sorek E, Parikh S, Michael K, Bikovski L, Tshori S, Shefer G, Mingelgreen S, Zornitzki T, Knobler H, Chodick G, Mardamshina M, Boonman A, Kronfeld-Schor N, Bar-Joseph H, Ben-Yosef D, Amir H, Pavlovsky M, Matz H, Ben-Dov T, Golan T, Nizri E, Liber D, Liel Y, Brenner R, Gepner Y, Karnieli-Miller O, Hemi R, Shalgi R, Kimchi T, Percik R, Weller A, Levy C. Skin exposure to UVB light induces a skin-brain-gonad axis and sexual behavior. Cell Rep 2021; 36:109579. [PMID: 34433056 PMCID: PMC8411113 DOI: 10.1016/j.celrep.2021.109579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet (UV) light affects endocrinological and behavioral aspects of sexuality via an unknown mechanism. Here we discover that ultraviolet B (UVB) exposure enhances the levels of sex-steroid hormones and sexual behavior, which are mediated by the skin. In female mice, UVB exposure increases hypothalamus-pituitary-gonadal axis hormone levels, resulting in larger ovaries; extends estrus days; and increases anti-Mullerian hormone (AMH) expression. UVB exposure also enhances the sexual responsiveness and attractiveness of females and male-female interactions. Conditional knockout of p53 specifically in skin keratinocytes abolishes the effects of UVB. Thus, UVB triggers a skin-brain-gonadal axis through skin p53 activation. In humans, solar exposure enhances romantic passion in both genders and aggressiveness in men, as seen in analysis of individual questionaries, and positively correlates with testosterone level. Our findings suggest opportunities for treatment of sex-steroid-related dysfunctions. UVB exposure increases circulating sex-steroid levels in mice and humans UVB exposure enhances female attractiveness and receptiveness toward males UVB exposure increases females’ estrus phase, HPG axis hormones, and follicle growth Skin p53 regulates UVB-induced sexual behavior and ovarian physiological changes
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eschar Sorek
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Michael
- Department of Human Services, The Max Stern Yezreel Valley Academic College, Jezreel Valley 1930600, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Behavioral Sciences, Netanya Academic College, Netanya 4223587, Israel
| | - Sagi Tshori
- Research Authority, Kaplan Medical Center, Rehovot, Israel; Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Galit Shefer
- Research Authority, Kaplan Medical Center, Rehovot, Israel
| | | | - Taiba Zornitzki
- Diabetes, Endocrinology and Metabolic Disease Institute, Kaplan Medical Center, Hadassah School of Medicine, Hebrew University in Jerusalem, Rehovot, Israel
| | - Hilla Knobler
- Diabetes, Endocrinology and Metabolic Disease Institute, Kaplan Medical Center, Hadassah School of Medicine, Hebrew University in Jerusalem, Rehovot, Israel
| | - Gabriel Chodick
- Maccabitech, Maccabi Healthcare Services, Tel Aviv, Israel; Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Mariya Mardamshina
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noga Kronfeld-Schor
- School of Zoology, Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hadas Bar-Joseph
- The TMCR Unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Ben-Yosef
- IVF Lab & Wolfe PGD-Stem Cell Lab, Fertility Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Cell Biology and Development, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Amir
- Fertility Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Pavlovsky
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Matz
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Ben-Dov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Otolaryngology, Head and Neck surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daphna Liber
- Faculty of Humanities, Education and Social Sciences, Ono Academic College, Kiryat Ono, Israel
| | - Yair Liel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronen Brenner
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | - Yftach Gepner
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Karnieli-Miller
- Department of Medical Education, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rina Hemi
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Aron Weller
- Department of Psychology and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
114
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
115
|
Molaee H, Allahyari F, Emadi SN, Radfar S, Razavi Z. Cutaneous manifestations related to the COVID-19 pandemic: a review article. Cutan Ocul Toxicol 2021; 40:168-174. [PMID: 34097555 DOI: 10.1080/15569527.2021.1919138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Skin lesions are either caused by COVID-19 disease or they can be due to other driving forces related to the COVID-19 pandemic. AIM Considering the fact that the reported data in different articles for the type and prevalence of skin manifestations related to the COVID-19 pandemic are inconsistent, we have described the mechanism and type of skin lesions related to the COVID-19 pandemic. METHODS In this review article, we have searched the Medline database (PubMed) for the combination of the following key terms "Dermatological Manifestation", "cutaneous Manifestation", "Skin Manifestation", "COVID-19", "SARS-CoV-2". RESULTS The prevalence of skin manifestations related to COVID-19 ranged from 0.2% to 20%. The majority of these skin lesions are maculopapular eruptions. The skin presentations related to the COVID-19 pandemic are described below. Traumatic skin conditions such as dermatitis in individuals, especially those with allergies, might initiate secondary to over-washing or rinsing with inappropriate detergents. Also, inappropriate use of personal protective equipment (mask-gloves-shield) can trigger skin lesions on the face and hands or aggravate the lesions of acne, seborrhoeic dermatitis, eczema, etc. Furthermore, cutaneous adverse drug reactions may occur during hospitalization or outpatient treatment of COVID-19 patients. Also, psychocutaneous disorders due to acute stress can trigger or deteriorate several skin manifestations. Moreover, COVID-19 prevalence and course may be changed in patients with autoimmune or chronic inflammatory underlying skin disorders such as psoriasis, lupus erythematosus, pemphigus, scleroderma who are on immunosuppressive or biological medications to control their disorders. CONCLUSION Due to the various dimensions of skin organ involvement and the large population affected, long-term skin conditions following this pandemic can be a lot more problematic than it appears. Serious preventive measures and medical supports are necessary to avoid skin disorders from becoming permanent or even chronic.
Collapse
Affiliation(s)
- Hamideh Molaee
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fakhri Allahyari
- Neuroscience Research Center, Baqyiatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Naser Emadi
- Skin Research Center of Razi and Imam khomeini hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokofeh Radfar
- Behavioral Sciences Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Razavi
- Dermatology Department of Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
116
|
Martín J, Recio P, Rodríguez-Ruiz G, Barja I, Gutiérrez E, García LV. Relationships between soil pollution by heavy metals and melanin-dependent coloration of a fossorial amphisbaenian reptile. Integr Zool 2021; 17:596-607. [PMID: 34047065 DOI: 10.1111/1749-4877.12562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melanin is the basis of coloration in many animals, and although it is often used in communication, thermoregulation, or camouflage, melanin has many other physiological functions. For example, in polluted habitats, melanin can have a detoxifying function. Melanic coloration would help to sequester in the skin the heavy metal contaminants from inside the body, which will be expelled to the exterior when the skin is sloughed. Moreover, animals should have evolved more melanic colorations in more polluted habitats ("industrial melanism" hypothesis). We examined whether the fossorial amphisbaenian reptile, Trogonophis wiegmanni, is able to eliminate heavy metals, derived from soil pollution by seagull depositions, through sloughing its skin. Our results suggest a covariation between levels of soil pollution by heavy metals and the concentration of heavy metals in the sloughed skins of amphisbaenians. This suggests that amphisbaenians may expel heavy metals from their bodies when they slough the skins. We also tested whether amphisbaenians inhabiting soils with higher levels of heavy metal pollution had darker (melanin-dependent) body colorations. However, contrary to predictions from the "industrial melanization" hypothesis, we found a negative relationship between soil pollution and proportions of melanic coloration. This contradictory result could, however, be explained because heavy metals have endocrine disruption effects that increase physiological stress, and higher stress levels could result in decreased melanogenesis. We suggest that although amphisbaenians might have some detoxifying mechanism linked to melanin in the skin, this process might be negatively affected by stress and result ineffective under conditions of high soil pollution.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pablo Recio
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel Barja
- Departamento de Zoología, Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Gutiérrez
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| | - Luis V García
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| |
Collapse
|
117
|
A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia? Biomedicines 2021; 9:biomedicines9050572. [PMID: 34069454 PMCID: PMC8159142 DOI: 10.3390/biomedicines9050572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Irreversible destruction of the hair follicle (HF) in primary cicatricial alopecia and its most common variant, frontal fibrosing alopecia (FFA), results from apoptosis and pathological epithelial-mesenchymal transition (EMT) of epithelial HF stem cells (eHFSCs), in conjunction with the collapse of bulge immune privilege (IP) and interferon-gamma-mediated chronic inflammation. The scaffolding protein caveolin-1 (Cav1) is a key component of specialized cell membrane microdomains (caveolae) that regulates multiple signaling events, and even though Cav1 is most prominently expressed in the bulge area of human scalp HFs, it has not been investigated in any cicatricial alopecia context. Interestingly, in mice, Cav1 is involved in the regulation of (1) key HF IP guardians (TGF-β and α-MSH signaling), (2) IP collapse inducers/markers (IFNγ, substance P and MICA), and (3) EMT. Therefore, we hypothesize that Cav1 may be an unrecognized, important player in the pathobiology of cicatricial alopecias, and particularly, in FFA, which is currently considered as the most common type of primary lymphocytic scarring alopecia in the world. We envision that localized therapeutic inhibition of Cav1 in management of FFA (by cholesterol depleting agents, i.e., cyclodextrins/statins), could inhibit and potentially reverse bulge IP collapse and pathological EMT. Moreover, manipulation of HF Cav1 expression/localization would not only be relevant for management of cicatricial alopecia, but FFA could also serve as a model disease for elucidating the role of Cav1 in other stem cell- and/or IP collapse-related pathologies.
Collapse
|
118
|
Lichtenberger BM, Kasper M. Cellular heterogeneity and microenvironmental control of skin cancer. J Intern Med 2021; 289:614-628. [PMID: 32976658 DOI: 10.1111/joim.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Healthy tissues harbour a surprisingly high number of cells that carry well-known cancer-causing mutations without impacting their physiological function. In recent years, strong evidence accumulated that the immediate environment of mutant cells profoundly impact their prospect of malignant progression. In this review, focusing on the skin, we investigate potential key mechanisms that ensure tissue homeostasis despite the presence of mutant cells, as well as critical factors that may nudge the balance from homeostasis to tumour formation. Functional in vivo studies and single-cell transcriptome analyses have revealed a tremendous cellular heterogeneity and plasticity within epidermal (stem) cells and their respective niches, revealing for example wild-type epithelial cells, fibroblasts or immune-cell subsets as critical in preventing cancer formation and malignant progression. It's the same cells, however, that can drive carcinogenesis. Therefore, understanding the abundance and molecular variation of cell types in health and disease, and how they interact and modulate the local signalling environment will thus be key for new therapeutic avenues in our battle against cancer.
Collapse
Affiliation(s)
- B M Lichtenberger
- From the, Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
119
|
Choi S, Zhang B, Ma S, Gonzalez-Celeiro M, Stein D, Jin X, Kim ST, Kang YL, Besnard A, Rezza A, Grisanti L, Buenrostro J, Rendl M, Nahrendorf M, Sahay A, Hsu YC. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 2021; 592:428-432. [PMID: 33790465 PMCID: PMC8923613 DOI: 10.1038/s41586-021-03417-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2021] [Indexed: 02/01/2023]
Abstract
Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown. Here we report that the stress hormone corticosterone-which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans-regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice. In the absence of systemic corticosterone, HFSCs enter substantially more rounds of the regeneration cycle throughout life. Conversely, under chronic stress, increased levels of corticosterone prolong HFSC quiescence and maintain hair follicles in an extended resting phase. Mechanistically, corticosterone acts on the dermal papillae to suppress the expression of Gas6, a gene that encodes the secreted factor growth arrest specific 6. Restoring Gas6 expression overcomes the stress-induced inhibition of HFSC activation and hair growth. Our work identifies corticosterone as a systemic inhibitor of HFSC activity through its effect on the niche, and demonstrates that the removal of such inhibition drives HFSCs into frequent regeneration cycles, with no observable defects in the long-term.
Collapse
Affiliation(s)
- Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Present address: School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Biology and Koch Institute, MIT, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Stein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xin Jin
- Society of Fellows, Harvard University, Cambridge MA, USA
| | - Seung Tea Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yuan-Lin Kang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Antoine Besnard
- Harvard Stem Cell Institute, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Present address: CNRS, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France
| | - Amelie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Present address: 4 genOway, Lyon, 69007, France
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Amar Sahay
- Harvard Stem Cell Institute, Cambridge, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Correspondence to: Correspondence and requests for materials should be addressed to Y-C.H. Ya-Chieh Hsu, PhD (Lead Contact),
| |
Collapse
|
120
|
Hsu YC, Rendl M. Skin stem cells in health and in disease. Exp Dermatol 2021; 30:424-429. [PMID: 33792993 DOI: 10.1111/exd.14318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
121
|
Abstract
In the skin, sympathetic nerves, arrector pili muscles, and hair follicles form a tri-lineage unit to cause piloerection or goosebumps. In this issue of Cell, Schwartz et al. report that, beyond goosebumps, muscle-anchored nerves form "synapse-like" connections with hair follicle stem cells to promote hair regeneration in response to cold.
Collapse
Affiliation(s)
- Raluca Pascalau
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
122
|
Flores A, Choi S, Hsu YC, Lowry WE. Inhibition of pyruvate oxidation as a versatile stimulator of the hair cycle in models of alopecia. Exp Dermatol 2021; 30:448-456. [PMID: 33739490 DOI: 10.1111/exd.14307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Hair follicle stem cells (HFSCs) are known to be responsible for the initiation of a new hair cycle, but typically remain quiescent for very long periods. In alopecia, or hair loss disorders, follicles can be refractory to activation for years or even permanently. Alopecia can be triggered by autoimmunity, age, chemotherapeutic treatment, stress, disrupted circadian rhythm or other environmental insults. We previously showed that hair follicle stem cells and the hair cycle can be manipulated by regulation of pyruvate entry into mitochondria for subsequent oxidation to fuel the TCA cycle in normal adult mice with typical hair cycling. Here, we present new data from our efforts to develop murine models of alopecia based on environmental triggers that have been shown to do the same in human skin. We found that inhibition of pyruvate transport into mitochondria can accelerate the hair cycle even during refractory hair cycling due to age, repeated chemotherapeutic treatment and stress. Hair cycle acceleration in these alopecia models led to the formation of histologically normal hair follicles within 30-40 days of treatment without any overt signs of toxicity or deleterious effects. Therefore, we propose inhibition of pyruvate entry into mitochondria as a versatile treatment strategy for alopecia in humans.
Collapse
Affiliation(s)
- Aimee Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA
| | - Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA.,Division of Dermatology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.,Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
123
|
Rachmin I, Lee JH, Zhang B, Sefton J, Jung I, Lee YI, Hsu YC, Fisher DE. Stress-associated ectopic differentiation of melanocyte stem cells and ORS amelanotic melanocytes in an ex vivo human hair follicle model. Exp Dermatol 2021; 30:578-587. [PMID: 33598985 DOI: 10.1111/exd.14309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Hair greying depends on the altered presence and functionality of hair follicle melanocytes. Melanocyte stem cells (MelSCs) reside in the bulge of hair follicles and give rise to migrating and differentiating progeny during the anagen phase. Ageing, genotoxic stress, redox stress and multiple behaviour-associated acute stressors have been seen to induce hair greying by depleting the MelSC pool, a phenomenon which is accompanied by ectopic pigmentation of these cells, followed by their depletion from the stem cell niche. This aberrant differentiation produces a state from which a return to stem cell-like quiescence appears to be lost. The cellular features of stress-induced hair greying have been extensively studied in murine models. Here, we describe a method to assess and quantify human hair follicle MelSC differentiation by measuring ectopically pigmented MelSCs in isolated human hair follicles exposed to specific stress signal mediators. Ionizing radiation, hydrogen peroxide and noradrenaline have been shown to cause hair greying in mice. We demonstrate here that isolated, ex vivo cultured human hair follicles exposed to these treatments display similar ectopic pigmentation within the bulge area which is accompanied by induction of differentiated melanocytic markers. This study suggests that as in murine models, stress signalling induces closely matching phenotypic changes in human hair follicles which can be monitored and studied as a surrogate model for early steps in human hair greying.
Collapse
Affiliation(s)
- Inbal Rachmin
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ju Hee Lee
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - James Sefton
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Inhee Jung
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Young In Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
124
|
A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates. BMC Cancer 2021; 21:197. [PMID: 33632159 PMCID: PMC7908679 DOI: 10.1186/s12885-021-07924-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Age-adjusted US total pediatric cancer incidence rates (TPCIR) rose 49% 1975-2015 for unknown reasons. Prenatal cannabis exposure has been linked with several pediatric cancers which together comprise the majority of pediatric cancer types. We investigated whether cannabis use was related spatiotemporally and causally to TPCIR. METHODS State-based age-adjusted TPCIR data was taken from the CDC Surveillance, Epidemiology and End Results cancer database 2003-2017. Drug exposure was taken from the nationally-representative National Survey of Drug Use and Health, response rate 74.1%. Drugs included were: tobacco, alcohol, cannabis, opioid analgesics and cocaine. This was supplemented by cannabinoid concentration data from the Drug Enforcement Agency and ethnicity and median household income data from US Census. RESULTS TPCIR rose while all drug use nationally fell, except for cannabis which rose. TPCIR in the highest cannabis use quintile was greater than in the lowest (β-estimate = 1.31 (95%C.I. 0.82, 1.80), P = 1.80 × 10- 7) and the time:highest two quintiles interaction was significant (β-estimate = 0.1395 (0.82, 1.80), P = 1.00 × 10- 14). In robust inverse probability weighted additive regression models cannabis was independently associated with TPCIR (β-estimate = 9.55 (3.95, 15.15), P = 0.0016). In interactive geospatiotemporal models including all drug, ethnic and income variables cannabis use was independently significant (β-estimate = 45.67 (18.77, 72.56), P = 0.0009). In geospatial models temporally lagged to 1,2,4 and 6 years interactive terms including cannabis were significant. Cannabis interactive terms at one and two degrees of spatial lagging were significant (from β-estimate = 3954.04 (1565.01, 6343.09), P = 0.0012). The interaction between the cannabinoids THC and cannabigerol was significant at zero, 2 and 6 years lag (from β-estimate = 46.22 (30.06, 62.38), P = 2.10 × 10- 8). Cannabis legalization was associated with higher TPCIR (β-estimate = 1.51 (0.68, 2.35), P = 0.0004) and cannabis-liberal regimes were associated with higher time:TPCIR interaction (β-estimate = 1.87 × 10- 4, (2.9 × 10- 5, 2.45 × 10- 4), P = 0.0208). 33/56 minimum e-Values were > 5 and 6 were infinite. CONCLUSION Data confirm a close relationship across space and lagged time between cannabis and TPCIR which was robust to adjustment, supported by inverse probability weighting procedures and accompanied by high e-Values making confounding unlikely and establishing the causal relationship. Cannabis-liberal jurisdictions were associated with higher rates of TPCIR and a faster rate of TPCIR increase. Data inform the broader general consideration of cannabinoid-induced genotoxicity.
Collapse
|
125
|
Low sun exposure habits is associated with a dose-dependent increased risk of hypertension: a report from the large MISS cohort. Photochem Photobiol Sci 2021; 20:285-292. [PMID: 33721253 DOI: 10.1007/s43630-021-00017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
In prospective observational cohort studies, increasing sun exposure habits have been associated with reduced risk of cardiovascular mortality. Our aim was to assess possible observational mechanisms for this phenomenon. A written questionnaire was answered by 23,593 women in the year 2000 regarding risk factors for melanoma, including factors of possible interest for hypertension, such as detailed sun exposure habits, hypertension, marital status, education, smoking, alcohol consumption, BMI, exercise, and chronic high stress. Hypertension was measured by the proxy "use of hypertension medication" 2005-2007, and high stress by "need of anti-depressive medication". Sun exposure habits was assessed by the number of `yes' to the following questions; Do you sunbath during summer?, During winter vacation?, Do you travel south to sunbath?, Or do you use sun bed? Women answering 'yes' on one or two questions had moderate and those answering 'yes' on three or four as having greatest sun exposure. The main outcome was the risk of hypertension by sun exposure habits adjusted for confounding. As compared to those women with the greatest sun exposure, women with low and moderate sun exposure were at 41% and 15% higher odds of hypertension (OR 1.41, 95% CI 1.3‒1.6, p < 0.001 and OR 1.15, 95% CI 1.1‒1.2, p < 0.001), respectively. There was a strong age-related increased risk of hypertension. Other risk factors for hypertension were lack of exercise (OR 1.36), a non-fair phenotype (OR 1.08), chronic high stress level (OR 1.8), and lack of university education (OR 1.3). We conclude that in our observational design sun exposure was associated with a dose-dependent reduced risk of hypertension, which might partly explain the fewer deaths of cardiovascular disease with increasing sun exposure.
Collapse
|
126
|
Multiple Roles for Cholinergic Signaling from the Perspective of Stem Cell Function. Int J Mol Sci 2021; 22:ijms22020666. [PMID: 33440882 PMCID: PMC7827396 DOI: 10.3390/ijms22020666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans. Understanding the true nature of stem cells can only come from discovering how they are regulated. The concept that stem cells are controlled by particular microenvironments, also known as niches, has been widely accepted. Technical advances now allow characterization of the zones that maintain and control stem cell activity in several organs, including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the cholinergic system is composed of organized nerve cells, the system is also involved in mammalian non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells. Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular levels, and they are expected to advance efforts to control stem cells therapeutically. The present article reviews recent findings about cholinergic signaling that is essential to control stem cell function in a cholinergic niche.
Collapse
|
127
|
Zhang Z, Xu D, Wang J, Cui J, Wu S, Zou L, Shen Y, Jing X, Bai W. Correlated Sensory and Sympathetic Innervation Between the Acupoint BL23 and Kidney in the Rat. Front Integr Neurosci 2021; 14:616778. [PMID: 33505253 PMCID: PMC7829193 DOI: 10.3389/fnint.2020.616778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Objective: To investigate the sensory and sympathetic innervations associated with both acupoint “Shenshu” (BL23) and kidney in the rat for insight into the neuronal correlation between the Back-Shu Point and its corresponding visceral organ. Methods: The BL23 and kidney were selected as the representative acupoint and visceral organ in this study, in which their local nerve fibers were examined by using double fluorescent immunohistochemistry with calcitonin gene-related peptide (CGRP) and tyrosine hydroxylase (TH). Meanwhile, their neuronal correlation in the dorsal root ganglia (DRGs), spinal cord, and sympathetic (paravertebral) chain were investigated using a double fluorescent neural tracing technique with Alexa Fluor 488 and 594 conjugates with cholera toxin subunit B (AF488/594-CTB). Results: The local tissue of acupoint BL23 and the fibrous capsule of kidney distributed abundantly with CGRP- and TH-positive nerve fibers, corresponding to their sensory and sympathetic innervation. On the other hand, the sensory neurons associated with acupoint BL23 and kidney were labeled with AF488/594-CTB and distributed from thoracic (T) 11 to lumbar (L) 3 DRGs and from T10 to L2 DRGs, respectively, in which some of them in T12-T13 DRGs were simultaneously labeled with both AF488/594-CTB. Also, postganglionic neurons associated with both acupoint BL23 and kidney were found in the sympathetic chain at the same spinal segments but separately labeled with AF488-CTB and AF594-CTB. Conclusion: Our study demonstrates the neural characteristics of the acupoint BL23 and kidney in the rat from the perspective of neurochemistry and neural pathways, providing an example for understanding the neuronal correlation between the Back-Shu Points and their corresponding visceral organs. These results suggest that the stimulation of the Back-Shu Points may regulate the activities of the target-organs via the periphery sensory and sympathetic pathways.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianghong Jing
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
128
|
Zhang B, He M, Rachmin I, Yu X, Kim S, Fisher DE, Hsu YC. Melanocortin 1 receptor is dispensable for acute stress induced hair graying in mice. Exp Dermatol 2020; 30:572-577. [PMID: 33382172 DOI: 10.1111/exd.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 01/11/2023]
Abstract
Stress is a risk factor for many skin conditions, but the cellular and molecular mechanisms of its impacts have only begun to be revealed. In mice, acute stress induces loss of melanocyte stem cells (MeSCs) and premature hair greying. Our previous work demonstrated that the loss of MeSCs upon acute stress is caused by the hyperactivation of the sympathetic nervous system. Stress also induces the secretion of stress hormones from the hypothalamic-pituitary-adrenal (HPA) axis; however, whether stress hormones are involved in the hair greying process has not been fully examined. In particular, the adrenocorticotropic hormone (ACTH) is released from the pituitary glands upon stress. ACTH is a ligand for the melanocortin 1 receptor (MC1R), which plays critical roles in regulating MeSC migration and skin pigmentation. We investigated whether the MC1R pathway is required for the stress-induced hair greying. We confirmed that MC1R is the major melanocortin receptor expressed in MeSCs. However, induction of acute stress via resiniferatoxin (RTX) injection still leads to hair greying in Mc1r mutant mice, suggesting that the ACTH-MC1R pathway is not a major contributor in acute stress-induced premature hair greying.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Molecules, Cells, and Organisms PhD Program, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoling Yu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Seungtea Kim
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
129
|
Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol 2020; 30:560-571. [PMID: 33320376 DOI: 10.1111/exd.14260] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the light of substantial discoveries in epithelial and hair pigmentation pathophysiology, this review summarizes the current understanding of skin pigmentation mechanisms. Melanocytes are pigment-producing cells, and their key regulating transcription factor is the melanocyte-specific microphthalmia-associated transcription factor (m-MITF). Ultraviolet (UV) radiation is a unique modulator of skin pigmentation influencing tanning pathways. The delayed tanning pathway occurs as UVB produces keratinocyte DNA damage, causing p53-mediated expression of the pro-opiomelanocortin (POMC) gene that is processed to release α-melanocyte-stimulating hormone (α-MSH). α-MSH stimulates the melanocortin 1 receptor (MC1R) on melanocytes, leading to m-MITF expression and melanogenesis. POMC cleavage also releases β-endorphin, which creates a neuroendocrine pathway that promotes UV-seeking behaviours. Mutations along the tanning pathway can affect pigmentation and increase the risk of skin malignancies. MC1R variants have received considerable attention, yet the allele is highly polymorphic with varied phenotypes. Vitiligo presents with depigmented skin lesions due to autoimmune destruction of melanocytes. UVB phototherapy stimulates melanocyte stem cells in the hair bulge to undergo differentiation and upwards migration resulting in perifollicular repigmentation of vitiliginous lesions, which is under sophisticated signalling control. Melanocyte stem cells, normally quiescent, undergo cyclic activation/differentiation and downward migration with the hair cycle, providing pigment to hair follicles. Physiological hair greying results from progressive loss of melanocyte stem cells and can be accelerated by acute stress-induced, sympathetic driven hyperproliferation of the melanocyte stem cells. Ultimately, by reviewing the pathways governing epithelial and follicular pigmentation, numerous areas of future research and potential points of intervention are highlighted.
Collapse
Affiliation(s)
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
130
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
131
|
Melanogenesis Effect of 7-acetoxy-4-methylcoumarin in B16F10 Melanoma Cells. COSMETICS 2020. [DOI: 10.3390/cosmetics7040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increased interest in anti-whitening dyes has enhanced the research interest to identify efficient melanogenic activators. Melanogenesis is the process of melanin production by melanocytes in the hair follicles and skin, which is mediated by several enzymes, such as microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein (TRP)-1, and TRP-2. This study investigated the melanogenesis-stimulating effect of 4-Methylumbelliferone (4MUMB) and its synthetic derivatives, 7-acetoxy-4-methylcoumarin (7A4MC) and 4-methylheriniarin (4MH) in B16F10 melanoma cells. The cytotoxicity of these compounds was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, followed by the assessment of the melanin content and the intracellular TYR activity. Finally, the expression levels of the key enzymes involved in melanogenesis were investigated. 7A4MC increased melanin production in B16F10 cells relative to that by 4MUMB and 4MH treated cells in a dose-dependent manner without significant cytotoxicity. Concomitantly, 7A4MC significantly increased TYR activity and enhanced the expression of MITF, which significantly induced the expression of TRP-1, TRP-2, and TYR. Furthermore, 7A4MC stimulated melanogenesis via increased phosphorylation of c-Jun N-terminal kinases (JNK) and reduced phosphorylation of protein kinase B (AKT). These results confirmed the melanogenesis-inducing effects of 7A4MC and indicated its potential use as an anti-hair bleaching agent in cosmetics industries.
Collapse
|
132
|
Clock Regulation of Skin Regeneration in Stem Cell Aging. J Invest Dermatol 2020; 141:1024-1030. [PMID: 33256977 DOI: 10.1016/j.jid.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
Abstract
The circadian clockwork evolved as an adaptation to daily environmental changes and allows temporal alignment of functions between cells and organs on a systemic level in complex multicellular organisms. These clock functions are particularly important in the skin, which is directly exposed to the external environment. Recent studies have revealed the important impact of circadian rhythmicity on stem cell (SC) homeostasis and regeneration in both young and old skin. This review discusses how the circadian clock regulates tissue function in skin-resident SCs and their niche and how altered daily rhythms in aged SCs negatively affect skin regeneration.
Collapse
|
133
|
Zhang B, Gladyshev VN. How can aging be reversed? Exploring rejuvenation from a damage-based perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10025. [PMID: 36619246 PMCID: PMC9744548 DOI: 10.1002/ggn2.10025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Advanced age is associated with accumulation of damage and other deleterious changes and a consequential systemic decline of function. This decline affects all organs and systems in an organism, leading to their inadaptability to the environment, and therefore is thought to be inevitable for humans and most animal species. However, in vitro and in vivo application of reprogramming strategies, which convert somatic cells to induced pluripotent stem cells, has demonstrated that the aged cells can be rejuvenated. Moreover, the data and theoretical considerations suggest that reversing the biological age of somatic cells (from old to young) and de-differentiating somatic cells into stem cells represent two distinct processes that take place during rejuvenation, and thus they may be differently targeted. We advance a stemness-function model to explain these data and discuss a possibility of rejuvenation from the perspective of damage accumulation. In turn, this suggests approaches to achieve rejuvenation of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
134
|
The shock of it: sympathetic activation promotes hair greying, and other updates on recent autonomic research. Clin Auton Res 2020; 30:503-505. [PMID: 33210247 DOI: 10.1007/s10286-020-00746-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
135
|
Müller Ramos P, Ianhez M, Amante Miot H. Alopecia and grey hair are associated with COVID‐19 Severity. Exp Dermatol 2020; 29:1250-1252. [DOI: 10.1111/exd.14220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
|
136
|
Infarinato NR, Stewart KS, Yang Y, Gomez NC, Pasolli HA, Hidalgo L, Polak L, Carroll TS, Fuchs E. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev 2020; 34:1713-1734. [PMID: 33184221 PMCID: PMC7706702 DOI: 10.1101/gad.340281.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.
Collapse
Affiliation(s)
- Nicole R Infarinato
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Katherine S Stewart
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Yihao Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Lynette Hidalgo
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Lisa Polak
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
137
|
Picoli CC, Costa AC, Rocha BGS, Silva WN, Santos GSP, Prazeres PHDM, Costa PAC, Oropeza A, da Silva RA, Azevedo VAC, Resende RR, Cunha TM, Mintz A, Birbrair A. Sensory nerves in the spotlight of the stem cell niche. Stem Cells Transl Med 2020; 10:346-356. [PMID: 33112056 PMCID: PMC7900586 DOI: 10.1002/sctm.20-0284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Oropeza
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Radiology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
138
|
Molecular Plasticity in Animal Pigmentation: Emerging Processes Underlying Color Changes. Integr Comp Biol 2020; 60:1531-1543. [DOI: 10.1093/icb/icaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synopsis
Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.
Collapse
|
139
|
Granger DL, Rosado-Santos H, Lo TS, Florell SR, Shimwella RAT. Functional Impairment of Skin Appendages Due to Peripheral Nerve Involvement by Mycobacterium leprae. Open Forum Infect Dis 2020; 7:ofaa419. [PMID: 33094119 PMCID: PMC7566401 DOI: 10.1093/ofid/ofaa419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 11/14/2022] Open
Abstract
In the earliest stage of Mycobacterium leprae infection, bacteria parasitize fine fiber twigs of autonomic peripheral nerves supplying efferent impulses to appendages of the skin. This obligate intracellular pathogen invades Schwann cells, the glial cells of peripheral nerves. Intracellular events inhibit Schwann cell physiology in complex ways, which include demyelination and dedifferentiation. Ultimately, axons embraced by their surrounding dysfunctional glia are damaged by poorly understood mechanisms. Loss of nerve conduction impairs the functions of skin appendages including hair growth, sebaceous gland secretion, sweating, and skin pigmentation. At the clinical level, these changes may be subtle and may precede the more obvious anesthetic skin lesions associated with Hansen’s disease. Recognizing the early signs of skin appendage malfunction may aid in diagnosis leading to initiation of antimycobacterial treatment. Effective therapy administered early during infection may prevent irreversible peripheral nerve destruction, the presage for morbid complications of leprosy.
Collapse
Affiliation(s)
- Donald L Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Harry Rosado-Santos
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Tze Shien Lo
- Department of Internal Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, North Dakota, USA.,Veterans Affairs Medical Center, Fargo, North Dakota, USA
| | - Scott R Florell
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Rehema A T Shimwella
- Leprology-Venereology Service, Muhimbili National Hospital, Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
140
|
Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 2020; 67:99-108. [PMID: 33099084 DOI: 10.1016/j.ceb.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
Melanocytes are neuroectoderm-derived pigment-producing cells with highly polarized dendritic morphology. They protect the skin against ultraviolet radiation by providing melanin to neighbouring keratinocytes. However, the mechanisms underlying melanocyte polarization and its relevance for diseases remain mostly elusive. Numerous studies have instead revealed roles for polarity regulators in other neuroectoderm-derived lineages including different neuronal cell types. Considering the shared ontogeny and morphological similarities, these lineages may be used as reference models for the exploration of melanocyte polarity, for example, regarding dendrite formation, spine morphogenesis and polarized organelle transport. In this review, we summarize and compare the latest progress in understanding polarity regulation in neuronal cells and melanocytes and project key open questions for future work.
Collapse
Affiliation(s)
- Mengnan Li
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
141
|
Ruiz-Vega R, Chen CF, Razzak E, Vasudeva P, Krasieva TB, Shiu J, Caldwell MG, Yan H, Lowengrub J, Ganesan AK, Lander AD. Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes. eLife 2020; 9:e61026. [PMID: 33047672 PMCID: PMC7553774 DOI: 10.7554/elife.61026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutational activation of the BRAF proto-oncogene in melanocytes reliably produces benign nevi (pigmented 'moles'), yet the same change is the most common driver mutation in melanoma. The reason nevi stop growing, and do not progress to melanoma, is widely attributed to a cell-autonomous process of 'oncogene-induced senescence'. Using a mouse model of Braf-driven nevus formation, analyzing both proliferative dynamics and single-cell gene expression, we found no evidence that nevus cells are senescent, either compared with other skin cells, or other melanocytes. We also found that nevus size distributions could not be fit by any simple cell-autonomous model of growth arrest, yet were easily fit by models based on collective cell behavior, for example in which arresting cells release an arrest-promoting factor. We suggest that nevus growth arrest is more likely related to the cell interactions that mediate size control in normal tissues, than to any cell-autonomous, 'oncogene-induced' program of senescence.
Collapse
Affiliation(s)
- Rolando Ruiz-Vega
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| | - Chi-Fen Chen
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Emaad Razzak
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
| | - Priya Vasudeva
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Tatiana B Krasieva
- Beckman Laser Institute, University of California, IrvineIrvineUnited States
| | - Jessica Shiu
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Michael G Caldwell
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
| | - Huaming Yan
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - John Lowengrub
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
142
|
Abstract
Stress has long been associated with hair graying, yet there is little evidence to substantiate this claim. In a recent issue of Nature, Zhang et al. (2020) show that stress induces the release of noradrenaline from sympathetic nerves, which depletes the stem cells that give hair their color.
Collapse
|
143
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
144
|
Taguchi N, Homma T, Aoki H, Kunisada T. Dietary Eriodictyon angustifolium Tea Supports Prevention of Hair Graying by Reducing DNA Damage in CD34+ Hair Follicular Keratinocyte Stem Cells. Biol Pharm Bull 2020; 43:1451-1454. [PMID: 32999155 DOI: 10.1248/bpb.b20-00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hair follicular keratinocyte stem cells (HFKSC) which provide a functional niche for melanocyte stem cells (MSC) are the primary target of hair graying. However, little research has been done on anti-hair graying medicines targeting HFKSC. We focused on Eriodictyon angustifolium (Ea), which reduces human hair graying when applied topically. To investigate the protective effect of dietary Ea tea (EaT) on hair pigmentation, we used an acute mouse model of hair graying that mimics X-ray-induced DNA damage associated with age-related hair graying. Our results suggest that dietary EaT maintained the niche HFKSC function against X-ray-induced DNA damage and hair graying. These results indicate that dietary EaT may prevent age-related hair graying and serve as an anti-hair graying herbal medicine.
Collapse
Affiliation(s)
- Nobuhiko Taguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine.,General Research & Development Institute, Hoyu Co., Ltd
| | - Takumi Homma
- General Research & Development Institute, Hoyu Co., Ltd
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| |
Collapse
|
145
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
146
|
Haslam IS, Paus R. The Hair Follicle as an Interdisciplinary Model for Biomedical Research: An Eclectic Literature Synthesis. Bioessays 2020; 42:e2000053. [DOI: 10.1002/bies.202000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Iain S. Haslam
- Department of Biological Sciences, School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research, School of Biological Sciences University of Manchester and NIHR Biomedical Research Centre Manchester M13 9PT UK
- Monasterium Laboratory Mendelstraße 17 Muenster Germany
| |
Collapse
|
147
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
148
|
San-Jose LM, Roulin A. On the Potential Role of the Neural Crest Cells in Integrating Pigmentation Into Behavioral and Physiological Syndromes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
149
|
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci 2020; 21:ijms21176129. [PMID: 32854423 PMCID: PMC7503925 DOI: 10.3390/ijms21176129] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jiro Ogino
- Department of Pathology, JR Sapporo Hospital, Sapporo 060-0033, Hokkaido, Japan;
| | - Hitoshi Sohma
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, Sapporo 060-0042, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-887-8266
| |
Collapse
|
150
|
Yohimbine Ameliorates Temporomandibular Joint Chondrocyte Inflammation with Suppression of NF-κB Pathway. Inflammation 2020; 44:80-90. [PMID: 32789555 DOI: 10.1007/s10753-020-01310-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Local joint inflammation plays an important role in the pathogenesis of temporomandibular joint (TMJ) osteoarthrosis (TMJOA). Yohimbine, an alpha-2 adrenergic receptor antagonist, possesses anti-inflammatory properties; however, the ability of Yohimbine to protect against TMJOA-associated chondrocyte inflammation remains unclear. We conducted in vitro and in vivo analyses to investigate whether Yohimbine could ameliorate TMJOA-induced chondrocyte inflammation and to elucidate the mechanisms involved. Chondrocytes of TMJOA mice were stimulated with interleukin (IL)-1β or noradrenaline (NE), and the resulting production of inflammation-related factors was evaluated in the presence or absence of Yohimbine. Furthermore, two TMJOA mouse models were treated with Yohimbine and the therapeutic effect was quantified. NE (10-6 M) triggered inflammatory cytokine secretion by TMJ chondrocytes, and Yohimbine suppressed IL-1β- or NE-induced IL-6 upregulation in TMJ chondrocytes with the nuclear factor (NF)-κB pathway inhibition. Yohimbine also ameliorated cartilage destruction in the TMJOA models. Interestingly, αmpT, a tyrosine hydroxylase inhibitor, reversed the effects of Yohimbine by activating the NF-κB pathway. Collectively, these findings show that Yohimbine ameliorated TMJ chondrocyte inflammation and the suppression of NF-κB pathway contributes to this effect.
Collapse
|