101
|
Russo J, Romano F, Kroc L, Sciortino F, Rovigatti L, Šulc P. SAT-assembly: a new approach for designing self-assembling systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:354002. [PMID: 35148521 DOI: 10.1088/1361-648x/ac5479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
We propose a general framework for solving inverse self-assembly problems, i.e. designing interactions between elementary units such that they assemble spontaneously into a predetermined structure. Our approach uses patchy particles as building blocks, where the different units bind at specific interaction sites (the patches), and we exploit the possibility of having mixtures with several components. The interaction rules between the patches is determined by transforming the combinatorial problem into a Boolean satisfiability problem (SAT) which searches for solutions where all bonds are formed in the target structure. Additional conditions, such as the non-satisfiability of competing structures (e.g. metastable states) can be imposed, allowing to effectively design the assembly path in order to avoid kinetic traps. We demonstrate this approach by designing and numerically simulating a cubic diamond structure from four particle species that assembles without competition from other polymorphs, including the hexagonal structure.
Collapse
Affiliation(s)
- John Russo
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Lukáš Kroc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, United States of America
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
- Institute for Complex Systems, Uos Sapienza, CNR, Rome 00185, Italy
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, United States of America
| |
Collapse
|
102
|
Al Harraq A, Hymel AA, Lin E, Truskett TM, Bharti B. Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Commun Chem 2022; 5:72. [PMID: 36697688 PMCID: PMC9814898 DOI: 10.1038/s42004-022-00687-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 01/28/2023] Open
Abstract
Competition between attractive and repulsive interactions drives the formation of complex phases in colloidal suspensions. A major experimental challenge lies in decoupling independent roles of attractive and repulsive forces in governing the equilibrium morphology and long-range spatial distribution of assemblies. Here, we uncover the 'dual nature' of magnetic nanoparticle dispersions, particulate and continuous, enabling control of the short-range attraction and long-range repulsion (SALR) between suspended microparticles. We show that non-magnetic microparticles suspended in an aqueous magnetic nanoparticle dispersion simultaneously experience a short-range depletion attraction due to the particulate nature of the fluid in competition with an in situ tunable long-range magnetic dipolar repulsion attributed to the continuous nature of the fluid. The study presents an experimental platform for achieving in situ control over SALR between colloids leading to the formation of reconfigurable structures of unusual morphologies, which are not obtained using external fields or depletion interactions alone.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aubry A Hymel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emily Lin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
103
|
Shi J, Huang S, Gygi F, Whitmer JK. Free-Energy Landscape and Isomerization Rates of Au 4 Clusters at Finite Temperatures. J Phys Chem A 2022; 126:3392-3400. [PMID: 35584205 DOI: 10.1021/acs.jpca.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In metallic nanoparticles, the geometry of atomic positions controls the particle's electronic band structure, polarizability, and catalytic properties. Analyzing the structural properties is a complex problem; the structure of an assembled cluster changes from moment to moment due to thermal fluctuations. Conventional structural analyses based on spectroscopy or diffraction cannot determine the instantaneous structure exactly and can merely provide an averaged structure. Molecular simulations offer an opportunity to examine the assembly and evolution of metallic clusters, as the preferred assemblies and conformations can easily be visualized and explored. Here, we utilize the adaptive biasing force algorithm applied to first-principles molecular dynamics to demonstrate the exploration of a relatively simple system, which permits a comprehensive study of the small metal cluster Au4 in both neutral and charged configurations. Our simulation work offers a quantitative understanding of these clusters' dynamic structure, which is significant for single-site catalytic reactions on metal clusters and provides a starting point for a detailed quantitative understanding of more complex pure metal and alloy clusters' dynamic properties.
Collapse
Affiliation(s)
- Jiale Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shanghui Huang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - François Gygi
- Department of Computer Science, University of California Davis, Davis, California 95616, United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
104
|
Li P, Kierulf A, Wang J, Yaghoobi M, Whaley J, Smoot J, Perez Herrera M, Abbaspourrad A. Fabrication of Charged Self-Assembling Patchy Particles Templated with Partially Gelatinized Starch. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24955-24963. [PMID: 35588470 DOI: 10.1021/acsami.2c04738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Starch, as a staple carbohydrate, is frequently used as a thickener to enhance food texture. As such, there is an increasing interest in studying starch modification to improve its thickening ability. Instead of the conventional mechanism of swelling-based thickening, the present work presents an alternative using starch-based patchy particles as a texturizer prepared through a bottom-up method by physically grafting small amaranth starch granules (∼1 μm) onto corn starch granules (>10 μm). After thermal treatment in aqueous ethanol, starches were partially gelatinized, and the particle stiffness was reduced. The corn starch and amaranth starch were modified to carry a negative charge and a positive charge, respectively. The hydrated swollen starch granules were centrifuged and dehydrated, which stitched particles together, forming a corona-shaped patchy structure with a negatively charged core and positively charged patches. The electrostatic interaction allowed particles to associate, and the pockets created in the flocs were able to trap more water. The enhanced water-holding capacity consequently contributed to a significantly higher storage modulus, loss modulus, and viscosity compared to the native starch and the mixed charged starch with the same blending ratio between amaranth and corn starch. The enhanced viscoelasticity was not affected by cooking and mechanical stress, which could be used as a shear-reversible thickener to modify texture with less raw ingredients, thus helping to reduce the amount of energy-dense starch in diets. This is the first time that the concept of patchy particles has been extended to food-grade ingredients with a facile and scalable method.
Collapse
Affiliation(s)
- Peilong Li
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Arkaye Kierulf
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, Illinois 60192, United States
| | - Junyi Wang
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Mohammad Yaghoobi
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Judith Whaley
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, Illinois 60192, United States
| | - James Smoot
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, Illinois 60192, United States
| | - Mariana Perez Herrera
- Tate & Lyle Solutions USA LLC, 5450 Prairie Stone Pkwy, Hoffman Estates, Illinois 60192, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
105
|
Baldauf L, Teich EG, Schall P, van Anders G, Rossi L. Shape and interaction decoupling for colloidal preassembly. SCIENCE ADVANCES 2022; 8:eabm0548. [PMID: 35622919 PMCID: PMC9140958 DOI: 10.1126/sciadv.abm0548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Creating materials with structure that is independently controllable at a range of scales requires breaking naturally occurring hierarchies. Breaking these hierarchies can be achieved via the decoupling of building block attributes from structure during assembly. Here, we demonstrate, through computer simulations and experiments, that shape and interaction decoupling occur in colloidal cuboids suspended in evaporating emulsion droplets. The resulting colloidal clusters serve as "preassembled" mesoscale building blocks for larger-scale structures. We show that clusters of up to nine particles form mesoscale building blocks with geometries that are independent of the particles' degree of faceting and dipolar magnetic interactions. To highlight the potential of these superball clusters for hierarchical assembly, we demonstrate, using computer simulations, that clusters of six to nine particles can assemble into high-order structures that differ from bulk self-assembly of individual particles. Our results suggest that preassembled building blocks present a viable route to hierarchical materials design.
Collapse
Affiliation(s)
- Lucia Baldauf
- Institute of Physics, University of Amsterdam, 1098XH Amsterdam, Netherlands
| | - Erin G. Teich
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109,USA
| | - Peter Schall
- Institute of Physics, University of Amsterdam, 1098XH Amsterdam, Netherlands
| | - Greg van Anders
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L3N6, Canada
- Corresponding author. (G.v.A.); (L.R.)
| | - Laura Rossi
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, the Netherlands
- Corresponding author. (G.v.A.); (L.R.)
| |
Collapse
|
106
|
Dong Y, Liu J, Lu X, Duan J, Zhou L, Dai L, Ji M, Ma N, Wang Y, Wang P, Zhu JJ, Min Q, Gang O, Tian Y. Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. NANO LETTERS 2022; 22:3809-3817. [PMID: 35468287 DOI: 10.1021/acs.nanolett.2c00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly processes, while promising for enabling the fabrication of complexly organized nanomaterials from nanoparticles, are often limited in creating structures with multiscale order. These limitations are due to difficulties in practically realizing the assembly processes required to achieve such complex organizations. For a long time, a hierarchical assembly attracted interest as a potentially powerful approach. However, due to the experimental limitations, intermediate-level structures are often heterogeneous in composition and structure, which significantly impacts the formation of large-scale organizations. Here, we introduce a two-stage assembly strategy: DNA origami frames scaffold a coordination of nanoparticles into designed 3D nanoclusters, and then these clusters are assembled into ordered lattices whose types are determined by the clusters' valence. Through modulating the nanocluster architectures and intercluster bindings, we demonstrate the successful formation of complexly organized nanoparticle crystals. The presented two-stage assembly method provides a powerful fabrication strategy for creating nanoparticle superlattices with prescribed unit cells.
Collapse
Affiliation(s)
- Yuxiang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Jiliang Liu
- The European Synchrotron Radiation Facility, Grenoble 38000, France
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Jialin Duan
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Liqi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Lizhi Dai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Min Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Ningning Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Oleg Gang
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
107
|
Luo Z, Li S, Wang L, Liu B. Asymmetrical ring-shaped colloidal particles for self-assembly and superhydrophobic coatings. Chem Commun (Camb) 2022; 58:5757-5760. [PMID: 35446326 DOI: 10.1039/d2cc01853e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A frame-guided wetting strategy is reported to synthesize highly uniform but asymmetrical colloidal particles from rings to oblate ellipsoids through symmetrical discs, which can self-assemble into diversified highly open 2D superstructures. In particular, ring-shaped particle monolayers have a higher contact angle of water than similar spherical ones, suggesting an attractive particle material for self-cleaning superhydrophobic coatings.
Collapse
Affiliation(s)
- Zhang Luo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shanshan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Linna Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
108
|
Wang S, Lee S, Du JS, Partridge BE, Cheng HF, Zhou W, Dravid VP, Lee B, Glotzer SC, Mirkin CA. The emergence of valency in colloidal crystals through electron equivalents. NATURE MATERIALS 2022; 21:580-587. [PMID: 35027717 DOI: 10.1038/s41563-021-01170-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Colloidal crystal engineering of complex, low-symmetry architectures is challenging when isotropic building blocks are assembled. Here we describe an approach to generating such structures based upon programmable atom equivalents (nanoparticles functionalized with many DNA strands) and mobile electron equivalents (small particles functionalized with a low number of DNA strands complementary to the programmable atom equivalents). Under appropriate conditions, the spatial distribution of the electron equivalents breaks the symmetry of isotropic programmable atom equivalents, akin to the anisotropic distribution of valence electrons or coordination sites around a metal atom, leading to a set of well-defined coordination geometries and access to three new low-symmetry crystalline phases. All three phases represent the first examples of colloidal crystals, with two of them having elemental analogues (body-centred tetragonal and high-pressure gallium), while the third (triple double-gyroid structure) has no known natural equivalent. This approach enables the creation of complex, low-symmetry colloidal crystals that might find use in various technologies.
Collapse
Affiliation(s)
- Shunzhi Wang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Sangmin Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jingshan S Du
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Benjamin E Partridge
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Ho Fung Cheng
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Wenjie Zhou
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
109
|
Cui F, Marbach S, Zheng JA, Holmes-Cerfon M, Pine DJ. Comprehensive view of microscopic interactions between DNA-coated colloids. Nat Commun 2022; 13:2304. [PMID: 35484104 PMCID: PMC9051097 DOI: 10.1038/s41467-022-29853-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems. A quantitative prediction of DNA-mediated interactions between colloids is crucial to the design of colloidal structures for optical applications. Cui et al. measure the interaction potential with nanometer resolution and propose a theory to accurately predict adhesion and melting at a molecular level.
Collapse
Affiliation(s)
- Fan Cui
- Department of Physics, New York University, New York, NY, USA
| | - Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes, Interfaciaux, F-75005, Paris, France
| | | | | | - David J Pine
- Department of Physics, New York University, New York, NY, USA. .,Department of Chemical & Biomolecular Engineering, New York University, New York, NY, USA.
| |
Collapse
|
110
|
Marbach S, Zheng JA, Holmes-Cerfon M. The nanocaterpillar's random walk: diffusion with ligand-receptor contacts. SOFT MATTER 2022; 18:3130-3146. [PMID: 35348560 DOI: 10.1039/d1sm01544c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particles with ligand-receptor contacts bind and unbind fluctuating "legs" to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such "nanoscale caterpillars" is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.
Collapse
Affiliation(s)
- Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, NY, 10012, USA.
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | | | | |
Collapse
|
111
|
Zhang X, Li W. Periodic Patchy Spheres Self-Assembled by A mBCA n' Multiblock Terpolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4407-4414. [PMID: 35352945 DOI: 10.1021/acs.langmuir.2c00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have designed AmBCAn' multiblock terpolymers and studied their self-assembly using self-consistent field theory, aiming to generate the periodically arranged patchy spheres and thus to clarify the regulation mechanism of the number of patches. A number of two-dimensional phase diagrams are constructed for three typical architectures A2BCA2', A2BCA3', and A3BCA2'. Four kinds of stable patchy spheres with the number of patches as 2 (S2), 4 (S4), 5 (S5), and 6 (S6) are obtained. These phases follow a common transition sequence of S2 → S4 → S5 → S6 along with the increasing of the volume fraction of C-block (fC), which forms the core sphere patched with B-domains. Moreover, the S6 phase exhibits the widest stability window, while S5 has the narrowest one. The increased arms of A'-blocks in A2BCA3' architecture deflect the phase boundaries toward large fC and accordingly expand the regions of these patchy spheres due to the amplified effect of spontaneous curvature. In contrast, the increased arms of A-blocks in A3BCA2' remarkably expands the window of S6 but narrows those of the other patchy spheres, which is mainly caused by increased packing frustration resulting from the reduced extension of the more divided A-blocks. The widest window of the S6 phase reaches ΔfC ∼ 0.13, which is readily accessed by experiment. Our work not only demonstrates a self-assembly strategy to engineer the patchy spheres, but also sheds light on the regulation mechanism of the patchy number.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
112
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles. Angew Chem Int Ed Engl 2022; 61:e202117455. [PMID: 35129874 PMCID: PMC9307011 DOI: 10.1002/anie.202117455] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/15/2022]
Abstract
Supraparticles are spherical colloidal crystals prepared by confined self‐assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal–organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle‐dependent coloration of the MOF supraparticles to the presence of ordered, onion‐like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well‐visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
113
|
Bergman MJ, García-Astrain C, Fuchs N, Manne K, Yazhgur P, Froufe-Pérez LS, Liz-Marzán LM, Scheffold F. Macroporous Silica Foams Fabricated via Soft Colloid Templating. SMALL METHODS 2022; 6:e2101491. [PMID: 35218331 DOI: 10.1002/smtd.202101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Macroporous materials with controlled pore sizes are of high scientific and technological interest, due to their low specific weight, as well as unique acoustic, thermal, or optical properties. Solid foams made of titania, silica, or silicon, as representative materials, have been previously obtained with several hundred nanometer pore sizes, by using sacrificial templates such as spherical emulsion droplets or colloidal particles. Macroporous structures in particular are excellent candidates as photonic materials with applications in structural coloration and photonic bandgap devices. However, whereas using spherical building blocks as templates may provide tight control over pore shape and size, it results in materials with an often unfavorable local topology. Templating dry-foam or compressed-emulsion structures appear as attractive alternatives, but have not been demonstrated so far for submicron pore sizes. Herein, the use of soft, flexible microgel colloids decorated with silica nanoparticles as templates of macroporous foams is reported. These purposely synthesized core-shell colloids are assembled at ultra-high effective volume fractions by centrifuging and thermal swelling, thereby resulting in uniform disordered materials with facetted pores, mimicking dry foams. After removal of the polymer component via calcination, lightweight pure silica structures are obtained with a well-defined cellular or network topology.
Collapse
Affiliation(s)
- Maxime J Bergman
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nathan Fuchs
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kalpana Manne
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Pavel Yazhgur
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis S Froufe-Pérez
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Frank Scheffold
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| |
Collapse
|
114
|
Zhang Z, Xia Y, Wan S, Yang D, Dong A. Confinement Assembly in Polymeric Micelles Enables Nanoparticle Superstructures with Tunable Molecular-Like Geometries. SMALL METHODS 2022; 6:e2200014. [PMID: 35142099 DOI: 10.1002/smtd.202200014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The self-assembly of a small number of nanoparticles into superstructures that mimic the geometry of molecules provides an unprecedented route for creating materials with precisely defined structures and potentially programmable functionalities. Such nanoparticle clusters (NPCs), also known as colloidal molecules, have a wide range of applications due to the decisive ensemble effect. Here, a universal and straightforward strategy is developed to construct NPCs with tunable molecular-like geometries by confining the self-assembly of hydrophobic nanoparticles within micelles formed by amphiphilic copolymers. It is found that confinement assembly of both spherical and anisotropic nanoparticles can lead to NPCs, the molecular-like conformation of which is widely tunable by adjusting the ratio between copolymers and nanoparticles. Mechanistic studies reveal the formation of large-vesicle intermediates along the path toward forming NPCs. This work establishes a facile and general strategy of assembling finite nanoparticles with precisely tunable geometries without introducing any directional interactions, which can accelerate the exploration of clustered superstructures toward broad applications.
Collapse
Affiliation(s)
- Zhebin Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yan Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Siyu Wan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
115
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
116
|
Cai J, Manners I, Qiu H. "Self-Adaptive" Coassembly of Colloidal "Saturn-like" Host-Guest Complexes Enabled by Toroidal Micellar Rubber Bands. J Am Chem Soc 2022; 144:5734-5738. [PMID: 35324193 DOI: 10.1021/jacs.2c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The creation of inclusion complexes with "Saturn-like" geometries has attracted increasing attention for supramolecular systems, but expansion of the concept to nanoscale colloidal systems remains a challenge. Here, we report a strategy to assemble toroidal polyisoprene-b-poly(2-vinylpyridine) (PI-b-P2VP) block copolymer micelles with a PI core and a P2VP corona and inorganic (e.g., silica) nanoparticles of variable shape and dimensions into "Saturn-like" constructs with high fidelity and yield. The precise nesting of the nanoparticles between the toroidal building units is realized by virtue of hydrogen bonding and self-adaptive expansion of the flexible toroidal units enabled by a flexible, low Tg PI core. Once the toroidal units are cross-linked, the self-adaptive feature is lost and coassembly yields instead out-of-cavity bound nanoparticles. "Saturn-like" assemblies can also be formed along silica nanosphere-decorated cylindrical micelles or, alternatively, at the hydroxyl-functionalized termini of cylindrical micelles to yield colloidal [3]rotaxanes.
Collapse
Affiliation(s)
- Jiandong Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ian Manners
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
117
|
Elbert KC, Vo T, Oh D, Bharti H, Glotzer SC, Murray CB. Evaporation-Driven Coassembly of Hierarchical, Multicomponent Networks. ACS NANO 2022; 16:4508-4516. [PMID: 35175730 DOI: 10.1021/acsnano.1c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly is an increasingly popular approach to systematically control the formation of complex, multicomponent materials with structural features orders of magnitude larger than the constituent colloidal nanocrystals. Common approaches often involve templating via prefabricated patterns to control particle organization- or programming-specific interactions between individual building blocks. While effective, such fabrication methods suffer from major bottlenecks due to the complexity required in mask creation for patterning or surface modification techniques needed to program directed interactions between particles. Here, we propose an alternative strategy that aims to bypass such limitations. First, we design a ligand structure that can bridge two distinct nanocrystal types. Then, by leveraging the solvent's evaporative dynamics to drive particle organization, we direct a cross-linked, multicomponent system of nanocrystals to organize hierarchically into ordered, open-network structures with domain sizes orders of magnitude larger than the constituent building blocks. We employ simulation and theory to rationalize the driving forces governing this evaporation-driven process, showing excellent agreement across theory, simulations, and experiments. These results suggest that evaporation-driven organization can be a powerful approach to designing and fabricating hierarchical, multifunctional materials.
Collapse
Affiliation(s)
- Katherine C Elbert
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thi Vo
- Department of Chemical Engineering, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Deborah Oh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Harshit Bharti
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
118
|
Qin J, Wang W, Gao L, Yao SQ. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem Sci 2022; 13:2857-2876. [PMID: 35382472 PMCID: PMC8905799 DOI: 10.1039/d1sc06269g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
With the deepening of our understanding in life science, molecular biology, nanotechnology, optics, electrochemistry and other areas, an increasing number of biosensor design strategies have emerged in recent years, capable of providing potential practical applications for point-of-care (POC) diagnosis in various human diseases. Compared to conventional biosensors, the latest POC biosensor research aims at improving sensor precision, cost-effectiveness and time-consumption, as well as the development of versatile detection strategies to achieve multiplexed analyte detection in a single device and enable rapid diagnosis and high-throughput screening. In this review, various intriguing strategies in the recognition and transduction of POC (from 2018 to 2021) are described in light of recent advances in CRISPR technology, electrochemical biosensing, and optical- or spectra-based biosensing. From the perspective of promoting emerging bioanalytical tools into practical POC detecting and diagnostic applications, we have summarized key advances made in this field in recent years and presented our own perspectives on future POC development and challenges.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| | - Wei Wang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University Shenzhen 518107 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544
| |
Collapse
|
119
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
120
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal‐Organic Framework Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Gudrun Bleyer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Eric S. A. Goerlitzer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Michael Engel
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
- ICREA Pg. Lluis Companys 23 08010 Barcelona Spain
| | - Nicolas Vogel
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| |
Collapse
|
121
|
Chakraborty I, Pearce DJG, Verweij RW, Matysik SC, Giomi L, Kraft DJ. Self-Assembly Dynamics of Reconfigurable Colloidal Molecules. ACS NANO 2022; 16:2471-2480. [PMID: 35080387 PMCID: PMC8867909 DOI: 10.1021/acsnano.1c09088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our "flexible colloidal molecules" are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
Collapse
Affiliation(s)
- Indrani Chakraborty
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
- Department
of Physics, Birla Institute of Technology
and Science, Pilani -
K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Daniel J. G. Pearce
- Institute-Lorentz, Universiteit Leiden, PO Box 9506, 2300 RA Leiden, The Netherlands
- Department
of Mathematics, Massachusetts Institute
of Technology, 182 Memorial
Drive, Cambridge, Massachusetts 02142, United States
- Department
of Theoretical Physics, University of Geneva, Quai Ernest Ansermet 30, 1205 Geneva, Switzerland
| | - Ruben W. Verweij
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Sabine C. Matysik
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luca Giomi
- Institute-Lorentz, Universiteit Leiden, PO Box 9506, 2300 RA Leiden, The Netherlands
| | - Daniela J. Kraft
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
122
|
Shakya G, Yang T, Gao Y, Fajrial AK, Li B, Ruzzene M, Borden MA, Ding X. Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nat Commun 2022; 13:987. [PMID: 35190549 PMCID: PMC8861019 DOI: 10.1038/s41467-022-28574-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave. We developed a model to investigate the physical mechanisms behind this interesting phenomenon. Theoretical analysis of the acoustic interactions indicated that these assembly dynamics arise from a balance of the primary and secondary radiation forces. Additionally, the disk orientation was found to change with acoustic driving frequency, which allowed on-demand, reversible adjustment of the disk orientations with respect to the substrate. This dynamic behavior leads to unique reversible arrangements of the endoskeletal droplets and their internal architecture, which may provide an avenue for directed assembly of novel hierarchical colloidal architectures and intracellular organelles or intra-organoid structures. Endoskeletal droplets are a class of complex colloids containing a solid internal phase cast within a liquid emulsion droplet. Here, authors show acoustic manipulation of solid disks inside liquid droplets whose orientation can be externally controlled with the frequency.
Collapse
|
123
|
Feng Y, Liu G, Xu J, Wang K, Mao W, Yao G. Particle Separation from Liquid Marbles by the Viscous Folding of Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2055-2065. [PMID: 35120293 DOI: 10.1021/acs.langmuir.1c02994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle separation from fluid interfaces is one of the major challenges due to the large capillary energy associated with particle adsorption. Previous approaches rely on physicochemical modification or tuning the electrostatic action. Here, we show experimentally that particle separation can be achieved by fast dynamics of drop impact on soap films. When a droplet wrapped with particles (liquid marble) collides with a soap film, it undergoes bouncing and coalescence, stripping and viscous separation, or tunneling through the film. Despite the violence of splashing events, the process robustly yields the stripping in a tunable range. This viscous separation is supported by the transfer front of dynamic contact among the film, particle crust, and drop and can be well controlled in a deterministic manner by selectable impact parameters. By extensive experiments, together with thermodynamic analysis, we disclose that the separation thresholds depend on the energy competition between the kinetic energy, the increased surface energy, and the viscous dissipation. The mechanical cracking of the particle crust arises from the complex coupling between interfacial stress and viscous forces. This study is of potential benefit in soft matter research and also permits the study of a drop with colloid and surface chemistry.
Collapse
Affiliation(s)
- Yijun Feng
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Guohua Liu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Jinliang Xu
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Kaiying Wang
- Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Wenbin Mao
- Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Guansheng Yao
- Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
124
|
Nozawa J, Uda S, Toyotama A, Yamanaka J, Niinomi H, Okada J. Heteroepitaxial fabrication of binary colloidal crystals by a balance of interparticle interaction and lattice spacing. J Colloid Interface Sci 2022; 608:873-881. [PMID: 34785462 DOI: 10.1016/j.jcis.2021.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The colloidal epitaxy utilizing a patterned substrate is used to fabricate colloidal crystals of the same structure and lattice spacing with the substrate, which is an effective technique for creating desired nanoscale architectures. However, this technique has been mainly limited to a single-component system. The colloidal epitaxy is versatile if multicomponent colloidal crystals can be produced, which is inspired by our previous study regarding binary colloidal crystals (b-CCs) fabricated at the edge of single-component crystals. EXPERIMENTS We have examined various particle size combinations of binary colloidal mixture and substrates for heteroepitaxial growth of b-CCs. Colloidal crystallization was achieved through depletion attraction induced by added polymers. FINDINGS We demonstrated heteroepitaxial growth of b-CCs on the foreign colloidal crystals as the substrate. Under depletion attraction, deviation from equilibrium interparticle distance because of lattice mismatch between the substrate and epitaxial layers induces strain energy among the particles, yielding the b-CCs to attain minimum strain energy. Various types of b-CCs are created by adjusting the particle size ratio and polymer concentration. The heteroepitaxial growth technique enables the fabrication of complex multicomponent colloidal crystals that greatly facilitate versatile applications of the colloidal crystals.
Collapse
Affiliation(s)
- Jun Nozawa
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Satoshi Uda
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan
| | - Hiromasa Niinomi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Junpei Okada
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
125
|
Lyu D, Xu W, Wang Y. Low‐Symmetry MOF‐Based Patchy Colloids and Their Precise Linking via Site‐Selective Liquid Bridging to Form Supra‐Colloidal and Supra‐Framework Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dengping Lyu
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wei Xu
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yufeng Wang
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
126
|
Wang Z, Kim H, Secchi M, Montagna M, Furst EM, Djafari-Rouhani B, Fytas G. Quantization of Acoustic Modes in Dumbbell Nanoparticles. PHYSICAL REVIEW LETTERS 2022; 128:048003. [PMID: 35148122 DOI: 10.1103/physrevlett.128.048003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The vibrational eigenmodes of dumbbell-shaped polystyrene nanoparticles are recorded by Brillouin light spectroscopy (BLS), and the full experimental spectra are calculated theoretically. Different from spheres with a degeneracy of (2l+1), with l being the angular momentum quantum number, the eigenmodes of dumbbells are either singly or doubly degenerate owing to their axial symmetry. The BLS spectrum reveals a new, low-frequency peak, which is attributed to the out-of-phase vibration of the two lobes of the dumbbell. The quantization of acoustic modes in these molecule-shaped dumbbell particles evolves from the primary colloidal spheres as the separation between the two lobes increases.
Collapse
Affiliation(s)
- Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner Heisenberg Weg 39, 85579 Neubiberg, Germany
| | - Hojin Kim
- Department of Chemical & Biomolecular Engineering, Allan P. Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | - Maria Secchi
- Department of Industrial Engineering, University of Trento, via Sommarive 9, I-38123 Trento, Italy
| | - Maurizio Montagna
- Dipartimento di Fisica, Universitá di Trento, via Sommarive 14, I-38123 Trento, Italy
| | - Eric M Furst
- Department of Chemical & Biomolecular Engineering, Allan P. Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | - Bahram Djafari-Rouhani
- Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMRCNRS 8520, Department of Physics, University of Lille, Villeneuve d'Ascq 59655, France
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
127
|
Coli GM, Boattini E, Filion L, Dijkstra M. Inverse design of soft materials via a deep learning-based evolutionary strategy. SCIENCE ADVANCES 2022; 8:eabj6731. [PMID: 35044828 PMCID: PMC8769546 DOI: 10.1126/sciadv.abj6731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
Colloidal self-assembly—the spontaneous organization of colloids into ordered structures—has been considered key to produce next-generation materials. However, the present-day staggering variety of colloidal building blocks and the limitless number of thermodynamic conditions make a systematic exploration intractable. The true challenge in this field is to turn this logic around and to develop a robust, versatile algorithm to inverse design colloids that self-assemble into a target structure. Here, we introduce a generic inverse design method to efficiently reverse-engineer crystals, quasicrystals, and liquid crystals by targeting their diffraction patterns. Our algorithm relies on the synergetic use of an evolutionary strategy for parameter optimization, and a convolutional neural network as an order parameter, and provides a way forward for the inverse design of experimentally feasible colloidal interactions, specifically optimized to stabilize the desired structure.
Collapse
|
128
|
Lieu UT, Yoshinaga N. Inverse design of two-dimensional structure by self-assembly of patchy particles. J Chem Phys 2022; 156:054901. [DOI: 10.1063/5.0072234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research, Tohoku University - Katahira Campus, Japan
| |
Collapse
|
129
|
Affiliation(s)
- Jason S. Kahn
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Oleg Gang
- Department of Chemical Engineering Columbia University New York NY 10027 USA
- Department of Applied Physics and Applied Mathematics Columbia University New York NY 10027 USA
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
130
|
Videbæk TE, Fang H, Hayakawa D, Tyukodi B, Hagan MF, Rogers WB. Tiling a tubule: how increasing complexity improves the yield of self-limited assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:10.1088/1361-648X/ac47dd. [PMID: 34983038 PMCID: PMC8857047 DOI: 10.1088/1361-648x/ac47dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The ability to design and synthesize ever more complicated colloidal particles opens the possibility of self-assembling a zoo of complex structures, including those with one or more self-limited length scales. An undesirable feature of systems with self-limited length scales is that thermal fluctuations can lead to the assembly of nearby, off-target states. We investigate strategies for limiting off-target assembly by using multiple types of subunits. Using simulations and energetics calculations, we explore this concept by considering the assembly of tubules built from triangular subunits that bind edge to edge. While in principle, a single type of triangle can assemble into tubules with a monodisperse width distribution, in practice, the finite bending rigidity of the binding sites leads to the formation of off-target structures. To increase the assembly specificity, we introduce tiling rules for assembling tubules from multiple species of triangles. We show that the selectivity of the target structure can be dramatically improved by using multiple species of subunits, and provide a prescription for choosing the minimum number of subunit species required for near-perfect yield. Our approach of increasing the system's complexity to reduce the accessibility of neighboring structures should be generalizable to other systems beyond the self-assembly of tubules.
Collapse
Affiliation(s)
- Thomas E. Videbæk
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Huang Fang
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Daichi Hayakawa
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Botond Tyukodi
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - W. Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA
| |
Collapse
|
131
|
Mushnoori S, Logan JA, Tkachenko AV, Dutt M. Controlling morphology in hybrid isotropic/patchy particle assemblies. J Chem Phys 2022; 156:024501. [PMID: 35032996 DOI: 10.1063/5.0076914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brownian dynamics is used to study self-assembly in a hybrid system of isotropic particles (IPs), combined with anisotropic building blocks that represent special "designer particles." Those are modeled as spherical patchy particles (PPs) with binding only allowed between their patches and IPs. In this study, two types of PPs are considered: Octahedral PPs (Oh-PPs) and Square PPs (Sq-PPs), with octahedral and square arrangements of patches, respectively. The self-assembly is additionally facilitated by the simulated annealing procedure. The resultant structures are characterized by a combination of local correlations in cubatic ordering and a symmetry-specific variation of bond orientation order parameters (SymBOPs). By varying the PP/IP size ratio, we detected a sharp crossover between two distinct morphologies in both types of systems. High symmetry phases, NaCl crystal for Oh-PP and square lattice for Sq-PP, are observed for larger size ratios. For the smaller ones, the dominant morphologies are significantly different, e.g., Oh-PPs form a compact amorphous structure with predominantly face-to-face orientation of neighboring PPs. Unusually, for a morphology without a long-range order, it is still possible to identify well organized coherent clusters of this structure, thanks to the adoption of our SymBOP-based characterization.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jack A Logan
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
132
|
Russo J, Leoni F, Martelli F, Sciortino F. The physics of empty liquids: from patchy particles to water. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:016601. [PMID: 34905739 DOI: 10.1088/1361-6633/ac42d9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Empty liquids represent a wide class of materials whose constituents arrange in a random network through reversible bonds. Many key insights on the physical properties of empty liquids have originated almost independently from the study of colloidal patchy particles on one side, and a large body of theoretical and experimental research on water on the other side. Patchy particles represent a family of coarse-grained potentials that allows for a precise control of both the geometric and the energetic aspects of bonding, while water has arguably the most complex phase diagram of any pure substance, and a puzzling amorphous phase behavior. It was only recently that the exchange of ideas from both fields has made it possible to solve long-standing problems and shed new light on the behavior of empty liquids. Here we highlight the connections between patchy particles and water, focusing on the modelling principles that make an empty liquid behave like water, including the factors that control the appearance of thermodynamic and dynamic anomalies, the possibility of liquid-liquid phase transitions, and the crystallization of open crystalline structures.
Collapse
Affiliation(s)
- John Russo
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Leoni
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Francesco Sciortino
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
133
|
Zhou Y, Cersonsky RK, Glotzer SC. A route to hierarchical assembly of colloidal diamond. SOFT MATTER 2022; 18:304-311. [PMID: 34878488 DOI: 10.1039/d1sm01418h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photonic crystals, appealing for their ability to control light, are constructed from periodic regions of different dielectric constants. Yet, the structural holy grail in photonic materials, diamond, remains challenging to synthesize at the colloidal length scale. Here we explore new ways to assemble diamond using modified gyrobifastigial (mGBF) nanoparticles, a shape that resembles two anti-aligned triangular prisms. We investigate the parameter space that leads to the self-assembly of diamond, and we compare the likelihood of defects in diamond self-assembled via mGBF vs. the nanoparticle shape that is the current focus for assembling diamond, the truncated tetrahedra. We introduce a potential route for realizing mGBF particles by dimerizing triangular prisms using attractive patches, and we report the impact of this superstructure on the photonic properties.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Rose K Cersonsky
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Laboratory of Computational Science and Modelling, STI, Ècole Polytechnique Fèdèrale de Lausanne, Lausanne 1015, Switzerland
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
134
|
Hensley A, Jacobs WM, Rogers WB. Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proc Natl Acad Sci U S A 2022; 119:e2114050118. [PMID: 34949716 PMCID: PMC8740761 DOI: 10.1073/pnas.2114050118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids.
Collapse
Affiliation(s)
- Alexander Hensley
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - W Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453;
| |
Collapse
|
135
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|
136
|
Yan XY, Guo QY, Liu XY, Wang Y, Wang J, Su Z, Huang J, Bian F, Lin H, Huang M, Lin Z, Liu T, Liu Y, Cheng SZD. Superlattice Engineering with Chemically Precise Molecular Building Blocks. J Am Chem Soc 2021; 143:21613-21621. [PMID: 34913335 DOI: 10.1021/jacs.1c09831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zebin Su
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiahao Huang
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiwei Lin
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Tong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
137
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
138
|
Lyu D, Xu W, Wang Y. Low-Symmetry MOF-Based Patchy Colloids and Their Precise Linking via Site-Selective Liquid Bridging to Form Supra-Colloidal and Supra-Framework Architectures. Angew Chem Int Ed Engl 2021; 61:e202115076. [PMID: 34889018 DOI: 10.1002/anie.202115076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/08/2022]
Abstract
Colloids with surface patches (or patchy particles) can bind and assemble with directionality. However, the bonding between the usually high-symmetry, dome-shaped patches is not precise, as it cannot lock the exact position and orientation of the relevant particles. This issue prevents the assembly of well-defined colloidal superstructures by design. Herein, we introduce low-symmetry, metal-organic framework (MOF)-based patchy colloids, which feature a polyhedral matrix and flat hexagonal patches, along with anisotropic surfaces and compositions. Guided by the encoded shape/chemical information and mediated by a site-selective liquid-bridging interaction, the distinct patchy particles self-assemble into supra-colloidal (or supra-framework) structures with unprecedented precision. In this case, the valence, position, and orientation of the particles within assemblies are fully coordinated and precisely aligned. The dynamic nature of the liquid bridges also allows us to investigate the unique assembly kinetics. Our strategy not only defines new modes of colloidal bonding, but also provides a powerful means toward creating hierarchical and multi-component MOF materials.
Collapse
Affiliation(s)
- Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
139
|
Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection. Proc Natl Acad Sci U S A 2021; 118:2109776118. [PMID: 34819372 PMCID: PMC8640719 DOI: 10.1073/pnas.2109776118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of colloidal diamond–a classic example of an open crystal with the low coordination number of four and much sought after due to its applications in visible light management–from designer spherical colloidal particles has proved challenging over the years. The formation of the diamond lattice from tetrahedral patchy particles is hampered by the propensity to form competing open periodic structures for narrow patches or dynamically arrested states for wider patches, leaving a narrow window in design space where diamond crystals may be realized. Our two-component system of designer tetrahedral patchy particles supports a significantly wider range for patch sizes for programmed self-assembly, thus facilitating experimental fabrication, and offers fundamental insight into crystallization into open lattices. Diamond-structured crystals, particularly those with cubic symmetry, have long been attractive targets for the programmed self-assembly of colloidal particles, due to their applications as photonic crystals that can control the flow of visible light. While spherical particles decorated with four patches in a tetrahedral arrangement—tetrahedral patchy particles—should be an ideal building block for this endeavor, their self-assembly into colloidal diamond has proved elusive. The kinetics of self-assembly pose a major challenge, with competition from an amorphous glassy phase, as well as clathrate crystals, leaving a narrow widow of patch widths where tetrahedral patchy particles can self-assemble into diamond crystals. Here we demonstrate that a two-component system of tetrahedral patchy particles, where bonding is allowed only between particles of different types to select even-member rings, undergoes crystallization into diamond crystals over a significantly wider range of patch widths conducive for experimental fabrication. We show that the crystallization in the two-component system is both thermodynamically and kinetically enhanced, as compared to the one-component system. Although our bottom-up route does not lead to the selection of the cubic polytype exclusively, we find that the cubicity of the self-assembled crystals increases with increasing patch width. Our designer system not only promises a scalable bottom-up route for colloidal diamond but also offers fundamental insight into crystallization into open lattices.
Collapse
|
140
|
DNA self-organization controls valence in programmable colloid design. Proc Natl Acad Sci U S A 2021; 118:2112604118. [PMID: 34750268 DOI: 10.1073/pnas.2112604118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence-the number of interparticle bonds-is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid "patchy" particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets with N mobile DNA linkers results in spontaneous and reversible self-organization of the DNA into Z(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet-droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions with N Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell-cell adhesion.
Collapse
|
141
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
142
|
Abstract
Machines enabled the Industrial Revolution and are central to modern technological progress: A machine's parts transmit forces, motion, and energy to one another in a predetermined manner. Today's engineering frontier, building artificial micromachines that emulate the biological machinery of living organisms, requires faithful assembly and energy consumption at the microscale. Here, we demonstrate the programmable assembly of active particles into autonomous metamachines using optical templates. Metamachines, or machines made of machines, are stable, mobile and autonomous architectures, whose dynamics stems from the geometry. We use the interplay between anisotropic force generation of the active colloids with the control of their orientation by local geometry. This allows autonomous reprogramming of active particles of the metamachines to achieve multiple functions. It permits the modular assembly of metamachines by fusion, reconfiguration of metamachines and, we anticipate, a shift in focus of self-assembly towards active matter and reprogrammable materials.
Collapse
|
143
|
Sun M, Cheng Z, Chen W, Jones M. Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors. ACS NANO 2021; 15:15953-15961. [PMID: 34554725 DOI: 10.1021/acsnano.1c04056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vast majority of single crystalline metal nanoparticles adopt shapes in the Oh point group as a consequence of the symmetry of the underlying face-centered cubic (FCC) crystal lattice. Tetrahedra are a notable exception to this rule, and although they have been observed in several syntheses, their growth mechanism, and the symmetry-reduction process that necessarily characterizes it, is poorly understood. Here, a symmetry breaking mechanism is revealed by in situ liquid flow cell transmission electron microscopy (TEM) observation of seeded growth in which tetrahedra nanoparticles are formed from higher symmetry seeds. Real-time observation of the growth demonstrates a kinetically driven pathway during which rhombic dodecahedra nanoparticles transition to tetrahedra through tristetrahedra intermediates, with an accompanying surface facet evolution from {110} to {111} via {hhl} (where h > l), respectively. On the basis of these data, we propose a mechanism that relies on a rapid loss of inversion symmetry in the initial stages of the reaction, followed by differential reactivity of tips vs faces under conditions of relatively high supersaturation and moderate ligand concentration. The application of these insights to ex situ synthesis conditions allowed for an improved yield of tetrahedra nanoparticles. This work sheds an important mechanistic light on the crystallographic underpinnings of nanoparticle shape and symmetry transformations and highlights the importance of single-particle characterization tools for monitoring nanoscale phenomena.
Collapse
|
144
|
Sun YW, Chen ZQ, Zhu YL, Li ZW, Lu ZY, Sun ZY. Intercluster Exchange-Stabilized Novel Complex Colloidal χ c Phase. J Phys Chem Lett 2021; 12:8872-8881. [PMID: 34498873 DOI: 10.1021/acs.jpclett.1c01916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing complex cluster crystals with a specific function using simple colloidal building blocks remains a challenge in materials science. Herein, we propose a conceptually new design strategy for constructing complex cluster crystals via hierarchical self-assembly of simple soft Janus colloids. A novel and previously unreported colloidal cluster-χ (χc) phase, which resembles the essential structural features of α-manganese but at a larger length scale, is obtained through molecular dynamics simulations. The formation of the χc phase undergoes a remarkable two-step self-assembly process, that is, the self-assembly of clusters with specific size dispersity from Janus colloids, followed by the highly ordered organization of these clusters. More importantly, the dynamic exchange of particles between these clusters plays a critical role in stabilizing the χc phase. Such a conceptual design framework based on intercluster exchange has the potential to effectively construct novel complex cluster crystals by hierarchical self-assembly of colloidal building blocks.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
145
|
Mahynski NA, Shen VK. Symmetry-derived structure directing agents for two-dimensional crystals of arbitrary colloids. SOFT MATTER 2021; 17:7853-7866. [PMID: 34382053 PMCID: PMC9793339 DOI: 10.1039/d1sm00875g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We derive properties of self-assembling rings which can template the organization of an arbitrary colloid into any periodic symmetry in two Euclidean dimensions. By viewing this as a tiling problem, we illustrate how the shape and chemical patterning of these rings are derivable, and are explicitly reflected by the symmetry group's orbifold symbol. We performed molecular dynamics simulations to observe their self-assembly and found 5 different characteristics which could be easily rationalized on the basis of this symbol. These include systems which undergo chiral phase separation, are addressably complex, exhibit self-limiting growth into clusters, form ordered "rods" in only one-dimension akin to a smectic phase, and those from symmetry groups which are pluripotent and allow one to select rings which exhibit different behaviors. We discuss how the curvature of the ring's edges plays an integral role in achieving correct self-assembly, and illustrate how to obtain these shapes. This provides a method for patterning colloidal systems at interfaces without explicitly programming this information onto the colloid itself.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA.
| | | |
Collapse
|
146
|
Dasan A, Ożóg P, Kraxner J, Elsayed H, Colusso E, Grigolato L, Savio G, Galusek D, Bernardo E. Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds. MATERIALS 2021; 14:ma14175083. [PMID: 34501173 PMCID: PMC8434035 DOI: 10.3390/ma14175083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Additive manufacturing technologies, compared to conventional shaping methods, offer great opportunities in design versatility, for the manufacturing of highly porous ceramic components. However, the application to glass powders, later subjected to viscous flow sintering, involves significant challenges, especially in shape retention and in the achievement of a substantial degree of translucency in the final products. The present paper disclosed the potential of glass recovered from liquid crystal displays (LCD) for the manufacturing of highly porous scaffolds by direct ink writing and masked stereolithography of fine powders mixed with suitable organic additives, and sintered at 950 °C, for 1-1.5 h, in air. The specific glass, featuring a relatively high transition temperature (Tg~700 °C), allowed for the complete burn-out of organics before viscous flow sintering could take place; in addition, translucency was favored by the successful removal of porosity in the struts and by the resistance of the used glass to crystallization.
Collapse
Affiliation(s)
- Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Paulina Ożóg
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Jozef Kraxner
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
| | - Hamada Elsayed
- Ceramics Department, National Research Centre, Cairo 12622, Egypt;
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
| | - Elena Colusso
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
| | - Luca Grigolato
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
- Department of Civil, Environmental and Architectural Engineering: Dept. ICEA, University of Padova, 35131 Padova, Italy;
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering: Dept. ICEA, University of Padova, 35131 Padova, Italy;
| | - Dusan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; (A.D.); (P.O.); (J.K.); (D.G.)
- Joint glass centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Enrico Bernardo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (E.C.); (L.G.)
- Correspondence: ; Tel.: +39-049-8275510
| |
Collapse
|
147
|
Kim YJ, Kim JH, Jo IS, Pine DJ, Sacanna S, Yi GR. Patchy Colloidal Clusters with Broken Symmetry. J Am Chem Soc 2021; 143:13175-13183. [PMID: 34392686 DOI: 10.1021/jacs.1c05123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Colloidal clusters are prepared by assembling positively charged cross-linked polystyrene (PS) particles onto negatively charged liquid cores of swollen polymer particles. PS particles at the interface of the liquid core are closely packed around the core due to interfacial wetting. Then, by evaporating solvent in the liquid cores, polymers in the cores are solidified and the clusters are cemented. As the swelling ratio of PS cores increases, cores at the center of colloidal clusters are exposed, forming patchy colloidal clusters. Finally, by density gradient centrifugation, high-purity symmetric colloidal clusters are obtained. When silica-PS core-shell particles are swollen and serve as the liquid cores, hybrid colloidal clusters are obtained in which each silica nanoparticle is relocated to the liquid core interface during the swelling-deswelling process breaking symmetry in colloidal clusters as the silica nanoparticle in the core is comparable in size with the PS particle in the shell. The configuration of colloidal clusters is determined once the number of particles around the liquid core is given, which depends on the size ratio of the liquid core and shell particle. Since hybrid clusters are heavier than PS particles, they can be purified using centrifugation.
Collapse
Affiliation(s)
- You-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jae-Hyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - In-Seong Jo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - David J Pine
- Department of Chemical & Biomolecular Engineering, New York University, Brooklyn, New York 11201, United States
| | | | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.,Department of Chemical Engineering, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
148
|
Chandler M, Minevich B, Roark B, Viard M, Johnson MB, Rizvi MH, Deaton TA, Kozlov S, Panigaj M, Tracy JB, Yingling YG, Gang O, Afonin KA. Controlled Organization of Inorganic Materials Using Biological Molecules for Activating Therapeutic Functionalities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39030-39041. [PMID: 34402305 PMCID: PMC8654604 DOI: 10.1021/acsami.1c09230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise control over the assembly of biocompatible three-dimensional (3D) nanostructures would allow for programmed interactions within the cellular environment. Nucleic acids can be used as programmable crosslinkers to direct the assembly of quantum dots (QDs) and tuned to demonstrate different interparticle binding strategies. Morphologies of self-assembled QDs are evaluated via gel electrophoresis, transmission electron microscopy, small-angle X-ray scattering, and dissipative particle dynamics simulations, with all results being in good agreement. The controlled assembly of 3D QD organizations is demonstrated in cells via the colocalized emission of multiple assembled QDs, and their immunorecognition is assessed via enzyme-linked immunosorbent assays. RNA interference inducers are also embedded into the interparticle binding strategy to be released in human cells only upon QD assembly, which is demonstrated by specific gene silencing. The programmability and intracellular activity of QD assemblies offer a strategy for nucleic acids to imbue the structure and therapeutic function into the formation of complex networks of nanostructures, while the photoluminescent properties of the material allow for optical tracking in cells in vitro.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Brandon Roark
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas A Deaton
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seraphim Kozlov
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
149
|
Liu Y, Wang J, Imaz I, Maspoch D. Assembly of Colloidal Clusters Driven by the Polyhedral Shape of Metal-Organic Framework Particles. J Am Chem Soc 2021; 143:12943-12947. [PMID: 34383504 PMCID: PMC8391935 DOI: 10.1021/jacs.1c05363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Control of the assembly
of colloidal particles into discrete or
higher-dimensional architectures is important for the design of myriad
materials, including plasmonic sensing systems and photonic crystals.
Here, we report a new approach that uses the polyhedral shape of metal–organic-framework
(MOF) particles to direct the assembly of colloidal clusters. This
approach is based on controlling the attachment of a single spherical
polystyrene particle on each face of a polyhedral particle via colloidal
fusion synthesis, so that the polyhedral shape defines the final coordination
number, which is equal to the number of faces, and geometry of the
assembled colloidal cluster. As a proof of concept, we assembled six-coordinated
(6-c) octahedral and 8-c cubic clusters using cubic ZIF-8 and octahedral
UiO-66 core particles. Moreover, we extended this approach to synthesize
a highly coordinated 12-c cuboctahedral cluster from a rhombic dodecahedral
ZIF-8 particle. We anticipate that the synthesized colloidal clusters
could be further evolved into spherical core–shell MOF@polystyrene
particles under conditions that promote a higher fusion degree, thus
expanding the methods available for the synthesis of MOF–polymer
composites.
Collapse
Affiliation(s)
- Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jiemin Wang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
150
|
Hierarchical self-assembly of polydisperse colloidal bananas into a two-dimensional vortex phase. Proc Natl Acad Sci U S A 2021; 118:2107241118. [PMID: 34389681 PMCID: PMC8379995 DOI: 10.1073/pnas.2107241118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hierarchically self-assembled materials—structures with order at multiple length scales—can be found everywhere. Examples range from collagen structures in human bones to engineered photonic materials. These structures usually assemble from monodisperse microscopic building blocks that interact via complex directional interactions. In this work, we show that hierarchical materials can, in fact, also be assembled from polydisperse building blocks and by entropic interactions alone. Our simple yet powerful assembly mechanism opens up avenues toward rationally exploiting the often undesired polydispersity of colloidal building blocks for programming entropy-driven self-assembly of hierarchical materials. Self-assembly of microscopic building blocks into highly ordered and functional structures is ubiquitous in nature and found at all length scales. Hierarchical structures formed by colloidal building blocks are typically assembled from monodisperse particles interacting via engineered directional interactions. Here, we show that polydisperse colloidal bananas self-assemble into a complex and hierarchical quasi–two-dimensional structure, called the vortex phase, only due to excluded volume interactions and polydispersity in the particle curvature. Using confocal microscopy, we uncover the remarkable formation mechanism of the vortex phase and characterize its exotic structure and dynamics at the single-particle level. These results demonstrate that hierarchical self-assembly of complex materials can be solely driven by entropy and shape polydispersity of the constituting particles.
Collapse
|