101
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
102
|
Matveev EV, Ponomarev GV, Kazanov MD. Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein. Microbiol Spectr 2024; 12:e0353023. [PMID: 38189333 PMCID: PMC10846095 DOI: 10.1128/spectrum.03530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily enters the cell by binding the virus's spike (S) glycoprotein to the angiotensin-converting enzyme 2 receptor on the cell surface, followed by proteolytic cleavage by host proteases. Studies have identified furin and transmembrane protease serine 2 proteases in priming and triggering cleavages of the S glycoprotein, converting it into a fusion-competent form and initiating membrane fusion, respectively. Alternatively, SARS-CoV-2 can enter the cell through the endocytic pathway, where activation is triggered by lysosomal cathepsin L. However, other proteases are also suspected to be involved in both entry routes. In this study, we conducted a genome-wide bioinformatics analysis to explore the capacity of human proteases in hydrolyzing peptide bonds of the S glycoprotein. Predictive models of sequence specificity for 169 human proteases were constructed and applied to the S glycoprotein together with the method for predicting structural susceptibility to proteolysis of protein regions. After validating our approach on extensively studied S2' and S1/S2 cleavage sites, we applied our method to each peptide bond of the S glycoprotein across all 169 proteases. Our results indicate that various members of the proprotein convertase subtilisin/kexin type, type II transmembrane family serine protease, and kallikrein families, as well as specific coagulation factors, are capable of cleaving S2' or S1/S2 sites. We have also identified a potential cleavage site of cathepsin L at the K790 position within the S2' loop. Structural analysis suggests that cleavage of this site induces conformational changes similar to the cleavage at the R815 (S2') position, leading to the exposure of the fusion peptide and subsequent fusion with the membrane. Other potential cleavage sites and the influence of mutations in common SARS-CoV-2 variants on proteolytic efficiency are discussed.IMPORTANCEThe entry of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into the cell, activated by host proteases, is considerably more complex in coronaviruses than in most other viruses and is not fully understood. There is evidence that other proteases beyond the known furin and transmembrane protease serine 2 can activate the spike protein. Another example of uncertainty is the cleavage site for the alternative endocytic route of SARS-CoV-2 entrance, which is still unknown. Bioinformatics methods, modeling protease specificity and estimating the structural susceptibility of protein regions to proteolysis, can aid in studying this topic by predicting the involved proteases and their cleavage sites, thereby substantially reducing the amount of experimental work. Elucidating the mechanisms of spike protein activation is crucial for preventing possible future coronavirus pandemics and developing antiviral drugs.
Collapse
Affiliation(s)
- Evgenii V. Matveev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Gennady V. Ponomarev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Marat D. Kazanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
103
|
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. NPJ Vaccines 2024; 9:23. [PMID: 38316833 PMCID: PMC10844289 DOI: 10.1038/s41541-024-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1β and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.
Collapse
Affiliation(s)
- Claudia Fischer
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Jessica I Hoell
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | | | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
104
|
Yang ZS, Li TS, Huang YS, Chang CC, Chien CM. Targeting the receptor binding domain and heparan sulfate binding for antiviral drug development against SARS-CoV-2 variants. Sci Rep 2024; 14:2753. [PMID: 38307890 PMCID: PMC10837157 DOI: 10.1038/s41598-024-53111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
The emergence of SARS-CoV-2 variants diminished the efficacy of current antiviral drugs and vaccines. Hence, identifying highly conserved sequences and potentially druggable pockets for drug development was a promising strategy against SARS-CoV-2 variants. In viral infection, the receptor-binding domain (RBD) proteins are essential in binding to the host receptor. Others, Heparan sulfate (HS), widely distributed on the surface of host cells, is thought to play a central role in the viral infection cycle of SARS-CoV-2. Therefore, it might be a reasonable strategy for antiviral drug design to interfere with the RBD in the HS binding site. In this study, we used computational approaches to analyze multiple sequences of coronaviruses and reveal important information about the binding of HS to RBD in the SARS-CoV-2 spike protein. Our results showed that the potential hot-spots, including R454 and E471, in RBD, exhibited strong interactions in the HS-RBD binding region. Therefore, we screened different compounds in the natural product database towards these hot-spots to find potential antiviral candidates using LibDock, Autodock vina and furthermore applying the MD simulation in AMBER20. The results showed three potential natural compounds, including Acetoside (ACE), Hyperoside (HYP), and Isoquercitrin (ISO), had a strong affinity to the RBD. Our results demonstrate a feasible approach to identify potential antiviral agents by evaluating the binding interaction between viral glycoproteins and host receptors. The present study provided the applications of the structure-based computational approach for designing and developing of new antiviral drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zi-Sin Yang
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan, 711, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Tzong-Shiun Li
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Plastic Surgery, Chang Bing Show Chwan Memorial Hospital, Changhua, 500, Taiwan
| | - Yu-Sung Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan, 711, Taiwan.
| |
Collapse
|
105
|
Aygün I, Barciszewski J. The forerunners and successful partnerships behind the BioNTech mRNA vaccine. J Appl Genet 2024; 65:47-55. [PMID: 37861886 PMCID: PMC10789661 DOI: 10.1007/s13353-023-00793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The discovery of nucleic acids stands as a paramount achievement in the history of scientific endeavors. By applying transformative advancements in the fields of chemistry and physics to biological systems, researchers unveiled the enigmatic nature of life. Notably, messenger RNA (mRNA) emerged as a crucial player in this profound revelation, serving as a transient intermediary for genetic information transfer between genes and proteins. Groundbreaking investigations carried out from 1944 to 1961 led to the initial identification of this pivotal molecule, captivating scientific interest for the past three decades. The field of mRNA research has witnessed a transformative shift owing to the development of cap analogs and nucleotide modifications. This revolutionary progress has fostered a new generation of potent therapeutics. Prior to the advent of the coronavirus pandemic, numerous scientists had already begun exploring the unique properties of mRNA. However, with the onset of the pandemic, mRNA catapulted into the limelight as a heroic agent, providing the foundation for highly effective vaccines that have played a crucial role in mitigating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The successive generations of cap analogs have significantly enhanced the translation efficacy of mRNA, while the discovery of suitable purification, packaging, and delivery methods has paved the way for groundbreaking medical breakthroughs. Pioneers in the field such as Katalin Karikó, Drew Weissman, Edward Darzynkiewicz, Robert Rhodes, Ugur Sahin, and Ozlem Tureci have made significant contributions during the early stages of mRNA research, warranting acknowledgement for their visionary endeavors. The narrative of mRNA represents a remarkable journey marked by a succession of breakthroughs in a discipline that holds immense promise for the future of medicine. Thanks to the pioneering work of these exceptional scientists, we are well-positioned to unlock the full potential of this extraordinary molecule, ushering in a new era of medical advancements.
Collapse
Affiliation(s)
- Ilkin Aygün
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego, 12/14, 61-704, Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego, 12/14, 61-704, Poznan, Poland
- NanoBioMedical Center, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
106
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
107
|
Li R, Chang Z, Liu H, Wang Y, Li M, Chen Y, Fan L, Wang S, Sun X, Liu S, Cheng A, Ding P, Zhang G. Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2. J Nanobiotechnology 2024; 22:44. [PMID: 38291444 PMCID: PMC10825999 DOI: 10.1186/s12951-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Collapse
Affiliation(s)
- Ruiqi Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China
- Longhu Laboratory, Zhengzhou, 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zejie Chang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongliang Liu
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lu Fan
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Siqiao Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiyang Ding
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
108
|
Sezer Z, Pavel STI, Inal A, Yetiskin H, Kaplan B, Uygut MA, Aslan AF, Bayram A, Mazicioglu M, Kalin Unuvar G, Yuce ZT, Aydin G, Kaya RK, Ates I, Kara A, Ozdarendeli A. Long-Term Immunogenicity and Safety of a Homologous Third Dose Booster Vaccination with TURKOVAC: Phase 2 Clinical Study Findings with 32-Week Post-Booster Follow-Up. Vaccines (Basel) 2024; 12:140. [PMID: 38400124 PMCID: PMC10893411 DOI: 10.3390/vaccines12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine-induced immunity wanes over time and warrants booster doses. We investigated the long-term (32 weeks) immunogenicity and safety of a third, homologous, open-label booster dose of TURKOVAC, administered 12 weeks after completion of the primary series in a randomized, controlled, double-blind, phase 2 study. Forty-two participants included in the analysis were evaluated for neutralizing antibodies (NAbs) (with microneutralization (MNT50) and focus reduction (FRNT50) tests), SARS-CoV-2 S1 RBD (Spike S1 Receptor Binding Domain), and whole SARS-CoV-2 (with ELISA) IgGs on the day of booster injection and at weeks 1, 2, 4, 8, 16, 24, and 32 thereafter. Antibody titers increased significantly from week 1 and remained higher than the pre-booster titers until at least week 4 (week 8 for whole SARS-CoV-2) (p < 0.05 for all). Seroconversion (titers ≥ 4-fold compared with pre-immune status) persisted 16 weeks (MNT50: 6-fold; FRNT50: 5.4-fold) for NAbs and 32 weeks for S1 RBD (7.9-fold) and whole SARS-CoV-2 (9.4-fold) IgGs. Nine participants (20.9%) tested positive for SARS-CoV-2 RT-PCR between weeks 8 and 32 of booster vaccination; none of them were hospitalized or died. These findings suggest that boosting with TURKOVAC can provide effective protection against COVID-19 for at least 8 weeks and reduce the severity of the disease.
Collapse
Affiliation(s)
- Zafer Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Shaikh Terkis Islam Pavel
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Inal
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Hazel Yetiskin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Busra Kaplan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Muhammet Ali Uygut
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Furkan Aslan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Mumtaz Mazicioglu
- Department of Family Medicine, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gamze Kalin Unuvar
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Zeynep Ture Yuce
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gunsu Aydin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | | | - Ihsan Ates
- Department of Internal Medicine, University of Health Sciences Ankara City Hospital, Ankara 06530, Türkiye
| | - Ates Kara
- Health Institutes of Türkiye (TUSEB), Istanbul 34718, Türkiye
- Department of Pediatrics, Pediatric Infectious Disease, Faculty of Medicine, Hacettepe University, Ankara 06430, Türkiye
| | - Aykut Ozdarendeli
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| |
Collapse
|
109
|
Ketaren NE, Mast FD, Fridy PC, Olivier JP, Sanyal T, Sali A, Chait BT, Rout MP, Aitchison JD. Nanobody repertoire generated against the spike protein of ancestral SARS-CoV-2 remains efficacious against the rapidly evolving virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.14.549041. [PMID: 37503298 PMCID: PMC10369967 DOI: 10.1101/2023.07.14.549041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia E. Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94143, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, USA
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
110
|
Kachko A, Selvaraj P, Liu S, Kim J, Rotstein D, Stauft CB, Chabot S, Rajasagi N, Zhao Y, Wang T, Major M. Vaccine-associated respiratory pathology correlates with viral clearance and protective immunity after immunization with self-amplifying RNA expressing the spike (S) protein of SARS-CoV-2 in mouse models. Vaccine 2024; 42:608-619. [PMID: 38142216 DOI: 10.1016/j.vaccine.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, we evaluated the immunogenicity and protective immunity of in vitro transcribed Venezuelan equine encephalitis virus (VEEV TC-83 strain) self-amplifying RNA (saRNA) encoding the SARS-CoV-2 spike (S) protein in wild type (S-WT) and stabilized pre-fusion conformations (S-PP). Immunization with S-WT and S-PP saRNA induced specific neutralizing antibody responses in both K18-Tg hACE2 (K18) and BALB/c mice, as assessed using SARS-CoV-2 pseudotyped viruses. Protective immunity was assessed in challenge experiments. Two immunizations with S-WT and S-PP induced protective immunity, evidenced by lower mortality, lower weight loss and more than one log10 lower subgenomic virus RNA titers in the upper and lower respiratory tracts in both K18 and BALB/c mice. Histopathologic examination of lungs post-challenge showed that immunization with S-WT and S-PP resulted in a higher degree of immune cell infiltration and inflammatory changes, compared with control mice, characterized by high levels of T- and B-cell infiltration. No substantial differences were found in the presence and localization of eosinophils, macrophages, neutrophils, and natural killer cells. CD4 and CD8 T-cell depletion post immunization resulted in reduced lung inflammation post challenge but also prolonged virus clearance. These data indicate that immunization with saRNA encoding the SARS-CoV-2 S protein induces immune responses that are protective following challenge, that virus clearance is associated with pulmonary changes caused by T-cell and B-cell infiltration in the lungs, but that this T and B-cell infiltration plays an important role in viral clearance.
Collapse
Affiliation(s)
- Alla Kachko
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jaekwan Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Rotstein
- Division of Food Compliance, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, USA
| | - Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sylvie Chabot
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Naveen Rajasagi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yangqing Zhao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
111
|
Ghildiyal T, Rai N, Mishra Rawat J, Singh M, Anand J, Pant G, Kumar G, Shidiki A. Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. J Immunol Res 2024; 2024:9125398. [PMID: 38304142 PMCID: PMC10834093 DOI: 10.1155/2024/9125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Since the COVID-19 outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus has evolved into variants with varied infectivity. Vaccines developed against COVID-19 infection have boosted immunity, but there is still uncertainty on how long the immunity from natural infection or vaccination will last. The present study attempts to outline the present level of information about the contagiousness and spread of SARS-CoV-2 variants of interest and variants of concern (VOCs). The keywords like COVID-19 vaccine types, VOCs, universal vaccines, bivalent, and other relevant terms were searched in NCBI, Science Direct, and WHO databases to review the published literature. The review provides an integrative discussion on the current state of knowledge on the type of vaccines developed against SARS-CoV-2, the safety and efficacy of COVID-19 vaccines concerning the VOCs, and prospects of novel universal, chimeric, and bivalent mRNA vaccines efficacy to fend off existing variants and other emerging coronaviruses. Genomic variation can be quite significant, as seen by the notable differences in impact, transmission rate, morbidity, and death during several human coronavirus outbreaks. Therefore, understanding the amount and characteristics of coronavirus genetic diversity in historical and contemporary strains can help researchers get an edge over upcoming variants.
Collapse
Affiliation(s)
- Tanmay Ghildiyal
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Janhvi Mishra Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Maargavi Singh
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | |
Collapse
|
112
|
Kralj S, Jukič M, Bahun M, Kranjc L, Kolarič A, Hodošček M, Ulrih NP, Bren U. Identification of Triazolopyrimidinyl Scaffold SARS-CoV-2 Papain-Like Protease (PL pro) Inhibitor. Pharmaceutics 2024; 16:169. [PMID: 38399230 PMCID: PMC10893172 DOI: 10.3390/pharmaceutics16020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The global impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its companion disease, COVID-19, has reminded us of the importance of basic coronaviral research. In this study, a comprehensive approach using molecular docking, in vitro assays, and molecular dynamics simulations was applied to identify potential inhibitors for SARS-CoV-2 papain-like protease (PLpro), a key and underexplored viral enzyme target. A focused protease inhibitor library was initially created and molecular docking was performed using CmDock software (v0.2.0), resulting in the selection of hit compounds for in vitro testing on the isolated enzyme. Among them, compound 372 exhibited promising inhibitory properties against PLpro, with an IC50 value of 82 ± 34 μM. The compound also displayed a new triazolopyrimidinyl scaffold not yet represented within protease inhibitors. Molecular dynamics simulations demonstrated the favorable binding properties of compound 372. Structural analysis highlighted its key interactions with PLpro, and we stress its potential for further optimization. Moreover, besides compound 372 as a candidate for PLpro inhibitor development, this study elaborates on the PLpro binding site dynamics and provides a valuable contribution for further efforts in pan-coronaviral PLpro inhibitor development.
Collapse
Affiliation(s)
- Sebastjan Kralj
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Miha Bahun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Luka Kranjc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- National Institute of Biology, Večna Pot 111, SI-1000 Ljubljana, Slovenia
| | - Anja Kolarič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
| | - Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška Ulica 8, SI-6000 Koper, Slovenia
- Institute of Enviormental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
113
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Hernandez GM, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. Cell Rep 2024; 43:113596. [PMID: 38117652 PMCID: PMC10860710 DOI: 10.1016/j.celrep.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matteo Gentili
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew R Bauer
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
114
|
Niu M, Wang C, Chen Y, Zou Q, Xu L. Identification, characterization and expression analysis of circRNA encoded by SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2024; 25:bbad537. [PMID: 38279648 PMCID: PMC10818166 DOI: 10.1093/bib/bbad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024] Open
Abstract
Virus-encoded circular RNA (circRNA) participates in the immune response to viral infection, affects the human immune system, and can be used as a target for precision therapy and tumor biomarker. The coronaviruses SARS-CoV-1 and SARS-CoV-2 (SARS-CoV-1/2) that have emerged in recent years are highly contagious and have high mortality rates. In coronaviruses, little is known about the circRNA encoded by the SARS-CoV-1/2. Therefore, this study explores whether SARS-CoV-1/2 encodes circRNA and characteristics and functions of circRNA. Based on RNA-seq data of SARS-CoV-1 and SARS-CoV-2 infections, we used circRNA identification tools (circRNA_finder, find_circ and CIRI2) to identify circRNAs. The number of circRNAs encoded by SARS-CoV-1 and SARS-CoV-2 was identified as 151 and 470, respectively. It can be found that SARS-CoV-2 shows more prominent circRNA encoding ability than SARS-CoV-1. Expression analysis showed that only a few circRNAs encoded by SARS-CoV-1/2 showed high expression levels, and the positive strand produced more abundant circRNAs. Then, based on the identified SARS-CoV-1/2-encoded circRNAs, we performed circRNA identification and characterization using the previously developed CirRNAPL. Finally, target gene prediction and functional enrichment analysis were performed. It was found that viral circRNA is closely related to cancer and has a potential role in regulating host cell functions. This study studied the characteristics and functions of viral circRNA encoded by coronavirus SARS-CoV-1/2, providing a valuable resource for further research on the function and molecular mechanism of coronavirus circRNA.
Collapse
Affiliation(s)
- Mengting Niu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Yaojia Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
115
|
Bhuiyan NH, Shim JS. Immunity testing against COVID-19 from blood by an IoT-enabled and AI-controlled multiplexed microfluidic platform. Biosens Bioelectron 2024; 244:115791. [PMID: 37952323 DOI: 10.1016/j.bios.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Developing herd immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pivotal for changing the course of the coronavirus disease 2019 (COVID-19) pandemic. However, the uncertainty of vaccine-induced immunity development and inequitable distribution of vaccines hinders the global vaccination effort. Therefore, routine serodiagnosis and ensuring effective vaccination on a time-to-time basis are essential for developing sustainable immunity against SARS-CoV-2. Herein, an AI-driven multiplexed point-of-care testing (POCT) platform capable of utilizing a microfluidic lab-on-a-chip (LOC) device has been proposed for analyzing bodily fluid response against SARS-CoV-2. The developed platform has been successfully utilized for the quantification of SARS-CoV-2 S-protein, N-protein, IgM, and IgG from human blood samples with limits of detection (LODs) as low as 0.01, 0.02, 0.69, and 0.61 ng/mL respectively. Finally, a data-receptive web-based dashboard system has been developed and demonstrated to provide real-time, territory-specific analysis of herd immunity progress from the test results. Thus, the proposed platform could be an imperative tool for healthcare authorities to analyze and restrain ongoing COVID-19 outbreaks or similar pandemics in the future by ensuring effective immunization.
Collapse
Affiliation(s)
- Nabil H Bhuiyan
- Bio-IT Convergence Laboratory, Dept. of Electronic Convergence Engineering, KwangWoon University, Seoul, Republic of Korea
| | - Joon S Shim
- Bio-IT Convergence Laboratory, Dept. of Electronic Convergence Engineering, KwangWoon University, Seoul, Republic of Korea.
| |
Collapse
|
116
|
Villacampa A, Alfaro E, Morales C, Díaz-García E, López-Fernández C, Bartha JL, López-Sánchez F, Lorenzo Ó, Moncada S, Sánchez-Ferrer CF, García-Río F, Cubillos-Zapata C, Peiró C. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell Commun Signal 2024; 22:38. [PMID: 38225643 PMCID: PMC10788971 DOI: 10.1186/s12964-023-01397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Hyperinflammation, hypercoagulation and endothelial injury are major findings in acute and post-COVID-19. The SARS-CoV-2 S protein has been detected as an isolated element in human tissues reservoirs and is the main product of mRNA COVID-19 vaccines. We investigated whether the S protein alone triggers pro-inflammatory and pro-coagulant responses in primary cultures of two cell types deeply affected by SARS-CoV-2, such are monocytes and endothelial cells. METHODS In human umbilical vein endothelial cells (HUVEC) and monocytes, the components of NF-κB and the NLRP3 inflammasome system, as well as coagulation regulators, were assessed by qRT-PCR, Western blot, flow cytometry, or indirect immunofluorescence. RESULTS S protein activated NF-κB, promoted pro-inflammatory cytokines release, and triggered the priming and activation of the NLRP3 inflammasome system resulting in mature IL-1β formation in both cell types. This was paralleled by enhanced production of coagulation factors such as von Willebrand factor (vWF), factor VIII or tissue factor, that was mediated, at least in part, by IL-1β. Additionally, S protein failed to enhance ADAMTS-13 levels to counteract the pro-coagulant activity of vWF multimers. Monocytes and HUVEC barely expressed angiotensin-converting enzyme-2. Pharmacological approaches and gene silencing showed that TLR4 receptors mediated the effects of S protein in monocytes, but not in HUVEC. CONCLUSION S protein behaves both as a pro-inflammatory and pro-coagulant stimulus in human monocytes and endothelial cells. Interfering with the receptors or signaling pathways evoked by the S protein may help preventing immune and vascular complications driven by such an isolated viral element. Video Abstract.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - José Luis Bartha
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Gynecology and Obstetrics Service, La Paz University Hospital, Madrid, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Moncada
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| |
Collapse
|
117
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
118
|
Mei S, Zou Y, Jiang S, Xue L, Wang Y, Jing H, Yang P, Niu MM, Li J, Yuan K, Zhang Y. Highly potent dual-targeting angiotensin-converting enzyme 2 (ACE2) and Neuropilin-1 (NRP1) peptides: A promising broad-spectrum therapeutic strategy against SARS-CoV-2 infection. Eur J Med Chem 2024; 263:115908. [PMID: 37981444 DOI: 10.1016/j.ejmech.2023.115908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
The efficacy of approved vaccines has been diminishing due to the increasing advent of SARS-CoV-2 variants with diverse mutations that favor sneak entry. Nonetheless, these variants recognize the conservative host receptors angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) for entry, rendering the dual blockade of ACE2 and NRP1 an advantageous pan-inhibition strategy. Here, we identified a highly potent dual-targeting peptide AP-1 using structure-based virtual screening protocol. AP-1 had nanoscale binding affinities for ACE2 (Kd = 6.1 ± 0.2 nM) and NRP1 (Kd = 13.4 ± 1.2 nM) and approximately 102- and 8-fold stronger than positive inhibitors S471-503 and NMTP-5, respectively. Further evidence in pseudovirus cell infection and cytotoxicity assays demonstrated that AP-1 exhibited remarkable entry inhibition of variants of concern (VOCs) of SARS-CoV-2 without impairing host cell viability. Together, our findings suggest that AP-1 with dual-targeting ACE2/NRP1 efficacy could be a promising broad-spectrum agent for treating SARS-CoV-2 emerging VOCs.
Collapse
Affiliation(s)
- Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Su Jiang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Lu Xue
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yuting Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Han Jing
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Jindong Li
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yan Zhang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
119
|
Rasheed N, Khan J, Yusuf A, Khan AS, Mustajab A, Majeed R, Hashmi AA. AstraZeneca COVID-19 Vaccine and Diabetes Mellitus: A Prospective Clinical Study Regarding Vaccine Side Effects. Cureus 2024; 16:e51583. [PMID: 38313879 PMCID: PMC10836246 DOI: 10.7759/cureus.51583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a major public health problem worldwide, and vaccination is currently the most effective way to control its spread and reduce its severity. Diabetes mellitus (DM) is a prevalent chronic disease that poses a significant health risk and is a frequent comorbidity in COVID-19 patients. Therefore, this study aimed to assess the frequency of local and systemic side effects of the AstraZeneca vaccine among diabetic and non-diabetic participants. Methodology This multicenter study was designed as a cross-sectional prospective study and was conducted in Pakistan using a non-probability consecutive sampling method. The study duration was eight months from August 1, 2022, to March 31, 2023. A total of 700 participants who received both (first and second) doses of the AstraZeneca immunization were included in the study. An independent t-test was applied to determine the association between the means and standard deviations of age, height, weight, and duration of DM and hypertension. The chi-square test was used to evaluate the association between local and systemic side effects. Results Among the 700 participants, 173 (49.4%) males and 177 (50.6%) females had diabetes, whereas 183 (52.3%) males and 167 (47.7%) females did not have DM; their mean ages were 46.95 ± 12.73 years (diabetics) and 38.10 ± 14.14 years (non-diabetics). The most frequent adverse effects of the AstraZeneca vaccine after the first dose were pain at the injection site, reported by 259 (74.0%) diabetics and 226 (64.6%) non-diabetic participants; however, after the second dose, injection site swelling in 170 (48.6%) diabetic and 163 (46.6%) non-diabetic recipients was the most commonly reported local side effects. Conclusions This study concluded that concurrent medical conditions such as DM had substantially more local and systemic side effects than those without the disease. After receiving both doses of the AstraZeneca vaccine, the most frequently reported local side effects in both diabetic and non-diabetic participants were pain, swelling, and burning at the injection site, followed by systemic side effects such as fever.
Collapse
Affiliation(s)
- Nabila Rasheed
- Department of Medicine, Basic Health Sciences, and Neuropharmacology, Sapienza University of Rome, Rome, ITA
| | - Javeria Khan
- Anatomy, Dow International Dental College, Karachi, PAK
| | - Anusha Yusuf
- Internal Medicine, Essa General Hospital, Karachi, PAK
| | | | - Arhum Mustajab
- Internal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derbyshire, GBR
| | - Rabika Majeed
- Family Medicine, Al-Samdah Health Center Duba, Ministry of Health, Duba, SAU
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
120
|
McKendry R, Lemm NM, Papargyris L, Chiu C. Human Challenge Studies with Coronaviruses Old and New. Curr Top Microbiol Immunol 2024; 445:69-108. [PMID: 35181805 DOI: 10.1007/82_2021_247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.
Collapse
Affiliation(s)
- Richard McKendry
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Loukas Papargyris
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
121
|
Abdul-Nabi ZN, Mohamed-Jawad NK, Fareed NY, Neamah NF, Shari FH. Adverse Effects Post COVID-19 Vaccination and its Association with Age, Gender and Comorbid Disease in Basrah City Southern of Iraq. Curr Drug Saf 2024; 19:248-254. [PMID: 37231751 DOI: 10.2174/1574886318666230525142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Vaccination against COVID-19 virus is the most valuable tool available for protection during the pandemic of coronavirus. The clinical manifestation post-vaccination is a barrier to vaccination for many people in Iraq and worldwide. OBJECTIVES The objective of this study is identifying various clinical manifestations occurring after receiving vaccines among individuals in Basrah Governorate. Moreover, we examine its association with respondents' demographics and the type of vaccine they received. METHODS A cross-section study was conducted in Basrah, southern Iraq. Research data were collected through an online questionnaire. The data were analyzed using both descriptive and analytic statistical tools using the SPSS program. RESULTS Most of the participants (86.68%) received the vaccine. The side effects were reported in 71.61% of vaccinated individuals. Fever and muscle pain were the two most experienced clinical manifestations, while lymph node enlargement and disturbances in taste and/or smell sensations were reported infrequently. Adverse effects were mostly reported with the Pfizer BioNTech vaccine receiver. Females and those in the younger age group also reported a significantly higher incidence of side effects. CONCLUSION Most adverse effects related to the COVID-19 vaccine were minor and could be tolerated without the need for hospital admission.
Collapse
Affiliation(s)
| | | | - Noor Yousif Fareed
- Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basra, Iraq
| |
Collapse
|
122
|
Ajmera H, Lakhawat SS, Malik N, Kumar A, Bhatti JS, Kumar V, Gogoi H, Jaswal SK, Chandel S, Sharma PK. Global Emergence of SARS-CoV2 Infection and Scientific Interventions to Contain its Spread. Curr Protein Pept Sci 2024; 25:307-325. [PMID: 38265408 DOI: 10.2174/0113892037274719231212044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.
Collapse
Affiliation(s)
- Himanshu Ajmera
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | | | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd milestone Faridabad, Haryana, India
| | - Sunil Kumar Jaswal
- Department of Biotechnology, Himachal Pradesh University Summer Hill, Shimla, India
| | - Sanjeev Chandel
- Department of Nursing, GHG College of Nursing Rajkot Road, Ludhiana, Punjab, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, 303002, India
| |
Collapse
|
123
|
Sheng WH, Hsieh SM, Chang SC. Achievements of COVID-19 vaccination programs: Taiwanese perspective. J Formos Med Assoc 2024; 123 Suppl 1:S70-S76. [PMID: 37142477 PMCID: PMC10133881 DOI: 10.1016/j.jfma.2023.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health crisis. The specific characteristics of aerosol transmission in the latent period and the contagiousness of SARS-CoV-2 lead to rapid spread of infection in the community. Vaccination is the most effective method for preventing infection and severe outcomes. As of December 1, 2022, 88% of the Taiwanese population had received at least two doses of COVID-19 vaccines. Heterologous vaccination with ChAdOx1-mRNA-based or ChAdOx1-protein-based vaccines has been found to elicit higher immunogenicity than homologous vaccination with ChAdOx1-ChAdOx1 vaccines. A longitudinal cohort study revealed that 8-12-week intervals between the two heterologous vaccine doses of the primary series led to good immunogenicity and that the vaccines were safe. A third booster dose of mRNA vaccine is being encouraged to evoke effective immune responses against variants of concern. A novel domestic recombinant protein subunit vaccine (MVC-COV1901) was manufactured and authorized for emergency use in Taiwan. It has shown a good safety profile, with promising neutralizing antibody titers against SARS-CoV-2. Given the global pandemic due to emerging novel variants of SARS-CoV-2, booster COVID-19 vaccines and appropriate intervals between booster doses need to be investigated.
Collapse
Affiliation(s)
- Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
124
|
Pham TX, Huynh TTX, Choi J, Lee JB, Park SC, Kim B, Lim YS, Hwang SB. SARS-CoV-2 exploits cellular RAD51 to promote viral propagation: implication of RAD51 inhibitor as a potential drug candidate against COVID-19. J Virol 2023; 97:e0173723. [PMID: 38051260 PMCID: PMC10734463 DOI: 10.1128/jvi.01737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Viruses are constantly evolving to promote propagation in the host. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes host RAD51 for replication. Silencing of RAD51 impaired SARS-CoV-2 propagation. Viral RNA colocalized with RAD51 in the cytoplasm of SARS-CoV-2-infected cells, suggesting that both viral RNA and RAD51 may form a replication complex. We, therefore, evaluated RAD51 inhibitors as possible therapeutic agents against SARS-CoV-2. Indeed, RAD51 inhibitors exerted antiviral activities against not only Wuhan but also variants of SARS-CoV-2. Molecular docking model shows that RAD51 inhibitors impede SARS-CoV-2 propagation by interfering with dimerization of RAD51. These data suggest that RAD51 may represent a novel host-based drug target for coronavirus disease 2019 treatment.
Collapse
Affiliation(s)
- Thuy X. Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Trang T. X. Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women’s University, Seoul, South Korea
| | - Jae-Bong Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Seok-Chan Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea
| |
Collapse
|
125
|
Zayou L, Prakash S, Dhanushkodi NR, Quadiri A, Ibraim IC, Singer M, Salem A, Shaik AM, Suzer B, Chilukuri A, Tran J, Nguyen PC, Sun M, Hormi-Carver KK, Belmouden A, Vahed H, Gil D, Ulmer JB, BenMohamed L. A multi-epitope/CXCL11 prime/pull coronavirus mucosal vaccine boosts the frequency and the function of lung-resident memory CD4 + and CD8 + T cells and enhanced protection against COVID-19-like symptoms and death caused by SARS-CoV-2 infection. J Virol 2023; 97:e0109623. [PMID: 38038432 PMCID: PMC10734477 DOI: 10.1128/jvi.01096-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Izabela Coimbra Ibraim
- High containment facility, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Pauline Chau Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
126
|
Muranishi K, Kinoshita M, Inoue K, Ohara J, Mihara T, Sudo K, Ishii KJ, Sawa T, Ishikura H. Antibody Response Following the Intranasal Administration of SARS-CoV-2 Spike Protein-CpG Oligonucleotide Vaccine. Vaccines (Basel) 2023; 12:5. [PMID: 38276664 PMCID: PMC10818492 DOI: 10.3390/vaccines12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The new coronavirus infection causes severe respiratory failure following respiratory tract infection with severe acute respiratory syndrome-related coronavirus (SARS-CoV-2). All currently approved vaccines are administered intramuscularly; however, intranasal administration enhances mucosal immunity, facilitating the production of a less invasive vaccine with fewer adverse events. Herein, a recombinant vaccine combining the SARS-CoV-2 spike protein receptor-binding domain (RBD), or S1 protein, with CpG-deoxyoligonucleotide (ODN) or aluminum hydroxide (alum) adjuvants was administered intranasally or subcutaneously to mice. Serum-specific IgG titers, IgA titers in the alveolar lavage fluid, and neutralizing antibody titers were analyzed. The nasal administration of RBD protein did not increase serum IgG or IgA titers in the alveolar lavage fluid. However, a significant increase in serum IgG was observed in the intranasal group administered with S1 protein with CpG-ODN and the subcutaneous group administered with S1 protein with alum. The IgA and IgG levels increased significantly in the alveolar lavage fluid only after the intranasal administration of the S1 protein with CpG-ODN. The neutralizing antibody titers in serum and bronchoalveolar lavage were significantly higher in the intranasal S1-CpG group than in every other group. Hence, the nasal administration of the S1 protein vaccine with CpG adjuvant might represent an effective vaccine candidate.
Collapse
Affiliation(s)
- Kentaro Muranishi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0133, Japan; (K.M.); (H.I.)
| | - Mao Kinoshita
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Keita Inoue
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Junya Ohara
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Toshihito Mihara
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Kazuki Sudo
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Teiji Sawa
- Department of Anesthesiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (J.O.); (T.M.); (K.S.); (T.S.)
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0133, Japan; (K.M.); (H.I.)
| |
Collapse
|
127
|
Ávila-Nieto C, Vergara-Alert J, Amengual-Rigo P, Ainsua-Enrich E, Brustolin M, Rodríguez de la Concepción ML, Pedreño-Lopez N, Rodon J, Urrea V, Pradenas E, Marfil S, Ballana E, Riveira-Muñoz E, Pérez M, Roca N, Tarrés-Freixas F, Carabelli J, Cantero G, Pons-Grífols A, Rovirosa C, Aguilar-Gurrieri C, Ortiz R, Barajas A, Trinité B, Lepore R, Muñoz-Basagoiti J, Perez-Zsolt D, Izquierdo-Useros N, Valencia A, Blanco J, Clotet B, Guallar V, Segalés J, Carrillo J. Novel Spike-stabilized trimers with improved production protect K18-hACE2 mice and golden Syrian hamsters from the highly pathogenic SARS-CoV-2 Beta variant. Front Immunol 2023; 14:1291972. [PMID: 38124756 PMCID: PMC10731958 DOI: 10.3389/fimmu.2023.1291972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pep Amengual-Rigo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Marco Brustolin
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - Jordi Rodon
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | | | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Mònica Pérez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Núria Roca
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | - Guillermo Cantero
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Rosalba Lepore
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Fundació Lluita contra les Infeccions, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Cerdanyola del Vallès, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
128
|
Okuno S, Higo S, Kondo T, Shiba M, Kameda S, Inoue H, Tabata T, Ogawa S, Morishita Y, Sun C, Ishino S, Honda T, Miyagawa S, Sakata Y. SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2023; 13:21397. [PMID: 38049441 PMCID: PMC10696029 DOI: 10.1038/s41598-023-48084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Although an increased risk of myocarditis has been observed after vaccination with mRNA encoding severe acute respiratory syndrome coronavirus 2 spike protein, its underlying mechanism has not been elucidated. This study investigated the direct effects of spike receptor-binding domain (S-RBD) on human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs). Immunostaining experiments using ACE2 wild-type (WT) and knockout (KO) iPSC-CMs treated with purified S-RBD demonstrated that S-RBD was bound to ACE2 and internalized into the subcellular space in the iPSC-CMs, depending on ACE2. Immunostaining combined with live cell imaging using a recombinant S-RBD fused to the superfolder GFP (S-RBD-sfGFP) demonstrated that S-RBD was bound to the cell membrane, co-localized with RAB5A, and then delivered from the endosomes to the lysosomes in iPSC-CMs. Quantitative PCR array analysis followed by single cell RNA sequence analysis clarified that S-RBD-sfGFP treatment significantly upregulated the NF-kβ pathway-related gene (CXCL1) in the differentiated non-cardiomyocytes, while upregulated interferon (IFN)-responsive genes (IFI6, ISG15, and IFITM3) in the matured cardiomyocytes. S-RBD-sfGFP treatment promoted protein ISGylation, an ISG15-mediated post-translational modification in ACE2-WT-iPSC-CMs, which was suppressed in ACE2-KO-iPSC-CMs. Our experimental study demonstrates that S-RBD is internalized through the endolysosomal pathway, which upregulates IFN-responsive genes and promotes ISGylation in the iPSC-CMs.
Collapse
Affiliation(s)
- Shota Okuno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Takumi Kondo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Satoshi Kameda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Inoue
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shou Ogawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yu Morishita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Congcong Sun
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Saki Ishino
- CoMIT Omics Center, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Honda
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-Ku, Okayama, 700-8558, Japan
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, 700-8558, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
129
|
Suzuki J, Endo S, Suzuki T, Sasahara T, Hatakeyama S, Morisawa Y, Hayakawa M, Yamakawa K, Endo A, Ogura T, Hirayama A, Yasunaga H, Tagami T. Effect of Inhaled Ciclesonide in Non-Critically Ill Hospitalized Patients With Coronavirus Disease 2019: A Multicenter Observational Study in Japan. Open Forum Infect Dis 2023; 10:ofad571. [PMID: 38075018 PMCID: PMC10709541 DOI: 10.1093/ofid/ofad571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic. Although systemic steroids play an important role in treating patients with severe COVID-19, the role of inhaled corticosteroids in non-critically ill, hospitalized patients with COVID-19 remains unclear. Methods We analyzed findings in non-critically ill, hospitalized patients with COVID-19 who were >18 years old and were admitted to 64 Japanese hospitals between January and September 2020. We performed propensity score matching analysis to evaluate 28-day and in-hospital mortality rates with or without inhaled ciclesonide within 2 days of admission. Sensitivity analyses using inverse probability weighting analysis, and generalized estimating equation method were also performed. Results Eligible patients (n = 3638) were divided into ciclesonide (n = 290) and control (n = 3, 393) groups. The 1-to-4 propensity score matching analysis included 271 ciclesonide users and 1084 nonusers. There were no significant differences between the 2 groups for 28-day (3.3% vs 2.3%; risk difference, 1.0% [95% confidence interval, -1.2 to 3.3]) or in-hospital (4.8% vs 2.6%; risk difference, 2.2 [-.5 to 4.9]) mortality rates. The sensitivity analysis showed similar outcomes. Conclusions From this multicenter observational study in Japan, inhaled ciclesonide did not decrease 28-day or in-hospital mortality rates in non-critically ill, hospitalized patients with COVID-19. Future large, multinational, randomized trials are required to confirm our results.
Collapse
Affiliation(s)
- Jun Suzuki
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
- Division of Infectious Diseases, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
- Department of Infection Prevention and Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
| | - Shiro Endo
- Division of Infectious Diseases, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
- Department of Infection Prevention and Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai City, Miyagi, Japan
- Division of Crisis Management Network for Infectious Diseases, Tohoku Medical and Pharmaceutical University, Sendai City, Miyagi, Japan
| | - Takayuki Suzuki
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Teppei Sasahara
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shuji Hatakeyama
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
- Division of General Internal Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Yuji Morisawa
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Mineji Hayakawa
- Department of Emergency Medicine, Hokkaido University Hospital, Kita-ku, Sapporo, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akira Endo
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Ogura
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Centre, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Tochigi, Japan
| | - Atsushi Hirayama
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Kanagawa, Japan
| |
Collapse
|
130
|
Le NH, Hillus D, Tober-Lau P, Sander LE. [Vaccinations as a key to pandemic management - Lessons learned from the COVID-19 pandemic]. Dtsch Med Wochenschr 2023; 148:1557-1563. [PMID: 38052219 PMCID: PMC10923633 DOI: 10.1055/a-2124-2366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Pandemics and epidemic outbreaks caused by emerging pathogens can usually only be curbed in the longterm through establishment of protective population-wide immunity. With the unprecedented rapid development and supply of highly effective vaccines against COVID-19, science and industry delivered the critical medical breakthrough for the successful management of the COVID-19 pandemic. By May 2023, WHO could end the public health emergency. Nevertheless, the pandemic and its consequences for medicine, science, and society continue to reverberate. This article reviews at the development and implementation of COVID-19 vaccines, focusing on the situation in Germany, and seeks to draw lessons from the past three years to improve our readiness to combat future outbreaks and pandemics more effectively.
Collapse
Affiliation(s)
| | | | | | - Leif Erik Sander
- Korrespondenzadresse Prof. Dr. med. Leif Erik Sander Klinik für Infektiologie und Intensivmedizin
Charité Universitätsmedizin BerlinCharitéplatz 110117 Berlin
| |
Collapse
|
131
|
Franco A, Song J, Chambers C, Sette A, Grifoni A. SARS-CoV-2 spike-specific regulatory T cells (Treg) expand and develop memory in vaccine recipients suggesting a role for immune regulation in preventing severe symptoms in COVID-19. Autoimmunity 2023; 56:2259133. [PMID: 37724524 DOI: 10.1080/08916934.2023.2259133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
We enrolled healthy subjects that received 2 to 4 injections of mRNA-based vaccination to prevent COVID-19 months to a year from the last vaccine boost, and we found numerous SARS-CoV-2 spike-specific regulatory T cell (Treg) that developed T cell memory as effector memory T cells (TEM) and central memory T cells (TCM). CD4+ CD25high Treg expressed the chemokine receptor CCR6 in a considerable percentage, suggesting T cell homing to the vascular endothelium, lung and gut epithelial cells and brain. Treg phenotype was different than peripherally-induced Treg (pTreg) that revert from pro-inflammatory T cells under repeated stimulatory conditions, suggesting that SARS-CoV-2 spike-specific Treg differentiated from naïve T cells in tissues where the SARS-CoV-2 spike proteins were synthetized. Twenty two of 22 subjects studied responded to vaccination developing a spike-specific CD4+ T helper (Th)1 response, and 20 of 22 developing a spike-specific CD8+ cytotoxic T cells (CTL) response. However, in vaccine recipients the expansion of spike-specific pro-inflammatory T cells was less significant than the expansion of spike-specific Treg. Effector (TEM) and central memory (TCM) Treg were numerous as early as after two vaccine doses, with no significant differences following additional vaccine boosts. In co-culture experiments under stimulatory conditions, Treg regulated naïve T cell differentiation toward a pro-inflammatory phenotype and suppressed interferon (IFN)γ production by SARS-CoV-2-specific CD4 + Th1 cells.
Collapse
Affiliation(s)
- Alessandra Franco
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jaeyoon Song
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Christina Chambers
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Autoimmunity and Inflammation, Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
132
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
133
|
Bolton KJ, McCaw JM, Dafilis MP, McVernon J, Heffernan JM. Seasonality as a driver of pH1N12009 influenza vaccination campaign impact. Epidemics 2023; 45:100730. [PMID: 38056164 DOI: 10.1016/j.epidem.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
Although the most recent respiratory virus pandemic was triggered by a Coronavirus, sustained and elevated prevalence of highly pathogenic avian influenza viruses able to infect mammalian hosts highlight the continued threat of pandemics of influenza A virus (IAV) to global health. Retrospective analysis of pandemic outcomes, including comparative investigation of intervention efficacy in different regions, provide important contributions to the evidence base for future pandemic planning. The swine-origin IAV pandemic of 2009 exhibited regional variation in onset, infection dynamics and annual infection attack rates (IARs). For example, the UK experienced three severe peaks of infection over two influenza seasons, whilst Australia experienced a single severe wave. We adopt a seasonally forced 2-subtype model for the transmission of pH1N12009 and seasonal H3N2 to examine the role vaccination campaigns may play in explaining differences in pandemic trajectories in temperate regions. Our model differentiates between the nature of vaccine- and infection-acquired immunity. In particular, we assume that immunity triggered by infection elicits heterologous cross-protection against viral shedding in addition to long-lasting neutralising antibody, whereas vaccination induces imperfect reduction in susceptibility. We employ an Approximate Bayesian Computation (ABC) framework to calibrate the model using data for pH1N12009 seroprevalence, relative subtype dominance, and annual IARs for Australia and the UK. Heterologous cross-protection substantially suppressed the pandemic IAR over the posterior, with the strength of protection against onward transmission inversely correlated with the initial reproduction number. We show that IAV pandemic timing relative to the usual seasonal influenza cycle influenced the size of the initial waves of pH1N12009 in temperate regions and the impact of vaccination campaigns.
Collapse
Affiliation(s)
- Kirsty J Bolton
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mathew P Dafilis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jodie McVernon
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Australia
| | - Jane M Heffernan
- Centre for Disease Modelling, Mathematics & Statistics, York University, Canada
| |
Collapse
|
134
|
Kim AW, Agarwal SC. From ancient pathogens to modern pandemics: Integrating evolutionary, ecological, and sociopolitical dynamics of infectious disease and pandemics through biological anthropology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:505-512. [PMID: 38006199 DOI: 10.1002/ajpa.24869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Andrew Wooyoung Kim
- Department of Anthropology, University of California, Berkeley, Berkeley, California, USA
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sabrina C Agarwal
- Department of Anthropology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
135
|
Elfayres G, Paswan RR, Sika L, Girard MP, Khalfi S, Letanneur C, Milette K, Singh A, Kobinger G, Berthoux L. Mammalian cells-based platforms for the generation of SARS-CoV-2 virus-like particles. J Virol Methods 2023; 322:114835. [PMID: 37871706 DOI: 10.1016/j.jviromet.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Though many COVID-19 vaccines have been developed, most of them are delivered via intramuscular injection and thus confer relatively weak mucosal immunity against the natural infection. Virus-Like Particles (VLPs) are self-assembled nanostructures composed of key viral structural proteins, that mimic the wild-type virus structure but are non-infectious and non-replicating due to the lack of viral genetic material. In this study, we efficiently generated SARS-CoV-2 VLPs by co-expressing the four SARS-CoV-2 structural proteins, specifically the membrane (M), small envelope (E), spike (S) and nucleocapsid (N) proteins. We show that these proteins are essential and sufficient for the efficient formation and release of SARS-CoV-2 VLPs. Moreover, we used lentiviral vectors to generate human cell lines that stably produce VLPs. Because VLPs can bind to the virus natural receptors, hence leading to entry into cells and viral antigen presentation, this platform could be used to develop novel vaccine candidates that are delivered intranasally.
Collapse
Affiliation(s)
- Ghada Elfayres
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Ricky Raj Paswan
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Laura Sika
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Marie-Pierre Girard
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Soumia Khalfi
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Claire Letanneur
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada; Department of Biochemistry, Chemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kéziah Milette
- Institute of Innovations in Eco-materials, Eco-products and Eco-energies, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amita Singh
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Gary Kobinger
- University Hospital Research Center and Department of Microbiology and Infectiology, Université Laval, Québec, Canada
| | - Lionel Berthoux
- Department of Medical Biology and FRQS SIDA/MI Network, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
136
|
Zhou B, Zhou R, Chan JFW, Zeng J, Zhang Q, Yuan S, Liu L, Robinot R, Shan S, Liu N, Ge J, Kwong HYH, Zhou D, Xu H, Chan CCS, Poon VKM, Chu H, Yue M, Kwan KY, Chan CY, Chan CCY, Chik KKH, Du Z, Au KK, Huang H, Man HO, Cao J, Li C, Wang Z, Zhou J, Song Y, Yeung ML, To KKW, Ho DD, Chakrabarti LA, Wang X, Zhang L, Yuen KY, Chen Z. SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters 1. Emerg Microbes Infect 2023; 12:2245921. [PMID: 37542391 PMCID: PMC10444022 DOI: 10.1080/22221751.2023.2245921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.
Collapse
Affiliation(s)
- Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Rémy Robinot
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Hugo Yat-Hei Kwong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Dongyan Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chung-Sing Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Yi Kwan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chun-Yin Chan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chun-Yiu Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Kenn Ka-Heng Chik
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Kit Au
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianli Cao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Youqiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Man-Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
137
|
Hyug Choi J, Sook Jun M, Yong Jeon J, Kim HS, Kyung Kim Y, Ho Jeon C, Hwan Choi S, Sun Kim D, Han MH, Won Oh J. Global lineage evolution pattern of sars-cov-2 in Africa, America, Europe, and Asia: A comparative analysis of variant clusters and their relevance across continents. J Transl Int Med 2023; 11:410-422. [PMID: 38130632 PMCID: PMC10732492 DOI: 10.2478/jtim-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective The objective of this study is to provide a comparative analysis of variant clusters and their relevance across Africa, America, Europe, and Asia, in order to understand the evolutionary patterns of the virus across different regions and to inform the development of targeted interventions and genomic surveillance eforts. Methods The study analyzed the global lineage evolution pattern of 74, 075 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from 32 countries across four continents, focusing on variant clusters and their relevance across regions. Variants were weighted according to their hierarchical level. The correlation between variants was visualized through Dimensionality reduction analysis and Pairwise Pearson's correlation. We presented a reconstructed phylogenetic tree based on correlation analysis and variant weights. Results The analysis revealed that each continent had distinct variant clusters and different evolutionary patterns. The Americas had two clustered variants before lineage divergence and a downstream confluence lineage, Europe had bifurcation into two global lineages with an early occurrence of certain cluster while Asia had a downstream confluence of two large lineages diverging by two distinct clusters. Based on the cluster patterns of shared variants of the SARS-CoV-2 virus, Africa demonstrated a relatively clear distinction among three distinct regions. Conclusions The study provides insights into the evolutionary patterns of SARS-CoV-2 and highlights the importance of international collaboration in tracking and responding to emerging variants. The study found that the global pandemic was driven by Omicron variants that evolved with significant differences between countries and regions, and with different patterns across continents.
Collapse
Affiliation(s)
- June Hyug Choi
- Department of Anatomy, BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mee Sook Jun
- Department of Internal Medicine, Chungbuk National University, Cheongju, Yonsei University-Industry Foundation, Seoul, Republic of Korea
| | | | - Hae-Suk Kim
- Theragen Bio Co., Ltd., Seongnam-si, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Jeon
- Department of Laboratory Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, BioMedical Research Institute, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Sun Kim
- Department of Anatomy, BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, BioMedical Research Institute, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Won Oh
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
138
|
Chen K, Zhang L, Fang Z, Li J, Li C, Song W, Huang Z, Chen R, Zhang Y, Li J. Analysis of the protective efficacy of approved COVID-19 vaccines against Omicron variants and the prospects for universal vaccines. Front Immunol 2023; 14:1294288. [PMID: 38090587 PMCID: PMC10711607 DOI: 10.3389/fimmu.2023.1294288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
By the end of 2022, different variants of Omicron had rapidly spread worldwide, causing a significant impact on the Coronavirus disease 2019 (COVID-19) pandemic situation. Compared with previous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these new variants of Omicron exhibited a noticeable degree of mutation. The currently developed platforms to design COVID-19 vaccines include inactivated vaccines, mRNA vaccines, DNA vaccines, recombinant protein vaccines, virus-like particle vaccines, and viral vector vaccines. Many of these platforms have obtained approval from the US Food and Drug Administration (FDA) or the WHO. However, the Omicron variants have spread in countries where vaccination has taken place; therefore, the number of cases has rapidly increased, causing concerns about the effectiveness of these vaccines. This article first discusses the epidemiological trends of the Omicron variant and reviews the latest research progress on available vaccines. Additionally, we discuss progress in the development progress and practical significance of universal vaccines. Next, we analyze the neutralizing antibody effectiveness of approved vaccines against different variants of Omicron, heterologous vaccination, and the effectiveness of multivalent vaccines in preclinical trials. We hope that this review will provide a theoretical basis for the design, development, production, and vaccination strategies of novel coronavirus vaccines, thus helping to end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wancheng Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
139
|
Vassiliev P, Gusev E, Komelkova M, Kochetkov A, Dobrynina M, Sarapultsev A. Computational Analysis of CD46 Protein Interaction with SARS-CoV-2 Structural Proteins: Elucidating a Putative Viral Entry Mechanism into Human Cells. Viruses 2023; 15:2297. [PMID: 38140538 PMCID: PMC10747966 DOI: 10.3390/v15122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
This study examines an unexplored aspect of SARS-CoV-2 entry into host cells, which is widely understood to occur via the viral spike (S) protein's interaction with human ACE2-associated proteins. While vaccines and inhibitors targeting this mechanism are in use, they may not offer complete protection against reinfection. Hence, we investigate putative receptors and their cofactors. Specifically, we propose CD46, a human membrane cofactor protein, as a potential putative receptor and explore its role in cellular invasion, acting possibly as a cofactor with other viral structural proteins. Employing computational techniques, we created full-size 3D models of human CD46 and four key SARS-CoV-2 structural proteins-EP, MP, NP, and SP. We further developed 3D models of CD46 complexes interacting with these proteins. The primary aim is to pinpoint the likely interaction domains between CD46 and these structural proteins to facilitate the identification of molecules that can block these interactions, thus offering a foundation for novel pharmacological treatments for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pavel Vassiliev
- Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Research Center for Innovative Medicines, Volgograd State Medical University, 39 Novorossiyskaya Street, Volgograd 400087, Russia;
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| | - Andrey Kochetkov
- Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Research Center for Innovative Medicines, Volgograd State Medical University, 39 Novorossiyskaya Street, Volgograd 400087, Russia;
| | - Maria Dobrynina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, Yekaterinburg 620049, Russia; (E.G.); (M.D.)
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, Chelyabinsk 454080, Russia;
| |
Collapse
|
140
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
141
|
Boggiano-Ayo T, Palacios-Oliva J, Lozada-Chang S, Relova-Hernandez E, Gomez-Perez J, Oliva G, Hernandez L, Bueno-Soler A, Montes de Oca D, Mora O, Machado-Santisteban R, Perez-Martinez D, Perez-Masson B, Cabrera Infante Y, Calzadilla-Rosado L, Ramirez Y, Aymed-Garcia J, Ruiz-Ramirez I, Romero Y, Gomez T, Espinosa LA, Gonzalez LJ, Cabrales A, Guirola O, de la Luz KR, Pi-Estopiñan F, Sanchez-Ramirez B, Garcia-Rivera D, Valdes-Balbin Y, Rojas G, Leon-Monzon K, Ojito-Magaz E, Hardy E. Development of a scalable single process for producing SARS-CoV-2 RBD monomer and dimer vaccine antigens. Front Bioeng Biotechnol 2023; 11:1287551. [PMID: 38050488 PMCID: PMC10693982 DOI: 10.3389/fbioe.2023.1287551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
We have developed a single process for producing two key COVID-19 vaccine antigens: SARS-CoV-2 receptor binding domain (RBD) monomer and dimer. These antigens are featured in various COVID-19 vaccine formats, including SOBERANA 01 and the licensed SOBERANA 02, and SOBERANA Plus. Our approach involves expressing RBD (319-541)-His6 in Chinese hamster ovary (CHO)-K1 cells, generating and characterizing oligoclones, and selecting the best RBD-producing clones. Critical parameters such as copper supplementation in the culture medium and cell viability influenced the yield of RBD dimer. The purification of RBD involved standard immobilized metal ion affinity chromatography (IMAC), ion exchange chromatography, and size exclusion chromatography. Our findings suggest that copper can improve IMAC performance. Efficient RBD production was achieved using small-scale bioreactor cell culture (2 L). The two RBD forms - monomeric and dimeric RBD - were also produced on a large scale (500 L). This study represents the first large-scale application of perfusion culture for the production of RBD antigens. We conducted a thorough analysis of the purified RBD antigens, which encompassed primary structure, protein integrity, N-glycosylation, size, purity, secondary and tertiary structures, isoform composition, hydrophobicity, and long-term stability. Additionally, we investigated RBD-ACE2 interactions, in vitro ACE2 recognition of RBD, and the immunogenicity of RBD antigens in mice. We have determined that both the monomeric and dimeric RBD antigens possess the necessary quality attributes for vaccine production. By enabling the customizable production of both RBD forms, this unified manufacturing process provides the required flexibility to adapt rapidly to the ever-changing demands of emerging SARS-CoV-2 variants and different COVID-19 vaccine platforms.
Collapse
Affiliation(s)
- Tammy Boggiano-Ayo
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | | | | | - Gonzalo Oliva
- Process Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Alexi Bueno-Soler
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Osvaldo Mora
- Process Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Dayana Perez-Martinez
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Beatriz Perez-Masson
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Yaima Ramirez
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Judey Aymed-Garcia
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Yamile Romero
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Gomez
- Quality Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Annia Cabrales
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Osmany Guirola
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | | | | | | | | | - Gertrudis Rojas
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Kalet Leon-Monzon
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Eugenio Hardy
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
142
|
Sheehan J, Ardizzone CM, Khanna M, Trauth AJ, Hagensee ME, Ramsay AJ. Dynamics of Serum-Neutralizing Antibody Responses in Vaccinees through Multiple Doses of the BNT162b2 Vaccine. Vaccines (Basel) 2023; 11:1720. [PMID: 38006052 PMCID: PMC10675463 DOI: 10.3390/vaccines11111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 mRNA vaccines are administered as effective prophylactic measures for reducing virus transmission rates and disease severity. To enhance the durability of post-vaccination immunity and combat SARS-CoV-2 variants, boosters have been administered to two-dose vaccinees. However, long-term humoral responses following booster vaccination are not well characterized. A 16-member cohort of healthy SARS-CoV-2 naïve participants were enrolled in this study during a three-dose BNT162b2 vaccine series. Serum samples were collected from vaccinees over 420 days and screened for antigen (Ag)-specific antibody titers, IgG subclass distribution, and neutralizing antibody (nAb) responses. Vaccine boosting restored peak Ag-specific titers with sustained α-RBD IgG and IgA antibody responses when measured at six months post-boost. RBD- and spike-specific IgG4 antibody levels were markedly elevated in three-dose but not two-dose immune sera. Although strong neutralization responses were detected in two- and three-dose vaccine sera, these rapidly decayed to pre-immune levels by four and six months, respectively. While boosters enhanced serum IgG Ab reactivity and nAb responses against variant strains, all variants tested showed resistance to two- and three-dose immune sera. Our data reflect the poor durability of vaccine-induced nAb responses which are a strong predictor of protection from symptomatic SARS-CoV-2 infection. The induction of IgG4-switched humoral responses may permit extended viral persistence via the downregulation of Fc-mediated effector functions.
Collapse
Affiliation(s)
- Jared Sheehan
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Mayank Khanna
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Amber J. Trauth
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael E. Hagensee
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
143
|
Dhungel B, Thapa Shrestha U, Adhikari S, Adhikari N, Bhattarai A, Pokharel S, Karkey A, Limmathurotsakul D, Ghimire P, Rijal KR, Cheah PY, Pell C, Adhikari B. Use of antimicrobials during the COVID-19 pandemic: A qualitative study among stakeholders in Nepal. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002166. [PMID: 37963156 PMCID: PMC10645294 DOI: 10.1371/journal.pgph.0002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
The COVID-19 pandemic was a major public health threat and the pressure to find curative therapies was tremendous. Particularly in the early critical phase of the pandemic, a lot of empirical treatments, including antimicrobials, were recommended. Drawing on interviews with patients, clinicians and drug dispensers, this article explores the use of antimicrobials for the management of COVID-19 in Nepal. A total of 30 stakeholders (10 clinicians, 10 dispensers and 10 COVID-19 patients) were identified purposively and were approached for an interview. Clinicians and dispensers in three tertiary hospitals in Kathmandu assisted in the recruitment of COVID-19 patients who were undergoing follow-up at an out-patient department. Interviews were audio recorded, translated and transcribed into English, and were analyzed thematically. The respondents report that over-the-counter (OTC) use of antibiotics was widespread during the COVID-19 pandemic in Nepal. This was mostly rooted in patients' attempts to mitigate the potential severity of respiratory illnesses, and the fear of the stigmatization and social isolation linked to being identified as a COVID-19 patient. Patients who visited drug shops and physicians reportedly requested specific medicines including antibiotics. Clinicians reported uncertainty when treating COVID-19 cases that added pressure to prescribe antimicrobials. Respondents from all stakeholder groups recognized the dangers of excessive use of antimicrobials, with some referring to the development of resistance. The COVID-19 pandemic added pressure to prescribe, dispense and overuse antimicrobials, accentuating the pre-existing OTC use of antimicrobials. Infectious disease outbreaks and epidemics warrant special caution regarding the use of antimicrobials and specific policy response.
Collapse
Affiliation(s)
- Binod Dhungel
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | | | - Sanjib Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Nabaraj Adhikari
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Alisha Bhattarai
- Manmohan Cardiothoracic Vascular and Transplant Center, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Sunil Pokharel
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abhilasha Karkey
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Direk Limmathurotsakul
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medical Research Unit, Faculty of tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakash Ghimire
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Phaik Yeong Cheah
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medical Research Unit, Faculty of tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christopher Pell
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Bipin Adhikari
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medical Research Unit, Faculty of tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
144
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
145
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
146
|
Abdolahi T, Maamouri G, Behmadi M, Mirzaeian S, Boskabadi H, Faramarzi R. Investigating the impact of Sinopharm COVID-19 vaccination on antibody response in pregnant women and their newborns. J Med Virol 2023; 95:e29231. [PMID: 37971780 DOI: 10.1002/jmv.29231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
This study aims to investigate the levels of receptor-binding domain (RBD), spike, and neutralizing antibodies in pregnant women who received the Sinopharm vaccine and their newborns. A cross-sectional study was conducted at a tertiary center, Mashhad, Iran. We included 88 pregnant women who had received at least two doses of the Sinopharm vaccine. Maternal and umbilical cord blood samples taken at delivery were analyzed for antibodies using ELISA tests. Antibody levels did not vary significantly between women with two or three vaccine doses. Only 1.1% of mothers had undetectable levels of RBD antibodies, but detectable antibodies were observed in all newborns. A significant linear correlation was found between the levels of neutralizing antibodies (r = 0.7, p < 0.001) and RBD antibodies (r = 0.833, p < 0.001) in mothers and their newborns, but not for Spike antibodies (r = 0.214, p = 0.045). In mothers, high titers of antispike and RBD antibodies were observed at the time of delivery. The high titers of RBD and antispike antibodies were found in cord blood, suggesting potential neonatal immunity. Detectable levels of antibodies were found in both groups, regardless of the timing of vaccination. The Sinopharm vaccine generates detectable levels of antibodies in pregnant women, which are efficiently transferred to their newborns. The number of vaccine doses (two or three) did not significantly impact the levels of detectable antibodies. This underscores Sinopharm's potential efficacy in protecting pregnant women and their infants from COVID-19.
Collapse
Affiliation(s)
- Tahoora Abdolahi
- Neonatal Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamali Maamouri
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Behmadi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Mirzaeian
- Department of obstetrics and gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Boskabadi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raheleh Faramarzi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
147
|
Schest S, Langer C, Stiegler Y, Karnuth B, Arends J, Stiegler H, Masetto T, Peter C, Grimmler M. Vaccine-induced SARS-CoV-2 antibody response: the comparability of S1-specific binding assays depends on epitope and isotype discrimination. Front Immunol 2023; 14:1257265. [PMID: 37965324 PMCID: PMC10641008 DOI: 10.3389/fimmu.2023.1257265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Background Quantification of the SARS-CoV-2-specific immune response by serological immunoassays is critical for the management of the COVID-19 pandemic. In particular, neutralizing antibody titers to the viral spike (S) protein have been proposed as a correlate of protection (CoP). The WHO established the First International Standard (WHO IS) for anti-SARS-CoV-2 immunoglobulin (Ig) (NIBSC 20/136) to harmonize binding assays with the same antigen specificity by assigning the same unitage in binding antibody units (BAU)/ml. Method In this study, we analyzed the S1-specific antibody response in a cohort of healthcare workers in Germany (n = 76) during a three-dose vaccination course over 8.5 months. Subjects received either heterologous or homologous prime-boost vaccination with ChAdOx1 nCoV-19 (AstraZeneca) and BNT162b2 (Pfizer-BioNTech) or three doses of BNT162b2. Antibodies were quantified using three anti-S1 binding assays (ELISA, ECLIA, and PETIA) harmonized to the WHO IS. Serum levels of neutralizing antibodies were determined using a surrogate virus neutralization test (sVNT). Binding assays were compared using Spearman's rank correlation and Passing-Bablok regression. Findings All assays showed good correlation and similar antibody kinetics correlating with neutralizing potential. However, the assays show large proportional differences in BAU/ml. ECLIA and PETIA, which detect total antibodies against the receptor- binding domain (RBD) within the S1 subunit, interact similarly with the convalescent plasma-derived WHO IS but differently with vaccine serum, indicating a high sensitivity to the IgG/IgM/IgA ratio. Conclusion All three binding assays allow monitoring of the antibody response in COVID-19-vaccinated individuals. However, the assay-specific differences hinder the definition of a common protective threshold in BAU/ml. Our results highlight the need for the thoughtful use of conversion factors and consideration of method-specific differences. To improve the management of future pandemics and harmonize total antibody assays, we should strive for reference material with a well-characterized Ig isotype composition.
Collapse
Affiliation(s)
- Silvia Schest
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
- Health University of Applied Sciences Tyrol, Innsbruck, Austria
| | - Claus Langer
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
| | - Yuriko Stiegler
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
| | - Bianca Karnuth
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
| | - Jan Arends
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
| | - Hugo Stiegler
- Medizinisches Versorgungszentrum für Labormedizin und Mikrobiologie Ruhr GmbH, Essen, Germany
| | - Thomas Masetto
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- DiaSys Diagnostic Systems GmbH, Holzheim, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Grimmler
- DiaSys Diagnostic Systems GmbH, Holzheim, Germany
- Institute for Biomolecular Research, Hochschule Fresenius gGmbH, University of Applied Sciences, Idstein, Germany
- DiaServe Laboratories GmbH, Iffeldorf, Germany
| |
Collapse
|
148
|
Carter C, Airas J, Gladden H, Miller BR, Parish CA. Exploring the disruption of SARS-CoV-2 RBD binding to hACE2. Front Chem 2023; 11:1276760. [PMID: 37954960 PMCID: PMC10635427 DOI: 10.3389/fchem.2023.1276760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The COVID-19 pandemic was declared due to the spread of the novel coronavirus, SARS-CoV-2. Viral infection is caused by the interaction between the SARS-CoV-2 receptor binding domain (RBD) and the human ACE2 receptor (hACE2). Previous computational studies have identified repurposed small molecules that target the RBD, but very few have screened drugs in the RBD-hACE2 interface. When studies focus solely on the binding affinity between the drug and the RBD, they ignore the effect of hACE2, resulting in an incomplete analysis. We screened ACE inhibitors and previously identified SARS-CoV-2 inhibitors for binding to the RBD-hACE2 interface, and then conducted 500 ns of unrestrained molecular dynamics (MD) simulations of fosinopril, fosinoprilat, lisinopril, emodin, diquafosol, and physcion bound to the interface to assess the binding characteristics of these ligands. Based on MM-GBSA analysis, all six ligands bind favorably in the interface and inhibit the RBD-hACE2 interaction. However, when we repeat our simulation by first binding the drug to the RBD before interacting with hACE2, we find that fosinopril, fosinoprilat, and lisinopril result in a strongly interacting trimeric complex (RBD-drug-hACE2). Hydrogen bonding and pairwise decomposition analyses further suggest that fosinopril is the best RBD inhibitor. However, when lisinopril is bound, it stabilizes the trimeric complex and, therefore, is not an ideal potential drug candidate. Overall, these results reveal important atomistic interactions critical to the binding of the RBD to hACE2 and highlight the significance of including all protein partners in the evaluation of a potential drug candidate.
Collapse
Affiliation(s)
- Camryn Carter
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Justin Airas
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Haley Gladden
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University, Kirksville, MO, United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| |
Collapse
|
149
|
Karl T, Schuster A, Stangassinger LM, Stiboller T, Cadamuro J, Oostingh GJ. Factors Affecting SARS-CoV-2 IgG Production after Vaccination and/or Disease: A Large-Scale Seroprevalence Study. Vaccines (Basel) 2023; 11:1615. [PMID: 37897017 PMCID: PMC10611123 DOI: 10.3390/vaccines11101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at identifying factors influencing SARS-CoV-2-specific IgG antibody levels after vaccination and/or infection. Between January 2022 and March 2023, 2000 adults (≥18 years, Salzburg, Austria) participated in this population-based seroprevalence study by providing 3 mL of blood to detect SARS-CoV-2-specific IgG antibodies using an anti-SARS-CoV-2 IgG quantitative assay and by completing a self-designed questionnaire including anthropometric factors, vaccination information, and medical history. For 77 of the participants, a time-course study up to 24 weeks post vaccination or quarantine end was performed. Convalescent-only subjects had the lowest median antibody titer (65.6 BAU/mL) compared to vaccinated and hybrid immunized subjects (p-value < 0.0001) The type of vaccine as well as vaccine combinations significantly influenced the levels of SARS-CoV-2 spike-protein-specific IgG, ranging from a median antibody level of 770.5 BAU/mL in subjects who were vaccinated only to 3020.0 BAU/mL in hybrid immunized subjects (p-value < 0.0001). Over time, a significant decline in the levels of neutralizing antibodies was found. Depending on the subpopulation analyzed, further significant influencing factors included sex assigned at birth, disease severity, chronic diseases, and medication. A hybrid immunization resulted in more robust immune responses. Nevertheless, there were multiple other factors impacting these responses. This knowledge should be included in future vaccination strategies and serve as a guide in the development of personalized medicine.
Collapse
Affiliation(s)
- Tanja Karl
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
- Research Program of Medical Sciences, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Schuster
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Lea Maria Stangassinger
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Tanja Stiboller
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Gertie Janneke Oostingh
- Department of Health Sciences, Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria; (A.S.); (L.M.S.); (T.S.); (G.J.O.)
| |
Collapse
|
150
|
Castro I, Van Tricht M, Bonaccorso N, Sciortino M, Garcia Burgos J, Costantino C, Gonzalez-Quevedo R. Stakeholders' Understanding of European Medicine Agency's COVID-19 Vaccine Information Materials in EU and Regional Contexts. Vaccines (Basel) 2023; 11:1616. [PMID: 37897018 PMCID: PMC10610863 DOI: 10.3390/vaccines11101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic posed challenges to communicating accurate information about vaccines because of the spread of misinformation. The European Medicines Agency (EMA) tried to reassure the public by communicating early on about the development and approval of COVID-19 vaccines. The EMA surveyed patients/consumers, healthcare professional organizations, and individual stakeholders, both at the EU level and in an Italian regional context. The objectives of the study were to see if the EMA's core information materials were informative and well-understood and which communication channels were preferred by the public. The main findings showed that individual patients/consumers generally prefer to obtain information about COVID-19 vaccines from the internet or mass media, while organizations and individual healthcare professionals prefer to obtain information from national and international health authorities. Both at EU and local levels, participants had a good understanding of the key messages from regulators and found the materials useful and relevant. However, some improvements were recommended to the visual, text, and dissemination formats, including publishing more information on safety and using a more public-friendly language. Also, it was recommended to maintain the EMA's approach of using media, stakeholder engagement, and web-based formats to communicate about COVID-19 vaccines. In conclusion, user-testing of proactive communication materials aimed to prebunk misinformation during a public health crisis helps to ensure that users understand the development and safety of novel vaccine technologies. This information can then be used as a basis for further evidence-based communication activities by regulators and public health bodies in an emergency context.
Collapse
Affiliation(s)
- Indiana Castro
- Public and Stakeholder Engagement Department, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, The Netherlands
| | - Marie Van Tricht
- Public and Stakeholder Engagement Department, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, The Netherlands
| | - Nicole Bonaccorso
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.S.); (C.C.)
| | - Martina Sciortino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.S.); (C.C.)
| | - Juan Garcia Burgos
- Public and Stakeholder Engagement Department, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, The Netherlands
| | - Claudio Costantino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (M.S.); (C.C.)
| | - Rosa Gonzalez-Quevedo
- Public and Stakeholder Engagement Department, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS Amsterdam, The Netherlands
| |
Collapse
|