101
|
Griffith AL, Zheng F, McGee AV, Miller NW, Szegletes ZM, Reint G, Gademann F, Nwolah I, Hegde M, Liu YV, Goodale A, Doench JG. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. CELL GENOMICS 2023; 3:100387. [PMID: 37719144 PMCID: PMC10504673 DOI: 10.1016/j.xgen.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
Cas12a CRISPR technology, unlike Cas9, allows for facile multiplexing of guide RNAs from a single transcript, simplifying combinatorial perturbations. While Cas12a has been implemented for multiplexed knockout genetic screens, it has yet to be optimized for CRISPR activation (CRISPRa) screens in human cells. Here, we develop a new Cas12a-based transactivation domain (TAD) recruitment system using the ALFA nanobody and demonstrate simultaneous activation of up to four genes. We screen a genome-wide library to identify modulators of growth and MEK inhibition, and we compare these results with those obtained with open reading frame (ORF) overexpression and Cas9-based CRISPRa. We find that the activity of multiplexed arrays is largely predictable from the best-performing guide and provide criteria for selecting active guides. We anticipate that these results will greatly accelerate the exploration of gene function and combinatorial phenotypes at scale.
Collapse
Affiliation(s)
- Audrey L. Griffith
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Fengyi Zheng
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Abby V. McGee
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Nathan W. Miller
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Zsofia M. Szegletes
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Ganna Reint
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Fabian Gademann
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Ifunanya Nwolah
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Yanjing V. Liu
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Amy Goodale
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| |
Collapse
|
102
|
da Silva JF, Tou CJ, King EM, Eller ML, Ma L, Rufino-Ramos D, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557440. [PMID: 37745481 PMCID: PMC10515857 DOI: 10.1101/2023.09.12.557440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the "click"-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether "click DNA" (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Connor J. Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily M. King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, 02115, USA
| | - Madeline L. Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
103
|
Liu Y, Ge H, Marchisio MA. Hybrid Boolean gates show that Cas12c controls transcription activation effectively in the yeast S. cerevisiae. Front Bioeng Biotechnol 2023; 11:1267174. [PMID: 37771576 PMCID: PMC10523329 DOI: 10.3389/fbioe.2023.1267174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Among CRISPR-Cas systems, type V CRISPR-Cas12c is of significant interest because Cas12c recognizes a very simple PAM (TN) and has the ability to silence gene expression without cleaving the DNA. We studied how new transcription factors for the yeast Saccharomyces cerevisiae can be built on Cas12c. We found that, upon fusion to a strong activation domain, Cas12c is an efficient activator. Its functionality was proved as a component of hybrid Boolean gates, i.e., logic circuits that mix transcriptional and translational control (the latter reached via tetracycline-responsive riboswitches). Moreover, Cas12c activity can be strongly inhibited by the anti-CRISPR AcrVA1 protein. Thus, Cas12c has the potential to be a new tool to control the activation of gene expression within yeast synthetic gene circuits.
Collapse
|
104
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination. Nucleic Acids Res 2023; 51:8730-8743. [PMID: 37522352 PMCID: PMC10484686 DOI: 10.1093/nar/gkad636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The finding sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
Affiliation(s)
- Jaideep Singh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin G Liu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aleique Allen
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Jiang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
105
|
Su J, Sun C, Du J, Xing X, Wang F, Dong H. RNA-Cleaving DNAzyme-Based Amplification Strategies for Biosensing and Therapy. Adv Healthc Mater 2023; 12:e2300367. [PMID: 37084038 DOI: 10.1002/adhm.202300367] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Since their first discovery in 1994, DNAzymes have been extensively applied in biosensing and therapy that act as recognition elements and signal generators with the outstanding properties of good stability, simple synthesis, and high sensitivity. One subset, RNA-cleaving DNAzymes, is widely employed for diverse applications, including as reporters capable of transmitting detectable signals. In this review, the recent advances of RNA-cleaving DNAzyme-based amplification strategies in scaled-up biosensing are focused, the application in diagnosis and disease treatment are also discussed. Two major types of RNA-cleaving DNAzyme-based amplification strategies are highlighted, namely direct response amplification strategies and combinational response amplification strategies. The direct response amplification strategies refer to those based on novel designed single-stranded DNAzyme, and the combinational response amplification strategies mainly include two-part assembled DNAzyme, cascade reactions, CHA/HCR/RCA, DNA walker, CRISPR-Cas12a and aptamer. Finally, the current status of DNAzymes, the challenges, and the prospects of DNAzyme-based biosensors are presented.
Collapse
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fang Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
106
|
Wang Y, Lifshitz L, Silverstein NJ, Mintzer E, Luk K, StLouis P, Brehm MA, Wolfe SA, Deeks SG, Luban J. Transcriptional and chromatin profiling of human blood innate lymphoid cell subsets sheds light on HIV-1 pathogenesis. EMBO J 2023; 42:e114153. [PMID: 37382276 PMCID: PMC10425848 DOI: 10.15252/embj.2023114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.
Collapse
Affiliation(s)
- Yetao Wang
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lawrence Lifshitz
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Noah J Silverstein
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Pamela StLouis
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael A Brehm
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Steven G Deeks
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeremy Luban
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Ragon Institute of MGH, MIT, and HarvardCambridgeMAUSA
- Massachusetts Consortium on Pathogen ReadinessBostonMAUSA
| |
Collapse
|
107
|
Sinan S, Appleby NM, Russell R. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550589. [PMID: 37546762 PMCID: PMC10402064 DOI: 10.1101/2023.07.25.550589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (Kd = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the affinities of both the precursor and mature forms of the crRNA, while deletion of an upstream sequence had no significant effect on affinity of the pre-crRNA. After processing, the mature crRNA remains very tightly bound to Cas12a, with a half-life of ~1 day and a Kd value of 60 pM. Addition of a 5'-phosphoryl group, which is normally lost during the processing reaction as the scissile phosphate, tightens binding of the mature crRNA by ~10-fold by accelerating binding and slowing dissociation. Using a direct competition assay, we found that pre-crRNA binding specificity is robust to other changes in RNA sequence, including tested changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. Together our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in some genome editing applications.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Nathan M. Appleby
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin TX 78712
| |
Collapse
|
108
|
Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, Salihi A, Baniahmad A, Ghafouri-Fard S, Rahman M, Glassy MC, Branicki W, Taheri M. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res 2023; 10:32. [PMID: 37460924 PMCID: PMC10351202 DOI: 10.1186/s40779-023-00468-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region 44001 Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region 44001 Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001 Iraq
| | - Fattma Abodi Ali
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001 Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001 Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, 44001 Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 22100 Malmö, Sweden
| | - Mark C. Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, San Diego, CA 94720 USA
| | - Wojciech Branicki
- Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 374-37515 Iran
| |
Collapse
|
109
|
Kiss MG, Mindur JE, Yates AG, Lee D, Fullard JF, Anzai A, Poller WC, Christie KA, Iwamoto Y, Roudko V, Downey J, Chan CT, Huynh P, Janssen H, Ntranos A, Hoffmann JD, Jacob W, Goswami S, Singh S, Leppert D, Kuhle J, Kim-Schulze S, Nahrendorf M, Kleinstiver BP, Probert F, Roussos P, Swirski FK, McAlpine CS. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity 2023; 56:1502-1514.e8. [PMID: 37160117 PMCID: PMC10524830 DOI: 10.1016/j.immuni.2023.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abi G Yates
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Anzai
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfram C Poller
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher T Chan
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henrike Janssen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan D Hoffmann
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukanya Goswami
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumnima Singh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Leppert
- Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Fay Probert
- Department of Pharmacology and Department Chemistry, University of Oxford, Oxford, UK
| | - Panos Roussos
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, New York, NY, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
110
|
Lue NZ, Liau BB. Base editor screens for in situ mutational scanning at scale. Mol Cell 2023; 83:2167-2187. [PMID: 37390819 PMCID: PMC10330937 DOI: 10.1016/j.molcel.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
A fundamental challenge in biology is understanding the molecular details of protein function. How mutations alter protein activity, regulation, and response to drugs is of critical importance to human health. Recent years have seen the emergence of pooled base editor screens for in situ mutational scanning: the interrogation of protein sequence-function relationships by directly perturbing endogenous proteins in live cells. These studies have revealed the effects of disease-associated mutations, discovered novel drug resistance mechanisms, and generated biochemical insights into protein function. Here, we discuss how this "base editor scanning" approach has been applied to diverse biological questions, compare it with alternative techniques, and describe the emerging challenges that must be addressed to maximize its utility. Given its broad applicability toward profiling mutations across the proteome, base editor scanning promises to revolutionize the investigation of proteins in their native contexts.
Collapse
Affiliation(s)
- Nicholas Z Lue
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
111
|
Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Mol Ther 2023; 31:1920-1937. [PMID: 36964659 PMCID: PMC10362391 DOI: 10.1016/j.ymthe.2023.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
The CRISPR-Cas system is commonly known for its ability to cleave DNA in a programmable manner, which has democratized gene editing and facilitated recent breakthroughs in gene therapy. However, newer iterations of the technology using nuclease-disabled Cas enzymes have spurred a variety of different types of genetic engineering platforms such as transcriptional modulation using the CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems. This review introduces the creation of these programmable transcriptional modulators, various methods of delivery utilized for these systems, and recent technological developments. CRISPRa and CRISPRi have also been implemented in genetic screens for interrogating gene function and discovering genes involved in various biological pathways. We describe recent compelling examples of how these tools have become powerful means to unravel genetic networks and uncovering important information about devastating diseases. Finally, we provide an overview of preclinical studies in which transcriptional modulation has been used therapeutically, and we discuss potential future directions of these novel modalities.
Collapse
Affiliation(s)
- Louise Bendixen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
112
|
Xu J, Liu Z, Zhang Z, Wu T. Unlocking the Full Potential of Cas12a: Exploring the Effects of Substrate and Reaction Conditions on Trans-Cleavage Activity. Anal Chem 2023. [PMID: 37392174 DOI: 10.1021/acs.analchem.3c01307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The trans-cleavage activity of Cas12a has been widely used with various applications. Here, we report that the trans-cleavage activity of Cas12a can be significantly affected by the fluorescent probe length and reaction buffer. The optimal probe length for Cas12a is found to be 15 nucleotides, and the optimal buffer is NEBuffer 4. Compared to the popularly used reaction conditions, the activity of Cas12a is improved by about 50-fold. In addition, the detection limit of Cas12a for DNA targets has been reduced by nearly three orders of magnitude. Our method provides a powerful tool for Cas12a trans-cleavage activity applications.
Collapse
Affiliation(s)
- Jie Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhujun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
113
|
Zhang H, Kong X, Xue M, Hu J, Wang Z, Wei Y, Wang H, Zhou J, Zhang W, Xu M, Shen X, Yin F, Ai Z, Huang G, Xia J, Song X, Li H, Yuan Y, Li J, Zhong N, Zhang M, Zhou Y, Yang H. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell 2023; 14:538-543. [PMID: 37378659 PMCID: PMC10305737 DOI: 10.1093/procel/pwac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 08/22/2024] Open
Affiliation(s)
- Hainan Zhang
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | | | - Mingxing Xue
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Jing Hu
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Zikang Wang
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Yinghui Wei
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Haoqiang Wang
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Jingxing Zhou
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Weihong Zhang
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Mengqiu Xu
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Xiaowen Shen
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Fengcai Yin
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Zhiyuan Ai
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | | | - Junhui Xia
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Xueqiong Song
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Hengbin Li
- HuiGene Therapeutics Co., Ltd., Shanghai 200120, China
| | - Yuan Yuan
- HuiGene Therapeutics Co., Ltd., Shanghai 200120, China
| | - Jinhui Li
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Na Zhong
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Meiling Zhang
- Center for Reproductive Medicine, International Peace Maternity and Child Health Hospital, Innovative Research Team of High-level Local Universities in Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yingsi Zhou
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
| | - Hui Yang
- HuiEdit Therapeutics Co., Ltd., Shanghai 200120, China
- HuiGene Therapeutics Co., Ltd., Shanghai 200120, China
| |
Collapse
|
114
|
Zhang X, Wang X, Lv J, Huang H, Wang J, Zhuo M, Tan Z, Huang G, Liu J, Liu Y, Li M, Lin Q, Li L, Ma S, Huang T, Lin Y, Zhao X, Rong Z. Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing. Genome Biol 2023; 24:145. [PMID: 37353840 PMCID: PMC10288759 DOI: 10.1186/s13059-023-02992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND The CRISPR/Cas12a and CRISPR/Cas13d systems are widely used for fundamental research and hold great potential for future clinical applications. However, the short half-life of guide RNAs (gRNAs), particularly free gRNAs without Cas nuclease binding, limits their editing efficiency and durability. RESULTS Here, we engineer circular free gRNAs (cgRNAs) to increase their stability, and thus availability for Cas12a and Cas13d processing and loading, to boost editing. cgRNAs increases the efficiency of Cas12a-based transcription activators and genomic DNA cleavage by approximately 2.1- to 40.2-fold for single gene editing and 1.7- to 2.1-fold for multiplexed gene editing than their linear counterparts, without compromising specificity, across multiple sites and cell lines. Similarly, the RNA interference efficiency of Cas13d is increased by around 1.8-fold. In in vivo mouse liver, cgRNAs are more potent in activating gene expression and cleaving genomic DNA. CONCLUSIONS CgRNAs enable more efficient programmable DNA and RNA editing for Cas12a and Cas13d with broad applicability for fundamental research and gene therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Ma Zhuo
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Qixiao Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
115
|
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
116
|
Li K, Qin LY, Zhang ZX, Yan CX, Gu Y, Sun XM, Huang H. Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synth Biol 2023; 12:1586-1598. [PMID: 37224027 DOI: 10.1021/acssynbio.3c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Base editors (BE) based on CRISPR systems are practical gene-editing tools which continue to drive frontier advances of life sciences. BEs are able to efficiently induce point mutations at target sites without double-stranded DNA cleavage. Hence, they are widely employed in the fields of microbial genome engineering. As applications of BEs continue to expand, the demands for base-editing efficiency, fidelity, and versatility are also on the rise. In recent years, a series of optimization strategies for BEs have been developed. By engineering the core components of BEs or adopting different assembly methods, the performance of BEs has been well optimized. Moreover, series of newly established BEs have significantly expanded the base-editing toolsets. In this Review, we will summarize the current efforts for BE optimization, introduce several novel BEs with versatility, and look forward to the broadened applications for industrial microorganisms.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Ling-Yun Qin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
117
|
Ma S, Liao K, Li M, Wang X, Lv J, Zhang X, Huang H, Li L, Huang T, Guo X, Lin Y, Rong Z. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res 2023; 51:5271-5284. [PMID: 37094074 PMCID: PMC10250237 DOI: 10.1093/nar/gkad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) plays a critical role in regulating gene transcription via the formation of transcriptional condensates. However, LLPS has not been reported to be engineered as a tool to activate endogenous gene expression in mammalian cells or in vivo. Here, we developed a droplet-forming CRISPR (clustered regularly interspaced short palindromic repeats) gene activation system (DropCRISPRa) to activate transcription with high efficiency via combining the CRISPR-SunTag system with FETIDR-AD fusion proteins, which contain an N-terminal intrinsically disordered region (IDR) of a FET protein (FUS or TAF15) and a transcription activation domain (AD, VP64/P65/VPR). In this system, the FETIDR-AD fusion protein formed phase separation condensates at the target sites, which could recruit endogenous BRD4 and RNA polymerase II with an S2 phosphorylated C-terminal domain (CTD) to enhance transcription elongation. IDR-FUS9Y>S and IDR-FUSG156E, two mutants with deficient and aberrant phase separation respectively, confirmed that appropriate phase separation was required for efficient gene activation. Further, the DropCRISPRa system was compatible with a broad set of CRISPR-associated (Cas) proteins and ADs, including dLbCas12a, dAsCas12a, dSpCas9 and the miniature dUnCas12f1, and VP64, P65 and VPR. Finally, the DropCRISPRa system could activate target genes in mice. Therefore, this study provides a robust tool to activate gene expression for foundational research and potential therapeutics.
Collapse
Affiliation(s)
- Shufeng Ma
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People's Hospital), Dongguan 523058, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaohua Guo
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
118
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
119
|
Han D, Xiao Q, Wang Y, Zhang H, Dong X, Li G, Kong X, Wang S, Song J, Zhang W, Zhou J, Bi L, Yuan Y, Shi L, Zhong N, Yang H, Zhou Y. Development of miniature base editors using engineered IscB nickase. Nat Methods 2023:10.1038/s41592-023-01898-9. [PMID: 37231266 DOI: 10.1038/s41592-023-01898-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
As a miniature RNA-guided endonuclease, IscB is presumed to be the ancestor of Cas9 and to share similar functions. IscB is less than half the size of Cas9 and thus more suitable for in vivo delivery. However, the poor editing efficiency of IscB in eukaryotic cells limits its in vivo applications. Here we describe the engineering of OgeuIscB and its corresponding ωRNA to develop an IscB system that is highly efficient in mammalian systems, named enIscB. By fusing enIscB with T5 exonuclease (T5E), we found enIscB-T5E exhibited comparable targeting efficiency to SpG Cas9 while showing reduced chromosome translocation effects in human cells. Furthermore, by fusing cytosine or adenosine deaminase with enIscB nickase, we generated miniature IscB-derived base editors (miBEs), exhibiting robust editing efficiency (up to 92%) to induce DNA base conversions. Overall, our work establishes enIscB-T5E and miBEs as versatile tools for genome editing.
Collapse
Affiliation(s)
- Dingyi Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Yifan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hainan Zhang
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Xue Dong
- HUIDAGENE Therapeutics Inc., Shanghai, China
| | - Guoling Li
- HUIDAGENE Therapeutics Inc., Shanghai, China
| | - Xiangfeng Kong
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Shihao Wang
- HUIDAGENE Therapeutics Inc., Shanghai, China
| | - Jinhui Song
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Weihong Zhang
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Jingxing Zhou
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Lanting Bi
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Yuan Yuan
- HUIDAGENE Therapeutics Inc., Shanghai, China
| | - Linyu Shi
- HUIDAGENE Therapeutics Inc., Shanghai, China
| | - Na Zhong
- HUIDAGENE Therapeutics Inc., Shanghai, China
- HUIEDIT Therapeutics Inc., Shanghai, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- HUIDAGENE Therapeutics Inc., Shanghai, China.
- HUIEDIT Therapeutics Inc., Shanghai, China.
| | - Yingsi Zhou
- HUIDAGENE Therapeutics Inc., Shanghai, China.
- HUIEDIT Therapeutics Inc., Shanghai, China.
| |
Collapse
|
120
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
121
|
Li J, Liang Q, Zhou H, Zhou M, Huang H. Profiling the impact of the promoters on CRISPR-Cas12a system in human cells. Cell Mol Biol Lett 2023; 28:41. [PMID: 37198545 PMCID: PMC10190037 DOI: 10.1186/s11658-023-00454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
The plasmid vector platform is the most commonly used vector for the expression of the versatile CRISPR-Cas technique and the promoter is a crucial element for the expression vector, thus profiling the impact of the promoters on CRISPR editors provides the basic information for the gene-editing toolkits and can be a guideline for its design. Herein, we made a parallel comparison among four commonly used promoters (CAG, ~ 1700 bp; EF1a core, ~ 210 bp; CMV, ~ 500 bp; and PGK, ~ 500 bp) in CRISPR-Cas12a system in mammalian cells to explore the impact of promoters on this powerful tool. We found that without badly damaging targeting specificity, the CAG promoter-driving Cas12a editor exhibited the most active (efficiency takes as 100%, specificity index = ~ 75%) in genomic cleavage, multiplex editing, transcriptional activation, and base editing, followed by promoter CMV (efficiency = 70 ~ 90% (vs CAG), specificity index = ~ 78%), and then EF1a core and PGK (both efficiency = 40-60%, vs CAG) but with higher specificity (specificity index = ~ 84% and ~ 82%, respectively). Therefore, CAG is recommended in the CRISPR-Cas12a system for the applications that need a robust editing activity but without size limitation, CMV mostly can be an alternative for CAG when requiring a smaller space, EF1a is similar to PGK with relatively high specificity, but has a smaller size, thus is more suitable for in vivo therapeutic applications. The data outlined the properties of the widely used promoters in the CRISPR-Cas12a system, which can be a guide for its applications and can be a useful resource for the gene-editing field.
Collapse
Affiliation(s)
- Jinhe Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Qinchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
- Guangzhou Key Laboratory of Neuropathic Pain Mechanism at Spinal Cord Level, Guangzhou, 510630 China
| | - HuaPing Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Ming Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Hongxin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| |
Collapse
|
122
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA Unwinding Equilibrium Serves as a Checkpoint for CRISPR-Cas12a Target Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541046. [PMID: 37292754 PMCID: PMC10245671 DOI: 10.1101/2023.05.16.541046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The data sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
|
123
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
124
|
Cetin R, Wegner M, Luwisch L, Saud S, Achmedov T, Süsser S, Vera-Guapi A, Müller K, Matthess Y, Quandt E, Schaubeck S, Beisel CL, Kaulich M. Optimized metrics for orthogonal combinatorial CRISPR screens. Sci Rep 2023; 13:7405. [PMID: 37149686 PMCID: PMC10164157 DOI: 10.1038/s41598-023-34597-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
CRISPR-based gene perturbation enables unbiased investigations of single and combinatorial genotype-to-phenotype associations. In light of efforts to map combinatorial gene dependencies at scale, choosing an efficient and robust CRISPR-associated (Cas) nuclease is of utmost importance. Even though SpCas9 and AsCas12a are widely used for single, combinatorial, and orthogonal screenings, side-by-side comparisons remain sparse. Here, we systematically compared combinatorial SpCas9, AsCas12a, and CHyMErA in hTERT-immortalized retinal pigment epithelial cells and extracted performance-critical parameters for combinatorial and orthogonal CRISPR screens. Our analyses identified SpCas9 to be superior to enhanced and optimized AsCas12a, with CHyMErA being largely inactive in the tested conditions. Since AsCas12a contains RNA processing activity, we used arrayed dual-gRNAs to improve AsCas12a and CHyMErA applications. While this negatively influenced the effect size range of combinatorial AsCas12a applications, it enhanced the performance of CHyMErA. This improved performance, however, was limited to AsCas12a dual-gRNAs, as SpCas9 gRNAs remained largely inactive. To avoid the use of hybrid gRNAs for orthogonal applications, we engineered the multiplex SpCas9-enAsCas12a approach (multiSPAS) that avoids RNA processing for efficient orthogonal gene editing.
Collapse
Affiliation(s)
- Ronay Cetin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Leah Luwisch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sarada Saud
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Tatjana Achmedov
- Helmholtz-Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080, Würzburg, Germany
| | - Sebastian Süsser
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Antonella Vera-Guapi
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Konstantin Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Yves Matthess
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eva Quandt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Barcelona, Spain
| | - Simone Schaubeck
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Chase L Beisel
- Helmholtz-Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, 60596, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
125
|
Qin H, Zhang W, Zhang S, Feng Y, Xu W, Qi J, Zhang Q, Xu C, Liu S, Zhang J, Lei Y, Liu W, Feng S, Wang J, Fu X, Xu Z, Li P, Yao K. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med 2023; 220:e20220776. [PMID: 36930174 PMCID: PMC10037108 DOI: 10.1084/jem.20220776] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy causing progressive and irreversible loss of retinal photoreceptors. Here, we developed a genome-editing tool characterized by the versatility of prime editors (PEs) and unconstrained PAM requirement of a SpCas9 variant (SpRY), referred to as PESpRY. The diseased retinas of Pde6b-associated RP mouse model were transduced via a dual AAV system packaging PESpRY for the in vivo genome editing through a non-NGG PAM (GTG). The progressing cell loss was reversed once the mutation was corrected, leading to substantial rescue of photoreceptors and production of functional PDE6β. The treated mice exhibited significant responses in electroretinogram and displayed good performance in both passive and active avoidance tests. Moreover, they presented an apparent improvement in visual stimuli-driven optomotor responses and efficiently completed visually guided water-maze tasks. Together, our study provides convincing evidence for the prevention of vision loss caused by RP-associated gene mutations via unconstrained in vivo prime editing in the degenerating retinas.
Collapse
Affiliation(s)
- Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Yuan Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Jia Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Yushuang Lei
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Wanqin Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Zifen Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Ping Li
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
126
|
Kalkan AK, Palaz F, Sofija S, Elmousa N, Ledezma Y, Cachat E, Rios-Solis L. Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 2023; 64:108115. [PMID: 36758652 DOI: 10.1016/j.biotechadv.2023.108115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Chinese hamster ovary (CHO) cells are among the most widely used mammalian cell lines in the biopharmaceutical industry. Therefore, it is not surprising that significant efforts have been made around the engineering of CHO cells using genetic engineering methods such as the CRISPR-Cas system. In this review, we summarize key recent studies that have used different CRISPR-Cas systems such as Cas9, Cas13 or dCas9 fused with effector domains to improve recombinant protein (r-protein) production in CHO cells. Here, every relevant stage of production was considered, underscoring the advantages and limitations of these systems, as well as discussing their bottlenecks and probable solutions. A special emphasis was given on how these systems could disrupt and/or regulate genes related to glycan composition, which has relevant effects over r-protein properties and in vivo activity. Furthermore, the related promising future applications of CRISPR to achieve a tunable, reversible, or highly stable editing of CHO cells are discussed. Overall, the studies covered in this review show that despite the complexity of mammalian cells, the synthetic biology community has developed many mature strategies to improve r-protein production using CHO cells. In this regard, CRISPR-Cas technology clearly provides efficient and flexible genetic manipulation and allows for the generation of more productive CHO cell lines, leading to more cost-efficient production of biopharmaceuticals, however, there is still a need for many emerging techniques in CRISPR to be reported in CHO cells; therefore, more research in these cells is needed to realize the full potential of this technology.
Collapse
Affiliation(s)
- Ali Kerem Kalkan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Environmental Engineering Department, Gebze Technical University, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Semeniuk Sofija
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nada Elmousa
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Yuri Ledezma
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; Biology Department, Faculty of Pure and Natural Sciences, Universidad Mayor de San Andrés, Bolivia
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences University of Edinburgh, Edinburgh EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Leonardo Rios-Solis
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK; School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
127
|
Zhang L, Li G, Zhang Y, Cheng Y, Roberts N, Glenn SE, DeZwaan-McCabe D, Rube HT, Manthey J, Coleman G, Vakulskas CA, Qi Y. Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants. Genome Biol 2023; 24:102. [PMID: 37122009 PMCID: PMC10150537 DOI: 10.1186/s13059-023-02929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Cas12a (formerly known as Cpf1), the class II type V CRISPR nuclease, has been widely used for genome editing in mammalian cells and plants due to its distinct characteristics from Cas9. Despite being one of the most robust Cas12a nucleases, LbCas12a in general is less efficient than SpCas9 for genome editing in human cells, animals, and plants. RESULTS To improve the editing efficiency of LbCas12a, we conduct saturation mutagenesis in E. coli and identify 1977 positive point mutations of LbCas12a. We selectively assess the editing efficiency of 56 LbCas12a variants in human cells, identifying an optimal LbCas12a variant (RVQ: G146R/R182V/E795Q) with the most robust editing activity. We further test LbCas12a-RV, LbCas12a-RRV, and LbCas12a-RVQ in plants and find LbCas12a-RV has robust editing activity in rice and tomato protoplasts. Interestingly, LbCas12a-RRV, resulting from the stacking of RV and D156R, displays improved editing efficiency in stably transformed rice and poplar plants, leading to up to 100% editing efficiency in T0 plants of both plant species. Moreover, this high-efficiency editing occurs even at the non-canonical TTV PAM sites. CONCLUSIONS Our results demonstrate that LbCas12a-RVQ is a powerful tool for genome editing in human cells while LbCas12a-RRV confers robust genome editing in plants. Our study reveals the tremendous potential of these LbCas12a variants for advancing precision genome editing applications across a wide range of organisms.
Collapse
Affiliation(s)
- Liyang Zhang
- Integrated DNA Technologies, Coralville, IA, 52241, USA
- Current Address: Aera Therapeutics, 50 Northern Ave, Boston, MA, 02210, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- Current Address: Syngenta, 9 Davis Dr, Research Triangle, NC, 27709, USA
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | | | - Steve E Glenn
- Integrated DNA Technologies, Coralville, IA, 52241, USA
| | | | - H Tomas Rube
- Department of Applied Mathematics, University of California-Merced, Merced, CA, 95343, USA
| | - Jeff Manthey
- Integrated DNA Technologies, Coralville, IA, 52241, USA
| | - Gary Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | | | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| |
Collapse
|
128
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
129
|
Jiao J, Liu Y, Yang M, Zheng J, Liu C, Ye W, Song S, Bai T, Song C, Wang M, Shi J, Wan R, Zhang K, Hao P, Feng J, Zheng X. The engineered CRISPR-Mb2Cas12a variant enables sensitive and fast nucleic acid-based pathogens diagnostics in the field. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37069831 DOI: 10.1111/pbi.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Existing CRISPR/Cas12a-based diagnostic platforms offer accurate and vigorous monitoring of nucleic acid targets, but have the potential to be further optimized for more efficient detection. Here, we profiled 16 Cas12a orthologs, focusing on their trans-cleavage activity and their potential as diagnostic enzymes. We observed the Mb2Cas12a has more robust trans-cleavage activity than other orthologs, especially at lower temperatures. An engineered Mb2Cas12a-RRVRR variant presented robust trans-cleavage activity and looser PAM constraints. Moreover, we found the existing one-pot assay, which simultaneously performed Recombinase Polymerase Amplification (RPA) and Cas12a reaction in one system, resulted in the loss of single-base discrimination during diagnosis. Therefore, we designed a reaction vessel that physically separated the RPA and Cas12a steps while maintaining a closed system. This isolated but closed system made diagnostics more sensitive and specific and effectively prevented contamination. This shelved Mb2Cas12a-RRVRR variant-mediated assay detected various targets in less than 15 min and exhibited equal or greater sensitivity than qPCR when detecting bacterial pathogens, plant RNA viruses and genetically modified crops. Overall, our findings further improved the efficiency of the current CRISPR-based diagnostic system and undoubtedly have great potential for highly sensitive and specific detection of multiple sample types.
Collapse
Affiliation(s)
- Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yiqi Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Mengli Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Ran Wan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
130
|
Cheng Y, Zhang Y, Li G, Fang H, Sretenovic S, Fan A, Li J, Xu J, Que Q, Qi Y. CRISPR-Cas12a base editors confer efficient multiplexed genome editing in rice. PLANT COMMUNICATIONS 2023:100601. [PMID: 37060177 PMCID: PMC10363544 DOI: 10.1016/j.xplc.2023.100601] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Seeds Research, Syngenta Crop Protection, LLC, 9 Davis Dr, Research Triangle Park, NC 27709, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Hong Fang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Avery Fan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Jiang Li
- Syngenta Biotechnology China, Ltd., 25 Life Science Park Rd., Zhongguancun Life Science Park, Beijing 102206, China
| | - Jianping Xu
- Syngenta Biotechnology China, Ltd., 25 Life Science Park Rd., Zhongguancun Life Science Park, Beijing 102206, China
| | - Qiudeng Que
- Seeds Research, Syngenta Crop Protection, LLC, 9 Davis Dr, Research Triangle Park, NC 27709, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| |
Collapse
|
131
|
Kong X, Zhang H, Li G, Wang Z, Kong X, Wang L, Xue M, Zhang W, Wang Y, Lin J, Zhou J, Shen X, Wei Y, Zhong N, Bai W, Yuan Y, Shi L, Zhou Y, Yang H. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun 2023; 14:2046. [PMID: 37041195 PMCID: PMC10090079 DOI: 10.1038/s41467-023-37829-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
The type V-F CRISPR-Cas12f system is a strong candidate for therapeutic applications due to the compact size of the Cas12f proteins. In this work, we identify six uncharacterized Cas12f1 proteins with nuclease activity in mammalian cells from assembled bacterial genomes. Among them, OsCas12f1 (433 aa) from Oscillibacter sp. and RhCas12f1 (415 aa) from Ruminiclostridium herbifermentans, which respectively target 5' T-rich Protospacer Adjacent Motifs (PAMs) and 5' C-rich PAMs, show the highest editing activity. Through protein and sgRNA engineering, we generate enhanced OsCas12f1 (enOsCas12f1) and enRhCas12f1 variants, with 5'-TTN and 5'-CCD (D = not C) PAMs respectively, exhibiting much higher editing efficiency and broader PAMs, compared with the engineered variant Un1Cas12f1 (Un1Cas12f1_ge4.1). Furthermore, by fusing the destabilized domain with enOsCas12f1, we generate inducible-enOsCas12f1 and demonstate its activity in vivo by single adeno-associated virus delivery. Finally, dead enOsCas12f1-based epigenetic editing and gene activation can also be achieved in mammalian cells. This study thus provides compact gene editing tools for basic research with remarkable promise for therapeutic applications.
Collapse
Affiliation(s)
- Xiangfeng Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hainan Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Guoling Li
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Zikang Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xuqiang Kong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Lecong Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Mingxing Xue
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weihong Zhang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yao Wang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingxing Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xiaowen Shen
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yinghui Wei
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Na Zhong
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Weiya Bai
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yuan Yuan
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Linyu Shi
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yingsi Zhou
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
| | - Hui Yang
- HUIEDIT Therapeutics Co., Ltd., Shanghai, 200131, China.
- HUIDAGENE Therapeutics Co., Ltd., Shanghai, 200131, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
132
|
Zhang HX, Zhang C, Lu S, Tong X, Zhang K, Yin H, Zhang Y. Cas12a-based one-pot SNP detection with high accuracy. CELL INSIGHT 2023; 2:100080. [PMID: 37193068 PMCID: PMC10134196 DOI: 10.1016/j.cellin.2023.100080] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas12a based one-pot detection system has been used in nucleic acid detection and diagnosis. However, it is not sensitive enough to distinguish single nucleotide polymorphisms (SNP), which has greatly restricted its application. To overcome these limitations, we engineered a LbCas12a variant with enhanced sensitivity against SNP, named seCas12a (sensitive Cas12a). SeCas12a-based one-pot SNP detection system is a versatile platform that could use both canonical and non-canonical PAM, and was almost not limited by mutation types to distinguish SNPs located between position 1 to 17. The use of truncated crRNA further improved SNP specificity of seCas12a. Mechanistically, we found only when the cis-cleavage was at low level between 0.01min-1 and 0.0006 min-1, a good signal-to-noise ratio can be achieved in one-pot test. SeCas12a-based one-pot SNP detection system was applied to detect pharmacogenomic SNPs in human clinical samples. Of thirteen donors tested in two different SNPs, the seCas12a mediated one-pot system could faithfully detect the SNPs in 30 min with 100% accuracy.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caixiang Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shuhan Lu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaohan Tong
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
133
|
Xiao H, Hu J, Huang C, Feng W, Liu Y, Kumblathan T, Tao J, Xu J, Le XC, Zhang H. CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. Trends Analyt Chem 2023; 161:117000. [PMID: 36937152 PMCID: PMC9977466 DOI: 10.1016/j.trac.2023.117000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.
Collapse
Affiliation(s)
- Huyan Xiao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Camille Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jingyang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| |
Collapse
|
134
|
Dong MB, Tang K, Zhou X, Shen J, Chen K, Kim HR, Zhou J, Cao H, Vandenbulcke E, Zhang Y, Chow RD, Du A, Suzuki K, Fang SY, Majety M, Dai X, Chen S. Cas12a/Cpf1 knock-in mice enable efficient multiplexed immune cell engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532657. [PMID: 36993642 PMCID: PMC10055166 DOI: 10.1101/2023.03.14.532657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.
Collapse
|
135
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
136
|
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10:12. [PMID: 36895064 PMCID: PMC9999643 DOI: 10.1186/s40779-023-00447-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein (Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases (CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
Collapse
Affiliation(s)
- Zhen-Hua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jing-Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.,Yaneng BIOScience (Shenzhen) Co., Ltd., Shenzhen, 518102, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| |
Collapse
|
137
|
Meng X, Wu T, Lou Q, Niu K, Jiang L, Xiao Q, Xu T, Zhang L. Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med 2023; 8:e10474. [PMID: 36925702 PMCID: PMC10013785 DOI: 10.1002/btm2.10474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Tian‐gang Wu
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qiu‐yue Lou
- Anhui Provincial Center for Disease Control and PreventionHefeiPeople's Republic of China
| | - Kai‐yuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
- Department of OtolaryngologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Jiang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qing‐zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural ProductsAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceHefeiChina
| | - Lei Zhang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
- Department of PeriodontologyAnhui Stomatology Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
138
|
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther 2023:10.1038/s41417-023-00597-z. [PMID: 36854897 PMCID: PMC9971689 DOI: 10.1038/s41417-023-00597-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fahimeh Shahriyary
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Ofoghi
- Division of Clinical Laboratory, Tehran Hospital of Petroleum Industry, Tehran, Iran ,grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Davood Fattahi
- grid.411600.2Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
139
|
Mingarro G, Del Olmo ML. Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene 2023; 852:147064. [PMID: 36435506 DOI: 10.1016/j.gene.2022.147064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Gene editing is a great hope not only for the scientific community, but also for society in general. This is due to its potential therapeutic applications that would allow curing diseases of genetic origin. The first realistic approach to achieve this goal was the development of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools. This review deals with some of the improvements that have been designed to obtain more efficient and safer genome editing. Initial CRISPR-Cas (CRISPR associated) editing systems yield low efficiency and undesired editing products. To solve these problems, new approaches emerged, such as the creation of base editors. Recent discoveries have led to the development of many interesting alternatives, such as the CRISPR-associated transposable systems, which open the range by generating guided insertions, or the discovery of other programmable nucleases like the IscB family, which greatly increase the range of proteins available for editing uses. Also, to address the limitations of base editors, prime editors were created; this novel system, despite having some disadvantages compared to base editor systems, has the potential to generate all the possible point mutations. On the other hand, dual prime editing systems (like twin and homologous 3' extension-mediated prime editors) have been developed to create targeted insertions and enhance the editing outcomes, respectively. Furthermore, advances in gene editing do not reside solely in CRISPR-dependent systems, as we will discuss when treating the Replication Interrupted Template-Driven DNA Modification technique.
Collapse
Affiliation(s)
- Gerard Mingarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València. Burjassot (València), Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València. Burjassot (València), Spain.
| |
Collapse
|
140
|
Petiwala S, Modi A, Anton T, Murphy E, Kadri S, Hu H, Lu C, Flister MJ, Verduzco D. Optimization of Genomewide CRISPR Screens Using AsCas12a and Multi-Guide Arrays. CRISPR J 2023; 6:75-82. [PMID: 36787117 DOI: 10.1089/crispr.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genomewide loss-of-function (LOF) screening using clustered regularly interspaced short palindromic repeats (CRISPR) has facilitated the discovery of novel gene functions across diverse physiological and pathophysiological systems. A challenge with conventional genomewide CRISPR-Cas9 libraries is the unwieldy size (60,000-120,000 constructs), which is resource intensive and prohibitive in some experimental contexts. One solution to streamlining CRISPR screening is by multiplexing two or more guides per gene on a single construct, which enables functional redundancy to compensate for suboptimal gene knockout by individual guides. In this regard, AsCas12a (Cpf1) and its derivatives, for example, enhanced AsCas12a (enAsCas12a), have enabled multiplexed guide arrays to be specifically and efficiently processed for genome editing. Prior studies have established that multiplexed CRISPR-Cas12a libraries perform comparably to the larger equivalent CRISPR-Cas9 libraries, yet the most efficient CRISPR-Cas12a library design remains unresolved. In this study, we demonstrate that CRISPR-Cas12a genomewide LOF screening performed optimally with three guides arrayed per gene construct and could be adapted to robotic cell culture without noticeable differences in screen performance. Thus, the conclusions from this study provide novel insight to streamlining genomewide LOF screening using CRISPR-Cas12a and robotic cell culture.
Collapse
Affiliation(s)
| | - Apexa Modi
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Tifani Anton
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Erin Murphy
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Sabah Kadri
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Hengcheng Hu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Charles Lu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | | | | |
Collapse
|
141
|
Liu H, Zhu Y, Li M, Gu Z. Precise genome editing with base editors. MEDICAL REVIEW (2021) 2023; 3:75-84. [PMID: 37724105 PMCID: PMC10471085 DOI: 10.1515/mr-2022-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Single-nucleotide variants account for about half of known pathogenic genetic variants in human. Genome editing strategies by reversing pathogenic point mutations with minimum side effects have great therapeutic potential and are now being actively pursued. The emerge of precise and efficient genome editing strategies such as base editing and prime editing provide powerful tools for nucleotide conversion without inducing double-stranded DNA breaks (DSBs), which have shown great potential for curing genetic disorders. A diverse toolkit of base editors has been developed to improve the editing efficiency and accuracy in different context of application. Here, we summarized the evolving of base editors (BEs), their limitations and future perspective of base editing-based therapeutic strategies.
Collapse
Affiliation(s)
- Hongcai Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu Province, China
| | - Yao Zhu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu Province, China
| | - Minjie Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu Province, China
| | - Zhimin Gu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu Province, China
| |
Collapse
|
142
|
Alves CRR, Ha LL, Yaworski R, Lazzarotto CR, Christie KA, Reilly A, Beauvais A, Doll RM, de la Cruz D, Maguire CA, Swoboda KJ, Tsai SQ, Kothary R, Kleinstiver BP. Base editing as a genetic treatment for spinal muscular atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524978. [PMID: 36711797 PMCID: PMC9882371 DOI: 10.1101/2023.01.20.524978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the SMN1 gene. Despite the development of various therapies, outcomes can remain suboptimal in SMA infants and the duration of such therapies are uncertain. SMN2 is a paralogous gene that mainly differs from SMN1 by a C•G-to-T•A transition in exon 7, resulting in the skipping of exon 7 in most SMN2 transcripts and production of only low levels of survival motor neuron (SMN) protein. Genome editing technologies targeted to the SMN2 exon 7 mutation could offer a therapeutic strategy to restore SMN protein expression to normal levels irrespective of the patient SMN1 mutation. Here, we optimized a base editing approach to precisely edit SMN2, reverting the exon 7 mutation via an A•T-to-G•C base edit. We tested a range of different adenosine base editors (ABEs) and Cas9 enzymes, resulting in up to 99% intended editing in SMA patient-derived fibroblasts with concomitant increases in SMN2 exon 7 transcript expression and SMN protein levels. We generated and characterized ABEs fused to high-fidelity Cas9 variants which reduced potential off-target editing. Delivery of these optimized ABEs via dual adeno-associated virus (AAV) vectors resulted in precise SMN2 editing in vivo in an SMA mouse model. This base editing approach to correct SMN2 should provide a long-lasting genetic treatment for SMA with advantages compared to current nucleic acid, small molecule, or exogenous gene replacement therapies. More broadly, our work highlights the potential of PAMless SpRY base editors to install edits efficiently and safely.
Collapse
Affiliation(s)
- Christiano R. R. Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Yaworski
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kathleen A. Christie
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Aoife Reilly
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Ariane Beauvais
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
| | - Roman M. Doll
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Demitri de la Cruz
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Casey A. Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
143
|
Huang H, Lv W, Li J, Huang G, Tan Z, Hu Y, Ma S, Zhang X, Huang L, Lin Y. Comparison of DNA targeting CRISPR editors in human cells. Cell Biosci 2023; 13:11. [PMID: 36647130 PMCID: PMC9844007 DOI: 10.1186/s13578-023-00958-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Profiling and comparing the performance of current widely used DNA targeting CRISPR systems provide the basic information for the gene-editing toolkit and can be a useful resource for this field. In the current study, we made a parallel comparison between the recently reported miniature Cas12f1 (Un1Cas12f1 and AsCas12f1) and the widely used Cas12a and Cas9 nucleases in mammalian cells. RESULTS We found that as a CRISPRa activator, Un1Cas12f1 could induce gene expression with a comparable level to that of Cas12a and Cas9, while as a DNA cleavage editor, Cas12f1 exhibited similar properties to Cas12a, like high specificity and dominantly induced deletions over insertions, but with less activity. In contrast, wild-type SpCas9 showed the highest activity, lowest specificity, and induced balanced deletions and insertions. Thus, Cas12f1 is recommended for gene-activation-based applications, Cas12a is for therapy applications, and wild-type Cas9 is for in vitro and animal investigations. CONCLUSION The comparison provided the editing properties of the widely used DNA-targeting CRISPR systems in the gene-editing field.
Collapse
Affiliation(s)
- Hongxin Huang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China ,grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Weiqi Lv
- grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Jinhe Li
- grid.413107.0Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Guanjie Huang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhihong Tan
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Yongfei Hu
- grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Shufeng Ma
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.488521.2Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110 China
| | - Xin Zhang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.440180.90000 0004 7480 2233Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Linxuan Huang
- grid.440180.90000 0004 7480 2233Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Ying Lin
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
144
|
Gaillochet C, Peña Fernández A, Goossens V, D'Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, De Saeger J, Develtere W, Audenaert D, De Vleesschauwer D, Meulewaeter F, Jacobs TB. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol 2023; 24:6. [PMID: 36639800 PMCID: PMC9838060 DOI: 10.1186/s13059-022-02836-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Alexandra Peña Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Vera Goossens
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Katelijn D'Halluin
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Myriam Shafie
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | | | - Camila Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - David De Vleesschauwer
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
145
|
Hwang GH, Bae S. Web-Based Computational Tools for Base Editors. Methods Mol Biol 2023; 2606:13-22. [PMID: 36592304 DOI: 10.1007/978-1-0716-2879-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CRISPR-based base editors are efficient genome editing tools for use in base correction. Currently, there are various versions and types of base editors with different substitution patterns, editing windows, and protospacer adjacent motif (PAM) sequences. For the design of target sequences, consideration of off-target sequences is required. In addition, for assessment of base editing outcomes in bulk populations, the analysis of high-throughput sequencing data is required. Several web browser-based computation programs have been developed for the purpose of target design and NGS data analysis, especially for users with less computational knowledge. In this manuscript, depending on the purpose of each program, we provide an explanation of useful tools including BE-Designer for design of targets and BE-Analyzer for analysis of NGS data that were developed by our group, CRISPResso2 for analysis of NGS data developed by Luca Pinello group, DeepBaseEditor for prediction of target efficiency developed by Hyongbum Henry Kim group, and BE-Hive for prediction of target outcome developed by David Liu group.
Collapse
Affiliation(s)
- Gue-Ho Hwang
- Department of Chemistry, Hanyang University, Seoul, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
146
|
Song B, Bae S. Introduction and Perspectives of DNA Base Editors. Methods Mol Biol 2023; 2606:3-11. [PMID: 36592303 DOI: 10.1007/978-1-0716-2879-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA base editors, one of the CRISPR-based genome editing tools, can induce targeted point mutations at desired sites. Their superiority is based on the fact that they can perform efficient and precise gene editing without generating a DNA double-strand break (DSB) or requiring a donor DNA template. Since they were first developed, significant efforts have been made to improve DNA base editors in order to overcome problems such as off-target edits on DNA/RNA and bystander mutations in editing windows. Here, we provide an overview of DNA base editors with a summary about the history of development of DNA base editors and report on efforts to improve them.
Collapse
Affiliation(s)
- Beomjong Song
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sangsu Bae
- Medical Research Center Organization: Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
147
|
Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat Biotechnol 2023:10.1038/s41587-022-01574-x. [PMID: 36593413 DOI: 10.1038/s41587-022-01574-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. However, the utility of type V-K CASTs is hindered by high off-target integration and a transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid cointegrate products. Here we overcome both limitations by engineering new CASTs with improved integration product purity and genome-wide specificity. To do so, we engineered a nicking homing endonuclease fusion to TnsB (named HELIX) to restore the 5' nicking capability needed for cargo excision on the DNA donor. HELIX enables cut-and-paste DNA insertion with up to 99.4% simple insertion product purity, while retaining robust integration efficiencies on genomic targets. HELIX has substantially higher on-target specificity than canonical CASTs, and we identify several novel factors that further regulate targeted and genome-wide integration. Finally, we extend HELIX to other type V-K orthologs and demonstrate the feasibility of HELIX-mediated integration in human cell contexts.
Collapse
|
148
|
Shahbazi R, Lipson P, Gottimukkala KSV, Lane DD, Adair JE. CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:39-62. [PMID: 36255694 DOI: 10.1007/978-1-0716-2679-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic editing of hematopoietic stem and progenitor cells can be employed to understand gene-function relationships underlying hematopoietic cell biology, leading to new therapeutic approaches to treat disease. The ability to collect, purify, and manipulate primary cells outside the body permits testing of many different gene editing approaches. RNA-guided nucleases, such as CRISPR, have revolutionized gene editing based simply on Watson-Crick base-pairing, employed to direct activity to specific genomic loci. Given the ease and affordability of synthetic, custom RNA guides, testing of precision edits or large random pools in high-throughput screening studies is now widely available. With the ever-growing number of CRISPR nucleases being discovered or engineered, researchers now have a plethora of options for directed genomic change, including single base edits, nicks or double-stranded DNA cuts with blunt or staggered ends, as well as the ability to target CRISPR to other cellular oligonucleotides such as RNA or mitochondrial DNA. Except for single base editing strategies, precise rewriting of larger segments of the genetic code requires delivery of an additional component, templated DNA oligonucleotide(s) encoding the desired changes flanked by homologous sequences that permit recombination at or near the site of CRISPR activity. Altogether, the ever-growing CRISPR gene editing toolkit is an invaluable resource. This chapter outlines available technologies and the strategies for applying CRISPR-based editing in hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer E Adair
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
149
|
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023; 61:13-36. [PMID: 36723794 PMCID: PMC9890466 DOI: 10.1007/s12275-022-00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/02/2023]
Abstract
With developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
150
|
Huang TP, Heins ZJ, Miller SM, Wong BG, Balivada PA, Wang T, Khalil AS, Liu DR. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat Biotechnol 2023; 41:96-107. [PMID: 36076084 PMCID: PMC9849140 DOI: 10.1038/s41587-022-01410-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023]
Abstract
Despite the availability of Cas9 variants with varied protospacer-adjacent motif (PAM) compatibilities, some genomic loci-especially those with pyrimidine-rich PAM sequences-remain inaccessible by high-activity Cas9 proteins. Moreover, broadening PAM sequence compatibility through engineering can increase off-target activity. With directed evolution, we generated four Cas9 variants that together enable targeting of most pyrimidine-rich PAM sequences in the human genome. Using phage-assisted noncontinuous evolution and eVOLVER-supported phage-assisted continuous evolution, we evolved Nme2Cas9, a compact Cas9 variant, into variants that recognize single-nucleotide pyrimidine-PAM sequences. We developed a general selection strategy that requires functional editing with fully specified target protospacers and PAMs. We applied this selection to evolve high-activity variants eNme2-T.1, eNme2-T.2, eNme2-C and eNme2-C.NR. Variants eNme2-T.1 and eNme2-T.2 offer access to N4TN PAM sequences with comparable editing efficiencies as existing variants, while eNme2-C and eNme2-C.NR offer less restrictive PAM requirements, comparable or higher activity in a variety of human cell types and lower off-target activity at N4CN PAM sequences.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary J Heins
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brandon G Wong
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Pallavi A Balivada
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Tina Wang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|