101
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
102
|
Bézie S, Freuchet A, Sérazin C, Salama A, Vimond N, Anegon I, Guillonneau C. IL-34 Actions on FOXP3 + Tregs and CD14 + Monocytes Control Human Graft Rejection. Front Immunol 2020; 11:1496. [PMID: 32849510 PMCID: PMC7431608 DOI: 10.3389/fimmu.2020.01496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Cytokines are major players regulating immune responses toward inflammatory and tolerogenic results. In organ and bone marrow transplantation, new reagents are needed to inhibit tissue destructive mechanisms and eventually induce immune tolerance without overall immunosuppression. IL-34 is a cytokine with no significant homology with any other cytokine but that acts preferentially through CSF-1R, as CSF-1 does, and through PTPζ and CD138. Although IL-34 and CSF-1 share actions, a detailed analysis of their effects on immune cells needs further research. We previously showed that both CD4+ and CD8+ FOXP3+ Tregs suppress effector T cells through the production of IL-34, but not CSF-1, and that this action was mediated through antigen-presenting cells. We showed here by single-cell RNAseq and cytofluorimetry that different subsets of human monocytes expressed different levels of CSF-1R, CD138, and PTPζ and that both CD4+ and CD8+ FOXP3+ Tregs expressed higher levels of CSF-1R than conventional T cells. The effects of IL-34 differed in the survival of these different subpopulations of monocytes and RNAseq analysis showed several genes differentially expressed between IL-34, CSF-1, M0, M1, and also M2 macrophages. Acute graft-vs.-host disease (aGVHD) in immunodeficient NSG mice injected with human PBMCs was decreased when treated with IL-34 in combination with an anti-CD45RC mAb that depleted conventional T cells. When IL-34-differentiated monocytes were used to expand Tregs in vitro, both CD4+ and CD8+ FOXP3+ Tregs were highly enriched and this effect was superior to the one obtained with CSF-1. Human CD8+ Tregs expanded in vitro with IL-34-differentiated allogeneic monocytes suppressed human immune responses in an NSG mouse aGVHD model humanized with hPBMCs. Overall, we showed that IL-34 induced the differentiation of human monocytes with a particular transcriptional profile and these cells favored the development of potent suppressor FOXP3+ Tregs.
Collapse
Affiliation(s)
- Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Céline Sérazin
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nadège Vimond
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
103
|
Yang L, Jiménez JA, Earley AM, Hamlin V, Kwon V, Dixon CT, Shiau CE. Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. eLife 2020; 9:58191. [PMID: 32735214 PMCID: PMC7434444 DOI: 10.7554/elife.58191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Many brain pathologies are associated with liver damage, but a direct link has long remained elusive. Here, we establish a new paradigm for interrogating brain-periphery interactions by leveraging zebrafish for its unparalleled access to the intact whole animal for in vivo analysis in real time after triggering focal brain inflammation. Using traceable lipopolysaccharides (LPS), we reveal that drainage of these inflammatory macromolecules from the brain led to a strikingly robust peripheral infiltration of macrophages into the liver independent of Kupffer cells. We further demonstrate that this macrophage recruitment requires signaling from the cytokine IL-34 and Toll-like receptor adaptor MyD88, and occurs in coordination with neutrophils. These results highlight the possibility for circulation of brain-derived substances to serve as a rapid mode of communication from brain to the liver. Understanding how the brain engages the periphery at times of danger may offer new perspectives for detecting and treating brain pathologies.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jessica A Jiménez
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Alison M Earley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Victoria Hamlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Victoria Kwon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cameron T Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
104
|
Zuroff LR, Torbati T, Hart NJ, Fuchs DT, Sheyn J, Rentsendorj A, Koronyo Y, Hayden EY, Teplow DB, Black KL, Koronyo-Hamaoui M. Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer's-Related Aβ 42 Assemblies. Front Immunol 2020; 11:1449. [PMID: 32765504 PMCID: PMC7378440 DOI: 10.3389/fimmu.2020.01449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-34 (IL-34) is a recently discovered cytokine that acts as a second ligand of the colony stimulating factor 1 receptor (CSF1R) in addition to macrophage colony-stimulating factor (M-CSF). Similar to M-CSF, IL-34 also stimulates bone marrow (BM)-derived monocyte survival and differentiation into macrophages. Growing evidence suggests that peripheral BM-derived monocyte/macrophages (BMMO) play a key role in the physiological clearance of cerebral amyloid β-protein (Aβ). Aβ42 forms are especially neurotoxic and highly associated with Alzheimer's disease (AD). As a ligand of CSF1R, IL-34 may be relevant to innate immune responses in AD. To investigate how IL-34 affects macrophage phenotype in response to structurally defined and stabilized Aβ42 oligomers and preformed fibrils, we characterized murine BMMO cultured in media containing M-CSF, IL-34, or regimens involving both cytokines. We found that the immunological profile and activation phenotype of IL-34-stimulated BMMO differed significantly from those cultured with M-CSF alone. Specifically, macrophage uptake of fibrillar or oligomeric Aβ42 was markedly reduced following exposure to IL-34 compared to M-CSF. Surface expression of type B scavenger receptor CD36, known to facilitate Aβ recognition and uptake, was modified following treatment with IL-34. Similarly, IL-34 macrophages expressed lower levels of proteins involved in both Aβ uptake (triggering receptor expressed on myeloid cells 2, TREM2) as well as Aβ-degradation (matrix metallopeptidase 9, MMP-9). Interestingly, intracellular compartmentalization of Aβ visualized by staining of early endosome antigen 1 (EEA1) was not affected by IL-34. Macrophage characteristics associated with an anti-inflammatory and pro-wound healing phenotype, including processes length and morphology, were also quantified, and macrophages stimulated with IL-34 alone displayed less process elongation in response to Aβ42 compared to those cultured with M-CSF. Further, monocytes treated with IL-34 alone yielded fewer mature macrophages than those treated with M-CSF alone or in combination with IL-34. Our data indicate that IL-34 impairs monocyte differentiation into macrophages and reduces their ability to uptake pathological forms of Aβ. Given the critical role of macrophage-mediated Aβ clearance in both murine models and patients with AD, future work should investigate the therapeutic potential of modulating IL-34 in vivo to increase macrophage-mediated Aβ clearance and prevent disease development.
Collapse
Affiliation(s)
- Leah R Zuroff
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tania Torbati
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, United States
| | - Nadav J Hart
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Keith L Black
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Applied Cellular Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
105
|
Bao S, Hu R, Hambly BD. IL-34, IL-36 and IL-38 in colorectal cancer-key immunoregulators of carcinogenesis. Biophys Rev 2020; 12:925-930. [PMID: 32638330 DOI: 10.1007/s12551-020-00726-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is still a big killer nowadays, but the precise underlying mechanism remains to be explored. It is believed that imbalance of host immunity in the local microenvironment plays a critical role in the tumorigenesis of CRC. IL-34 is inversely correlated with overall survival in CRC patients, perhaps via regulating terminal differentiation of a subset of macrophages (M2). It is believed that the recruitment/differentiation of M2 macrophages within the cancer simply represents an increase in number, but the function of these M2 macrophages may be compromised. IL-36s (IL-36α, β and γ) are constitutively expressed in non-cancer colon tissue, but colonic IL-36α, IL-36β and IL-36γ are substantially reduced in the CRC tissues (~ 80%). IL-36α is an independent factor affecting the survival of CRC patients. The level of IL-36α and/or IL-36γ in CRC tissue could potentially be used as biomarkers for predicting the prognosis of CRC at both the later or early stages of CRC. IL-38 is also an anti-inflammatory cytokine. Colonic IL-38 is ~ 95% lower in CRC compared to non-CRC colonic tissue, consistent with the positive correlation between differentiation of CRC, and colonic tumour expression of IL-38. IL-38 is a reliable/sensitive biomarker for distinguishing between CRC and non-cancer colonic tissue. There is a positive correlation between colonic IL-38 in CRC and prognosis and/or overall survival, particularly in advanced CRC, supporting IL-38 probably being a reliable and consistent independent factor in predicting the prognosis of CRC. The findings above may be useful in exploring therapeutic targeting for precision medicine.
Collapse
Affiliation(s)
- Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Rong Hu
- Discipline of Anesthesiology, School of Medicine, Hunan University of Medicine, Changsha, China
| | - Brett D Hambly
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
106
|
Lohrmann F, Forde AJ, Merck P, Henneke P. Control of myeloid cell density in barrier tissues. FEBS J 2020; 288:405-426. [PMID: 32502309 DOI: 10.1111/febs.15436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
The interface between the mammalian host and its environment is formed by barrier tissues, for example, of the skin, and the respiratory and the intestinal tracts. On the one hand, barrier tissues are colonized by site-adapted microbial communities, and on the other hand, they contain specific myeloid cell networks comprising macrophages, dendritic cells, and granulocytes. These immune cells are tightly regulated in function and cell number, indicating important roles in maintaining tissue homeostasis and immune balance in the presence of commensal microorganisms. The regulation of myeloid cell density and activation involves cell-autonomous 'single-loop circuits' including autocrine mechanisms. However, an array of microenvironmental factors originating from nonimmune cells and the microbiota, as well as the microanatomical structure, impose additional layers of regulation onto resident myeloid cells. This review discusses models integrating these factors into cell-specific programs to instruct differentiation and proliferation best suited for the maintenance and renewal of immune homeostasis in the tissue-specific environment.
Collapse
Affiliation(s)
- Florens Lohrmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Germany.,IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Germany
| | - Aaron J Forde
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Faculty of Biology, university of Freiburg, Germany
| | - Philipp Merck
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| | - Philipp Henneke
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| |
Collapse
|
107
|
Luque-Martin R, Mander PK, Leenen PJM, Winther MPJ. Classic and new mediators for in vitro modelling of human macrophages. J Leukoc Biol 2020; 109:549-560. [PMID: 32592421 PMCID: PMC7984372 DOI: 10.1002/jlb.1ru0620-018r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key immune cells in the activation and regulation of immune responses. These cells are present in all tissues under homeostatic conditions and in many disease settings. Macrophages can exhibit a wide range of phenotypes depending on local and systemic cues that drive the differentiation and activation process. Macrophage heterogeneity is also defined by their ontogeny. Tissue macrophages can either derive from circulating blood monocytes or are seeded as tissue-resident macrophages during embryonic development. In humans, the study of in vivo-generated macrophages is often difficult with laborious and cell-changing isolation procedures. Therefore, translatable, reproducible, and robust in vitro models for human macrophages in health and disease are necessary. Most of the methods for studying monocyte-derived macrophages are based on the use of limited factors to differentiate the monocytes into macrophages. Current knowledge shows that the in vivo situation is more complex, and a wide range of molecules in the tissue microenvironment promote and impact on monocyte to macrophage differentiation as well as activation. In this review, macrophage heterogeneity is discussed and the human in vitro models that can be applied for research, especially for monocyte-derived macrophages. We also focus on new molecules (IL-34, platelet factor 4, etc.) used to generate macrophages expressing different phenotypes.
Collapse
Affiliation(s)
- Rosario Luque-Martin
- Amsterdam University Medical Centers, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Pieter J M Leenen
- Erasmus University Medical Center, Department of Immunology, Rotterdam, The Netherlands
| | - Menno P J Winther
- Amsterdam University Medical Centers, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| |
Collapse
|
108
|
Rezaei S, Ghafouri-Fard S, Komaki A, Mazdeh M, Taheri M, Eftekharian MM. Increased Levels of IL-34 in Acquired Immune-Mediated Neuropathies. J Mol Neurosci 2020; 71:137-141. [PMID: 32588399 DOI: 10.1007/s12031-020-01634-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-34 is ligand for the colony-stimulating factor (CSF)-1 receptor. This cytokine has fundamental roles the pathogenesis of a number of autoimmune and neurologic disorders. However, its role in the pathogenesis of acute and chronic inflammatory demyelinating polyneuropathies (AIDP and CIDP) has not been assessed yet. We measured serum levels of IL-34 33 CIDP cases, 16 AIDP cases, and 33 control subjects using commercial ELISA kits. IL-34 levels were significantly higher in both AIDP (44.87 ± 4.38) and CIDP (44.87 ± 4.38) groups compared with healthy subjects (30.10 ± 1.05) (P = 0.046 and P = 0.01, respectively). Differences between female subgroups were insignificant. However, levels of this cytokine were significantly higher in male subjects with CIDP compared with male controls (P = 0.042). Thus, levels of this cytokine might be regarded as biomarkers for these kinds of autoimmune disorders. Future studies are needed to verify these results and find the molecular mechanism of participation of IL-34 in the pathogenesis of AIDP/CIDP.
Collapse
Affiliation(s)
- Sina Rezaei
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
109
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
110
|
Abstract
Purpose This review highlights the roles of fibrocytes—their origin, markers, regulation and functions—including contributions to corneal wound healing and fibrosis. Methods Literature review. Results Peripheral blood fibroblast-like cells, called fibrocytes, are primarily generated as mature collagen-producing cells in the bone marrow. They are likely derived from the myeloid lineage, although the exact precursor remains unknown. Fibrocytes are identified by a combination of expressed markers, such as simultaneous expression of CD34 or CD45 or CD11b and collagen type I or collagen type III. Fibrocytes migrate into the wound from the blood where they participate in pathogen clearance, tissue regeneration, wound closure and angiogenesis. Transforming growth factor beta 1 (TGF-β1) and adiponectin induce expression of α-smooth muscle actin and extracellular matrix proteins through activation of Smad3 and adenosine monophosphate-activated protein kinase pathways, respectively. Fibrocytes are important contributors to the cornea wound healing response and there are several mechanisms through which fibrocytes contribute to fibrosis in the cornea and other organs, such as their differentiation into myofibroblasts, production of matrix metalloproteinase, secretion of tissue inhibitor of metalloproteinase, and release of TGF-β1. In some tissues, fibrocytes may also contribute to the basement membrane regeneration and to the resolution of fibrosis. Conclusions New methods that block fibrocyte generation, fibrocyte migration, and their differentiation into myofibroblasts, as well as their production of matrix metalloproteinases, tissue inhibitor of metalloproteinase, and TGF-β1, have therapeutic potential to reduce the accumulation of collagens, maintain tissue integrity and retard or prevent the development of fibrosis.
Collapse
|
111
|
Bloise N, Rountree I, Polucha C, Montagna G, Visai L, Coulombe KLK, Munarin F. Engineering Immunomodulatory Biomaterials for Regenerating the Infarcted Myocardium. Front Bioeng Biotechnol 2020; 8:292. [PMID: 32318563 PMCID: PMC7154131 DOI: 10.3389/fbioe.2020.00292] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Coronary artery disease is a severe ischemic condition characterized by the reduction of blood flow in the arteries of the heart that results in the dysfunction and death of cardiac tissue. Despite research over several decades on how to reduce long-term complications and promote angiogenesis in the infarct, the medical field has yet to define effective treatments for inducing revascularization in the ischemic tissue. With this work, we have developed functional biomaterials for the controlled release of immunomodulatory cytokines to direct immune cell fate for controlling wound healing in the ischemic myocardium. The reparative effects of colony-stimulating factor (CSF-1), and anti-inflammatory interleukins 4/6/13 (IL4/6/13) have been evaluated in vitro and in a predictive in vivo model of ischemia (the skin flap model) to optimize a new immunomodulatory biomaterial that we use for treating infarcted rat hearts. Alginate hydrogels have been produced by internal gelation with calcium carbonate (CaCO3) as carriers for the immunomodulatory cues, and their stability, degradation, rheological properties and release kinetics have been evaluated in vitro. CD14 positive human peripheral blood monocytes treated with the immunomodulatory biomaterials show polarization into pro-healing macrophage phenotypes. Unloaded and CSF-1/IL4 loaded alginate gel formulations have been implanted in skin flap ischemic wounds to test the safety and efficacy of the delivery system in vivo. Faster wound healing is observed with the new therapeutic treatment, compared to the wounds treated with the unloaded controls at day 14. The optimized therapy has been evaluated in a rat model of myocardial infarct (ischemia/reperfusion). Macrophage polarization toward healing phenotypes and global cardiac function measured with echocardiography and immunohistochemistry at 4 and 15 days demonstrate the therapeutic potential of the proposed immunomodulatory treatment in a clinically relevant infarct model.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Isobel Rountree
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Giulia Montagna
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Fabiola Munarin
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
112
|
Lonardi S, Scutera S, Licini S, Lorenzi L, Cesinaro AM, Gatta LB, Castagnoli C, Bollero D, Sparti R, Tomaselli M, Medicina D, Calzetti F, Cassatella MA, Facchetti F, Musso T, Vermi W. CSF1R Is Required for Differentiation and Migration of Langerhans Cells and Langerhans Cell Histiocytosis. Cancer Immunol Res 2020; 8:829-841. [PMID: 32238382 DOI: 10.1158/2326-6066.cir-19-0232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/05/2019] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a rare disorder characterized by tissue accumulation of CD1a+CD207+ LCH cells. In LCH, somatic mutations of the BRAF V600E gene have been detected in tissue LCH cells, bone marrow CD34+ hematopoietic stem cells, circulating CD14+ monocytes, and BDCA1+ myeloid dendritic cells (DC). Targeting BRAF V600E in clonal Langerhans cells (LC) and their precursors is a potential treatment option for patients whose tumors have the mutation. The development of mouse macrophages and LCs is regulated by the CSF1 receptor (CSF1R). In patients with diffuse-type tenosynovial giant cell tumors, CSF1R inhibition depletes tumor-associated macrophages (TAM) with therapeutic efficacy; however, CSF1R signaling in LCs and LCH has not been investigated. We found through IHC and flow cytometry that CSF1R is normally expressed on human CD1a+CD207+ LCs in the epidermis and stratified epithelia. LCs that were differentiated from CD14+ monocytes, BDCA1+ DCs, and CD34+ cord blood progenitors expressed CSF1R that was downregulated upon maturation. Immature LCs migrated toward CSF1, but not IL34. Administration of the c-FMS/CSF1R kinase inhibitors GW2580 and BLZ945 significantly reduced human LC migration. In LCH clinical samples, LCH cells (including BRAF V600E cells) and TAMs retained high expression of CSF1R. We also detected the presence of transcripts for its ligand, CSF1, but not IL34, in all tested LCH cases. CSF1R and CSF1 expression in LCH, and their role in LC migration and differentiation, suggests CSF1R signaling blockade as a candidate rational approach for treatment of LCH, including the BRAF V600E and wild-type forms of the disease.
Collapse
Affiliation(s)
- Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Sara Licini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | - Daniele Bollero
- Division of Plastic and Reconstructive Surgery and Burn Center, Department of Surgery, A.O.U. Città della Salute, CTO Hospital, Turin, Italy
| | - Rosaria Sparti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Michela Tomaselli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Medicina
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Fabio Facchetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Division of Plastic and Reconstructive Surgery and Burn Center, Department of Surgery, A.O.U. Città della Salute, CTO Hospital, Turin, Italy.,Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| |
Collapse
|
113
|
Clark R, Zwicker S, Bureik D, Johannsen G, Boström EA. Expression of colony‐stimulating factor 1 and interleukin‐34 in gingival tissue and gingival fibroblasts from periodontitis patients and controls. J Periodontol 2020; 91:828-835. [DOI: 10.1002/jper.19-0296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Reuben Clark
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Stephanie Zwicker
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Daniela Bureik
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Gunnar Johannsen
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| | - Elisabeth A. Boström
- Department of Dental MedicineDivision of Oral DiseasesKarolinska Institutet Huddinge Sweden
| |
Collapse
|
114
|
Franzè E, Stolfi C, Troncone E, Scarozza P, Monteleone G. Role of Interleukin-34 in Cancer. Cancers (Basel) 2020; 12:E252. [PMID: 31968663 PMCID: PMC7017118 DOI: 10.3390/cancers12010252] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cross-talk between cancer cells and the immune cells occurring in the tumor microenvironment is crucial in promoting signals that foster tumor growth and metastasis. Both cancer cells and immune cells secrete various interleukins (IL), which, either directly or indirectly, stimulate cancer-cell proliferation, survival, and diffusion, as well as contribute to sculpt the immune microenvironment, thereby amplifying tumorigenic stimuli. IL-34, a cytokine produced by a wide range of cells, has been initially involved in the control of differentiation, proliferation, and survival of myeloid cells. More recent studies documented the overexpression of IL-34 in several cancers, such as hepatocarcinoma, osteosarcoma, multiple myeloma, colon cancer, and lung cancer, and showed that tumor cells can produce and functionally respond to this cytokine. In this review, we summarize the multiple roles of IL-34 in various cancers, with the aim to better understand the relationship between the expression of this cytokine and cancer behavior and to provide new insights for exploring a new potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “TOR VERGATA”, 00133 Rome, Italy; (E.F.); (C.S.); (E.T.); (P.S.)
| |
Collapse
|
115
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
116
|
Neal ML, Fleming SM, Budge KM, Boyle AM, Kim C, Alam G, Beier EE, Wu LJ, Richardson JR. Pharmacological inhibition of CSF1R by GW2580 reduces microglial proliferation and is protective against neuroinflammation and dopaminergic neurodegeneration. FASEB J 2020; 34:1679-1694. [PMID: 31914683 PMCID: PMC7212500 DOI: 10.1096/fj.201900567rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Increased pro-inflammatory cytokine levels and proliferation of activated microglia have been found in Parkinson's disease (PD) patients and animal models of PD, suggesting that targeting of the microglial inflammatory response may result in neuroprotection in PD. Microglial proliferation is regulated by many factors, but colony stimulating factor-1 receptor (CSF1R) has emerged as a primary factor. Using data mining techniques on existing microarray data, we found that mRNA expression of the CSF1R ligand, CSF-1, is increased in the brain of PD patients compared to controls. In two different neurotoxic mouse models of PD, acute MPTP and sub-chronic LPS treatment, mRNA and protein levels of CSF1R and CSF-1 were significantly increased. Treatment with the CSF1R inhibitor GW2580 significantly attenuated MPTP-induced CSF1R activation and Iba1-positive cell proliferation, without a reduction of the basal Iba1-positive population in the substantia nigra. GW2580 treatment also significantly decreased mRNA levels of pro-inflammatory factors, without alteration of anti-inflammatory mediators, and significantly attenuated the MPTP-induced loss of dopamine neurons and motor behavioral deficits. Importantly, these effects were observed in the absence of overt microglial depletion, suggesting that targeting CSF1R signaling may be a viable neuroprotective strategy in PD that disrupts pro-inflammatory signaling, but maintains the beneficial effects of microglia.
Collapse
Affiliation(s)
- Matthew L. Neal
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kevin M. Budge
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexa M. Boyle
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Chunki Kim
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Gelareh Alam
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Eric E. Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jason R. Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
117
|
Trias E, Kovacs M, King PH, Si Y, Kwon Y, Varela V, Ibarburu S, Moura IC, Hermine O, Beckman JS, Barbeito L. Schwann cells orchestrate peripheral nerve inflammation through the expression of CSF1, IL-34, and SCF in amyotrophic lateral sclerosis. Glia 2019; 68:1165-1181. [PMID: 31859421 DOI: 10.1002/glia.23768] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Distal axonopathy is a recognized pathological feature of amyotrophic lateral sclerosis (ALS). In the peripheral nerves of ALS patients, motor axon loss elicits a Wallerian-like degeneration characterized by denervated Schwann cells (SCs) together with immune cell infiltration. However, the pathogenic significance of denervated SCs accumulating following impaired axonal growth in ALS remains unclear. Here, we analyze SC phenotypes in sciatic nerves of ALS patients and paralytic SOD1G93A rats, and identify remarkably similar and specific reactive SC phenotypes based on the pattern of S100β, GFAP, isolectin and/or p75NTR immunoreactivity. Different subsets of reactive SCs expressed colony-stimulating factor-1 (CSF1) and Interleukin-34 (IL-34) and closely interacted with numerous endoneurial CSF-1R-expressing monocyte/macrophages, suggesting a paracrine mechanism of myeloid cell expansion and activation. SCs bearing phagocytic phenotypes as well as endoneurial macrophages expressed stem cell factor (SCF), a trophic factor that attracts and activates mast cells through the c-Kit receptor. Notably, a subpopulation of Ki67+ SCs expressed c-Kit in the sciatic nerves of SOD1G93A rats, suggesting a signaling pathway that fuels SC proliferation in ALS. c-Kit+ mast cells were also abundant in the sciatic nerve from ALS donors but not in controls. Pharmacological inhibition of CSF-1R and c-Kit with masitinib in SOD1G93A rats potently reduced SC reactivity and immune cell infiltration in the sciatic nerve and ventral roots, suggesting a mechanism by which the drug ameliorates peripheral nerve pathology. These findings provide strong evidence for a previously unknown inflammatory mechanism triggered by SCs in ALS peripheral nerves that has broad application in developing novel therapies.
Collapse
Affiliation(s)
| | | | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Yuri Kwon
- Department of Neurology, University of Alabama, Birmingham, Alabama
| | | | | | - Ivan C Moura
- Imagine Institute, Hôpital Necker, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, France
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France.,INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,CNRS ERL 8254, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France.,Equipe Labélisée par la Ligue Nationale contre le cancer, Paris, France.,AB Science, Paris, France.,Department of Hematology, Necker Hospital, Paris, France.,Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | - Joseph S Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon
| | | |
Collapse
|
118
|
Trus E, Basta S, Gee K. Who's in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization. Cytokine 2019; 127:154939. [PMID: 31786501 DOI: 10.1016/j.cyto.2019.154939] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Collapse
Affiliation(s)
- Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
119
|
Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials 2019; 227:119559. [PMID: 31670078 DOI: 10.1016/j.biomaterials.2019.119559] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
Among the numerous immune interactions, or lack-thereof, that occur during cancer progression, tumor-associated macrophages (TAMs) - cancer cell interactions have been shown to play an important role in modulating the tumor-microenvironment to an immune suppressive mode, promoting accelerated tumor growth, survival and metastatic spread. TAMs are predominantly polarized to a pro-tumorigenic M2-phenotype through macrophage colony stimulating factor 1 (MCSF) cytokines that bind to the colony-stimulating factor 1 receptor (CSF1R), a class III receptor tyrosine kinase. This MCSF-CSF1R interaction results in autophosphorylation of CSF1R and subsequent phosphorylation and activation of downstream signaling pathways including mitogen-activated protein kinase (MAPK) pathway leading to proliferation, survival and functional activity of M2 TAMs. Therapeutic inhibition of CSF1R and MAPK signaling could effectively re-polarize M2 macrophages to an anti-tumorigenic M1 phenotype; however, this is challenging. In this study, we demonstrate that concurrent and sustained inhibition of the CSF1R and MAPK signaling pathways using dual-kinase inhibitor-loaded supramolecular nanoparticles (DSNs) enhance repolarization of pro-tumorigenic M2 macrophages to the anti-tumorigenic M1 phenotype. The supramolecular nanoparticles exhibited physical stability of over 7 days during storage conditions at 4 °C and over 24 h in human serum, released the inhibitors in a sustained manner and showed significantly higher internalization and accumulation of inhibitors in the M2 macrophages even at longer time points. When tested in a highly aggressive 4T1 breast cancer model, the supramolecular nanoparticles accumulated in TAMs at a significantly higher concentration, increased M1-like phenotype at significantly higher proportion and improved anti-tumor efficacy as compared to combination of single-inhibitor nanoparticles or the small molecule inhibitors. Our data suggests that concurrent, vertical inhibition of multiple intracellular kinase signaling pathways is important for repolarization of M2 macrophages to M1 phenotype, and by utilizing dual-inhibitor loaded supramolecular nanoparticles, further increase the ability to produce more M1 macrophages as compared to M2 macrophages in the tumor microenvironment. This results in enhanced tumor growth inhibition and reduced toxicity. Therefore, vertical, co-inhibition of CSF1R and downstream signaling pathways like MAPK could be a promising macrophage immunotherapy strategy for aggressive cancers.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Anthony Brouillard
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Dipika Nandi
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA; Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA; Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
120
|
Transcriptional Modulation of the Host Immunity Mediated by Cytokines and Transcriptional Factors in Plasmodium falciparum-Infected Patients of North-East India. Biomolecules 2019; 9:biom9100600. [PMID: 31614626 PMCID: PMC6843480 DOI: 10.3390/biom9100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022] Open
Abstract
Complications due to malaria are caused mostly by host immunological responses. Plasmodium falciparum subverts host immunity by various strategies, including modulation in the host immune responses by regulating cytokines. The transcriptional alterations of major cytokines and immunoregulators were analyzed in this study through gene expression profiling in clinically defined subgroups of P. falciparum patients. Malaria patients were included from Dhalai district hospital of Tripura with uncomplicated malaria (UC) and severe malaria (SM) and healthy controls from endemic and non-endemic areas of India. qPCR gene expression analysis was performed for all factors and they were grouped into three clusters based on their altered expressions. The first cluster was downregulated with an increased parasitic burden which included T-BET, GATA3, EOMES, TGF-β, STAT4, STAT6 and cytokines IFN-γ, IL-12, IL-4, IL-5, and IL-13. RANTES, IL-8, CCR8, and CXCR3 were decreased in the SM group. The second cluster was upregulated with severity and included TNF-α, IL-10, IL-1β and IL-7. PD-1 and BCL6 were increased in the SM group. The third cluster comprised of NF-κB and was not altered. The level of perforin was suppressed while GrB expression was elevated in SM. P. falciparum malaria burden is characterized by the modulation of host immunity via compromization of T cell-mediated responses and suppression of innate immune-regulators.
Collapse
|
121
|
Lin W, Xu D, Austin CD, Caplazi P, Senger K, Sun Y, Jeet S, Young J, Delarosa D, Suto E, Huang Z, Zhang J, Yan D, Corzo C, Barck K, Rajan S, Looney C, Gandham V, Lesch J, Liang WC, Mai E, Ngu H, Ratti N, Chen Y, Misner D, Lin T, Danilenko D, Katavolos P, Doudemont E, Uppal H, Eastham J, Mak J, de Almeida PE, Bao K, Hadadianpour A, Keir M, Carano RAD, Diehl L, Xu M, Wu Y, Weimer RM, DeVoss J, Lee WP, Balazs M, Walsh K, Alatsis KR, Martin F, Zarrin AA. Function of CSF1 and IL34 in Macrophage Homeostasis, Inflammation, and Cancer. Front Immunol 2019; 10:2019. [PMID: 31552020 PMCID: PMC6736990 DOI: 10.3389/fimmu.2019.02019] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Colony-stimulating factor 1 (CSF1) and interleukin 34 (IL34) signal via the CSF1 receptor to regulate macrophage differentiation. Studies in IL34- or CSF1-deficient mice have revealed that IL34 function is limited to the central nervous system and skin during development. However, the roles of IL34 and CSF1 at homeostasis or in the context of inflammatory diseases or cancer in wild-type mice have not been clarified in vivo. By neutralizing CSF1 and/or IL34 in adult mice, we identified that they play important roles in macrophage differentiation, specifically in steady-state microglia, Langerhans cells, and kidney macrophages. In several inflammatory models, neutralization of both CSF1 and IL34 contributed to maximal disease protection. However, in a myeloid cell-rich tumor model, CSF1 but not IL34 was required for tumor-associated macrophage accumulation and immune homeostasis. Analysis of human inflammatory conditions reveals IL34 upregulation that may account for the protection requirement of IL34 blockade. Furthermore, evaluation of IL34 and CSF1 blockade treatment during Listeria infection reveals no substantial safety concerns. Thus, IL34 and CSF1 play non-redundant roles in macrophage differentiation, and therapeutic intervention targeting IL34 and/or CSF1 may provide an effective treatment in macrophage-driven immune-pathologies.
Collapse
Affiliation(s)
- WeiYu Lin
- Genentech, South San Francisco, CA, United States
| | - Daqi Xu
- Genentech, South San Francisco, CA, United States
| | | | | | - Kate Senger
- Genentech, South San Francisco, CA, United States
| | - Yonglian Sun
- Genentech, South San Francisco, CA, United States
| | | | - Judy Young
- Genentech, South San Francisco, CA, United States
| | | | - Eric Suto
- Genentech, South San Francisco, CA, United States
| | - Zhiyu Huang
- Genentech, South San Francisco, CA, United States
| | - Juan Zhang
- Genentech, South San Francisco, CA, United States
| | - Donghong Yan
- Genentech, South San Francisco, CA, United States
| | - Cesar Corzo
- Genentech, South San Francisco, CA, United States
| | - Kai Barck
- Genentech, South San Francisco, CA, United States
| | | | | | | | - Justin Lesch
- Genentech, South San Francisco, CA, United States
| | | | - Elaine Mai
- Genentech, South San Francisco, CA, United States
| | - Hai Ngu
- Genentech, South San Francisco, CA, United States
| | | | - Yongmei Chen
- Genentech, South San Francisco, CA, United States
| | - Dinah Misner
- Genentech, South San Francisco, CA, United States
| | - Tori Lin
- Genentech, South San Francisco, CA, United States
| | | | | | | | | | | | - Judy Mak
- Genentech, South San Francisco, CA, United States
| | | | | | | | - Mary Keir
- Genentech, South San Francisco, CA, United States
| | | | - Lauri Diehl
- Genentech, South San Francisco, CA, United States
| | - Min Xu
- Genentech, South San Francisco, CA, United States
| | - Yan Wu
- Genentech, South San Francisco, CA, United States
| | | | - Jason DeVoss
- Genentech, South San Francisco, CA, United States
| | - Wyne P Lee
- Genentech, South San Francisco, CA, United States
| | | | - Kevin Walsh
- Genentech, South San Francisco, CA, United States
| | | | | | - Ali A Zarrin
- Genentech, South San Francisco, CA, United States
| |
Collapse
|
122
|
Tozaki-Saitoh H, Tsuda M. Microglia-neuron interactions in the models of neuropathic pain. Biochem Pharmacol 2019; 169:113614. [PMID: 31445020 DOI: 10.1016/j.bcp.2019.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Chronic pain is a debilitating condition that often emerges as a clinical symptom of inflammatory diseases. It has therefore been widely accepted that the immune system critically contributes to the pathology of chronic pain. Microglia, a type of immune cell in the central nervous system, has attracted researchers' attention because in rodent models of neuropathic pain that develop strong mechanical and thermal hypersensitivity, histologically activated microglia are seen in the dorsal horn of spinal cord. Several kinds of cytokines are generated by damaged peripheral neurons and contribute to microglial activation at the distal site of the injury where damaged neurons send their projections. Microglia are known as key players in the surveillance of the local environment in the central nervous system and have a significant role of circuit remodeling by physical contact to synapses. Key molecules for the pathology of neuropathic pain exist in the activated microglia, but the factors driving pain-inducible microglial activation remain unclear. Therefore, to find the key molecules inducing activation of spinal microglia and to figure out the precise mechanism of how microglia modulate neuronal circuits in the spinal cord to form chronic pain state is a critical step for developing effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
123
|
Kobayashi T, Naik S, Nagao K. Choreographing Immunity in the Skin Epithelial Barrier. Immunity 2019; 50:552-565. [PMID: 30893586 DOI: 10.1016/j.immuni.2019.02.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
The skin interfaces with the external environment and is home to a myriad of immune cells that patrol the barrier to ward off harmful agents and aid in tissue repair. The formation of the cutaneous immune arsenal begins before birth and evolves throughout our lifetime, incorporating exogenous cues from microbes and inflammatory encounters, to achieve optimal fitness and function. Here, we discuss the context-specific signals that drive productive immune responses in the skin epithelium, highlighting key modulators of these reactions, including hair follicles, neurons, and commensal microbes. We thus also discuss the causal and mechanistic underpinning of inflammatory skin diseases that have been revealed in recent years. Finally, we discuss the non-canonical functions of cutaneous immune cells including their burgeoning role in epithelial regeneration and repair. The rapidly growing field of cutaneous immunity is revealing immune mechanisms and functions that can be harnessed to boost skin health and treat disease.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shruti Naik
- Department of Pathology, Ronald O. Perelman Department of Dermatology, and Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
124
|
Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Sci Rep 2019; 9:11634. [PMID: 31406165 PMCID: PMC6690941 DOI: 10.1038/s41598-019-48051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.
Collapse
|
125
|
Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S. DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 2019; 20:623. [PMID: 31366318 PMCID: PMC6670134 DOI: 10.1186/s12864-019-5976-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. Results DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. Conclusions Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5976-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
126
|
Ge Y, Huang M, Yao YM. Immunomodulation of Interleukin-34 and its Potential Significance as a Disease Biomarker and Therapeutic Target. Int J Biol Sci 2019; 15:1835-1845. [PMID: 31523186 PMCID: PMC6743287 DOI: 10.7150/ijbs.35070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-34 is a cytokine discovered a few years ago and identified as the second colony-stimulating factor (CSF)-1 receptor (CSF-1R) ligand. Although CSF-1 and IL-34 share the same receptor through which they trigger similar effects, IL-34 also binds to receptors protein-tyrosine phosphatase (PTP)-ζ and syndecan-1. Thus, IL-34 is involved in several signaling pathways and participates in a wide array of biological actions. This review analyzes current studies on the role of IL-34 under physiological and pathological conditions, and explores its potential significance as a disease biomarker and therapeutic target. In physiological conditions, IL-34 expression is restricted to the microglia and Langerhans cells, with a fundamental role in cellular differentiation, adhesion and migration, proliferation, metabolism, and survival. It is released in response to inflammatory stimuli, such as pathogen-associated molecular patterns or pro-inflammatory cytokines, with effects over various immune cells, including monocytes, macrophages, and regulatory T cells that shape the immune microenvironment. Over the past decade, accumulating evidence has suggested a potent immune regulation of IL-34 in pathological states such as autoimmune diseases, cancer, transplant rejection, neurologic diseases, infections, and inflammatory diseases. Importantly, IL-34 may hold great promise for acting as a biomarker for monitoring disease severity and progression, and may serve as a new therapeutic target for the treatment of several diseases in clinical settings.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
127
|
Xu WD, Huang AF, Fu L, Liu XY, Su LC. Targeting IL-34 in inflammatory autoimmune diseases. J Cell Physiol 2019; 234:21810-21816. [PMID: 31173370 DOI: 10.1002/jcp.28946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Interleukin-34 (IL-34) shares a common receptor with macrophage colony-stimulating factor (M-CSF), and can bind to CSF-1R, induces lymphocytes differentiation, proliferation, and regulates the synthesis of inflammatory components. Recent findings reported aberrant expression of IL-34 in several autoimmune disorders, such as lupus, arthritis, systemic sclerosis, inflammatory bowel diseases. The functional analysis further demonstrated that IL-34 may perform significantly in these inflammatory autoimmune disorders. IL-34 might consider as a biomarker for these diseases. I hope this collection of the findings in this review will improve knowledge of the role of IL-34, and targeting IL-34 may give the potential for these autoimmune diseases.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
128
|
Aldinucci D, Borghese C, Casagrande N. Formation of the Immunosuppressive Microenvironment of Classic Hodgkin Lymphoma and Therapeutic Approaches to Counter It. Int J Mol Sci 2019; 20:ijms20102416. [PMID: 31096713 PMCID: PMC6566335 DOI: 10.3390/ijms20102416] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a few tumor cells surrounded by a protective, immunosuppressive tumor microenvironment composed of normal cells that are an active part of the disease. Hodgkin and Reed-Sternberg (HRS) cells evade the immune system through a variety of different mechanisms. They evade antitumor effector T cells and natural killer cells and promote T cell exhaustion. Using cytokines and extracellular vesicles, they recruit normal cells, induce their proliferation and "educate" (i.e. reprogram) them to become immunosuppressive and protumorigenic. Therefore, alternative treatment strategies are being developed to target not only tumor cells but also the tumor microenvironment. Here we summarize current knowledge on the ability of HRS cells to build their microenvironment and to educate normal cells to become immunosuppressive. We also describe therapeutic strategies to counteract formation of the tumor microenvironment and related processes leading to T cell exhaustion and repolarization of immunosuppressive tumor-associated macrophages.
Collapse
Affiliation(s)
- Donatella Aldinucci
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| | - Cinzia Borghese
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| | - Naike Casagrande
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy.
| |
Collapse
|
129
|
Udomsinprasert W, Jittikoon J, Honsawek S. Interleukin-34 as a promising clinical biomarker and therapeutic target for inflammatory arthritis. Cytokine Growth Factor Rev 2019; 47:43-53. [PMID: 31126875 DOI: 10.1016/j.cytogfr.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
Abstract
Interleukin-34 (IL-34), recently identified as a novel inflammatory cytokine and the second ligand for colony-stimulating factor-1 receptor, is known to play regulatory roles in the development, maintenance, and function of mononuclear phagocyte lineage cells - especially osteoclasts. Regarding its primary effect on osteoclasts, IL-34 has been shown to stimulate formation and activation of osteoclasts, which in turn magnifies osteoclasts-resorbing activity. In addition to its role in osteoclastogenesis, IL-34 has been implicated in inflammation of synovium via augmenting production of inflammatory mediators, in which altered IL-34 expression is regulated by pro-inflammatory cytokines responsible for cartilage degradation. Indeed, IL-34 has been documented to be highly expressed in inflamed synovium of rheumatoid arthritis (RA) and knee osteoarthritis (OA) patients, which are recognized as inflammatory arthritis. Furthermore, a number of clinical studies demonstrated that IL-34 levels were significantly increased in the circulation and synovial fluid of patients with RA and knee OA. Its levels were also found to be positively associated with disease severity - especially radiographic severity of both RA and knee OA patients. Interestingly, emerging evidence has accumulated that functional blockage of IL-34 with specific antibody can alleviate the severity of inflammatory arthritis. It is therefore reasonable to speculate that IL-34 may be developed as a potential biomarker and a new therapeutic candidate for inflammatory arthritis. To date, there are numerous studies showing IL-34 involvement and association with many aspects of inflammatory arthritis. Herein, this review aimed to summarize the recent findings regarding regulatory role of IL-34 in synovial inflammation-mediated cartilage destruction and update the current comprehensive knowledge on usefulness of IL-34-based treatment in inflammatory arthritis - particularly RA and knee OA.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
130
|
Bellamri N, Morzadec C, Joannes A, Lecureur V, Wollin L, Jouneau S, Vernhet L. Alteration of human macrophage phenotypes by the anti-fibrotic drug nintedanib. Int Immunopharmacol 2019; 72:112-123. [PMID: 30974282 DOI: 10.1016/j.intimp.2019.03.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The tyrosine kinase inhibitor, Nintedanib (NTD), has been approved for the treatment of idiopathic pulmonary fibrosis (IPF). In cell-free systems, NTD was recently shown to inhibit kinase activity of the human recombinant colony-stimulating factor 1 (CSF1) receptor (CSF1R) which mediates major functions of pulmonary macrophages. In the present study, we have investigated the effects of NTD on the phenotype of human monocyte-derived macrophages controlled by CSF1 in order to identify its anti-inflammatory properties via CSF1R inhibition. NTD (0.01 to 1 μM) prevented the CSF1-induced phosphorylation of CSF1R and activation of the downstream signaling pathways. NTD, like the CSF1R inhibitor GW2580, significantly decreased the adhesion of macrophages and production of the chemokine ligand (CCL) 2. NTD also altered the polarization of macrophages to classical M1 and alternative M2a macrophages. It reduced the secretion of several pro-inflammatory and/or pro-fibrotic cytokines (IL-1β, IL-8, IL-10 and CXCL13) by M1 macrophages but did not prevent the expression of M1 markers. While NTD (50-200 nM) partially blocked the synthesis of M2a markers (CD11b, CD200R, CD206, and CD209), it did not reduce synthesis of the M2a pro-fibrotic cytokines CCL22 and PDGF-BB, and increased CCL18 release when used at its highest concentration (1 μM). The effects of NTD on macrophage polarization only was partially mimicked by GW2580, suggesting that the drug inhibits other molecules in addition to CSF1R. In conclusion, NTD alters the CSF1-controlled phenotype of human macrophages mainly by blocking the activation of CSF1R that thus constitutes a new molecular target of NTD, at least in vitro.
Collapse
Affiliation(s)
- Nessrine Bellamri
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Claudie Morzadec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Audrey Joannes
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co, KG, Biberach an der Riss, Germany
| | - Stéphane Jouneau
- Department of Respiratory Diseases, Competence Centre for Rare Pulmonary Disease, Rennes University Hospital, 35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Laurent Vernhet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
131
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M. Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 2019; 16:61. [PMID: 30866963 PMCID: PMC6417251 DOI: 10.1186/s12974-019-1442-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. Methods We created a novel Cx3cr1-Mfp2−/− mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2−/− microglia were assessed in vitro and in vivo after stimulation with IL-1β/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2−/− and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. Results We found that Mfp2−/− microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2−/− microglia in Cx3cr1-Mfp2−/− mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2−/− mice exhibited normal neuronal transmission, clinical performance, and cognition. Conclusion Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life. Electronic supplementary material The online version of this article (10.1186/s12974-019-1442-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.,Present Address: Center for Translational and Computational Neuro-immunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium
| | - Stijn Stroobants
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Sander Beel
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
132
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
133
|
Ogawa S, Matsuoka Y, Takada M, Matsui K, Yamane F, Kubota E, Yasuhara S, Hieda K, Kanayama N, Hatano N, Tokumitsu H, Magari M. Interleukin 34 (IL-34) cell-surface localization regulated by the molecular chaperone 78-kDa glucose-regulated protein facilitates the differentiation of monocytic cells. J Biol Chem 2018; 294:2386-2396. [PMID: 30573681 DOI: 10.1074/jbc.ra118.006226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Interleukin 34 (IL-34) constitutes a cytokine that shares a common receptor, colony-stimulating factor-1 receptor (CSF-1R), with CSF-1. We recently identified a novel type of monocytic cell termed follicular dendritic cell-induced monocytic cells (FDMCs), whose differentiation depended on CSF-1R signaling through the IL-34 produced from a follicular dendritic cell line, FL-Y. Here, we report the functional mechanisms of the IL-34-mediated CSF-1R signaling underlying FDMC differentiation. CRIPSR/Cas9-mediated knockout of the Il34 gene confirmed that the ability of FL-Y cells to induce FDMCs completely depends on the IL-34 expressed by FL-Y cells. Transwell culture experiments revealed that FDMC differentiation requires a signal from a membrane-anchored form of IL-34 on the FL-Y cell surface, but not from a secreted form, in a direct interaction between FDMC precursor cells and FL-Y cells. Furthermore, flow cytometric analysis using an anti-IL-34 antibody indicated that IL-34 was also expressed on the FL-Y cell surface. Thus, we explored proteins interacting with IL-34 in FL-Y cells. Mass spectrometry analysis and pulldown assay identified that IL-34 was associated with the molecular chaperone 78-kDa glucose-regulated protein (GRP78) in the plasma membrane fraction of FL-Y cells. Consistent with this finding, GRP78-heterozygous FL-Y cells expressed a lower level of IL-34 protein on their cell surface and exhibited a reduced competency to induce FDMC differentiation compared with the original FL-Y cells. These results indicated a novel GRP78-dependent localization and specific function of IL-34 in FL-Y cells related to monocytic cell differentiation.
Collapse
Affiliation(s)
- Sayaka Ogawa
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Yukiko Matsuoka
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Miho Takada
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kazue Matsui
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Fumihiro Yamane
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Eri Kubota
- the Department of Applied Chemistry and Biotechnology, Faculty of Engineering, and
| | - Shiori Yasuhara
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Kentaro Hieda
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology
| | - Naoki Kanayama
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Naoya Hatano
- the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology.,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Masaki Magari
- From the Division of Medical Bioengineering, Graduate School of Natural Science and Technology, .,the Laboratory of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
134
|
|
135
|
Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H, Seino KI. Interleukin-34, a comprehensive review. J Leukoc Biol 2018; 104:931-951. [PMID: 30066957 DOI: 10.1002/jlb.mr1117-457r] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
IL-34 is a novel cytokine that was identified in 2008 in a comprehensive proteomic analysis as a tissue-specific ligand of CSF-1 receptor (CSF-1R). IL-34 exists in all vertebrates including fish, amphibians, birds, and mammals, showing high conservation among species. Structurally, IL-34 belongs to the short-chain helical hematopoietic cytokine family but shows no apparent consensus structural domains, motifs, or sequence homology with other cytokines. IL-34 is synthesized as a secreted homodimeric glycoprotein that binds to the extracellular domains of CSF-1R and receptor-type protein-tyrosine phosphatase-zeta (PTP-ζ) in addition to the chondroitin sulfate chains of syndecan-1. These interactions result in activating several signaling pathways that regulate major cellular functions, including proliferation, differentiation, survival, metabolism, and cytokine/chemokine expression in addition to cellular adhesion and migration. In the steady state, IL-34 contributes to the development and maintenance of specific myeloid cell subsets in a tissue-specific manner: Langerhans cells in the skin and microglia in the brain. In pathological conditions, changes in IL-34 expression-increased or decreased-are involved in disease pathogenesis and correlate with progression, severity, and chronicity. One decade after its discovery, IL-34 has been introduced as a newcomer to the big family of interleukins with specific physiological functions, critical pathological roles, and promising clinical applications in disease diagnosis and treatment. In this review, we celebrate the 10th anniversary of IL-34 discovery, introducing its biological characteristics, and discussing the importance of IL-34 signaling network in health and disease.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Umeyama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
136
|
Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother 2018; 103:662-679. [PMID: 29679908 DOI: 10.1016/j.biopha.2018.04.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/25/2022] Open
Abstract
Colony stimulating factor-1 (CSF-1) is one of the most common proinflammatory cytokine responsible for various inflammatory disorders. It has a remarkable role in the development and progression of osteoarthritis, cancer and other autoimmune disease conditions. The CSF-1 acts by binding to the receptor, called colony stimulating factor-1 receptor (CSF-1R) also known as c-FMS resulting in the cascade of signalling pathway causing cell proliferation and differentiation. Interleukin-34 (IL-34), recently identified as another ligand for CSF-IR, is a cytokine protein. Both, CSF-1 and IL-34, although two distinct cytokines, follow the similar signalling pathway on binding to the same receptor, CSF-1R. Like CSF-1, IL-34 promotes the differentiation and survival of monocyte, macrophages and osteoclasts. This CSF-1R/c-FMS is over expressed in many cancers and on tumour associated macrophages, consequently, have been exploited as a drug target for promising treatment for cancer and inflammatory diseases. Some CSF-1R/c-FMS inhibitors such as ABT-869, Imatinib, AG013736, JNJ-40346527, PLX3397, DCC-3014 and Ki20227 have been successfully used in these disease conditions. Many c-FMS inhibitors have been the candidates of clinical trials, but suffer from some side effects like cardiotoxicity, vomiting, swollen eyes, diarrhoea, etc. If selectivity of cFMS inhibition is achieved successfully, side effects can be overruled and this approach may become a novel therapy for treatment of various therapeutic interventions. Thus, successful targeting of c-FMS may result in multifunctional therapy. With this background of information, the present review focuses on the recent developments in the area of CSF-1R/c-FMS inhibitors with emphasis on crystal structure, mechanism of action and various therapeutic implications in which c-FMS plays a pivotal role. The review on structure activity relationship of various compounds acting as the inhibitors of c-FMS which gives the selection criteria for the development of novel molecules is also being presented.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104, Punjab, India
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|