101
|
Koch M, Kreutz S, Böttger C, Grabiec U, Ghadban C, Korf HW, Dehghani F. The cannabinoid WIN 55,212-2-mediated protection of dentate gyrus granule cells is driven by CB1 receptors and modulated by TRPA1 and Cav 2.2 channels. Hippocampus 2012; 21:554-64. [PMID: 20135626 DOI: 10.1002/hipo.20772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cannabinoids regulate numerous physiological and pathological events like inflammation or neurodegeneration via CB(1) and CB(2) receptors. The mechanisms behind cannabinoid effects show a high variability and may also involve transient receptor potential channels (TRP) and N-type voltage-gated Ca(2+) channels (Ca(v) 2.2). In the present study we investigated the neuroprotective effects of the synthetic cannabinoid WIN 55,212-2 (WIN) on dentate gyrus (DG) granule cells and elucidated the involvement of TRP and Ca(v) 2.2 that are shown to participate in inflammatory processes. Organotypic hippocampal slice cultures were excitotoxically lesioned using NMDA and subsequently incubated with different WIN concentrations (0.001-10 μM). WIN showed neuroprotective properties in an inverse concentration-dependent manner, most effectively at 0.01 μM. The CB(1) receptor antagonist AM251 blocked neuroprotection mediated by WIN whereas the CB(2) receptor antagonist AM630 showed no effects. Application of the TRPA1 blocker HC-030031 enhanced the neuroprotective efficacy of high (10 μM) WIN concentrations and the number of degenerating neurons became equal to that seen after application of the most effective WIN dose (0.01 μM). In contrast, the application of TRPA1 agonist icilin or allyl isothiocyanate (AITC) led to a stronger neurodegeneration. The use of TRPV1 blocker 6-iodo-nordihydrocapsaicin did not affect WIN-mediated neuroprotection. The selective Ca(v) 2.2 blocker ω-conotoxin (GVIA) completely blocked neuroprotection shown by 10 μM WIN. GVIA and HC-030031 exerted no effects at WIN concentrations lower than 10 μM. Our data show that WIN protects dentate gyrus granule cells in a concentration dependent manner by acting upon CB(1) receptors. At high (10 μM) concentrations WIN additionally activates TRPA1 and Ca(v) 2.2 within the hippocampal formation that both interfere with CB(1) receptor-mediated neuroprotection. This leads to the conclusion that physiological and pharmacological effects of cannabinoids strongly depend on their concentration and the neuroprotective efficacy of cannabinoids may be determined by interaction of activated CB(1) receptor, TRPA1, and Ca(v) 2.2.
Collapse
Affiliation(s)
- Marco Koch
- Institut für Anatomie II, Goethe Universität Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Battista N, Di Tommaso M, Bari M, Maccarrone M. The endocannabinoid system: an overview. Front Behav Neurosci 2012; 6:9. [PMID: 22457644 PMCID: PMC3303140 DOI: 10.3389/fnbeh.2012.00009] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Upon the identification of anandamide (AEA) in the porcine brain, numerous studies contributed to the current state of knowledge regarding all elements that form the “endocannabinoid system (ECS).”How this complex system of receptors, ligands, and enzymes is integrated in helping to regulate fundamental processes at level of central nervous and peripheral systems and how its regulation and dysregulation might counteract disturbances of such functions, is nowadays still under investigation. However, the most recent advances on the physiological distribution and functional role of ECS allowed the progress of various research tools aimed at the therapeutic exploitation of endocannabinoid (eCB) signaling, as well as the development of novel drugs with pharmacological advantages. Here, we shall briefly overview the metabolic and signal transduction pathways of the main eCBs representatives, AEA, and 2-arachidonoylglycerol (2-AG), and we will discuss the therapeutic potential of new ECS-oriented drugs.
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo Teramo, Italy
| | | | | | | |
Collapse
|
103
|
Díaz-Arteaga A, Vázquez MJ, Vazquez-Martínez R, Pulido MR, Suarez J, Velásquez DA, López M, Ross RA, de Fonseca FR, Bermudez-Silva FJ, Malagón MM, Diéguez C, Nogueiras R. The atypical cannabinoid O-1602 stimulates food intake and adiposity in rats. Diabetes Obes Metab 2012; 14:234-43. [PMID: 21981246 DOI: 10.1111/j.1463-1326.2011.01515.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Cannabinoids are known to control energy homeostasis. Atypical cannabinoids produce pharmacological effects via unidentified targets. We sought to investigate whether the atypical cannabinoid O-1602 controls food intake and body weight. METHODS The rats were injected acutely or subchronically with O-1602, and the expression of several factors involved in adipocyte metabolism was assessed by real-time polymerase chain reaction. In vivo findings were corroborated with in vitro studies incubating 3T3-L1 adipocytes with O-1602, and measuring intracellular calcium and lipid accumulation. Finally, as some reports suggest that O-1602 is an agonist of the putative cannabinoid receptor GPR55, we tested it in mice lacking GPR55. RESULTS Central and peripheral administration of O-1602 acutely stimulates food intake, and chronically increases adiposity. The hyperphagic action of O-1602 is mediated by the downregulation of mRNA and protein levels of the anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript. The effects on fat mass are independent of food intake, and involve a decrease in the expression of lipolytic enzymes such as hormone sensitive lipase and adipose triglyceride lipase in white adipose tissue. Consistently, in vitro data showed that O-1602 increased the levels of intracellular calcium and lipid accumulation in adipocytes. Finally, we injected O-1602 in GPR55 -/- mice and found that O-1602 was able to induce feeding behaviour in GPR55-deficient mice. CONCLUSIONS These findings show that O-1602 modulates food intake and adiposity independently of GPR55 receptor. Thus atypical cannabinoids may represent a novel class of molecules involved in energy balance.
Collapse
Affiliation(s)
- A Díaz-Arteaga
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, S Francisco s/n, Santiago de Compostela (A Coruña), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Moreno-Navarrete JM, Catalán V, Whyte L, Díaz-Arteaga A, Vázquez-Martínez R, Rotellar F, Guzmán R, Gómez-Ambrosi J, Pulido MR, Russell WR, Imbernón M, Ross RA, Malagón MM, Dieguez C, Fernández-Real JM, Frühbeck G, Nogueiras R. The L-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes 2012; 61:281-91. [PMID: 22179809 PMCID: PMC3266411 DOI: 10.2337/db11-0649] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomédica de Girona Catalonia, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Pamplona, Spain
| | - Lauren Whyte
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, U.K
| | - Adenis Díaz-Arteaga
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Fernando Rotellar
- Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Pamplona, Spain
| | - Rocío Guzmán
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Pamplona, Spain
| | - Marina R. Pulido
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Wendy R. Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, U.K
| | - Mónica Imbernón
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Ruth A. Ross
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, U.K
| | - María M. Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Institut d'Investigació Biomédica de Girona Catalonia, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Pamplona, Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Corresponding author: Ruben Nogueiras,
| |
Collapse
|
105
|
Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, Woodcock H, Dorward P, Pigliacampo B, Close S, Platt B, Riedel G. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl) 2012; 219:859-73. [PMID: 21796370 DOI: 10.1007/s00213-011-2415-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/08/2011] [Indexed: 12/17/2022]
Abstract
RATIONALE Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG). OBJECTIVES AND METHODS We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic-pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice. RESULTS All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile. CONCLUSIONS These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.
Collapse
Affiliation(s)
- Serena Deiana
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
The interaction between intrathecal administration of low doses of palmitoylethanolamide and AM251 in formalin-induced pain related behavior and spinal cord IL1-β expression in rats. Neurochem Res 2011; 37:778-85. [PMID: 22201038 DOI: 10.1007/s11064-011-0672-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 01/11/2023]
Abstract
Most of the modulating effects of cannabinoids on pain are through putative cannabinoid CB1 and CB2 receptors. However, the involvement of other receptors is also suggested. Cannabinoid compounds with analgesic activity such as palmitoylethanolamide (PEA) show low affinity to CB1 and CB2 receptors, yet selectively activate GPR55 receptors. The objective of the present study was to evaluate the possible role of spinal CB1 and GPR55 receptors on antinociceptive activity of PEA in formalin test as well as in the spinal expression of IL1-β in rat. Intrathecal (i.t.) administration of PEA (1, 10 μg) significantly decreased both pain-related scores in formalin test and IL1-β expression in rat spinal cord. Pretreatment of rats with low doses of CB1 receptor antagonist/GPR55 receptor agonist AM251 (10, 100 ng; i.t.), did not attenuated the effect of PEA, yet even significantly increased the effect of PEA on IL1-β expression in rat spinal cord. Interestingly, i.t. administration of low doses of AM251 per se significantly decreased both pain related behavior and spinal IL1-β expression in formalin test. These findings suggest the possible involvement of receptors other than CB1 receptors in spinal pain pathways, such as GPR55, in pain modulating activity of cannabinoids.
Collapse
|
107
|
Abstract
Cannabinoids, their receptors and their metabolizing enzymes are emerging as a new regulatory system, which is involved in multiple physiological functions. Normal prostate tissue expresses several constituents of the endocannabinoid system including the CB(1) receptor, receptors belonging to the transient receptor potential family and fatty acid amide hydrolase, a hydrolyzing enzyme, all of which have been localized in the glandular epithelia. Accumulating evidence indicate that the endocannabinoid system is dysregulated in prostate cancer, suggesting that it has a role in prostate homeostasis. Overexpression of several components of the endocannabinoid system correlate with prostate cancer grade and progression, potentially providing a new therapeutic target for prostate cancer. Moreover, several cannabinoids exert antitumoral properties against prostate cancer, reducing xenograft prostate tumor growth, prostate cancer cell proliferation and cell migration. Although the therapeutic potential of cannabinoids against prostate cancer is very promising, future research using animal models is needed to evaluate the influence of systemic networks in their antitumoral action.
Collapse
Affiliation(s)
- Inés Díaz-Laviada
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
108
|
Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2011; 133:79-97. [PMID: 21924288 DOI: 10.1016/j.pharmthera.2011.09.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.
Collapse
Affiliation(s)
- Andrew J Hill
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6UB, United Kingdom
| | | | | | | |
Collapse
|
109
|
Lin XH, Yuece B, Li YY, Feng YJ, Feng JY, Yu LY, Li K, Li YN, Storr M. A novel CB receptor GPR55 and its ligands are involved in regulation of gut movement in rodents. Neurogastroenterol Motil 2011; 23:862-e342. [PMID: 21726355 DOI: 10.1111/j.1365-2982.2011.01742.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was to investigate the effects of the novel cannabinoid receptor - G protein-coupled receptor 55 (GPR55) - and its ligands O-1602 and cannabidiol (CBD) on gastrointestinal (GI) motility in rodents. METHODS Lipopolysaccharide (LPS) was used in vivo to produce the model of septic ileus. The intestinal motility was measured by recording myoelectrical activity of jejunum in rats, and by measuring GI transit with a charcoal marker in mice, in presence of O-1602 or CBD. Inflammatory response was assessed serologically and histologically. The expression and distribution of GPR55 in the different parts of rat intestine were investigated by real-time PCR and immunohistochemistry. In vitro, the effects of the drugs on the GI movement were investigated by measuring the contraction of the intestinal muscle strips in organ bath, and the intracellular responses of the muscle cells with microelectrode technique. KEY RESULTS G protein-coupled receptor 55 was expressed in different parts of rat intestine. Lipopolysaccharide significantly inhibited the intestinal motility, increased inflammatory cytokines and GPR55 expression. Pretreatment with CBD normalized LPS-induced hypomotility and improved the inflammatory responses serologically and histologically. Both O-1602 and CBD counteracted LPS-induced disturbances of the gut contraction, but had no effect on the membrane potential of the muscle cells, while cannabinoid type 1 receptor antagonist AM251 and cannabinoid type 2 receptor antagonist AM630 increased the potential. CONCLUSIONS & INFERENCES G protein-coupled receptor 55 existed throughout the whole intestine of rats. O-1602 or CBD selectively normalized the motility disturbances. Possible mechanisms involved systemic anti-inflammation and the regulation of myoelectrical activity of the intestine.
Collapse
Affiliation(s)
- X-H Lin
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Schuelert N, McDougall JJ. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55. Neurosci Lett 2011; 500:72-6. [DOI: 10.1016/j.neulet.2011.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/10/2011] [Accepted: 06/02/2011] [Indexed: 01/26/2023]
|
111
|
|
112
|
Wu CS, Jew CP, Lu HC. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain. FUTURE NEUROLOGY 2011; 6:459-480. [PMID: 22229018 PMCID: PMC3252200 DOI: 10.2217/fnl.11.27] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cannabis is the most commonly used illicit substance among pregnant women. Human epidemiological and animal studies have found that prenatal cannabis exposure influences brain development and can have long-lasting impacts on cognitive functions. Exploration of the therapeutic potential of cannabis-based medicines and synthetic cannabinoid compounds has given us much insight into the physiological roles of endogenous ligands (endocannabinoids) and their receptors. In this article, we examine human longitudinal cohort studies that document the long-term influence of prenatal exposure to cannabis, followed by an overview of the molecular composition of the endocannabinoid system and the temporal and spatial changes in their expression during brain development. How endocannabinoid signaling modulates fundamental developmental processes such as cell proliferation, neurogenesis, migration and axonal pathfinding are also summarized.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
| | - Christopher P Jew
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Jan & Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund St Suite 1225, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
113
|
Goonawardena AV, Riedel G, Hampson RE. Cannabinoids alter spontaneous firing, bursting, and cell synchrony of hippocampal principal cells. Hippocampus 2011; 21:520-31. [PMID: 20101600 PMCID: PMC3126104 DOI: 10.1002/hipo.20769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both natural and synthetic cannabinoid receptor (e.g., CB1) agonists such as Δ(9)-THC, WIN 55,212-2 (WIN-2), and HU-210 disrupt spatial cognition presumably through the inhibition of synchrony of hippocampal ensemble firing to task-related events. Although the CB1 receptor agonist CP 55,940 also disrupts the synchronous firing of hippocampal neurons, it does not seem to affect the average firing rate. This difference is not readily explained by the chemical structure and pharmacology of the different compounds thus warranting a more detailed examination into (i) how other cannabinoids affect the spontaneous firing, bursting, and cell synchrony of hippocampal principal cells located in CA3 and CA1 subfields, and (ii) whether these effects are indeed mediated through CB1 receptors, which will be explored by the selective antagonist AM-251. Male Long-Evans rats surgically implanted with multielectrode arrays to hippocampal CA3 and CA1 were anesthetized and principal cells discharging at 0.25-6.0 Hz were isolated and "tracked" following the systemic administration of Tween-80, Δ(9)-THC (1 or 3 mg/kg) or WIN-2 (1 mg/kg) or HU-210 (100 μg/kg), and 1.5 mg/kg AM-281. All cannabinoids except for 1 mg/kg Δ(9) -THC reliably reduced average firing rates and altered "burst" characteristics, which were reversible with AM-281 for Δ(9)-THC and WIN-2 but not for HU-210. In addition, all cannabinoids disrupted intrasubfield and intersubfield ensemble synchrony of pyramidal cells, which is an effect insensitive to AM-281 and thus unlikely to be CB1 mediated. We consider these cannabinoid effects on spike timing and firing/bursting of principal hippocampal neurons carried by CB1 and non-CB1 receptors to be physiological underpinnings of the cognitive impairments inherent to cannabinoid exposure.
Collapse
Affiliation(s)
- Anushka V Goonawardena
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- School of Medicine and Life Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gernot Riedel
- School of Medicine and Life Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- School of Medicine and Life Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
114
|
Farrimond JA, Mercier MS, Whalley BJ, Williams CM. Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation. Phytother Res 2011; 25:170-88. [PMID: 21213357 DOI: 10.1002/ptr.3375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/06/2010] [Accepted: 10/09/2010] [Indexed: 01/12/2023]
Abstract
The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine. However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components. Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns. Furthermore we also critically consider the mounting evidence which suggests non-Δ(9) tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa-induced feeding pattern changes. Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra-, inter- and extra-cellular mechanisms of action, we demonstrate that non-Δ(9) tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.
Collapse
Affiliation(s)
- Jonathan A Farrimond
- School of Pharmacy, University of Reading, Reading, UK; School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | | | | | | |
Collapse
|
115
|
Keown OP, Winterburn TJ, Wainwright CL, Macrury SM, Neilson I, Barrett F, Leslie SJ, Megson IL. 2-arachidonyl glycerol activates platelets via conversion to arachidonic acid and not by direct activation of cannabinoid receptors. Br J Clin Pharmacol 2011; 70:180-8. [PMID: 20653671 DOI: 10.1111/j.1365-2125.2010.03697.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT There are conflicting views in the literature as to whether cannabinoids have an impact on platelet activity and to what extent cannabinoid receptors are involved. This is an important issue to resolve because platelet effects of putative therapeutic cannabinoid inhibitors and stimulators will have an impact on their potential benefits and safety. WHAT THIS PAPER ADDS The data presented in this manuscript clearly show that the endocannabinoid 2-arrachidonyl glycerol can activate platelet activity, but that the effects are mediated through an aspirin-sensitive pathway that is not affected by cannabinoid receptor antagonists or FAAH inhibition, but is abolished by MAGL inhibition. The findings question the role of cannabinoid receptors in platelet function and suggest that platelet function is unlikely to be directly affected by cannabinoid receptor antagonists, at least in the acute phase. AIMS Cannabinoid receptor-1 (CB(1)) antagonists suppress appetite and induce weight loss. Direct antagonism of CB(1) receptors on platelets might be an additional benefit for CB(1) antagonists, but the role of CB(1) receptors in platelets is controversial. We tested the hypothesis that the endocannabinoid, 2-arachidonyl glycerol (2-AG), induces platelet aggregation by a COX-mediated mechanism rather than through CB(1) receptor activation, in blood obtained from healthy volunteers and patients with coronary artery disease receiving low dose aspirin. METHODS Aggregatory responses to the cannabinoids 2-AG and Delta(9)-THC were examined in blood sampled from healthy volunteers (n= 8) and patients (n= 12) with coronary artery disease receiving aspirin using whole blood aggregometry. The effects of CB(1) (AM251) and CB(2) (AM630) antagonists, as well as fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) inhibitors and aspirin on 2-AG-induced aggregation were also assessed. RESULTS AM251 (100 nm-30 microm) had no effect on platelet aggregation induced by either ADP (P= 0.90) or thrombin (P= 0.86). 2-AG, but not Delta(9)-THC, induced aggregation. 2-AG-induced aggregation was unaffected by AM251 and AM630 but was abolished by aspirin (P < 0.001) and by the MAGL inhibitor, URB602 (P < 0.001). Moreover, the aggregatory response to 2-AG was depressed (by >75%, P < 0.001) in blood from patients with coronary artery disease receiving aspirin compared with that from healthy volunteers. CONCLUSIONS 2-AG-mediated activation of platelets is via metabolism to arachidonic acid by MAGL, and not through direct action on CB(1) or CB(2) receptors, at least in the acute phase.
Collapse
Affiliation(s)
- Oliver P Keown
- Department of Diabetes & Cardiovascular Science, UHI Millennium Institute, The Centre for Health Science, Old Perth Road, Inverness IV2 3JH, UK
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Hayase T. Depression-related anhedonic behaviors caused by immobilization stress: a comparison with nicotine-induced depression-like behavioral alterations and effects of nicotine and/or "antidepressant" drugs. J Toxicol Sci 2011; 36:31-41. [DOI: 10.2131/jts.36.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
117
|
Ezzili C, Otrubova K, Boger DL. Fatty acid amide signaling molecules. Bioorg Med Chem Lett 2010; 20:5959-68. [PMID: 20817522 PMCID: PMC2942981 DOI: 10.1016/j.bmcl.2010.08.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/06/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
Abstract
Key studies leading to the discovery and definition of the role of endogenous fatty acid amide signaling molecules are summarized.
Collapse
Affiliation(s)
- Cyrine Ezzili
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Katerina Otrubova
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
118
|
Noonan J, Tanveer R, Klompas A, Gowran A, McKiernan J, Campbell VA. Endocannabinoids prevent β-amyloid-mediated lysosomal destabilization in cultured neurons. J Biol Chem 2010; 285:38543-54. [PMID: 20923768 DOI: 10.1074/jbc.m110.162040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal cell loss underlies the pathological decline in cognition and memory associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in AD has emerged as a promising new approach to treatment. Studies have identified neuroprotective roles for endocannabinoids against key pathological events in the AD brain, including cell death by apoptosis. Elucidation of the apoptotic pathway evoked by β-amyloid (Aβ) is thus important for the development of therapeutic strategies that can thwart Aβ toxicity and preserve cell viability. We have previously reported that lysosomal membrane permeabilization plays a distinct role in the apoptotic pathway initiated by Aβ. In the present study, we provide evidence that the endocannabinoid system can stabilize lysosomes against Aβ-induced permeabilization and in turn sustain cell survival. We report that endocannabinoids stabilize lysosomes by preventing the Aβ-induced up-regulation of the tumor suppressor protein, p53, and its interaction with the lysosomal membrane. We also provide evidence that intracellular cannabinoid type 1 receptors play a role in stabilizing lysosomes against Aβ toxicity and thus highlight the functionality of these receptors. Given the deleterious effect of lysosomal membrane permeabilization on cell viability, stabilization of lysosomes with endocannabinoids may represent a novel mechanism by which these lipid modulators confer neuroprotection.
Collapse
Affiliation(s)
- Janis Noonan
- Department of Physiology, School of Medicine and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB(1)) and 2 (CB(2)) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB(1) deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB(2) deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.
Collapse
Affiliation(s)
- Aymen I Idris
- Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Scotland, UK
| | | |
Collapse
|
120
|
Brain CB₂ Receptors: Implications for Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2010; 3:2517-2553. [PMID: 27713365 PMCID: PMC4033937 DOI: 10.3390/ph3082517] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/04/2010] [Accepted: 08/09/2010] [Indexed: 12/26/2022] Open
Abstract
Although previously thought of as the peripheral cannabinoid receptor, it is now accepted that the CB2 receptor is expressed in the central nervous system on microglia, astrocytes and subpopulations of neurons. Expression of the CB2 receptor in the brain is significantly lower than that of the CB1 receptor. Conflicting findings have been reported on the neurological effects of pharmacological agents targeting the CB2 receptor under normal conditions. Under inflammatory conditions, CB2 receptor expression in the brain is enhanced and CB2 receptor agonists exhibit potent anti-inflammatory effects. These findings have prompted research into the CB2 receptor as a possible target for the treatment of neuroinflammatory and neurodegenerative disorders. Neuroinflammatory alterations are also associated with neuropsychiatric disorders and polymorphisms in the CB2 gene have been reported in depression, eating disorders and schizophrenia. This review will examine the evidence to date for a role of brain CB2 receptors in neuropsychiatric disorders.
Collapse
|
121
|
Fonseca BM, Correia-da-Silva G, Taylor AH, Lam PMW, Marczylo TH, Konje JC, Bell SC, Teixeira NA. N-acylethanolamine levels and expression of their metabolizing enzymes during pregnancy. Endocrinology 2010; 151:3965-74. [PMID: 20534733 DOI: 10.1210/en.2009-1424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Decidualization is essential for a successful pregnancy and is a tightly regulated process influenced by the local microenvironment. Lipid-based mediators, such as the endocannabinoid anandamide, and other compounds that have cannabimimetic actions may act on the decidua during early pregnancy. In this study, the levels of N-arachidonoylethanolamine (anandamide) and two other N-acylethanolamines, N-oleoylethanolamine and N-palmitoylethanolamine, were measured in rat plasma and maternal tissues between d 8 and 19 of pregnancy by ultraperformance liquid chromatography tandem mass spectrometry. The spatiotemporal expression of N-acylethanolamine metabolizing enzymes in implantation units were also determined by quantitative PCR, Western blot, and immunohistochemistry and shown to vary with gestation being mainly localized in decidual cells. The data also indicated that plasma and tissues levels of all three N-acylethanolamines fluctuate throughout pregnancy. Tissue levels of endocannabinoids did not correlate with plasma, suggesting that during pregnancy, maternal tissue levels of endocannabinoids are primarily regulated by in situ production and degradation to create endocannabinoid gradients conducive to successful pregnancy.
Collapse
Affiliation(s)
- B M Fonseca
- Departamento de Bioquímica, Faculdade de Farmácia, and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4099-002 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): Possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:711-20. [DOI: 10.1016/j.bbalip.2010.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/13/2010] [Accepted: 03/23/2010] [Indexed: 11/22/2022]
|
123
|
Taylor AH, Amoako AA, Bambang K, Karasu T, Gebeh A, Lam PMW, Marzcylo TH, Konje JC. Endocannabinoids and pregnancy. Clin Chim Acta 2010; 411:921-30. [PMID: 20302856 DOI: 10.1016/j.cca.2010.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
Acylethanolamides such as anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol are endocannabinoids that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. These compounds, their various receptors, the purported membrane transporter(s), and related enzymes that synthesize and degrade them are collectively referred to as the "endocannabinoid system (ECS)". Poorly defined cellular and molecular mechanisms control the biological actions of the ECS. Over the last decade evidence has been emerging to suggest that the ECS plays a significant role in various aspects of human reproduction. In this review, we summarize our current understanding of this role especially the involvement of AEA and related ECS elements in regulating oogenesis, embryo oviductal transport, blastocyst implantation, placental development and pregnancy outcomes, and sperm survival, motility, capacitation and acrosome reaction. Additionally, the possibility that plasma and tissue AEA and other cannabinoids may represent reliable diagnostic markers of natural and assisted reproduction and pregnancy outcomes in women will be discussed.
Collapse
Affiliation(s)
- Anthony H Taylor
- Reproductive Sciences Section, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Buznikov G, Nikitina L, Bezuglov V, Francisco M, Boysen G, Obispo-Peak I, Peterson R, Weiss E, Schuel H, Temple B, Morrow A, Lauder J. A putative 'pre-nervous' endocannabinoid system in early echinoderm development. Dev Neurosci 2010; 32:1-18. [PMID: 19907129 PMCID: PMC2866581 DOI: 10.1159/000235758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/17/2009] [Indexed: 01/20/2023] Open
Abstract
Embryos and larvae of sea urchins (Lytechinus variegatus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, Dendraster excentricus), and starfish (Pisaster ochraceus) were investigated for the presence of a functional endocannabinoid system. Anandamide (arachidonoyl ethanolamide, AEA), was measured in early L. variegatus embryos by liquid chromatography/mass spectrometry. AEA showed a strong developmental dynamic, increasing more than 5-fold between the 8-16 cell and mid-blastula 2 stage. 'Perturb-and-rescue' experiments in different sea urchin species and starfish showed that AEA blocked transition of embryos from the blastula to the gastrula stage, but had no effect on cleavage divisions, even at high doses. The non-selective cannabinoid receptor agonist, CP55940, had similar effects, but unlike AEA, also blocked cleavage divisions. CB1 antagonists, AEA transport inhibitors, and the cation channel transient membrane potential receptor V1 (TrpV1) agonist, arachidonoyl vanillic acid (arvanil), as well as arachidonoyl serotonin and dopamine (AA-5-HT, AA-DA) acted as rescue substances, partially or totally preventing abnormal embryonic phenotypes elicited by AEA or CP55940. Radioligand binding of [(3)H]CP55940 to membrane preparations from embryos/larvae failed to show significant binding, consistent with the lack of CB receptor orthologs in the sea urchin genome. However, when binding was conducted on whole cell lysates, a small amount of [(3)H]CP55940 binding was observed at the pluteus stage that was displaced by the CB2 antagonist, SR144528. Since AEA is known to bind with high affinity to TrpV1 and to certain G-protein-coupled receptors (GPCRs), the ability of arvanil, AA-5-HT and AA-DA to rescue embryos from AEA teratogenesis suggests that in sea urchins AEA and other endocannabinoids may utilize both Trp and GPCR orthologs. This possibility was explored using bioinformatic and phylogenetic tools to identify candidate orthologs in the S. purpuratus sea urchin genome. Candidate TrpA1 and TrpV1 orthologs were identified. The TrpA1 ortholog fell within a monophyletic clade, including both vertebrate and invertebrate orthologs, whereas the TrpV1 orthologs fell within two distinct TrpV-like invertebrate clades. One of the sea urchin TrpV orthologs was more closely related to the vertebrate epithelial calcium channels (TrpV5-6 family) than to the vertebrate TrpV1-4 family, as determined using profile-hidden Markov model (HMM) searches. Candidate dopamine and adrenergic GPCR orthologs were identified in the sea urchin genome, but no cannabinoid GPCRs were found, consistent with earlier studies. Candidate dopamine D(1), D(2) or alpha(1)-adrenergic receptor orthologs were identified as potential progenitors to the vertebrate cannabinoid receptors using HMM searches, depending on whether the multiple sequence alignment of CB receptor sequences consisted only of urochordate and cephalochordate sequences or also included vertebrate sequences.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Chromatography, Liquid
- Computational Biology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Immunohistochemistry
- Mass Spectrometry
- Nerve Net/drug effects
- Nerve Net/embryology
- Nerve Net/metabolism
- Phylogeny
- Polyunsaturated Alkamides/metabolism
- Polyunsaturated Alkamides/pharmacology
- Radioligand Assay
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sea Urchins/drug effects
- Sea Urchins/embryology
- Sea Urchins/metabolism
- Starfish/drug effects
- Starfish/embryology
- Starfish/metabolism
Collapse
Affiliation(s)
- G.A. Buznikov
- Department of Cell and Developmental Biology, (UNCSM)
| | - L.A. Nikitina
- Department of Cell and Developmental Biology, (UNCSM)
| | - V.V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - G. Boysen
- Department of Environmental Sciences and Engineering, and Center of Environmental Health and Susceptibility, School of Public Health, University of North Carolina, Chapel Hill, N.C., USA
| | | | - R.E. Peterson
- Department of Cell and Developmental Biology, (UNCSM)
- Confocal Imaging Core, Neuroscience Center, UNCSM
| | - E.R. Weiss
- Department of Cell and Developmental Biology, (UNCSM)
| | - H. Schuel
- Division of Anatomy and Cell Biology, Department of Pathology and Anatomical Sciences, School of Medicine, State University of New York at Buffalo, Buffalo, N.Y., USA
| | - B.R.S Temple
- R.L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, N.C., USA
| | - A.L. Morrow
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine (UNCSM)
| | - J.M. Lauder
- Department of Cell and Developmental Biology, (UNCSM)
| |
Collapse
|
125
|
Zakrzeska A, Schlicker E, Baranowska M, Kozłowska H, Kwolek G, Malinowska B. A cannabinoid receptor, sensitive to O-1918, is involved in the delayed hypotension induced by anandamide in anaesthetized rats. Br J Pharmacol 2010; 160:574-84. [PMID: 20105178 DOI: 10.1111/j.1476-5381.2009.00579.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravenous injection of the endocannabinoid anandamide induces complex cardiovascular changes via cannabinoid CB(1), CB(2) and vanilloid TRPV1 receptors. Recently, evidence has been accumulating that in vitro, but not in vivo, anandamide relaxes blood vessels, via an as yet unidentified, non-CB(1) vascular cannabinoid receptor, sensitive to O-1918 (1,3-dimethoxy-5-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-benzene). We here examined whether the anandamide-induced hypotension in urethane-anaesthetized rats was also mediated via a non-CB(1) vascular cannabinoid receptor. EXPERIMENTAL APPROACH Effects of two antagonists (O-1918 and cannabidiol) of the non-CB(1) vascular cannabinoid receptor on anandamide-induced changes in mean, systolic and diastolic blood pressure (MBP, SBP, DBP), mesenteric (MBF) and renal (RBF) blood flow and heart rate (HR) in urethane-anaesthetized rats was examined. KEY RESULTS In anaesthetized rats, anandamide (1.5-3 micromol.kg(-1)) and its stable analogue methanandamide (0.5 micromol.kg(-1)) caused a delayed and prolonged decrease in MBP, SBP, DBP, MBF and RBF by about 10-30% of the respective basal values without changing HR. In pithed rats, anandamide (3 micromol.kg(-1)) decreased blood pressure by about 15-20% of the basal value without affecting HR, MBF and RBF. All vascular changes were reduced by about 30-70% by cannabidiol and O-1918 (3 micromol.kg(-1), each). CONCLUSIONS AND IMPLICATIONS Non-CB(1) cannabinoid vascular receptors, sensitive to O-1918, contribute to the hypotensive effect of anandamide in anaesthetized rats. Activation of these receptors may be therapeutically important as the endocannabinoid system could be activated as a compensatory mechanism in various forms of hypertension.
Collapse
Affiliation(s)
- Agnieszka Zakrzeska
- Zakład Fizjologii Doświadczalnej, Uniwersytet Medyczny w Białymstoku, Białystok, Poland
| | | | | | | | | | | |
Collapse
|
126
|
Oesch S, Gertsch J. Cannabinoid receptor ligands as potential anticancer agents — high hopes for new therapies? J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.07.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Objectives
The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB1 receptor is predominantly expressed in neurons but is also co-expressed with the CB2 receptor in peripheral tissues. In recent years, CB receptor ligands, including Δ9-tetrahydrocannabinol, have been proposed as potential anticancer agents.
Key findings
This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB1 and CB2 receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels.
Summary
The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB2-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB1 receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Collapse
Affiliation(s)
- Susanne Oesch
- University Children's Hospital Divisions of Clinical Chemistry and Oncology, University of Zürich, Switzerland
| | - Jürg Gertsch
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| |
Collapse
|
127
|
Synthesis and pharmacological evaluation of sulfamide-based analogues of anandamide. Eur J Med Chem 2009; 44:4889-95. [DOI: 10.1016/j.ejmech.2009.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
128
|
Non-CB1, Non-CB2 Receptors for Endocannabinoids, Plant Cannabinoids, and Synthetic Cannabimimetics: Focus on G-protein-coupled Receptors and Transient Receptor Potential Channels. J Neuroimmune Pharmacol 2009; 5:103-21. [DOI: 10.1007/s11481-009-9177-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 12/24/2022]
|
129
|
Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 2009; 106:16511-6. [PMID: 19805329 PMCID: PMC2737440 DOI: 10.1073/pnas.0902743106] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Indexed: 11/18/2022] Open
Abstract
GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB(1) and CB(2) affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonists O-1602 and LPI inhibited mouse osteoclast formation in vitro, these ligands stimulated mouse and human osteoclast polarization and resorption in vitro and caused activation of Rho and ERK1/2. These stimulatory effects on osteoclast function were attenuated in osteoclasts generated from GPR55(-/-) macrophages and by the GPR55 antagonist cannabidiol (CBD). Furthermore, treatment of mice with this non-psychoactive constituent of cannabis significantly reduced bone resorption in vivo. Consistent with the ability of GPR55 to suppress osteoclast formation but stimulate osteoclast function, histomorphometric and microcomputed tomographic analysis of the long bones from male GPR55(-/-) mice revealed increased numbers of morphologically inactive osteoclasts but a significant increase in the volume and thickness of trabecular bone and the presence of unresorbed cartilage. These data reveal a role of GPR55 in bone physiology by regulating osteoclast number and function. In addition, this study also brings to light an effect of both the endogenous ligand, LPI, on osteoclasts and of the cannabis constituent, CBD, on osteoclasts and bone turnover in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Density
- Bone Resorption/prevention & control
- Bone and Bones/cytology
- Bone and Bones/metabolism
- Cannabidiol/pharmacology
- Cell Line, Tumor
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Fluorescent Antibody Technique
- Humans
- Lysophospholipids/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Osteoblasts/cytology
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteoclasts/cytology
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteogenesis/drug effects
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Lauren S. Whyte
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | | - Susan A. Ridge
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47401
| | | | - Ruth A. Ross
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Michael J. Rogers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
130
|
Lane JR, Beukers MW, Mulder-Krieger T, Ijzerman AP. The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 2009; 79:48-56. [PMID: 19665453 DOI: 10.1016/j.bcp.2009.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/16/2009] [Accepted: 07/31/2009] [Indexed: 12/24/2022]
Abstract
Studies of endogenous cannabinoid agonists, such as 2-arachidonylglycerol (2-AG), have revealed their potential to exert modulatory actions on other receptor systems in addition to their ability to activate cannabinoid receptors. This study investigated the effect of cannabinoid ligands on the human adenosine A(3) (hA(3)R) receptor. The endocannabinoid 2-AG was able to inhibit agonist ([125I]N(6)-(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide)--[125I] AB MECA) binding at the hA(3)R. This inhibition occurred over a narrow range of ligand concentration and was characterized by high Hill coefficients suggesting a non-competitive interaction. Furthermore, in the presence of 2-AG, the rate of [125I] AB MECA dissociation was increased, consistent with an action as a negative allosteric modulator of the hA(3)R. Moreover, by measuring intracellular cAMP levels, we demonstrate that 2-AG decreases both the potency of an agonist at the hA(3)R and the basal signalling of this receptor. Since the hA(3)R has been shown to be expressed in astrocytes and microglia, these findings may be particularly relevant in certain pathological states such as cerebral ischemia where levels of 2-AG and anandamide are raised.
Collapse
Affiliation(s)
- J Robert Lane
- Division of Medicinal Chemistry, Leiden/Amsterdam Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
131
|
Armstrong C, Morgan RJ, Soltesz I. Pursuing paradoxical proconvulsant prophylaxis for epileptogenesis. Epilepsia 2009; 50:1657-69. [PMID: 19552655 DOI: 10.1111/j.1528-1167.2009.02173.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There are essentially two potential treatment options for any acquired disorder: symptomatic or prophylactic. For acquired epilepsies that follow a variety of different brain insults, there remains a complete lack of prophylactic treatment options, whereas at the same time these epilepsies are notoriously resistant, once they have emerged, to symptomatic treatments with antiepileptic drugs. The development of prophylactic strategies is logistically challenging, both for basic researchers and clinicians. Nevertheless, cannabinoid-targeting drugs provide a very interesting example of a system within the central nervous system (CNS) that can have very different acute and long-term effects on hyperexcitability and seizures. In this review, we outline research on cannabinoids suggesting that although cannabinoid antagonists are acutely proconvulsant, they may have beneficial effects on long-term hyperexcitability following brain insults of multiple etiologies, making them promising candidates for further investigation as prophylactics against acquired epilepsy. We then discuss some of the implications of this finding on future attempts at prophylactic treatments, specifically, the very short window within which prevention may be possible, the possibility that traditional anticonvulsants may interfere with prophylactic strategies, and the importance of moving beyond anticonvulsants-even to proconvulsants-to find the ideal preventative strategy for acquired epilepsy.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA.
| | | | | |
Collapse
|
132
|
Hwang J, Adamson C, Butler D, Janero DR, Makriyannis A, Bahr BA. Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci 2009; 86:615-23. [PMID: 19527737 DOI: 10.1016/j.lfs.2009.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 12/31/2022]
Abstract
AIMS This review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential against neuropathological states including traumatic brain injury; Alzheimer's, Huntington's, and Parkinson's diseases; and stroke. MAIN METHODS This proposition is supported by data from numerous in vitro and in vivo experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the endogenous cannabinoid ("endocannabinoid") system and selective FAAH inhibitors. KEY FINDINGS The systems biology of endocannabinoid signaling involves two main cannabinoid receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine ("anandamide") (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid system is capable of activating distinct signaling pathways on-demand in response to pathogenic events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data suggest that endocannabinoid system modulation at discrete targets is a promising pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response. Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways downstream from cannabinoid receptors have been shown to promote neuronal maintenance and function. SIGNIFICANCE This therapeutic modality has the potential to offer site- and event-specific neuroprotection under conditions where endocannabinoids are being produced as part of a physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists to the central nervous system may activate CB receptors indiscriminately and invite unwanted psychotrophic effects.
Collapse
Affiliation(s)
- Jeannie Hwang
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
133
|
Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156:397-411. [PMID: 19226257 DOI: 10.1111/j.1476-5381.2008.00048.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.
Collapse
Affiliation(s)
- Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| |
Collapse
|
134
|
Abstract
AIM Twin studies have shown that cannabis use disorders (abuse/dependence) are highly heritable. This review aims to: (i) review existing linkage studies of cannabis use disorders and (ii) review gene association studies, to identify potential candidate genes, including those that have been tested for composite substance use disorders and (iii) to highlight challenges in the genomic study of cannabis use disorders. METHODS Peer-reviewed linkage and candidate gene association studies are reviewed. RESULTS Four linkage studies are reviewed: results from these have homed in on regions on chromosomes 1, 3, 4, 9, 14, 17 and 18, which harbor candidates of predicted biological relevance, such as monoglyceride lipase (MGLL) on chromosome 3, but also novel genes, including ELTD1[epidermal growth factor (EGF), latrophilin and seven transmembrane domain containing 1] on chromosome 1. Gene association studies are presented for (a) genes posited to have specific influences on cannabis use disorders: CNR1, CB2, FAAH, MGLL, TRPV1 and GPR55 and (b) genes from various neurotransmitter systems that are likely to exert a non-specific influence on risk of cannabis use disorders, e.g. GABRA2, DRD2 and OPRM1. CONCLUSIONS There are challenges associated with (i) understanding biological complexity underlying cannabis use disorders (including the need to study gene-gene and gene-environment interactions), (ii) using diagnostic versus quantitative phenotypes, (iii) delineating which stage of cannabis involvement (e.g. use versus misuse) genes influence and (iv) problems of sample ascertainment.
Collapse
Affiliation(s)
- Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St Louis, MO 63110, USA.
| | | |
Collapse
|
135
|
JANERO DAVIDR, VADIVEL SUBRAMANIANK, MAKRIYANNIS ALEXANDROS. Pharmacotherapeutic modulation of the endocannabinoid signalling system in psychiatric disorders: drug-discovery strategies. Int Rev Psychiatry 2009; 21:122-33. [PMID: 19367506 PMCID: PMC5531754 DOI: 10.1080/09540260902782778] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Medicinal chemistry has produced small-molecule agents with drug-like character that potently and safely modulate the activity of discrete endocannabinoid system components as potential treatments for medical disorders, including various psychiatric conditions. Two cannabinoid (CB) receptors (CB1 and CB2) currently represent prime endocannabinoid-system therapeutic targets for ligands that either mimic endocannabinoid signalling processes and/or potentiate endocannabinoid-system activity (agonists) or attenuate pathologically heightened endocannabinoid-system transmission (antagonists). Two endocannabinoid deactivating enzymes, fatty acid amide hydrolase (FAAH) and soluble monoacylglycerol lipase (MGL), are increasingly prominent targets for inhibitors that indirectly potentiate endocannabinoid-system signalling. Continued profiling of drug candidates in relevant disease models, identification of additional cannabinoid-related therapeutic targets, and validation of new pharmacological modes of endocannabinoid system modulation will undoubtedly invite further translational efforts in the cannabinoid field for treating psychiatric disorders and other medical conditions.
Collapse
|
136
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
137
|
Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 2009; 89:309-80. [PMID: 19126760 DOI: 10.1152/physrev.00019.2008] [Citation(s) in RCA: 1078] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The discovery of cannabinoid receptors and subsequent identification of their endogenous ligands (endocannabinoids) in early 1990s have greatly accelerated research on cannabinoid actions in the brain. Then, the discovery in 2001 that endocannabinoids mediate retrograde synaptic signaling has opened up a new era for cannabinoid research and also established a new concept how diffusible messengers modulate synaptic efficacy and neural activity. The last 7 years have witnessed remarkable advances in our understanding of the endocannabinoid system. It is now well accepted that endocannabinoids are released from postsynaptic neurons, activate presynaptic cannabinoid CB(1) receptors, and cause transient and long-lasting reduction of neurotransmitter release. In this review, we aim to integrate our current understanding of functions of the endocannabinoid system, especially focusing on the control of synaptic transmission in the brain. We summarize recent electrophysiological studies carried out on synapses of various brain regions and discuss how synaptic transmission is regulated by endocannabinoid signaling. Then we refer to recent anatomical studies on subcellular distribution of the molecules involved in endocannabinoid signaling and discuss how these signaling molecules are arranged around synapses. In addition, we make a brief overview of studies on cannabinoid receptors and their intracellular signaling, biochemical studies on endocannabinoid metabolism, and behavioral studies on the roles of the endocannabinoid system in various aspects of neural functions.
Collapse
Affiliation(s)
- Masanobu Kano
- Department of Neurophysiology, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
138
|
Behrenswerth A, Volz N, Toräng J, Hinz S, Bräse S, Müller CE. Synthesis and pharmacological evaluation of coumarin derivatives as cannabinoid receptor antagonists and inverse agonists. Bioorg Med Chem 2009; 17:2842-51. [PMID: 19278853 DOI: 10.1016/j.bmc.2009.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 02/07/2009] [Accepted: 02/15/2009] [Indexed: 11/18/2022]
Abstract
In the present study we synthesized 36 coumarin and 2H-chromene derivatives applying a recently developed umpoled domino reaction using substituted salicylaldehyde and alpha,beta-unsaturated aldehyde derivatives as starting compounds. In radioligand binding studies 5-substituted 3-benzylcoumarin derivatives showed affinity to cannabinoid CB(1) and CB(2) receptors and were identified as new lead structures. In further GTPgammaS binding studies selected compounds were shown to be antagonists or inverse agonists.
Collapse
MESH Headings
- Animals
- Cell Line
- Coumarins/chemical synthesis
- Coumarins/chemistry
- Coumarins/pharmacology
- Drug Inverse Agonism
- Humans
- Rats
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Species Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Andrea Behrenswerth
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
139
|
Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 2009; 11:e3. [PMID: 19152719 DOI: 10.1017/s1462399409000957] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is now a large body of data indicating that the cannabinoid receptor type 2 (CB2) is linked to a variety of immune events. This functional relevance appears to be most salient in the course of inflammation, a process during which there is an increased number of receptors that are available for activation. Studies aimed at elucidating signal transduction events resulting from CB2 interaction with its native ligands, and of the role of exogenous cannabinoids in modulating this process, are providing novel insights into the role of CB2 in maintaining a homeostatic immune balance within the host. Furthermore, these studies suggest that the CB2 may serve as a selective molecular target for therapeutic manipulation of untoward immune responses, including those associated with a variety of neuropathies that exhibit a hyperinflammatory component.
Collapse
|
140
|
Macrophage-conditioned medium upregulates the expression of cannabinoid receptors in human preadipocytes. Proc Nutr Soc 2009. [DOI: 10.1017/s0029665109990425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
141
|
Chapter 13 Endogenous Cannabinoids and Neutrophil Chemotaxis. VITAMINS AND HORMONES 2009; 81:337-65. [DOI: 10.1016/s0083-6729(09)81013-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
142
|
Angarano MB, McMahon RF, Schetz JA. Cannabinoids inhibit zebra mussel (Dreissena polymorpha) byssal attachment: a potentially green antifouling technology. BIOFOULING 2009; 25:127-138. [PMID: 19037826 DOI: 10.1080/08927010802592743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Macrofouling by zebra mussels (Dreissena polymorpha) has serious environmental, economic and legal consequences for freshwater shipping and raw water facilities. Current antifouling technologies, such as organometallics or aggressive oxidisers, have negative environmental impacts limiting their application. As part of an effort to discover antifoulants with a reduced environmental footprint, the endocannabinoid, anandamide and nine other compounds sharing structural or functional features were tested for their ability to inhibit zebra mussel byssal attachment. A byssal attachment bioassay identified six efficacious compounds; four compounds also had no negative impact on mussels at concentrations maximally inhibiting byssal attachment and three of them had no significant cumulative toxicity towards a non-target organism, Daphnia magna. This discovery demonstrates that both naturally occurring and synthetic cannabinoids can serve as non-toxic efficacious zebra mussel antifoulants. Applications with this technology may lead to a new genre of cleaner antifoulants, because the strategy is to prevent attachment rather than to poison mussels.
Collapse
Affiliation(s)
- Maj-Britt Angarano
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| | | | | |
Collapse
|
143
|
Abstract
The active component of marijuana, Delta(9)-tetrahydrocannabinol, activates the CB1 and CB2 cannabinoid receptors, thus mimicking the action of endogenous cannabinoids. CB1 is predominantly neuronal and mediates the cannabinoid psychotropic effects. CB2 is predominantly expressed in peripheral tissues, mainly in pathological conditions. So far the main endocannabinoids, anandamide and 2-arachidonoylglycerol, have been found in bone at 'brain' levels. The CB1 receptor is present mainly in skeletal sympathetic nerve terminals, thus regulating the adrenergic tonic restrain of bone formation. CB2 is expressed in osteoblasts and osteoclasts, stimulates bone formation, and inhibits bone resorption. Because low bone mass is the only spontaneous phenotype so far reported in CB2 mutant mice, it appears that the main physiologic involvement of CB2 is associated with maintaining bone remodeling at balance, thus protecting the skeleton against age-related bone loss. Indeed, in humans, polymorphisms in CNR2, the gene encoding CB2, are strongly associated with postmenopausal osteoporosis. Preclinical studies have shown that a synthetic CB2-specific agonist rescues ovariectomy-induced bone loss. Taken together, the reports on cannabinoid receptors in mice and humans pave the way for the development of 1) diagnostic measures to identify osteoporosis-susceptible polymorphisms in CNR2, and 2) cannabinoid drugs to combat osteoporosis.
Collapse
Affiliation(s)
- Itai Bab
- Bone Laboratory, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
144
|
Ferreira SG, Lomaglio T, Avelino A, Cruz F, Oliveira CR, Cunha RA, Köfalvi A. N-acyldopamines control striatal input terminals via novel ligand-gated cation channels. Neuropharmacology 2008; 56:676-83. [PMID: 19101577 DOI: 10.1016/j.neuropharm.2008.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/20/2008] [Accepted: 12/01/2008] [Indexed: 01/01/2023]
Abstract
Endogenous analogues of capsaicin, N-acyldopamines, were previously identified from striatal extracts, but the putative presynaptic role of their receptor, the TRPV(1)R (formerly: vanilloid or capsaicin receptor) in the caudate-putamen is unclear. We found that the endogenous TRPV(1)R agonists, N-arachidonoyldopamine (NADA) and oleoyldopamine (OLDA) with EC(50) values in the nanomolar range, as well as the synthetic TRPV(1)R activator 2-aminoethoxydiphenylborane (2APB), and palmytoyldopamine (PALDA, another endogenous N-acyldopamine inactive at the TRPV(1)R), but not capsaicin or other endogenous and synthetic cannabinoids, triggered a rapid Ca(2+) entry with the concomitant stimulation of glutamate and dopamine release. These effects persisted in the TRPV(1)R null-mutant mice, and were insensitive to antagonists of common ionotropic receptors, to several TRPV(1)R antagonists and to the absence of K(+). Furthermore, these N-acyldopamine receptors in glutamatergic and dopaminergic terminals are different based on their different sensitivity to anandamide, capsazepine and Gd(3+) at nanomolar concentrations. Altogether, novel ion channels instead of the TRPV(1)R mediate the presynaptic action of N-acyldopamines in the striatum of adult rodents.
Collapse
Affiliation(s)
- Samira G Ferreira
- Center for Neuroscience and Cell Biology of Coimbra, Department of Zoology, Faculty of Medicine, University of Coimbra, 1 Rua Larga, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
145
|
Beaumont H, Jensen J, Carlsson A, Ruth M, Lehmann A, Boeckxstaens G. Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol 2008; 156:153-62. [PMID: 19068079 DOI: 10.1111/j.1476-5381.2008.00010.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient lower oesophageal sphincter relaxations (TLESRs) are the main mechanism underlying gastro-oesophageal reflux and are a potential pharmacological treatment target. We evaluated the effect of the CB(1)/CB(2) receptor agonist delta(9)-tetrahydrocannabinol (delta(9)-THC) on TLESRs in dogs. Based on these findings, the effect of delta(9)-THC was studied in healthy volunteers. EXPERIMENTAL APPROACH In dogs, manometry was used to evaluate the effect of delta(9)-THC in the presence and absence of the CB(1) receptor antagonist SR141716A on TLESRs induced by gastric distension. Secondly, the effect of 10 and 20 mg delta(9)-THC was studied in 18 healthy volunteers in a placebo-controlled study. Manometry was performed before and for 3 h after meal ingestion on three occasions. KEY RESULTS In dogs, delta(9)-THC dose-dependently inhibited TLESRs and reduced acid reflux rate. SR141716A significantly reversed the effects of delta(9)-THC on TLESRs. Similarly, in healthy volunteers, delta(9)-THC significantly reduced the number of TLESRs and caused a non-significant reduction of acid reflux episodes in the first postprandial hour. In addition, lower oesophageal sphincter pressure and swallowing were significantly reduced by delta(9)-THC. After intake of 20 mg, half of the subjects experienced nausea and vomiting leading to premature termination of the study. Other side-effects were hypotension, tachycardia and central effects. CONCLUSIONS AND IMPLICATIONS Delta(9)-THC significantly inhibited the increase in meal-induced TLESRs and reduced spontaneous swallowing in both dogs and humans. In humans, delta(9)-THC significantly reduced basal lower oesophageal sphincter pressure. These findings confirm previous observations in dogs and indicate that cannabinoid receptors are also involved in the triggering of TLESRs in humans.
Collapse
Affiliation(s)
- H Beaumont
- Academic Medical Centre, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
146
|
Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T. 2-Arachidonoyl-sn-glycero-3-phosphoinositol: A Possible Natural Ligand for GPR55. J Biochem 2008; 145:13-20. [DOI: 10.1093/jb/mvn136] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
147
|
Kozłowska H, Baranowska M, Schlicker E, Kozłowski M, Laudañski J, Malinowska B. Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product. Br J Pharmacol 2008; 155:1034-42. [PMID: 18806815 DOI: 10.1038/bjp.2008.371] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid virodhamine is a partial agonist at the cannabinoid CB(1) receptor and a full agonist at the CB(2) receptor, and relaxes rat mesenteric arteries through endothelial cannabinoid receptors. Its concentration in the periphery exceeds that of the endocannabinoid anandamide. Here, we examined the influence of virodhamine on the human pulmonary artery. EXPERIMENTAL APPROACH Isolated human pulmonary arteries were obtained during resections for lung carcinoma. Vasorelaxant effects of virodhamine were examined on endothelium-intact vessels precontracted with 5-HT or KCl. KEY RESULTS Virodhamine, unlike WIN 55,212-2, relaxed 5-HT-precontracted vessels concentration dependently. The effect of virodhamine was reduced by endothelium denudation, two antagonists of the endothelial cannabinoid receptor, cannabidiol and O-1918, and a high concentration of the CB(1) receptor antagonist rimonabant (5 muM), but only slightly attenuated by the NOS inhibitor L-NAME and not affected by a lower concentration of rimonabant (100 nM) or by the CB(2) and vanilloid receptor antagonists SR 144528 and capsazepine, respectively. The COX inhibitor indomethacin and the fatty acid amide hydrolase inhibitor URB597 and combined administration of selective blockers of small (apamin) and intermediate and large (charybdotoxin) conductance Ca(2+)-activated K(+) channels attenuated virodhamine-induced relaxation. The vasorelaxant potency of virodhamine was lower in KCl- than in 5-HT-precontracted preparations. CONCLUSIONS AND IMPLICATIONS Virodhamine relaxes the human pulmonary artery through the putative endothelial cannabinoid receptor and indirectly through a COX-derived vasorelaxant prostanoid formed from the virodhamine metabolite, arachidonic acid. One or both of these mechanisms may stimulate vasorelaxant Ca(2+)-activated K(+) channels.
Collapse
Affiliation(s)
- H Kozłowska
- Department of Experimental Physiology, Medical University of Białystok, Białystok, Poland.
| | | | | | | | | | | |
Collapse
|
148
|
Burston JJ, Sim-Selley LJ, Harloe JP, Mahadevan A, Razdan RK, Selley DE, Wiley JL. N-arachidonyl maleimide potentiates the pharmacological and biochemical effects of the endocannabinoid 2-arachidonylglycerol through inhibition of monoacylglycerol lipase. J Pharmacol Exp Ther 2008; 327:546-53. [PMID: 18682568 DOI: 10.1124/jpet.108.141382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Inhibition of the metabolism of the endocannabinoids, anandamide (AEA) and 2-arachidonyl glycerol (2-AG), by their primary metabolic enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively, has the potential to increase understanding of the physiological functions of the endocannabinoid system. To date, selective inhibitors of FAAH, but not MAGL, have been developed. The purpose of this study was to determine the selectivity and efficacy of N-arachidonyl maleimide (NAM), a putative MAGL inhibitor, for modulation of the effects of 2-AG. Our results showed that NAM unmasked 2-AG activity in a tetrad of in vivo tests sensitive to the effects of cannabinoids in mice. The efficacy of 2-AG (and AEA) to produce hypothermia was reduced compared with Delta(9)-tetrahydrocannabinol; however, 2-AG differed from AEA by its lower efficacy for catalepsy. All tetrad effects were partially CB(1) receptor-mediated because they were attenuated (but not eliminated) by SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-H-pyrazole-3-carboxamide HCl] and in CB(1)(-/-) mice. In vitro, NAM increased endogenous levels of 2-AG in the brain. Furthermore, NAM raised the potency of 2-AG, but not AEA, in agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assay, a measure of G-protein activation. These results suggest that NAM is an MAGL inhibitor with in vivo and in vitro efficacy. NAM and other MAGL inhibitors are valuable tools to elucidate the biological functions of 2-AG and to examine the consequences of dysregulation of this endocannabinoid. In addition, NAM's unmasking of 2-AG effects that are only partially reversed by SR141716A offers support for the existence of non-CB(1), non-CB(2) cannabinoid receptors.
Collapse
Affiliation(s)
- James J Burston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298-0613, USA.
| | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
A major finding--that (-)-trans-Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is largely responsible for the psychotropic effects of cannabis--prompted research in the 1970s and 1980s that led to the discovery that this plant cannabinoid acts through at least two types of cannabinoid receptor, CB(1) and CB(2), and that Delta(9)-THC and other compounds that target either or both of these receptors as agonists or antagonists have important therapeutic applications. It also led to the discovery that mammalian tissues can themselves synthesize and release agonists for cannabinoid receptors, the first of these to be discovered being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol. These 'endocannabinoids' are released onto their receptors in a manner that appears to maintain homeostasis within the central nervous system and sometimes either to oppose or to mediate or exacerbate the unwanted effects of certain disorders. This review provides an overview of the pharmacology of cannabinoid receptors and their ligands. It also describes actual and potential clinical uses both for cannabinoid receptor agonists and antagonists and for compounds that affect the activation of cannabinoid receptors less directly, for example by inhibiting the enzymatic hydrolysis of endocannabinoids following their release.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Brain/drug effects
- Brain/physiopathology
- Cannabinoid Receptor Modulators/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Dronabinol/pharmacology
- Dronabinol/therapeutic use
- Endocannabinoids
- Glycerides/metabolism
- Glycerides/pharmacology
- Humans
- Marijuana Abuse/physiopathology
- Polyunsaturated Alkamides/metabolism
- Polyunsaturated Alkamides/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
Collapse
Affiliation(s)
- Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
150
|
Le Foll B, Forget B, Aubin HJ, Goldberg SR. Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 2008; 13:239-52. [PMID: 18482433 DOI: 10.1111/j.1369-1600.2008.00113.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tobacco use is one of the leading preventable causes of death in developed countries. Since existing medications are only partially effective in treating tobacco smokers, there is a great need for improved medications for smoking cessation. It has been recently proposed that cannabinoid CB(1) receptor antagonists represent a new class of therapeutic agents for drug dependence, and notably, nicotine dependence. Here, we will review current evidence supporting the use of this class of drugs for smoking cessation treatment. Pre-clinical studies indicate that nicotine exposure produces changes in endocannabinoid content in the brain. In experimental animals, N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (rimonabant, SR141716) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), two cannabinoid CB(1) receptor antagonists, block nicotine self-administration behavior, an effect that may be related to the blockade of the dopamine-releasing effects of nicotine in the brain. Rimonabant also seems efficacious in decreasing the influence of nicotine-associated stimuli over behavior, suggesting that it may act on two distinct neuronal pathways, those implicated in drug-taking behavior and those involved in relapse phenomena. The utility of rimonabant has been evaluated in several clinical trials. It seems that rimonabant is an efficacious treatment for smoking cessation, although its efficacy does not exceed that of nicotine-replacement therapy and its use may be limited by emotional side effects (nausea, anxiety and depression, mostly). Rimonabant also appears to decrease relapse rates in smokers. These findings indicate significant, but limited, utility of rimonabant for smoking cessation.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|