101
|
Bournival J, Francoeur MA, Renaud J, Martinoli MG. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res 2012; 15:322-33. [PMID: 22524206 DOI: 10.1089/rej.2011.1242] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Complications of diabetes are now well-known to affect sensory, motor, and autonomic nerves. Diabetes is also thought to be involved in neurodegenerative processes characteristic of several neurodegenerative diseases. Indeed, it has been acknowledged recently that hyperglycemia-induced oxidative stress contributes to numerous cellular reactions typical of central nervous system deterioration. The goal of the present study was to evaluate the effects of the polyphenol quercetin and the lignan sesamin on high-glucose (HG)-induced oxidative damage in an in vitro model of dopaminergic neurons, neuronal PC12 cells. When incubated with HG (13.5 mg/mL), neuronal PC12 cells showed a significant increase of cellular death. Our results revealed that quercetin and sesamin defend neuronal PC12 cells from HG-induced cellular demise. An elevated level of reactive oxygen and nitrogen species is a consequence of improved oxidative stress after HG administration, and we demonstrated that this production diminishes with quercetin and sesamin treatment. We also found that quercetin and sesamin elicited an increment of superoxide dismutase activity. DNA fragmentation, Bax/Bcl-2 ratio, nuclear translocation of apoptosis-inducing factor, as well as poly(adenosine diphosphate [ADP]-ribose) polymerase cleavage were significantly reduced by quercetin and sesamin administration, affirming their antiapoptotic features. Also, HG treatment impacted caspase-3 cleavage, supporting caspase-3-dependent pathways as mechanisms of apoptotic death. Our results indicate a powerful role for these natural dietary compounds and emphasize preventive or complementary nutritional strategies for diabetes control.
Collapse
Affiliation(s)
- Julie Bournival
- Cellular Neurobiology, Department of Biochemistry, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
102
|
Abstract
Mutations in SOD1, causative for a subset of familial ALS cases, are associated with the formation of non-normal SOD1 conformers. Recent studies have defined this pool of SOD1 as misfolded and new antibodies have been developed to selectively detect misfolded SOD1 in vivo and in vitro. We will review these new tools and expand on the evidence demonstrating mitochondria as a common intersecting point for misfolded SOD1.
Collapse
Affiliation(s)
- Sarah Pickles
- Centre d'excellence en neuromique de l'Université de Montréal, Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | | |
Collapse
|
103
|
Panchuk RR, Chumak VV, Fil' MR, Havrylyuk DY, Zimenkovsky BS, Lesyk RB, Stoika RS. Study of molecular mechanisms of proapoptotic action of novel heterocyclic 4-thiazolidone derivatives. ACTA ACUST UNITED AC 2012. [DOI: 10.7124/bc.00003d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R. R. Panchuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine
| | | | | | | | | | - R. B. Lesyk
- Danylo Halytsky Lviv National Medical University
| | - R. S. Stoika
- Institute of Cell Biology, National Academy of Sciences of Ukraine
- Ivan Franko Lviv National University
| |
Collapse
|
104
|
Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 2012; 52:538-49. [PMID: 21878340 PMCID: PMC3928598 DOI: 10.1016/j.yjmcc.2011.08.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/10/2023]
Abstract
The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAc) is emerging as an important mechanism for the regulation of numerous biological processes critical for normal cell function. Active synthesis of O-GlcNAc is essential for cell viability and acute activation of pathways resulting in increased protein O-GlcNAc levels improves the tolerance of cells to a wide range of stress stimuli. Conversely sustained increases in O-GlcNAc levels have been implicated in numerous chronic disease states, especially as a pathogenic contributor to diabetic complications. There has been increasing interest in the role of O-GlcNAc in the heart and vascular system and acute activation of O-GlcNAc levels have been shown to reduce ischemia/reperfusion injury, attenuate vascular injury responses as well mediate some of the detrimental effects of diabetes and hypertension on cardiac and vascular function. Here we provide an overview of our current understanding of pathways regulating protein O-GlcNAcylation, summarize the different methodologies for identifying and characterizing O-GlcNAcylated proteins and subsequently focus on two emerging areas: 1) the role of O-GlcNAc as a potential regulator of cardiac metabolism and 2) the cross talk between O-GlcNAc and reactive oxygen species. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren E. Ball
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
105
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
106
|
Miura N, Takemori N, Kikugawa T, Tanji N, Higashiyama S, Yokoyama M. Adseverin: a novel cisplatin-resistant marker in the human bladder cancer cell line HT1376 identified by quantitative proteomic analysis. Mol Oncol 2012; 6:311-22. [PMID: 22265592 DOI: 10.1016/j.molonc.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/07/2011] [Accepted: 12/28/2011] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is currently the most effective antitumor agent available against bladder cancer. However, a majority of patients eventually relapse with cisplatin-resistant disease. Chemoresistance thus remains a major obstacle in bladder cancer therapy. To clarify the molecular mechanisms underlying cisplatin resistance in bladder cancer, we established a cisplatin-resistant subline from the human bladder cancer cell line HT1376 (HT1376-CisR), and conducted large-scale analyses of the expressed proteins using two-dimensional (2D) gel electrophoresis coupled with mass spectrometry (MS). Comparative proteomic analysis of HT1376 and HT1376-CisR cells revealed 36 differentially expressed proteins, wherein 21 proteins were upregulated and 15 were downregulated in HT1376-CisR cells. Among the differentially regulated proteins, adseverin (SCIN), a calcium-dependent actin-binding protein, was overexpressed (4-fold upregulation) in HT1376-CisR, with the increase being more prominent in the mitochondrial fraction than in the cytosol fraction. SCIN mRNA knockdown significantly reduced cell proliferation with mitochondria-mediated apoptosis in HT1376-CisR cells. Immunoprecipitation analysis revealed voltage-dependent anion channels (VDACs) to be bound to SCIN in the mitochondrial fraction. Our results suggest that the VDAC-SCIN interaction may inhibit mitochondria-mediated apoptosis in cisplatin-resistant cells. Targeting the VDAC-SCIN interaction may offer a new therapeutic strategy for cisplatin-resistant bladder cancer.
Collapse
Affiliation(s)
- Noriyoshi Miura
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
107
|
Yu Z, Liu N, Wang Y, Li X, Wang X. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience 2011; 200:99-105. [PMID: 22079573 DOI: 10.1016/j.neuroscience.2011.10.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 01/27/2023]
Abstract
Neuroglobin (Ngb) is a globin protein that is highly and specifically expressed in brain neurons. A large volume of evidence has proven that Ngb is a neuroprotective molecule against hypoxic/ischemic brain injury and other related neurological disorder; however, the underlying mechanisms remain poorly understood. Aiming to provide more clues in understanding the molecular mechanisms of Ngb's neuroprotection, we performed yeast two-hybrid screening to search for proteins that interact with Ngb. From a mouse brain cDNA library, we found totally 36 proteins that potentially interact with Ngb, and 10 of them were each identified in multiple positive clones. The shared sequences within these multiple clones are more likely to be Ngb-interacting domains. In primary cultured mouse cortical neurons, immuno-precipitation was performed to confirm the interactions of selected proteins with Ngb. The discovered Ngb-interacting proteins in this study include those involved in energy metabolism, mitochondria function, and signaling pathways for cell survival and proliferation. Our findings provide molecular targets for investigating protein interaction-based biological functions and neuroprotective mechanisms of Ngb.
Collapse
Affiliation(s)
- Z Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
108
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal 2011; 15:1691-714. [PMID: 20712408 DOI: 10.1089/ars.2010.3504] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria play a central role in cell survival and cell death. While producing the bulk of intracellular ATP, mitochondrial respiration represents the most prominent source of harmful reactive oxygen species. Mitochondria participate in many anabolic pathways, including cholesterol and nucleotide biosynthesis, yet also control multiple biochemical cascades that contribute to the programmed demise of cells. The tumor suppressor protein p53 is best known for its ability to orchestrate a transcriptional response to stress that can have multiple outcomes, including cell cycle arrest and cell death. p53-mediated tumor suppression, however, also involves transcription-independent mechanisms. Cytoplasmic p53 can physically interact with members of the BCL-2 protein family, thereby promoting mitochondrial membrane permeabilization. Moreover, extranuclear p53 can suppress autophagy, a major prosurvival mechanism that is activated in response to multiple stress conditions. Thirty years have passed since its discovery, and p53 has been ascribed with an ever-increasing number of functions. For instance, p53 has turned out to influence the cell's redox status, by transactivating either anti- or pro-oxidant factors, and to regulate the metabolic switch between glycolysis and aerobic respiration. In this review, we will analyze the mechanisms by which p53 affects the balance between the vital and lethal functions of mitochondria.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM U848, Institut Gustave Roussy, Pavillon de Recherche 1, Villejuif (Paris), France
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Cellular extrusion is a mechanism that removes dying cells from epithelial tissues to prevent compromising their barrier function. Extrusion occurs in all observed epithelia in vivo and can be modeled in vitro by inducing apoptosis in cultured epithelial monolayers. We established that actin and myosin form a ring that contracts in the surrounding cells that drives cellular extrusion. It is not clear, however, if all apoptotic pathways lead to extrusion and how apoptosis and extrusion are molecularly linked. Here, we find that both intrinsic and extrinsic apoptotic pathways activate cellular extrusion. The contraction force that drives cellular extrusion requires caspase activity. Further, necrosis does not trigger the cellular extrusion response, but instead necrotic cells are removed from epithelia by a passive, stochastic movement of epithelial cells.
Collapse
Affiliation(s)
- Daniel Andrade
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112, USA.
| | | |
Collapse
|
110
|
Minute kinetics of proapoptotic proteins: BAX and Smac/DIABLO in living tumor cells revealed by homeostatic confocal microscopy. Cytotechnology 2011; 45:141-53. [PMID: 19003251 DOI: 10.1007/s10616-004-7255-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 11/26/2004] [Indexed: 02/05/2023] Open
Abstract
Traditional methods of visualization and analysis based on fixed cell populations treated with the drug for a different time give the limited possibility of time-sequence analysis. In time-lapse microscopy where the whole cell is observed regardless to intracellular structure, precise localization of events and differentiation between colocalization and overlapping of the fluorescence is impossible. Furthermore prolonged experiments with living cells increased the influence of improper environmental conditions. Homeostatic confocal microscopy gives an exceptional insight into minute pattern of changes occurring in the same living cell maintained in stable conditions during whole experimental period. It is built on a confocal system equipped with the homeostatic chamber providing constant, monitored heating and moisturized, CO(2)-enriched atmosphere during long period observations. In the present study 2D/time and 4D homeostatic confocal microscopy were applied for analysis of minute pattern of changes occurring at the mitochondria. The release of Smac/DIABLO from mitochondria in tumor cells under the apoptogenic stimulus, consist of two phases: the first immediately after drug administration, and the major second one after 15 min. Furthermore the time-pattern of BAX translocation to the mitochondria and Smac/DIABLO release coincide, suggesting that the release of Smac/DIABLO is correlated with BAX translocation to the mitochondria.
Collapse
|
111
|
Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat. PLoS One 2011; 6:e21285. [PMID: 21712982 PMCID: PMC3119671 DOI: 10.1371/journal.pone.0021285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023] Open
Abstract
Background We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoKATP channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Methodology/Principal Findings Male Sprague-Dawley rats (350–400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (−40%) and at 6 hr post-sepsis (−20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. Conclusion The data suggest that Bax activation is an upstream event that may precede the opening of the mitoKATP channels in sepsis. We concluded that mitoKATP channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.
Collapse
|
112
|
Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G. IP(3) Receptors, Mitochondria, and Ca Signaling: Implications for Aging. J Aging Res 2011; 2011:920178. [PMID: 21423550 PMCID: PMC3056293 DOI: 10.4061/2011/920178] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
The tight interplay between endoplasmic-reticulum-(ER-) and mitochondria-mediated Ca(2+) signaling is a key determinant of cellular health and cellular fate through the control of apoptosis and autophagy. Proteins that prevent or promote apoptosis and autophagy can affect intracellular Ca(2+) dynamics and homeostasis through binding and modulation of the intracellular Ca(2+)-release and Ca(2+)-uptake mechanisms. During aging, oxidative stress becomes an additional factor that affects ER and mitochondrial function and thus their role in Ca(2+) signaling. Importantly, mitochondrial dysfunction and sustained mitochondrial damage are likely to underlie part of the aging process. In this paper, we will discuss the different mechanisms that control intracellular Ca(2+) signaling with respect to apoptosis and autophagy and review how these processes are affected during aging through accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Biology, K.U.Leuven, Campus Gasthuisberg O/N-1, Herestraat 49, Bus 802, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
113
|
Maekawa N, Hiramoto M, Sakamoto S, Azuma M, Ito T, Ikeda M, Naitou M, Acharya HP, Kobayashi Y, Suematsu M, Handa H, Imai T. High-performance affinity purification for identification of 15-deoxy-Δ12,14-PGJ2 interacting factors using magnetic nanobeads. Biomed Chromatogr 2011; 25:466-71. [DOI: 10.1002/bmc.1469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
114
|
Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 2011; 70:10192-201. [PMID: 21159641 DOI: 10.1158/0008-5472.can-10-2429] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formation of the mitochondrial membrane potential (ΔΨ) depends on flux of respiratory substrates, ATP, ADP, and Pi through voltage-dependent anion channels (VDAC). As tubulin promotes single-channel closure of VDAC, we hypothesized that tubulin is a dynamic regulator of ΔΨ, which in cultured cancer cells was assessed by confocal microscopy of the potential-indicating fluorophore tetramethylrhodamine methylester (TMRM). Microtubule destabilizers, rotenone, colchicine, and nocodazole, and the microtubule stabilizer paclitaxel increased and decreased cellular free tubulin, respectively, and in parallel decreased and increased ΔΨ. Protein kinase A (PKA) activation by cAMP analogues and glycogen synthase kinase 3β (GSK-3β) inhibition decreased ΔΨ, whereas PKA inhibition hyperpolarized, consistent with reports that PKA and GSK-3β decrease and increase VDAC conductance, respectively. Plasma membrane potential assessed by DiBAC(4)(3) was not altered by any of the treatments. We propose that inhibition of VDAC by free tubulin limits mitochondrial metabolism in cancer cells.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Center for Cell Death, Injury & Regeneration, Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
115
|
Ichimura T, Ito M, Takahashi K, Oyama K, Sakurai K. Involvement of mitochondrial swelling in cytochrome c release from mitochondria treated with calcium and Alloxan. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbpc.2011.21002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
116
|
Naoi M, Maruyama W, Inaba-Hasegawa K, Akao Y. Type A monoamine oxidase regulates life and death of neurons in neurodegeneration and neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:85-106. [PMID: 21971004 DOI: 10.1016/b978-0-12-386467-3.00005-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Parkinson's disease, type B monoamine oxidase (MAO-B) is proposed to play an important role in the pathogenesis through production of reactive oxygen species and neurotoxins from protoxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In addition, inhibitors of MAO-B protect neurons in the cellular and animal models of Parkinson's and Alzheimer's diseases. However, the role of type A MAO (MAO-A) in neuronal death and neuroprotection by MAO-B inhibitors has been scarcely elucidated. This chapter presents our recent results on the involvement of MAO-A in the activation of mitochondrial death signal pathway and in the induction of prosurvival genes to prevent cell death with MAO-B inhibitors. The roles of MAO-A in the regulation of neuronal survival and death are discussed in concern to find a novel strategy to protect neurons in age-associated neurodegenerative disorders and depression.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Neurosciences, Gifu International Institute of Biotechnology, Kakamigahara, Gifu, Japan
| | | | | | | |
Collapse
|
117
|
Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1003-13. [PMID: 21146562 DOI: 10.1016/j.bbamcr.2010.11.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 01/08/2023]
Abstract
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signalling, Dept. Molecular and Cellular, campus Gasthuisberg O/N1 K.U.Leuven, Bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
118
|
Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 2010; 30:5698-709. [PMID: 20937774 DOI: 10.1128/mcb.00165-10] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence implicates that the voltage-dependent anion channel (VDAC) functions in mitochondrion-mediated apoptosis and as a critical player in the release of apoptogenic proteins, such as cytochrome c, triggering caspase activation and apoptosis. The mechanisms regulating cytochrome c release and the molecular architecture of the cytochrome c-conducting channel remain unknown. Here the relationship between VDAC oligomerization and the induction of apoptosis was examined. We demonstrated that apoptosis induction by various stimuli was accompanied by highly increased VDAC oligomerization, as revealed by cross-linking and directly monitored in living cells using bioluminescence resonance energy transfer technology. VDAC oligomerization was induced in all cell types and with all apoptosis inducers used, including staurosporine, curcumin, As(2)O(3), etoposide, cisplatin, selenite, tumor necrosis factor alpha (TNF-α), H(2)O(2), and UV irradiation, all acting through different mechanisms yet all involving mitochondria. Moreover, correlation between the levels of VDAC oligomerization and apoptosis was observed. Furthermore, the apoptosis inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited VDAC oligomerization. Finally, a caspase inhibitor had no effect on VDAC oligomerization and cytochrome c release. We propose that VDAC oligomerization is involved in mitochondrion-mediated apoptosis and may represent a general mechanism common to numerous apoptogens acting via different initiating cascades. Thus, targeting the oligomeric status of VDAC, and hence apoptosis, offers a therapeutic strategy for combating cancers and neurodegenerative diseases.
Collapse
|
119
|
Apoptosis quantification at the respiratory epithelium level in asthma. Open Med (Wars) 2010. [DOI: 10.2478/s11536-010-0039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe „changes” occurring in the expression of the factors involved in the apoptotic chain at the level of the respiratory epithelium in asthma is still an unsolved issue. At this level an important role is played by the mitochondria and the factors that influence the membrane permeability, especially the Bcl-2 super family. The purpose of this study is to evaluate both the changes in the expression of the Bcl-2 and of the Bax proapoptotic factors at the respiratory epithelium level in 21 patients with bronchial asthma of different degrees of severity of disease (aaccording to GINA — Global Initiative For Asthma). To accomplish this, fragments of the bronchial mucosa were obtained through fiberbronchoscopy, being afterwords hystologically prepare in view of the immunomarking with anti Bcl-2 and anti-Bax antibodies. Microscopic examination revealed an important decrease in the level of proapoptotic factor Bcl-2 in patients with persistent severe forms of the disease and a significant decrease in the expression of the proapototic Bax factor at the respiratory epithelium level even in the early stages of the disease. Knowing all the factors involved in apoptosis at the respiratory epithelium level in bronchial asthma, as well as of their expression changes will be at the core of new therapeutical approaches to of this disease.
Collapse
|
120
|
Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10:670-81. [PMID: 20601192 DOI: 10.1016/j.mito.2010.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/12/2023]
Abstract
Cancer is an ever-increasing problem that is yet to be harnessed. Frequent mutations make this pathology very variable and, consequently, a considerable challenge. Intriguingly, mitochondria have recently emerged as novel targets for cancer therapy. A group of agents with anti-cancer activity that induce apoptosis by way of mitochondrial destabilisation, termed mitocans, have been a recent focus of research. Of these compounds, many are hydrophobic agents that associate with various sub-cellular organelles. Clearly, modification of such structures with mitochondria-targeting moieties, for example tagging them with lipophilic cations, would be expected to enhance their activity. This may be accomplished by the addition of triphenylphosphonium groups that direct such compounds to mitochondria, enhancing their activity. In this paper, we will review agents that possess anti-cancer activity by way of destabilizing mitochondria and their possible targets. We propose that mitochondrial targeting, in particular where the agent associates directly with the target, results in more specific and efficient anti-cancer drugs of potential high clinical relevance.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Dept. of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
121
|
Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, Brew BJ, Saksena NK. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 2010; 5:27. [PMID: 20573273 PMCID: PMC2904315 DOI: 10.1186/1750-1326-5-27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Li Zhou
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Rizvi M, Jawad N, Li Y, Vizcaychipi MP, Maze M, Ma D. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp Biol Med (Maywood) 2010; 235:886-91. [PMID: 20472713 DOI: 10.1258/ebm.2010.009366] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The noble gas xenon has been shown to be protective in preconditioning settings against renal ischemic injury. The aims of this study were to determine the protective effects of the other noble gases, helium, neon, argon, krypton and xenon, on human tubular kidney HK2 cells in vitro. Cultured human renal tubular cells (HK2) were exposed to noble gas preconditioning (75% noble gas; 20% O(2); 5% CO(2)) for three hours or mock preconditioning. Twenty-four hours after gas exposure, cell injury was provoked with oxygen-glucose deprived (OGD) culture medium for three hours. Cell viability was assessed 24 h post-OGD by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Other cohorts of cultured cells were incubated in the absence of OGD in 75% noble gas, 20% O(2) and 5% CO(2) and cellular signals phospho-Akt (p-Akt), hypoxia-inducible factor-1alpha (HIF-1alpha) and Bcl-2 were assessed by Western blotting. OGD caused a reduction in cell viability to 0.382 +/- 0.1 from 1.0 +/- 0.15 at control (P < 0.01). Neon, argon and krypton showed no protection from injury (0.404 +/- 0.03; 0.428 +/- 0.02; 0.452 +/- 0.02; P > 0.05). Helium by comparison significantly enhanced cell injury (0.191 +/- 0.05; P < 0.01). Xenon alone exerted a protective effect (0.678 +/- 0.07; P < 0.001). In the absence of OGD, helium was also detrimental (0.909 +/- 0.07; P < 0.01). Xenon caused an increased expression of p-Akt, HIF-1alpha and Bcl-2, while the other noble gases did not modify protein expression. These results suggest that unlike other noble gases, preconditioning with the anesthetic noble gas xenon may have a role in protection against renal ischemic injury.
Collapse
Affiliation(s)
- Maleeha Rizvi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
123
|
Sukumaran SK, Fu NY, Tin CB, Wan KF, Lee SS, Yu VC. A Soluble Form of the Pilus Protein FimA Targets the VDAC-Hexokinase Complex at Mitochondria to Suppress Host Cell Apoptosis. Mol Cell 2010; 37:768-83. [DOI: 10.1016/j.molcel.2010.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/28/2009] [Accepted: 12/24/2009] [Indexed: 11/16/2022]
|
124
|
Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 2010; 584:2049-56. [DOI: 10.1016/j.febslet.2010.01.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/25/2023]
|
125
|
Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett 2010; 584:1942-7. [PMID: 20074570 DOI: 10.1016/j.febslet.2010.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/31/2023]
Abstract
Mitochondria process local and global Ca(2+) signals. Thereby the spatiotemporal patterns of mitochondrial Ca(2+) signals determine whether the metabolism of these organelles is adjusted or cell death is executed. Mitochondrial Ca(2+) channels of the inner mitochondrial membrane (IMM) actually implement mitochondrial uptake from cytosolic Ca(2+) rises. Despite great efforts in the past, the identity of mitochondrial Ca(2+) channels is still elusive. Numerous studies aimed to characterize mitochondrial Ca(2+) uniport channels and provided a detailed profile of these great unknowns with important functions. This mini-review revisits previous research on the mechanisms of mitochondrial Ca(2+) uptake and aligns them with most recent findings.
Collapse
|
126
|
Misiti F, Clementi ME, Giardina B. Oxidation of methionine 35 reduces toxicity of the amyloid beta-peptide(1-42) in neuroblastoma cells (IMR-32) via enzyme methionine sulfoxide reductase A expression and function. Neurochem Int 2010; 56:597-602. [PMID: 20060866 DOI: 10.1016/j.neuint.2010.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 12/26/2022]
Abstract
The beta amyloid peptide (Abeta), the major protein component of brain senile plaques in Alzheimer's disease, is known to be directly responsible for the production of free radicals that may lead to neurodegeneration. Our recent evidence suggest that the redox state of methionine residue in position 35 (Met-35) of Abeta has the ability to deeply modify peptide's neurotoxic actions. Reversible oxidation of methionine in proteins involving the enzyme methionine sulfoxide reductase type A (MsrA) is postulated to serve a general antioxidant role and a decrease in MsrA has been implicated in Alzheimer's disease. In rat neuroblastoma cells (IMR-32), we used Abeta(1-42), in which the Met-35 is present in the reduced state, with a modified peptide with oxidized Met-35 (Abeta(1-42)Met35(OX)), as well as an Abeta-derivative in which Met-35 is substituted with norleucine (Abeta(1-42)Nle35) to investigate the relationship between Met-35 redox state, expression and function of MsrA and reactive oxygen species (ROS) generation. The obtained results shown that MsrA activity, as well as mRNA levels, increase in IMR-32 cells treated with Abeta(1-42)Met35(OX), differently to that shown by the reduced derivative. The increase in MsrA function and expression was associated with a decline of ROS levels. None of these effects were observed when cells were exposed to Abeta containing oxidized Met35 (Abeta1-42)Met35(OX). Taken together, the results of the present study indicate that the differential toxicity of Abeta peptides containing reduced or oxidised Met-35 depends on the ability of the latter form to reduce ROS generation by enhancing MsrA gene expression and function and suggests the therapeutic potential of MsrA in Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Misiti
- Department of Health and Motor Sciences, University of Cassino, V.S. Angelo, Polo didattico della Folcara, 03043 Cassino (FR), Italy.
| | | | | |
Collapse
|
127
|
Soustiel JF, Larisch S. Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 2010; 7:13-21. [PMID: 20129493 PMCID: PMC5084108 DOI: 10.1016/j.nurt.2009.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) represents a leading cause of death and morbidity, as well as a considerable social and economical burden in western countries, and has thus emerged as a formidable therapeutic challenge. Yet despite tremendous efforts enlightening the mechanisms of neuronal death, hopes for the "magic bullet" have been repeatedly deceived, and TBI management has remained focused on the control of increased intracranial pressure. Indeed, impairment of cerebral metabolism is traditionally attributed to impaired oxygen delivery mediated by reduced cerebral perfusion in the swollen cerebral parenchyma. Although intuitively appealing, this hypothesis is not entirely supported by physiological facts and does not take into consideration mitochondrial dysfunction that has been repeatedly reported in both human and animal TBI. Although the nature and origin of the events leading to mitochondrial damage may be different, most share a permeabilization of mitochondrial membrane, which therefore may represent a logical target for new therapeutic strategies. Therefore, the proteins mediating these events may represent promising targets for new TBI therapies. Furthermore, mimicking anti-apoptotic proteins, such as Bcl-2 or XIAP, or inhibiting mitochondrial pro-apoptotic proteins, such as Smac/DIABLO, Omi/HTRA2, and ARTS (septin 4 isoform 2) may represent useful novel therapeutic strategies. This review focuses on mechanisms of the mitochondrial membrane permeabilization and its consequences and discusses the current and possible future therapeutic implications of this key event of neuronal death.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | | |
Collapse
|
128
|
Meningococcal porin PorB prevents cellular apoptosis in a toll-like receptor 2- and NF-kappaB-independent manner. Infect Immun 2009; 78:994-1003. [PMID: 20028813 DOI: 10.1128/iai.00156-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meningococcal porin PorB is an inhibitor of apoptosis induced via the intrinsic pathway in various cell types. This effect is attributed to prevention of mitochondrial depolarization and of subsequent release of proapoptotic mitochondrial factors. To determine whether apoptosis is globally inhibited by PorB, we compared the intrinsic and extrinsic pathways in HeLa cells. Interestingly, PorB does not prevent extrinsic apoptosis induced by tumor necrosis factor alpha plus cycloheximide, suggesting a unique mitochondrial pathway specificity. Several intracellular factors regulated by NF-kappaB, including members of the Bcl-2 family and of the inhibitor of apoptosis (IAP) family, play major roles in controlling apoptosis, and some of them are thought to contribute to the antiapoptotic effect of the gonococcal porin, PIB. However, most of the members of the Bcl-2 family and the IAP family are not induced by meningococcal PorB in HeLa cells, with the exception of Bfl-1/A1. Interestingly, PorB does not induce NF-kappaB activation in HeLa cells, likely due to a lack of Toll-like receptor 2 (TLR2) expression in these cells. Bfl-1/A1 expression is also regulated by CBF1, a nuclear component of the Notch signaling pathway, independent of NF-kappaB activation. Since HeLa cells are protected by PorB from intrinsic apoptosis events, regardless of TLR2 and NF-kappaB expression, the possibility of a contribution of alternative signaling pathways to this effect cannot be excluded. In this paper, we describe an initial dissection of the cascade of cellular events involved in the antiapoptotic effect of PorB in the absence of TLR2.
Collapse
|
129
|
Altonsy MO, Andrews SC, Tuohy KM. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 2009; 137:190-203. [PMID: 20036023 DOI: 10.1016/j.ijfoodmicro.2009.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/29/2009] [Accepted: 11/22/2009] [Indexed: 12/20/2022]
Abstract
The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytochrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.
Collapse
Affiliation(s)
- Mohammed O Altonsy
- The School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | | | | |
Collapse
|
130
|
Dasgupta S, Hoque MO, Upadhyay S, Sidransky D. Forced cytochrome B gene mutation expression induces mitochondrial proliferation and prevents apoptosis in human uroepithelial SV-HUC-1 cells. Int J Cancer 2009; 125:2829-35. [PMID: 19569044 DOI: 10.1002/ijc.24701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria encoded Cytochrome B (CYTB) gene mutations were reported in tumors of different anatomic origin but the functional significance of these mutations are not well studied. Earlier, we found a 7-amino acid deletion mutation in the CYTB gene in a primary bladder cancer patient. In the present study, we overexpressed this 7-amino acid deletion mutation of CYTB gene in SV-40 transformed human uroepithelial HUC-1 cells. The nuclear transcribed mitochondrial CYTB (mtCYTB) was targeted into the mitochondria and generated increased copies of mitochondria and mitochondrial COX-I protein in the transfected HUC-1 cells. The proapoptotic protein Bax largely remained confined to the cytoplasm of the mtCYTB transfected HUC-1 cells without release of Cytochrome C. The downstream apoptotic proteins PARP also remained uncleaved along with increased Lamin B1 in the mtCYTB transfected cells. Our results demonstrate that forced overexpression of mtCYTB in transformed human uroepithelial HUC-1 cells triggered mitochondrial proliferation and induction of an antiapoptotic signaling cascade favoring sustained cellular growth. Coding mitochondrial DNA mutations appear to have significant functional contribution in tumor progression.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Otolaryngology-Head and Neck Surgery, Division of Head and Neck Cancer Research, Johns Hopkins University, North Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
131
|
Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V, De Giorgi F. Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 2009; 19:1363-76. [PMID: 19668262 DOI: 10.1038/cr.2009.98] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Voltage-dependent anion channel (VDAC)1 is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that overexpression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 expression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-MIM crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and Bcl-X(L), indicative of PTP operation. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome c release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDAC1-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Flora Tomasello
- INSERM U916, Université Bordeaux 2, Institut Bergonié, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 2009; 29:1169-80. [PMID: 19466539 DOI: 10.1007/s10571-009-9411-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 05/06/2009] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species produced by oxidative stress may participate in the apoptotic death of dopamine neurons distinctive of Parkinson's disease. Resveratrol, a red wine extract, and quercetin, found mainly in green tea, are two natural polyphenols, presenting antioxidant properties in a variety of cellular paradigms. The aim of this study was to evaluate the effect of resveratrol and quercetin on the apoptotic cascade induced by the administration of 1-methyl-4-phenylpyridinium ion (MPP(+)), a Parkinsonian toxin, provoking the selective degeneration of dopaminergic neurons. Our results show that a pre-treatment for 3 h with resveratrol or quercetin before MPP(+) administration could greatly reduce apoptotic neuronal PC12 death induced by MPP(+). We also demonstrated that resveratrol or quercetin modulates mRNA levels and protein expression of Bax, a pro-apoptotic gene, and Bcl-2, an anti-apoptotic gene. We then evaluated the release of cytochrome c and the nuclear translocation of the apoptosis-inducing factor (AIF). Altogether, our results indicate that resveratrol and quercetin diminish apoptotic neuronal cell death by acting on the expression of pro- and anti-apoptotic genes. These findings support the role of these natural polyphenols in preventive and/or complementary therapies for several human neurodegenerative diseases caused by oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Julie Bournival
- Department of Biochemistry and Neuroscience Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | | | | |
Collapse
|
133
|
Abstract
Hexokinase isoforms I and II bind to mitochondrial outer membranes in large part by interacting with the outer membrane voltage-dependent anion channel (VDAC). This interaction results in a shift in the susceptibility of mitochondria to pro-apoptotic signals that are mediated through Bcl2-family proteins. The upregulation of hexokinase II expression in tumor cells is thought to provide both a metabolic benefit and an apoptosis suppressive capacity that gives the cell a growth advantage and increases its resistance to chemotherapy. However, the mechanisms responsible for the anti-apoptotic effect of hexokinase binding and its regulation remain poorly understood. We hypothesize that hexokinase competes with Bcl2 family proteins for binding to VDAC to influence the balance of pro-and anti-apoptotic proteins that control outer membrane permeabilization. Hexokinase binding to VDAC is regulated by protein kinases, notably glycogen synthase kinase (GSK)-3beta and protein kinase C (PKC)-epsilon. In addition, there is evidence that the cholesterol content of the mitochondrial membranes may contribute to the regulation of hexokinase binding. At the same time, VDAC associated proteins are critically involved in the regulation of cholesterol uptake. A better characterization of these regulatory processes is required to elucidate the role of hexokinases in normal tissue function and to apply these insights for optimizing cancer treatment.
Collapse
|
134
|
Mannella CA, Kinnally KW. Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator. J Bioenerg Biomembr 2009; 40:149-55. [PMID: 18648913 DOI: 10.1007/s10863-008-9143-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is excellent agreement between the electrophysiological properties and the structure of the mitochondrial outer membrane protein, VDAC, ex vivo. However, the inference that the well-defined canonical "open" state of the VDAC pore is the normal physiological state of the channel in vivo is being challenged by several lines of evidence. Knowing the atomic structure of the detergent solubilized protein, a long sought after goal, will not be sufficient to understand the functioning of this channel protein. In addition, detailed information about VDAC's topology in the outer membrane of intact mitochondria, and the structural changes that it undergoes in response to different stimuli in the cell will be needed to define its physiological functions and regulation.
Collapse
Affiliation(s)
- Carmen A Mannella
- Resource for Visualization of Biological Complexity, Wadsworth Center, Albany, NY 12201-0509, USA
| | | |
Collapse
|
135
|
Jonas EA. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Exp Neurol 2009; 218:203-12. [PMID: 19341732 DOI: 10.1016/j.expneurol.2009.03.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial ion channels are involved in numerous cellular processes. Membrane pores and transporters regulate the influx and efflux of calcium, sodium, potassium, zinc and determine the membrane compartmentalization of numerous cytosolic metabolites. The permeability of the inner membrane to ions and solutes helps determine the membrane potential of the inner membrane, but the permeability of the outer membrane, controlled in part by VDAC and the BCL-2 family proteins, regulates the release of important signaling molecules that determine the onset of programmed cell death. BCL-2 family proteins have properties of ion channels and perform specialized physiological functions, for example, regulating the strength and pattern of synaptic transmission, in addition to their well known role in cell death. The ion channels of the inner and outer membranes may come together in a complex of proteins during programmed cell death, particularly during neuronal ischemia, where elevated levels of the divalents calcium and zinc activate inner membrane ion channel conductances. The variety of possible molecular participants within the ion channel complex may be matched only by the variety of different types of programmed cell death.
Collapse
Affiliation(s)
- Elizabeth Ann Jonas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
136
|
Lepsch LB, Munhoz CD, Kawamoto EM, Yshii LM, Lima LS, Curi-Boaventura MF, Salgado TML, Curi R, Planeta CS, Scavone C. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells. Mol Brain 2009; 2:3. [PMID: 19183502 PMCID: PMC2644298 DOI: 10.1186/1756-6606-2-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/01/2009] [Indexed: 01/31/2023] Open
Abstract
Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.
Collapse
Affiliation(s)
- Lucilia B Lepsch
- Department of Pharmacology Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, 05508-900-São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Schober MS, Chidlow G, Wood JP, Casson RJ. Bioenergetic-based neuroprotection and glaucoma. Clin Exp Ophthalmol 2008; 36:377-85. [PMID: 18700928 DOI: 10.1111/j.1442-9071.2008.01740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Primary open-angle glaucoma (POAG) is a pressure-sensitive optic neuropathy which results in the death of retinal ganglion cells and causes associated loss of vision. Presently, the only accepted treatment strategy is to lower the intraocular pressure; however, for some patients this is insufficient to prevent progressive disease. Although the pathogenesis of POAG remains unclear, there is considerable evidence that energy failure at the optic nerve head may be involved. Neuroprotection, a strategy which directly enhances the survival of neurons, is desirable, but remains clinically elusive. One particular form of neuroprotection involves the notion of enhancing the energy supply of neurons. These 'bioenergetic' methods of neuroprotection have proven successful in animal models of other neurodegenerative diseases and conditions, including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and traumatic brain injury, but have been relatively unexplored in glaucoma models. This review focuses on some of the potential approaches for bioenergetic neuroprotection in the retina, including increasing the energy buffering capacity of damaged cells, decreasing the permeability of the mitochondrial membrane pore and free radical scavenging.
Collapse
Affiliation(s)
- Michael S Schober
- South Australian Institute of Ophthalmology, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
139
|
Molecular mechanisms underlying N 1, N 11-diethylnorspermine-induced apoptosis in a human breast cancer cell line. Anticancer Drugs 2008; 19:871-83. [DOI: 10.1097/cad.0b013e32830f902b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
140
|
Abstract
Apoptosis is a physiological process that an organism selectively eliminates cells that are no longer needed, or have been damaged, or are dangerous. Bcl-xL, an important member of the Bcl-2 family that plays indispensable roles in regulating cell survival and apoptosis, is frequently over-expressed in various kinds of human cancers. The inhibition of this molecule is associated with decreased tumorigenesis and resistance to conventional chemotherapy. This article briefly reviews some progresses in the study of Bcl-xL in the past few years.
Collapse
|
141
|
Bernhardt G, Biersack B, Bollwein S, Schobert R, Zoldakova M. Terpene Conjugates of Diaminedichloridoplatinum(II) Complexes: Antiproliferative Effects in HL-60 Leukemia, 518A2 Melanoma, and HT-29 Colon Cancer Cells. Chem Biodivers 2008; 5:1645-1659. [DOI: 10.1002/cbdv.200890152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
142
|
Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM. Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 2008; 86:920-8. [PMID: 17943992 DOI: 10.1002/jnr.21533] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteins of the Bcl-2 family have been implicated in control of apoptotic pathways modulating neuronal cell death, including noise-induced hearing loss. In this study, we assessed the expressions of anti- and proapoptotic Bcl-2 genes, represented by Bcl-xL and Bak following noise exposures, which yielded temporary threshold shift (TTS) or permanent threshold shift (PTS). Auditory brainstem responses (ABRs) were assessed at 4, 8, and 16 kHz before exposure and on days 1, 3, 7, and 10 following exposure to 100 dB SPL, 4 kHz OBN, 1 hr (TTS) or 120 dB SPL, 4 kHz OBN, 5 hr (PTS). On day 10, subjects were euthanized. ABR thresholds increased following both exposures, fully recovered following the TTS exposure, and showed a 22.6 dB (4 kHz), 42.5 dB (8 kHz), and 44.9 dB (16 kHz) mean shift on day 10 following the PTS exposure. PTS was accompanied by outer hair cell loss progressing epically and basally from the 4-kHz region. Additional animals were euthanized for immunohistochemical assessment. BcL-xL was robustly expressed in outer hair cells following TTS exposure, whereas Bak was expressed following PTS exposure. These results indicate an important role of the Bcl-2 family proteins in regulating sensory cell survival or death following intense noise. Bcl-xL plays an essential role in prevention of sensory cell death following TTS levels of noise, and PTS exposure provokes the expression of Bak and, with that, cell death.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA
| | | | | | | | | |
Collapse
|
143
|
Yuan S, Fu Y, Wang X, Shi H, Huang Y, Song X, Li L, Song N, Luo Y. Voltage-dependent anion channel 1 is involved in endostatin-induced endothelial cell apoptosis. FASEB J 2008; 22:2809-20. [PMID: 18381814 DOI: 10.1096/fj.08-107417] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endostatin (ES) was reported to stimulate apoptosis in endothelial cells, but the exact mechanism remains controversial. In the present study, we elucidate the mechanism of ES-induced endothelial cell apoptosis. Our results indicate that ES induces cytochrome c release and caspase-9 activation in human microvascular endothelial cells (HMECs) at the concentration of 1 microM for 24 h, which initiates the apoptosis process. Further, ATP production, mitochondrial membrane potential, and tubule formation assays showed that ES promotes the mitochondrial permeability transition pore (mPTP) opening via voltage-dependent anion channel 1 (VDAC1), a major component of mitochondrial outer membrane. Knocking down VDAC1 by small interfering RNA attenuates ES-induced apoptosis, while overexpression of VDAC1 enhances the sensitivity of endothelial cells to ES. Moreover, we reveal that ES induces the reduction of hexokinase 2 (HK2), which, in turn, promotes VDAC1 phosphorylation and accumulation. Data from two-dimensional electrophoresis, immunoprecipitation, mPTP opening, and caspase-3 activation assays indicate that two serine residues of VDAC1, Ser-12 and Ser-103, can modulate VDAC1 protein level and thus the sensitivity to apoptosis stimuli. On the basis of these findings, we conclude that VDAC1 plays a vital role in modulating ES-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Beijing Key Laboratory for Protein Therapeutics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Rocha Viegas L, Hoijman E, Beato M, Pecci A. Mechanisms involved in tissue-specific apopotosis regulated by glucocorticoids. J Steroid Biochem Mol Biol 2008; 109:273-8. [PMID: 18424036 DOI: 10.1016/j.jsbmb.2008.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Physiological cell turnover is under the control of a sharp and dynamic balance of different homeostatic mechanisms such as the equilibrium between cell proliferation and cell death. These mechanisms play an important role in maintaining normal tissue function and architecture. It is well known that apoptosis is the prevalent mode of physiological cell loss in most tissues. Steroid hormones like glucocorticoids have been identified as key signals controlling cell turnover by modulating programmed cell death in a tissue- and cell-specific manner. In this sense, several reports have demonstrated that glucocorticoids are able to induce apoptosis in cells of the hematopoietic system such as monocytes, macrophages, and T lymphocytes. In contrast, they protect against apoptotic signals evoked by cytokines, cAMP, tumor suppressors, in glandular cells such as the mammary gland epithelia, endometrium, hepatocytes, ovarian follicular cells, and fibroblasts. Although several studies have provided significant information on hormone-dependent apoptosis in an specific tissue, a clearly defined pathway that mediates cell death in response to glucocorticoids in different cell types is still misunderstood. The scope of this review is held to those mechanisms by which glucocorticoids control apoptosis, emphasizing tissue-specific expression of genes that are involved in the apoptotic pathway.
Collapse
Affiliation(s)
- Luciana Rocha Viegas
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cdad. Universitaria, Pab. II, C1428EGA Buenos Aires, Argentina
| | | | | | | |
Collapse
|
145
|
Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. ACTA ACUST UNITED AC 2008; 14:1386-92. [PMID: 18096507 DOI: 10.1016/j.chembiol.2007.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/18/2007] [Accepted: 11/02/2007] [Indexed: 12/27/2022]
Abstract
Exon 2 of the Bcl-x gene undergoes alternative splicing in which the Bcl-xS splice variant promotes apoptosis in contrast to the anti-apoptotic splice variant Bcl-xL. In this study, the regulation of the alternative splicing of pre-mRNA of Bcl-x was examined in response to emetine. Treatment of different types of cancer cells with emetine dihydrochloride downregulated the level of Bcl-xL mRNA with a concomitant increase in the mRNA level of Bcl-xS in a dose- and time-dependent manner. Pretreatment with calyculin A, an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), blocked emetine-induced alternative splicing in contrast to okadaic acid, a specific inhibitor of PP2A in cells, demonstrating a PP1-mediated mechanism. Our finding on the regulation of RNA splicing of members of the Bcl-2 family in response to emetine presents a potential target for cancer treatment.
Collapse
|
146
|
Zhou W, Zhu X, Zhu L, Cui YY, Wang H, Qi H, Ren QS, Chen HZ. Neuroprotection of muscarinic receptor agonist pilocarpine against glutamate-induced apoptosis in retinal neurons. Cell Mol Neurobiol 2008; 28:263-75. [PMID: 18172757 DOI: 10.1007/s10571-007-9251-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/03/2007] [Indexed: 01/08/2023]
Abstract
Neuroprotection offers potential as an alternative therapy for glaucoma. Pilocarpine, as a typical muscarinic receptor agonist, remains among the major intraocular pressure lowering drugs for the conventional treatment of glaucoma. However, whether pilocarpine also possesses neuroprotection against glutamate cytotoxicity in retinal neurons is still unknown. In rat primary retinal cultures, identification of neuron, cell viability, apoptosis, intracellular Ca(2+) concentration, mitochondrial membrane potential, gene expression were studied by immunofluorescence, MTT, High Content Scanning, confocal microscopy, reverse-transcription PCR, and western blot analysis, respectively. Pretreatment of pilocarpine could prevent glutamate-induced neuron death, which was blocked by the non-selective antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. The antiapoptotic effect of pilocarpine was associated with maintaining calcium homeostasis, recovering mitochondrial membrane potential, and regulating the expression of Bcl-2 and Caspase-3. These studies demonstrated that pilocarpine had effective protection against glutamate-induced neuronal apoptosis through M1 muscarinic receptor. The results may provide an insight into the new mechanism of glaucoma therapy that pilocarpine may potentially act as a retinal neuroprotectant.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Kiiver K, Merits A, Sarand I. Novel vectors expressing anti-apoptotic protein Bcl-2 to study cell death in Semliki Forest virus-infected cells. Virus Res 2007; 131:54-64. [PMID: 17904678 PMCID: PMC2194287 DOI: 10.1016/j.virusres.2007.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/04/2007] [Accepted: 08/20/2007] [Indexed: 11/24/2022]
Abstract
Semliki Forest virus (SFV, Alphavirus) induce rapid shut down of host cell protein synthesis and apoptotic death of infected vertebrate cells. Data on alphavirus-induced apoptosis are controversial. In this study, the anti-apoptotic bcl-2 gene was placed under the control of duplicated subgenomic promoter or different internal ribosome entry sites (IRES) and expressed using a novel bicistronic SFV vector. The use of IRES containing vectors resulted in high-level Bcl-2 synthesis during the early stages of infection. Nevertheless, in infected BHK-21 cells translational shutdown was almost complete by 6h post-infection, which was similar to infection with appropriate control vectors. These results indicate that very early and high-level bcl-2 expression did not have a protective effect against SFV induced shutdown of host cell translation. No apoptotic cells were detected at those time points for any SFV vectors. Furthermore, Bcl-2 expression did not protect BHK-21 or AT3-neo cells at later time points, and infection of BHK-21 or AT3-neo cells with SFV replicon vectors or with wild-type SFV4 did not lead to release of cytochrome c from mitochondria. Taken together, our data suggest that SFV induced death in BHK-21 or AT3-neo cells is not triggered by the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Kaja Kiiver
- Estonian Biocentre, Riia Street 23, 51010 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Andres Merits
- Estonian Biocentre, Riia Street 23, 51010 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Corresponding author at: Institute of Molecular and Cell Biology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia. Tel.: +372 7374881; fax: +372 7374900.
| | - Inga Sarand
- Estonian Biocentre, Riia Street 23, 51010 Tartu, Estonia
| |
Collapse
|
148
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|
149
|
|
150
|
Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta Rev Cancer 2007; 1776:86-107. [PMID: 17693025 DOI: 10.1016/j.bbcan.2007.07.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/27/2007] [Accepted: 07/01/2007] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is a recently developed anticancer modality utilizing the generation of singlet oxygen and other reactive oxygen species, through visible light irradiation of a photosensitive dye accumulated in the cancerous tissue. Multiple signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic stress and depending on the subcellular localization of the damaging ROS, these signals are transduced into adaptive or cell death responses. Recent evidence indicates that PDT can kill cancer cells directly by the efficient induction of apoptotic as well as non-apoptotic cell death pathways. The identification of the molecular effectors regulating the cross-talk between apoptosis and other major cell death subroutines (e.g. necrosis, autophagic cell death) is an area of intense research in cancer therapy. Signaling molecules modulating the induction of different cell death pathways can become useful targets to induce or increase photokilling in cancer cells harboring defects in apoptotic pathways, which is a crucial step in carcinogenesis and therapy resistance. This review highlights recent developments aimed at deciphering the molecular interplay between cell death pathways as well as their possible therapeutic exploitation in photosensitized cells.
Collapse
Affiliation(s)
- Esther Buytaert
- Department of Molecular and Cell Biology, Faculty of Medicine, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven Belgium
| | | | | |
Collapse
|