101
|
Khadem F, Uzonna JE. Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol 2015; 9:901-15. [PMID: 25156379 DOI: 10.2217/fmb.14.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, L. infantum (syn. Leishmania chagasi), is a globally widespread disease with a burden of about 400,000 new infections reported annually. It is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several nonendemic areas because of migration, global traveling and military conflicts. The emergence of Leishmania-HIV co-infection and increased prevalence of drug-resistant strains have worsened the impact of the disease. The traditional low-cost drugs are often toxic with several adverse effects, highlighting the need for development of new therapeutic and prophylactic strategies. Therefore, a detailed understanding of mechanisms of protective immunity is extremely important in order to develop new therapeutics in the form of vaccines or immunotherapies. This review gives an overview of visceral leishmaniasis, with particular emphasis on the innate and adaptive immune responses, vaccine and vaccination strategies and their potentials for immunotherapy against the disease.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
102
|
Lucero E, Collin SM, Gomes S, Akter F, Asad A, Kumar Das A, Ritmeijer K. Effectiveness and safety of short course liposomal amphotericin B (AmBisome) as first line treatment for visceral leishmaniasis in Bangladesh. PLoS Negl Trop Dis 2015; 9:e0003699. [PMID: 25837313 PMCID: PMC4383421 DOI: 10.1371/journal.pntd.0003699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Bangladesh is one of the endemic countries for Visceral Leishmaniasis (VL). Médecins Sans Frontières (MSF) ran a VL treatment clinic in the most endemic district (Fulbaria) between 2010 and 2013 using a semi-ambulatory regimen for primary VL of 15mg/kg Liposomal Amphotericin-B (AmBisome) in three equal doses of 5mg/kg. The main objective of this study was to analyze the effectiveness and safety of this regimen after a 12 month follow-up period by retrospective analysis of routinely collected program data. A secondary objective was to explore risk factors for relapse. Methods and Principal Findings Our analysis included 1521 patients who were initially cured, of whom 1278 (84%) and 1179 (77.5%) were followed-up at 6 and 12 months, respectively. Cure rates at 6 and 12 months were 98.7% (1262/1278) and 96.4% (1137/1179), respectively. Most relapses (26/39) occurred between 6 and 12 months after treatment. Serious adverse events (SAE) were recorded for 7 patients (0.5%). Odds of relapse at 12 months were highest in the youngest and oldest age groups. There was some evidence that spleen size measured on discharge (one month after initiation of treatment) was associated with risk of relapse: OR=1.25 (95% CI 1.01 to 1.55) per cm below lower costal margin (P=0.04). Conclusions Our study demonstrates that 15mg/kg AmBisome in three doses of 5mg/kg is an effective (>95% cure rate) and safe (<1% SAE) treatment for primary VL in Bangladesh. The majority of relapses occurred between 6 and 12 months, justifying the use of a longer follow-up period when feasible. Assessment of risk of relapse based on easily measured clinical parameters such as spleen size could be incorporated in VL treatment protocols in resource-poor settings where test-of-cure is not always feasible. Visceral Leishmaniasis (VL) is a parasitic disease which is endemic in more than 80 countries, although 90% of cases occur in India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Most treatments are complex, expensive and require long application periods. AmBisome is one of the newest treatments available, but evidence for its safety and effectiveness under routine program conditions in resource-poor endemic areas remains sparse. Médecins Sans Frontières (MSF) ran a VL clinic from 2010 until 2014 in Fulbaria District, Bangladesh. Our retrospective study was based on all available data from this clinic, comprising 1521 patients diagnosed with primary VL who were treated with AmBisome 15mg/kg in three equal doses of 5mg/kg. We found that this treatment was safe (less than 1% of patients experienced a severe adverse event) and effective (more than 95% of patients were cured with one treatment) after 12 months. The youngest and oldest patients, and patients with large spleen size at the end of treatment, were more likely to experience a relapse. More than half of the relapses occurred between 6 and 12 months after treatment, therefore we recommend that clinical trials and treatment protocols adopt a minimum 12-month follow-up period.
Collapse
Affiliation(s)
- Emiliano Lucero
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Germany
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis—Universidad Nacional de Cordoba, Argentina
| | - Simon M. Collin
- School of Social & Community Medicine, University of Bristol, United Kingdom
| | - Sujit Gomes
- Médecins Sans Frontières, Fulbaria, Bangladesh
| | | | | | | | - Koert Ritmeijer
- Médecins Sans Frontières, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
103
|
Martins NDS, Coelho GB, Santos LSD, Oliveira RAD, Silva ALA, Melo FA. ALTERAÇÕES DA MATRIZ EXTRACELULAR ESPLÊNICA EM CÃES NATURALMENTE INFECTADOS COM Leishmania (Leishmania) infantum chagasi. CIÊNCIA ANIMAL BRASILEIRA 2015. [DOI: 10.1590/1089-68916i123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivou-se estudar as alterações da matriz extracelular no baço de cães naturalmente infectados com Leishmania (Leishmania) infantum chagasi correlacionando-as com aspectos clínicos, histopatológicos e parasitológicos. Foram utilizados 18 cães, divididos em três grupos: seis animais não infectados (grupo controle) e doze animais infectados. Todos sem raça e idade definidas, provenientes da região do Município de São Luis-MA. Cortes parafinados do baço foram corados pela Hematoxilina e Eosina (H&E); Prata amoniacal de Gomori, para marcação das fibras reticulares e pela técnica Imuno-histoquímica da estreptoavidina-peroxidase para detecção de formas amastigotas de Leishmania. As análises morfométricas foram feitas utilizando-se o programa KS300 e o sistema de análise de imagens Kontron Elektronic/Carl Zeiss, Germany. Os resultados mostram que há um aumento significativo da deposição de fibras colágenas no baço quando comparadas aos animais controles, revelando diferenças significativas entre os animais sintomáticos e assintomáticos. Encontraram-se correlações positivas entre a presença do parasitismo tecidual e a deposição de colágeno. Os animais sintomáticos apresentaram uma maior deposição de colágeno no baço, que pode estar associada ao maior parasitismo tecidual encontrado. Os resultados demonstram que na leishmaniose visceral canina há uma fibrogênese intensa no baço, sendo esta associada ao parasitismo tecidual e a processos degenerativos decorrentes da doença.
Collapse
|
104
|
Das S, Freier A, Boussoffara T, Das S, Oswald D, Losch FO, Selka M, Sacerdoti-Sierra N, Schönian G, Wiesmüller KH, Seifert K, Schroff M, Juhls C, Jaffe CL, Roy S, Das P, Louzir H, Croft SL, Modabber F, Walden P. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci Transl Med 2014; 6:234ra56. [PMID: 24786324 DOI: 10.1126/scitranslmed.3008222] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The leishmaniases are protozoal diseases that severely affect large populations in tropical and subtropical regions. There are only limited treatment options and preventative measures. Vaccines will be important for prevention, control and elimination of leishmaniasis, and could reduce the transmission and burden of disease in endemic populations. We report the development of a DNA vaccine against leishmaniasis that induced T cell-based immunity and is a candidate for clinical trials. The vaccine antigens were selected as conserved in various Leishmania species, different endemic regions, and over time. They were tested with T cells from individuals cured of leishmaniasis, and shown to be immunogenic and to induce CD4(+) and CD8(+) T cell responses in genetically diverse human populations of different endemic regions. The vaccine proved protective in a rodent model of infection. Thus, the immunogenicity of candidate vaccine antigens in human populations of endemic regions, as well as proof of principle for induction of specific immune responses and protection against Leishmania infection in mice, provides a viable strategy for T cell vaccine development.
Collapse
Affiliation(s)
- Shantanabha Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Granzyme-mediated regulation of host defense in the liver in experimental Leishmania donovani infection. Infect Immun 2014; 83:702-12. [PMID: 25452549 DOI: 10.1128/iai.02418-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the livers of susceptible C57BL/6 (B6) mice infected with Leishmania donovani, CD8(+) T cell mechanisms are required for granuloma assembly, macrophage activation, intracellular parasite killing, and self-cure. Since gene expression of perforin and granzymes A and B (GzmA and GzmB), cytolytic proteins linked to CD8(+) cell effector function, was enhanced in infected liver tissue, B6 mice deficient in these granular proteins were used to gauge host defense roles. Neither perforin nor GzmA was required; however, mice deficient in GzmB (GzmB(-/-), GzmB cluster(-/-), and GzmA×B cluster double knockout [DKO] mice) showed both delayed granuloma assembly and initially impaired control of parasite replication. Since these two defects in B6 mice were limited to early-stage infection, innately resistant 129/Sv mice were also tested. In this genetic setting, expression of both innate and subsequent T (Th1) cell-dependent acquired resistance, including the self-cure phenotype, was entirely derailed in GzmA×B cluster DKO mice. These results, in susceptible B6 mice for GzmB and in resistant 129/Sv mice for GzmA and/or the GzmB cluster, point to granzyme-mediated host defense regulation in the liver in experimental visceral leishmaniasis.
Collapse
|
106
|
Abstract
Leishmaniasis is a major health problem worldwide, with several countries reporting cases of leishmaniasis resulting in loss of human life or a lifelong stigma because of bodily scars. The Middle East is endemic for cutaneous leishmaniasis, with countries like Syria reporting very high incidence of the disease. Despite several countries establishing national control programs for containing the sandfly vector and treatment of infection, the disease continues to spread. In addition to the endemicity of the region for leishmaniasis, the Middle East has seen a great deal of human migration either for earning of livelihood or due to political upheaval in the region. These factors contribute to the spread and proliferation of the causative species Leishmania and its sandfly host. This review discusses the current epidemiological scenario in Iraq, Syria, Saudi Arabia, and Jordan, emphasizing the number of cases reported, vector species, Leishmania species, and treatment available. The data is primarily from WHO reports for each country and current and old literature.
Collapse
Affiliation(s)
- Nasir Salam
- Department of Biochemistry, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- * E-mail:
| | - Waleed Mohammed Al-Shaqha
- Department of Pharmacology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arezki Azzi
- Department of Pharmacology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
107
|
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology 2014; 141:1544-1562. [PMID: 25075460 DOI: 10.1017/s003118201400095x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Krystal J Evans
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
| |
Collapse
|
108
|
Combining cationic liposomal delivery with MPL-TDM for cysteine protease cocktail vaccination against Leishmania donovani: evidence for antigen synergy and protection. PLoS Negl Trop Dis 2014; 8:e3091. [PMID: 25144181 PMCID: PMC4140747 DOI: 10.1371/journal.pntd.0003091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 07/02/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND With the paucity of new drugs and HIV co-infection, vaccination remains an unmet research priority to combat visceral leishmaniasis (VL) requiring strong cellular immunity. Protein vaccination often suffers from low immunogenicity and poor generation of memory T cells for long-lasting protection. Cysteine proteases (CPs) are immunogenic proteins and key mediators of cellular functions in Leishmania. Here, we evaluated the vaccine efficacies of CPs against VL, using cationic liposomes with Toll like receptor agonists for stimulating host immunity against L. donovani in a hamster model. METHODOLOGY/PRINCIPAL FINDINGS Recombinant CPs type I (cpb), II (cpa) and III (cpc) of L. donovani were tested singly and in combination as a triple antigen cocktail for antileishmanial vaccination in hamsters. We found the antigens to be highly immunoreactive and persistent anti-CPA, anti-CPB and anti-CPC antibodies were detected in VL patients even after cure. The liposome-entrapped CPs with monophosphoryl lipid A-Trehalose dicorynomycolate (MPL-TDM) induced significantly high nitric oxide (up to 4 fold higher than controls) mediated antileishmanial activity in vitro, and resulted in strong in vivo protection. Among the three CPs, CPC emerged as the most potent vaccine candidate in combating the disease. Interestingly, a synergistic increase in protection was observed with liposomal CPA, CPB and CPC antigenic cocktail which reduced the organ parasite burden by 1013-1016 folds, and increased the disease-free survival of >80% animals at least up to 6 months post infection. Robust secretion of IFN-γ and IL-12, along with concomitant downregulation of Th2 cytokines, was observed in cocktail vaccinates, even after 3 months post infection. CONCLUSION/SIGNIFICANCE The present study is the first report of a comparative efficacy of leishmanial CPs and their cocktail using liposomal formulation with MPL-TDM against L. donovani. The level of protection attained has not been reported for any other subcutaneous single or polyprotein vaccination against VL.
Collapse
|
109
|
Abstract
Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.
Collapse
|
110
|
Khadem F, Mou Z, Liu D, Varikuti S, Satoskar A, Uzonna JE. Deficiency of p110δ isoform of the phosphoinositide 3 kinase leads to enhanced resistance to Leishmania donovani. PLoS Negl Trop Dis 2014; 8:e2951. [PMID: 24945303 PMCID: PMC4063731 DOI: 10.1371/journal.pntd.0002951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δd910a) are hyper resistant to L. major, develop minimal cutaneous lesion and rapidly clear their parasite. Here, we investigated whether pi3k signaling also regulates resistance to L. donovani, one of the causative agents of visceral leishmaniasis. Methodology/Principal Findings WT and p110δD910A mice (on a BALB/c background) were infected with L. donovani. At different time points, parasite burden and granuloma formation were assessed. T and B cell responses in the liver and spleen were determined. In addition, Tregs were expanded in vivo and its impact on resistance was assessed. We found that p110δD910A mice had significantly reduced splenomegaly and hepatomegaly and these organs harbored significantly fewer parasites than those of WT mice. Interestingly, infected p110δD910A mice liver contains fewer and less organized granulomas than their infected WT counterparts. Cells from p110δD910A mice were significantly impaired in their ability to produce cytokines compared to WT mice. The percentage and absolute numbers of Tregs in infected p110δD910A mice were lower than those in WT mice throughout the course of infection. In vivo expansion of Tregs in infected p110δD910A mice abolished their enhanced resistance to L. donovani infection. Conclusions/Significance Our results indicate that the enhanced resistance of p110δD910A mice to L. donovani infection is due to impaired activities of Tregs. They further show that resistance to Leishmania in the absence of p110δ signaling is independent of parasite species, suggesting that targeting the PI3K signaling pathway may be useful for treatment of both visceral and cutaneous leishmaniasis. Visceral leishmaniasis (VL) is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several non-endemic areas because of global traveling and military conflicts. The emergence of Leishmania-HIV coinfection and increased prevalence of drug resistant strains have compounded an already bad situation. In addition, the drugs available are toxic, expensive and have several side effects. Therefore, a detailed understanding of protective immune response is extremely important in order to identify new therapeutic targets. The phosphoinositide 3 kinase (PI3K) family of enzymes mediate several important immunologic and physiologic cellular process including proliferation, differentiation, growth and host defense. We previously showed that genetic inactivation of the p110δ isoform of PI3K results in resistant to L. major (the causative agent of cutaneous leishmaniasis (CL)). Here, we investigate the role of PI3K in immunity to VL and the mechanisms underlying its protective effect. Collectively, our results demonstrate that signaling via the p110δ also regulates immunity to L. donovani, an effect that is dependent on the impact of p110δ signaling on expansion and function of regulatory T cells in vivo. Thus, our studies suggest that targeting the p110δ pathway may be a novel therapeutic strategy for controlling VL and CL.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhirong Mou
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dong Liu
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Abhay Satoskar
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Jude E. Uzonna
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
111
|
Roatt BM, Aguiar-Soares RDDO, Coura-Vital W, Ker HG, Moreira NDD, Vitoriano-Souza J, Giunchetti RC, Carneiro CM, Reis AB. Immunotherapy and Immunochemotherapy in Visceral Leishmaniasis: Promising Treatments for this Neglected Disease. Front Immunol 2014; 5:272. [PMID: 24982655 PMCID: PMC4055865 DOI: 10.3389/fimmu.2014.00272] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis has several clinical forms: self-healing or chronic cutaneous leishmaniasis or post-kala-azar dermal leishmaniasis; mucosal leishmaniasis; visceral leishmaniasis (VL), which is fatal if left untreated. The epidemiology and clinical features of VL vary greatly due to the interaction of multiple factors including parasite strains, vectors, host genetics, and the environment. Human immunodeficiency virus infection augments the severity of VL increasing the risk of developing active disease by 100–2320 times. An effective vaccine for humans is not yet available. Resistance to chemotherapy is a growing problem in many regions, and the costs associated with drug identification and development, make commercial production for leishmaniasis, unattractive. The toxicity of currently drugs, their long treatment course, and limited efficacy are significant concerns. For cutaneous disease, many studies have shown promising results with immunotherapy/immunochemotherapy, aimed to modulate and activate the immune response to obtain a therapeutic cure. Nowadays, the focus of many groups centers on treating canine VL by using vaccines and immunomodulators with or without chemotherapy. In human disease, the use of cytokines like interferon-γ associated with pentavalent antimonials demonstrated promising results in patients that did not respond to conventional treatment. In mice, immunomodulation based on monoclonal antibodies to remove endogenous immunosuppressive cytokines (interleukin-10) or block their receptors, antigen-pulsed syngeneic dendritic cells, or biological products like Pam3Cys (TLR ligand) has already been shown as a prospective treatment of the disease. This review addresses VL treatment, particularly immunotherapy and/or immunochemotherapy as an alternative to conventional drug treatment in experimental models, canine VL, and human disease.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| | | | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Henrique Gama Ker
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| |
Collapse
|
112
|
Majumder S, Bhattacharjee A, Paul Chowdhury B, Bhattacharyya Majumdar S, Majumdar S. Antigen-Pulsed CpG-ODN-Activated Dendritic Cells Induce Host-Protective Immune Response by Regulating the T Regulatory Cell Functioning in Leishmania donovani-Infected Mice: Critical Role of CXCL10. Front Immunol 2014; 5:261. [PMID: 24926293 PMCID: PMC4044885 DOI: 10.3389/fimmu.2014.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/19/2014] [Indexed: 01/26/2023] Open
Abstract
Visceral leishmaniasis (VL), caused by Leishmania donovani, is a systemic infection of reticulo-endothelial system. There is currently no protective vaccine against VL and chemotherapy is increasingly limited due to appearance of drug resistance to first line drugs such as antimonials and amphotericin B. In the present study, by using a murine model of leishmaniasis we evaluated the function played by soluble leishmanial antigen (SLA)-pulsed CpG-ODN-stimulated dendritic cells (SLA–CpG–DCs) in restricting the intracellular parasitic growth. We establish that a single dose of SLA–CpG–DC vaccination is sufficient in rendering complete protection against L. donovani infection. In probing the possible mechanism, we observe that SLA–CpG–DCs vaccination results in the significant decrease in Foxp3+GITR+CTLA4+CD4+CD25+ regulatory T cells (Treg) cell population in Leishmania-infected mice. Vaccination with these antigen-stimulated dendritic cells results in the decrease in the secretion of TGF-β by these Treg cells by possible regulation of the SMAD signaling. Moreover, we demonstrate that a CXC chemokine, IFN-γ-inducible protein 10 (IP-10; CXCL10), has a direct role in the regulation of CD4+CD25+ Treg cells in SLA–CpG–DC-vaccinated parasitized mice as Treg cells isolated from IP-10-depleted vaccinated mice showed significantly increased TGF-β production and suppressive activity.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Molecular Medicine, Bose Institute , Kolkata , India
| | | | | | | | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute , Kolkata , India
| |
Collapse
|
113
|
Rasouli M, Karimi MH, Kalani M, Ebrahimnezhad S, Namayandeh M, Moravej A. Immunostimulatory effects of Leishmania infantum HSP70 recombinant protein on dendritic cells in vitro and in vivo. Immunotherapy 2014; 6:577-85. [DOI: 10.2217/imt.14.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Activation of dendritic cells (DCs) has an important role in immunity against Leishmania. Aim: We investigated the effect of Leishmania infantum (L. infantum) heat shock protein 70 recombinant protein (rHSP70) as a vaccine on DC maturation and function. Materials & methods: BALB/c mouse splenic DCs were isolated and treated with different concentrations of rHSP70. Maturation markers, cytokine production and capability of DCs to proliferate allogeneic T cells were evaluated. Furthermore, this recombinant protein was injected into BALB/c mice, and expression of CD86, CD40 and MHC class II molecules by their splenic DCs were evaluated. Results: rHSP70 significantly increases the production of IL-12p70 by DCs. It had no effect on allogeneic T-cell proliferation in mixed lymphocyte reaction. It increased IFN-γ and decreased IL-4 cytokine level in mixed lymphocyte reaction supernatant. The in vitro study showed that rHSP70 had no significant effect neither on the percentage of CD40+, CD86+ and MHC class II+ DCs nor on the mean fluorescent intensity. However, in vivo results showed that rHSP70 increases the percentage of CD86-, CD40- and MHC class II-expressing cells as well as mean fluorescent intensity of CD40 and MHC class II. Conclusion: This study demonstrated the capability of L. infantum-derived rHSP70 in maturating BALB/c mice splenic DCs and in vivo polarization of immunity to a Th1 response.
Collapse
Affiliation(s)
- Manoochehr Rasouli
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz, Iran
| | - Mohammad Hossein Karimi
- Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salimeh Ebrahimnezhad
- Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manadana Namayandeh
- Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moravej
- Department of Microbiology, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
114
|
Bunn PT, Stanley AC, de Labastida Rivera F, Mulherin A, Sheel M, Alexander CE, Faleiro RJ, Amante FH, Montes De Oca M, Best SE, James KR, Kaye PM, Haque A, Engwerda CR. Tissue requirements for establishing long-term CD4+ T cell-mediated immunity following Leishmania donovani infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3709-18. [PMID: 24634490 DOI: 10.4049/jimmunol.1300768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.
Collapse
Affiliation(s)
- Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Reis AB, Teixeira-Carvalho A, Giunchetti RC, Roatt BM, Coura-Vital W, Nicolato RDC, Silveira-Lemos D, Corrêa-Oliveira R, Martins-Filho ODA. Cellular immunophenotypic profile in the splenic compartment during canine visceral leishmaniasis. Vet Immunol Immunopathol 2014; 157:190-6. [DOI: 10.1016/j.vetimm.2013.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/30/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022]
|
116
|
Bhowmick S, Ravindran R, Ali N. IL-4 contributes to failure, and colludes with IL-10 to exacerbate Leishmania donovani infection following administration of a subcutaneous leishmanial antigen vaccine. BMC Microbiol 2014; 14:8. [PMID: 24428931 PMCID: PMC3897895 DOI: 10.1186/1471-2180-14-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Visceral leishmaniasis caused by the protozoan parasite Leishmania donovani complex is a potentially fatal disease if left untreated. Few treatment options exist and are toxic, costly and ineffective against resistant strains. Thus a safe and efficacious vaccine to combat this disease is needed. Previously, we reported that intraperitoneal administration of leishmanial antigens (LAg) entrapped in liposomes conferred protection to BALB/c mice against L. donovani challenge infection. However, this vaccine failed to protect mice when administered subcutaneously. We therefore evaluated whether formulation of LAg in combination with two commonly used human-compatible adjuvants, alum and saponin, could improve the protective efficacy of subcutaneously administered LAg, to a level comparable to that of the intraperitoneal liposomal vaccination. Results Vaccine formulations of LAg with alum or saponin failed to reduce parasite burden in the liver, and alum + LAg immunized mice also failed to reduce parasite burden in the spleen. Interestingly, saponin + LAg vaccination actually resulted in an increased L. donovani parasitic load in the spleen following L. donovani challenge, suggesting this regimen exacerbates the infection. In contrast, mice immunized intraperitoneally with Lip + LAg demonstrated significant protection in both liver and spleen, as expected. Mechanistically, we found that failure of alum + LAg to protect mice was associated with elevated levels of IL-4, whereas both IL-4 and IL-10 levels were increased in saponin + LAg immunized mice. This outcome served to exacerbate L. donovani infection in the saponin + LAg group, despite a concurrent increase in proinflammatory IFN-γ production. On the contrary, protection against L. donovani challenge in Lip + LAg immunized mice was associated with elevated levels of IFN-γ in conjunction with low levels of IL-4 and IL-10 production. Conclusions These findings indicate that elevated levels of IL-4 may contribute to LAg vaccine failure, whereas combined elevation of IL-4 together with IL-10 exacerbated the disease as observed in saponin + LAg immunized mice. In contrast, a robust IFN-γ response, in the absence of IL-4 and IL-10 production, was associated with protective immunity following administration of the Lip + LAg vaccine. Together these findings suggest that optimization of antigen/adjuvant formulations to minimize IL-4 and IL-10 induction may be helpful in the development of high efficacy vaccines targeting Leishmania.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
117
|
Efficacy of Leishmania donovani trypanothione reductase, identified as a potent Th1 stimulatory protein, for its immunogenicity and prophylactic potential against experimental visceral leishmaniasis. Parasitol Res 2013; 113:851-62. [DOI: 10.1007/s00436-013-3716-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
118
|
Oghumu S, Gupta G, Snider HM, Varikuti S, Terrazas CA, Papenfuss TL, Kaplan MH, Satoskar AR. STAT4 is critical for immunity but not for antileishmanial activity of antimonials in experimental visceral leishmaniasis. Eur J Immunol 2013; 44:450-9. [PMID: 24242758 DOI: 10.1002/eji.201343477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 09/07/2013] [Accepted: 10/07/2013] [Indexed: 11/11/2022]
Abstract
We and others have previously shown that IL-12 is indispensable for immunity and is required for the optimal antiparasitic activity of antimonials in experimental visceral leishmaniasis caused by Leishmania donovani. Here we investigated the role of STAT4 in immunity against L. donovani using STAT4 knockout mice and also determined the effect of STAT4 deficiency in response to antimonial therapy. Upon infection with L. donovani, stat4⁻/⁻ BALB/c and C57BL/6 mice showed enhanced susceptibility to Leishmania during late time points of infection which was associated with a marked reduction in Th1 responses and hepatic immunopathology. Interestingly, these defects in Th1 responses in stat4⁻/⁻ did not impair the antimonial chemotherapy as both stat4⁻/⁻ and WT mice showed comparable levels of parasite clearance from the liver and spleen. These findings highlight the role of STAT4 in immunity to L. donovani infection and also provide evidence that STAT4 is dispensable for antimonial-based chemotherapy.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA; Department of Oral Biology, Ohio State University College of Dentistry, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Chauhan K, Sharma M, Shivahare R, Debnath U, Gupta S, Prabhakar YS, Chauhan PMS. Discovery of triazine mimetics as potent antileishmanial agents. ACS Med Chem Lett 2013; 4:1108-13. [PMID: 24900613 DOI: 10.1021/ml400317e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/01/2013] [Indexed: 01/16/2023] Open
Abstract
The World Health Organization has classified the leishmaniasis as a major tropical disease. The discovery of new compounds for leishmaniasis is therefore a pressing concern for the anti-infective research program. We have synthesized 19 compounds of triazine dimers as novel antileishmanial agents. Most of the synthesized derivatives exhibited better activity against intracellular amastigotes (IC50 ranging from 0.77 to 10.32 μM) than the control, pentamidine (IC50 = 13.68 μM), and are not toxic to Vero cells. Compounds 14 and 15 showed significant in vivo inhibition of 74.41% and 62.64%, respectively, in L. donovani/hamster model. Moreover, expansion of Th1-type and suppression of Th2-type immune responses proved that compound 14 stimulates mouse macrophages to prevent the progression of leishmania parasite. The molecular docking studies involving PTR1 protein PDB further validated the concepts involved in the design of these compounds. Among the investigated analogues, compound 14 has emerged as the potential one to enlarge the scope of the study.
Collapse
Affiliation(s)
- Kuldeep Chauhan
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Moni Sharma
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rahul Shivahare
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Utsab Debnath
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Suman Gupta
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| |
Collapse
|
120
|
Saljoughian N, Zahedifard F, Doroud D, Doustdari F, Vasei M, Papadopoulou B, Rafati S. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol 2013; 35:397-408. [DOI: 10.1111/pim.12042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023]
Affiliation(s)
- N. Saljoughian
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - F. Zahedifard
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - D. Doroud
- Department of Quality Control; Research and Production Complex; Pasteur Institute of Iran; Tehran Iran
| | - F. Doustdari
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| | - M. Vasei
- Department of Pathology; Shariati Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - B. Papadopoulou
- Research Centre in Infectious Disease; CHU de Quebec Research Centre (CHUL); Quebec QC Canada
- Department of Microbiology; Infectious Disease and Immunology; Faculty of Medicine; Laval University; Quebec QC Canada
| | - S. Rafati
- Molecular Immunology and Vaccine Research Laboratory; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
121
|
The IL-33/ST2 axis is associated with human visceral leishmaniasis and suppresses Th1 responses in the livers of BALB/c mice infected with Leishmania donovani. mBio 2013; 4:e00383-13. [PMID: 24045639 PMCID: PMC3774190 DOI: 10.1128/mbio.00383-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During visceral leishmaniasis, the control of hepatic parasite burden is mainly due to granuloma assembly in a microenvironment consisting of both Th1 and Th2 components. Using enzyme-linked immunosorbent assay (ELISA) dosages, quantitative PCR (qPCR), immunohistochemistry, and flow cytometry, we studied the role of interleukin-33 (IL-33), a recently described cytokine signaling through the ST2 receptor, during visceral leishmaniasis. We showed that a higher level of IL-33 was detected in the serum of patients with visceral leishmaniasis than in that from healthy donors and demonstrated the presence of IL-33(+) cells in a liver biopsy specimen from a patient. Similarly, in BALB/c mice experimentally infected with L. donovani, a higher level of IL-33 was detected in the serum, as well as the presence of IL-33(+) cells and ST2(+) cells in the mouse liver. In ST2(-/-) BALB/c mice, better control of the hepatic parasite burden and reduced hepatomegaly were observed. This was associated with strong induction of Th1 cytokines (gamma interferon [IFN-γ] and IL-12) compared to the level in wild-type (WT) mice and better recruitment of myeloid cells associated with strongly induced chemokines (CCL2 and CXCL2) and receptors (CCR2 and CXCR2). Conversely, BALB/c mice treated twice weekly with recombinant IL-33 showed a dramatically reduced induction of Th1 cytokines and delayed inhibition of monocyte and neutrophil recruitment in the liver, which was associated with reduced KC/CXCL1 and CXCR2 expression. Taken together, our results suggest that IL-33 could be a new deleterious regulator of the hepatic immune response against Leishmania donovani, via the repression of the Th1 response and myeloid cell recruitment. IMPORTANCE Visceral leishmaniasis is a life-threatening systemic disease due to the Leishmania protozoa L. infantum and L. donovani and is ranked by the World Health Organization as the second most important protozoan parasitic disease after malaria for its grave morbidity, high mortality, and global distribution. Leishmania parasites subvert the host's immune response to propagate to target organs, including the spleen, the bone marrow, and the liver. Control of hepatic parasite burdens depends on a delicate and poorly understood Th1/Th2 immune balance. To better understand this complex immune response, new cytokines are interesting targets for research studies. IL-33 is a newly described cytokine usually associated with Th2 response and involved in different diseases, including infectious diseases and hepatitis. Our results suggest that IL-33 could be a new factor of susceptibility and a potential prognostic marker during visceral leishmaniasis.
Collapse
|
122
|
The malnutrition-related increase in early visceralization of Leishmania donovani is associated with a reduced number of lymph node phagocytes and altered conduit system flow. PLoS Negl Trop Dis 2013; 7:e2329. [PMID: 23967356 PMCID: PMC3744437 DOI: 10.1371/journal.pntd.0002329] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 06/09/2013] [Indexed: 01/30/2023] Open
Abstract
In a murine model of moderate childhood malnutrition we found that polynutrient deficiency led to a 4–5-fold increase in early visceralization of L. donovani (3 days post-infection) following cutaneous infection and a 16-fold decrease in lymph node barrier function (p<0.04 for all). To begin to understand the mechanistic basis for this malnutrition-related parasite dissemination we analyzed the cellularity, architecture, and function of the skin-draining lymph node. There was no difference in the localization of multiple cell populations in the lymph node of polynutrient deficient (PND) mice, but there was reduced cellularity with fewer CD11c+dendritic cells (DCs), fibroblastic reticular cells (FRCs), MOMA-2+ macrophages, and CD169+ subcapsular sinus macrophage (p<0.05 for all) compared to the well-nourished (WN) mice. The parasites were equally co-localized with DCs associated with the lymph node conduit network in the WN and PND mice, and were found in the high endothelial venule into which the conduits drain. When a fluorescent low molecular weight (10 kD) dextran was delivered in the skin, there was greater efflux of the marker from the lymph node conduit system to the spleens of PND mice (p<0.04), indicating that flow through the conduit system was altered. There was no evidence of disruption of the conduit or subcapsular sinus architecture, indicating that the movement of parasites into the subcortical conduit region was due to an active process and not from passive movement through a leaking barrier. These results indicate that the impaired capacity of the lymph node to act as a barrier to dissemination of L. donovani infection is associated with a reduced number of lymph node phagocytes, which most likely leads to reduced capture of parasites as they transit through the sinuses and conduit system. The impact of malnutrition in the world is staggering. Malnutrition is thought to directly or indirectly contribute to more than half of all childhood deaths, most of them related to heightened susceptibility to infection. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive, potentially fatal infection found in many resource-poor regions of the world. Most people who get infected with this parasite have only an asymptomatic latent infection, however, people who are malnourished have a greatly increased risk of developing severe VL. We initiated these studies of an experimental model that mimics human childhood malnutrition to better understand how malnutrition increases the susceptibility to VL at the molecular and cellular level. In this model we found that malnutrition led to failure of the skin-draining lymph node to act as a barrier to dissemination. This loss of lymph node barrier function was associated with a significant reduction in the numbers of dendritic cells and macrophages, phagocytic cells that capture and kill invading pathogens, and alteration of the flow of lymph through the lymph node.
Collapse
|
123
|
Cunha J, Carrillo E, Sánchez C, Cruz I, Moreno J, Cordeiro-da-Silva A. Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV- patients in the murine model of visceral leishmaniasis. Parasit Vectors 2013; 6:122. [PMID: 23622683 PMCID: PMC3649922 DOI: 10.1186/1756-3305-6-122] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/17/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Leishmaniasis is a group of diseases with a variety of clinical manifestations. The form of the disease is highly dependent on the infective Leishmania species and the immunological status of the host. The infectivity of the parasite strain also plays an important role in the progression of the infection. The aim of this work is to understand the influence of the natural infectivity of Leishmania strains in the outcome of visceral leishmaniasis. METHODS In this study we have characterized four strains of L. infantum in terms of molecular typing, in vitro cultivation and differentiation. Two strains were isolated from HIV+ patients with visceral leishmaniasis (Bibiano and E390M), one strain was isolated from a cutaneous lesion in an immunocompetent patient (HL) and another internal reference strain causative of visceral leishmaniasis (ST) also from an immunocompetent patient was used for comparison. For this objective, we have compared their virulence by in vitro and in vivo infectivity in a murine model of visceral leishmaniasis. RESULTS Molecular typing unraveled a new k26 sequence attributed to MON-284 zymodeme and allowed the generation of a molecular signature for the identification of each strain. In vitro cultivation enabled the production of promastigotes with comparable growth curves and metacyclogenesis development. The HL strain was the most infective, showing the highest parasite loads in vitro that were corroborated with the in vivo assays, 6 weeks post-infection in BALB/c mice. The two strains isolated from HIV+ patients, both belonging to two different zymodemes, revealed different kinetics of infection. CONCLUSION Differences in in vitro and in vivo infectivity found in the murine model were then attributed to intrinsic characteristics of each strain. This work is supported by other studies that present the parasite's inherent features as factors for the multiplicity of clinical manifestations and severity of leishmaniasis.
Collapse
Affiliation(s)
- Joana Cunha
- Parasite Disease Group, Unit of Infection and Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, Porto, 4150-180, Portugal
- Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Eugenia Carrillo
- WHO Collaborating Center for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Sánchez
- WHO Collaborating Center for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Cruz
- WHO Collaborating Center for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Center for Leishmaniasis, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Unit of Infection and Immunity, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, Porto, 4150-180, Portugal
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
124
|
Saljoughian N, Taheri T, Zahedifard F, Taslimi Y, Doustdari F, Bolhassani A, Doroud D, Azizi H, Heidari K, Vasei M, Namvar Asl N, Papadopoulou B, Rafati S. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Negl Trop Dis 2013; 7:e2174. [PMID: 23638195 PMCID: PMC3630202 DOI: 10.1371/journal.pntd.0002174] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and has emerged as an opportunistic infection in HIV-1 infected patients in many parts of the world. Drug-resistant forms have developed so emergence and increased the need for advanced preventive strategies. Using live avirulent organisms as a vaccine has been proven to be more effective than other regimens. The lizard protozoan parasite Leishmania tarentolae is considered as nonpathogenic to humans. In our previous work, a recombinant L. tarentolae strain expressing the amastigote-specific L. donovani A2 antigen as a vaccine candidate elicited protection against L. infantum challenge in mice. Furthermore, combinations of CPA/CPB cysteine proteinases were more protective against visceral and cutaneous Leishmania infections than the individual forms. Herein, we used DNA/Live and Live/Live prime-boost vaccination strategies against visceral leishmaniasis in BALB/c mice consisting of the A2-CPA-CPB-CTE tri-fusion genes formulated with cationic solid lipid nanoparticles and a recombinant L. tarentolae expressing the tri-fusion. Assessments of cytokine production, humoral responses, parasite burden and histopathological studies support that the recombinant L. tarentolae A2-CPA-CPB-CTE candidate vaccine elicits a protective response against visceral leishmaniasis in mice and represents an important step forward in the development of new vaccine combinations against Leishmania infections.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Hiva Azizi
- Research Centre in Infectious Disease, CHUL Research Centre and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
| | - Kazem Heidari
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabiollah Namvar Asl
- Department of Laboratory of Animal Sciences, Pasteur Institute of Iran, Tehran, Iran
| | - Barbara Papadopoulou
- Research Centre in Infectious Disease, CHUL Research Centre and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
- * E-mail: (BP); (SR)
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (BP); (SR)
| |
Collapse
|
125
|
Regulatory actions of Toll-like receptor 2 (TLR2) and TLR4 in Leishmania donovani infection in the liver. Infect Immun 2013; 81:2318-26. [PMID: 23589575 DOI: 10.1128/iai.01468-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In livers of susceptible but self-curing C57BL/6 mice, intracellular Leishmania donovani infection enhanced Toll-like receptor 4 (TLR4) and TLR2 gene expression. In the liver, infected TLR4(-/-) mice showed reduced gamma interferon (IFN-γ), tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS) mRNA expression, higher-level and slowly resolving infection, delayed granuloma formation, and little response to low-dose chemotherapy; in serum, the ratio of IFN-γ to interleukin 10 (IL-10) activity was decreased by 50%. In contrast, in TLR2(-/-) mice, control of liver infection, parasite killing, and granuloma assembly were accelerated and chemotherapy's efficacy enhanced. In livers of infected TLR2(-/-) mice, mRNA expression was not increased for inflammatory cytokines or iNOS or decreased for IL-10; however, the serum IFN-γ/IL-10 ratio was increased 6.5-fold and minimal responses to IL-10 receptor blockade suggested downregulated IL-10. In established infection in wild-type mice, blockading TLR2 induced parasite killing and triggering TLR4 strengthened resistance and promoted chemotherapy's effect. Thus, in experimental L. donovani infection in the liver, TLR4 signaling upregulates and TLR2 signaling downregulates macrophage antileishmanial activity, making both receptors potential therapeutic targets in visceral leishmaniasis for engagement (TLR4) or blockade (TLR2).
Collapse
|
126
|
Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM. Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res 2013; 27:85-102. [PMID: 23554800 PMCID: PMC3602867 DOI: 10.7555/jbr.27.20120064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/14/2012] [Accepted: 08/12/2012] [Indexed: 01/13/2023] Open
Abstract
Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. Resistance to infection is associated with a T-helper-1 immune response that activates macrophages to kill the intracellular parasite in a nitric oxide-dependent manner. Conversely, disease progression is generally associated with a T-helper-2 response that activates humoral immunity. Current control is based on chemotherapeutic treatments which are expensive, toxic and associated with high relapse and resistance rates. Vaccination remains the best hope for control of all forms of the disease, and the development of a safe, effective and affordable antileishmanial vaccine is a critical global public-health priority. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunization with defined subunit vaccines or live-attenuated strains of Leishmania. However, to date, no vaccine is available despite substantial efforts by many laboratories. Major impediments in Leishmania vaccine development include: lack of adequate funding from national and international agencies, problems related to the translation of data from animal models to human disease, and the transition from the laboratory to the field. Furthermore, a thorough understanding of protective immune responses and generation and maintenance of the immunological memory, an important but least-studied aspect of antiparasitic vaccine development, during Leishmania infection is needed. This review focuses on the progress of the search for an effective vaccine against human and canine leishmaniasis.
Collapse
Affiliation(s)
- Joshua Muli Mutiso
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
- Department of Zoological Sciences, Kenyatta University, Nairobi 43844-00100, Kenya.
| | - John Chege Macharia
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Maria Ndunge Kiio
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - James Maina Ichagichu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | - Hitler Rikoi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi 24481-00502, Kenya;
| | | |
Collapse
|
127
|
Carrión J, Abengozar MA, Fernández-Reyes M, Sánchez-Martín C, Rial E, Domínguez-Bernal G, González-Barroso MM. UCP2 deficiency helps to restrict the pathogenesis of experimental cutaneous and visceral leishmaniosis in mice. PLoS Negl Trop Dis 2013; 7:e2077. [PMID: 23437414 PMCID: PMC3578745 DOI: 10.1371/journal.pntd.0002077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO). METHODOLOGY AND FINDINGS To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection. CONCLUSIONS In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.
Collapse
Affiliation(s)
- Javier Carrión
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
128
|
Moore JWJ, Moyo D, Beattie L, Andrews PS, Timmis J, Kaye PM. Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Front Immunol 2013; 4:35. [PMID: 23423646 PMCID: PMC3573688 DOI: 10.3389/fimmu.2013.00035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/30/2013] [Indexed: 11/16/2022] Open
Abstract
In human and canine visceral leishmaniasis and in various experimental models of this disease, host resistance is strongly linked to efficient granuloma development. However, it is unknown exactly how the granuloma microenvironment executes an effective antileishmanial response. Recent studies, including using advanced imaging techniques, have improved our understanding of granuloma biology at the cellular level, highlighting heterogeneity in granuloma development and function, and hinting at complex cellular, temporal, and spatial dynamics. In this mini-review, we discuss the factors involved in the formation and function of Leishmania donovani-induced hepatic granulomas, as well as their importance in protecting against inflammation-associated tissue damage and the generation of immunity to rechallenge. Finally, we discuss the role that computational, agent-based models may play in answering outstanding questions within the field.
Collapse
Affiliation(s)
- John W J Moore
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York York, UK
| | | | | | | | | | | |
Collapse
|
129
|
Vale-Costa S, Gomes-Pereira S, Teixeira CM, Rosa G, Rodrigues PN, Tomás A, Appelberg R, Gomes MS. Iron overload favors the elimination of Leishmania infantum from mouse tissues through interaction with reactive oxygen and nitrogen species. PLoS Negl Trop Dis 2013; 7:e2061. [PMID: 23459556 PMCID: PMC3573095 DOI: 10.1371/journal.pntd.0002061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023] Open
Abstract
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs. Leishmania are important vector-borne protozoan pathogens that cause different forms of disease, ranging from cutaneous self-healing lesions to life-threatening visceral infection. L. infantum is the most common species causing visceral leishmaniasis in Europe and the Mediterranean basin. Iron plays a critical role in host-pathogen interactions. Both the microorganism and its host need iron for growth. However, iron may promote the formation of toxic reactive oxygen species, which contribute to pathogen elimination, but also to host tissue pathology. We investigated the effect of manipulating host iron status on the outcome of L. infantum infection, using the mouse as an experimental model. We found that dietary iron deprivation had no effect on L. infantum growth, and iron-dextran injection decreased the multiplication of L. infantum in mouse organs. The fact that this anti-parasitic effect of iron was not observed in mice genetically deficient in superoxide and nitric oxide synthesis pathways indicates that iron is likely to act in synergy with reactive oxygen and nitrogen species produced by the host's macrophages. This work clearly shows that iron supplementation improves the host's capacity to eliminate L. infantum parasites and suggests that iron may be further explored as a therapeutic tool to fight this type of infection.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sandra Gomes-Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- CISA-ESTSP - Núcleo de Investigação em Farmácia, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Carlos Miguel Teixeira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Gustavo Rosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pedro Nuno Rodrigues
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Tomás
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rui Appelberg
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Salomé Gomes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
130
|
Visceral leishmaniasis: host-parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis 2013; 17:e572-6. [PMID: 23380419 DOI: 10.1016/j.ijid.2012.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 01/06/2023] Open
Abstract
Visceral leishmaniases are vector-borne parasitic diseases caused by protozoa belonging to the genus Leishmania. The heterogeneity of clinical manifestations and epidemiological characteristics of the disease reflect the complex interplay between the infecting Leishmania species and the genetic and immunologic characteristics of the infected host. The clinical presentation of visceral leishmaniasis depends strictly on the immunocompetency of the host and ranges from asymptomatic to severe forms. Conditions of depression of the immune system, such as HIV infection or immunosuppressive treatments, impair the capability of the immune response to resolve the infection and allow reactivation and relapses of the disease.
Collapse
|
131
|
de Carvalho CA, Partata AK, Hiramoto RM, Borborema SET, Meireles LR, Nascimento ND, de Andrade HF. A simple immune complex dissociation ELISA for leishmaniasis: standardization of the assay in experimental models and preliminary results in canine and human samples. Acta Trop 2013; 125:128-36. [PMID: 23123344 DOI: 10.1016/j.actatropica.2012.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 10/16/2012] [Accepted: 10/20/2012] [Indexed: 12/14/2022]
Abstract
Visceral leishmaniasis, caused by Leishmania (Leishmania) chagasi, is a chronic parasitic disease of humans and dogs. Confirmation of the protozoal agent in bone marrow, lymph node or spleen aspirate is diagnostic, while specific-IgG serology is used mainly for epidemiology despite the general presence of high levels of serum immunoglobulin. Anecdotal reports of false-negative serology in active disease cases are known and are ascribed to the formation of immune complexes. Because dissociation of immune complexes can be accomplished by acid treatment, we devised a simple, routine enzyme immunoassay (ELISA) for the dissociation of immune complexes in serum samples using acid treatment in wells adsorbed with Leishmania antigen (dELISA). Confirmatory acid dot-blot was also developed for antigen detection by anti-Leishmania rabbit antiserum. In experimental L. chagasi hamster models, immune complexes interfered with ELISA mostly in the 30 and 60 days postinfection, according to both dELISA and antigen dot-blot results. In larger samples from endemic areas, dELISA was positive in 10% of seronegative dog samples (7/70) and 3.5% in negative human samples (3/88), showing that dELISA could be used in the serodiagnosis of visceral leishmaniasis. Moreover, dELISA could be used as an alternative approach to screening asymptomatic visceral leishmaniasis patients, instead of invasive confirmatory testing.
Collapse
Affiliation(s)
- Camila Aparecida de Carvalho
- Protozoology Laboratory, Instituto de Medicina Tropical de São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
132
|
Kumar V, Gour JK, Singh N, Bajpai S, Singh RK. Leishmania donovani-specific 25- and 28-kDa urinary proteins activate macrophage effector functions, lymphocyte proliferation and Th1 cytokines production. Parasitol Res 2013; 112:1427-35. [PMID: 23334693 DOI: 10.1007/s00436-013-3272-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Growing incidence of drug resistance against leishmaniasis in endemic areas and limited drug options necessitates the need for a vaccine. Notwithstanding significant leishmanial research in the past decades, a vaccine candidate is far from reality. In this study, we report the potential of two urinary leishmanial proteins to induce macrophage effector functions, inflammatory cytokines production and human lymphocytes proliferation. A total four proteins of molecular mass 25, 28, 54 and 60 kDa were identified in human urine samples. The 25 and 28 kDa proteins significantly induced NADPH oxidase (p<0.001), superoxide dismutase (p<0.001) and inducible nitric oxide synthase (p<0.001) activities in stimulated RAW264.7 macrophages. The release of nitric oxide, tumor necrosis factor-alpha and interleukin (IL)-12 was also significantly (p<0.001) higher in 25 and 28 kDa activated macrophages as compared with cells activated with other two proteins. These two proteins also induced significant (p<0.001) proliferation and release of IFN-γ and IL-12 in human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Vinod Kumar
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221 005, India
| | | | | | | | | |
Collapse
|
133
|
Abstract
Leishmaniasis is a vector-borne neglected tropical disease associated with a spectrum of clinical manifestations, ranging from self-healing cutaneous lesions to fatal visceral infections. Among the most important questions in Leishmania research is why some species like L. donovani infect visceral organs, whereas other species like L. major remain in the skin. The determinants of visceral leishmaniasis are still poorly understood, although genomic, immunologic, and animal models are beginning to provide important insight into this disease. In this review, we discuss the vector, host, and pathogen factors that mediate the development of visceral leishmaniasis. We examine the progression of the parasite from the initial site of sand fly bite to the visceral organs and its ability to survive there. The identification of visceral disease determinants is required to understand disease evolution, to understand visceral organ survival mechanisms, and potentially to develop better interventions for this largely neglected disease.
Collapse
|
134
|
Moravej A, Rasouli M, Asaei S, Kalani M, Mansoori Y. Association of interleukin-18 gene variants with susceptibility to visceral leishmaniasis in Iranian population. Mol Biol Rep 2012; 40:4009-14. [PMID: 23269628 DOI: 10.1007/s11033-012-2479-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/18/2012] [Indexed: 01/20/2023]
Affiliation(s)
- Ali Moravej
- Department of Immunology, Fasa University of Medical Sciences, Fasa, Fars, Iran
| | | | | | | | | |
Collapse
|
135
|
Mukherjee S, Mukherjee B, Mukhopadhyay R, Naskar K, Sundar S, Dujardin JC, Das AK, Roy S. Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection. PLoS Negl Trop Dis 2012; 6:e1987. [PMID: 23301108 PMCID: PMC3531496 DOI: 10.1371/journal.pntd.0001987] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/15/2012] [Indexed: 01/20/2023] Open
Abstract
Background In an endeavor to find an orally active and affordable antileishmanial drug, we tested the efficacy of a cationic amphiphilic drug, imipramine, commonly used for the treatment of depression in humans. The only available orally active antileishmanial drug is miltefosine with long half life and teratogenic potential limits patient compliance. Thus there is a genuine need for an orally active antileishmanial drug. Previously it was shown that imipramine, a tricyclic antidepressant alters the protonmotive force in promastigotes, but its in vivo efficacy was not reported. Methodology/Principal Findings Here we show that the drug is highly active against antimony sensitive and resistant Leishmania donovani in both promastigotes and intracellular amastigotes and in LD infected hamster model. The drug was found to decrease the mitochondrial transmembrane potential of Leishmania donovani (LD) promastigotes and purified amastigotes after 8 h of treatment, whereas miltefosine effected only a marginal change even after 24 h. The drug restores defective antigen presenting ability of the parasitized macrophages. The status of the host protective factors TNF α, IFN γ and iNOS activity increased with the concomitant decrease in IL 10 and TGF β level in imipramine treated infected hamsters and evolution of matured sterile hepatic granuloma. The 10-day therapeutic window as a monotherapy, showing about 90% clearance of organ parasites in infected hamsters regardless of their SSG sensitivity. Conclusions This study showed that imipramine possibly qualifies for a new use of an old drug and can be used as an effective orally active drug for the treatment of Kala-azar. The disease Kala-azar or visceral leishmaniasis is still a big problem in the Indian subcontinent. The antimonials were used for the chemotherapy of Kala-azar but with time its efficacy has reduced dramatically. The newer version of orally active drug miltefosine has been introduced, but its efficacy has decreased considerably as relapse cases are on the rise. Other drugs like liposomal form of amphotericin B is expensive and the patients require hospitalization. Thus there is a genuine need for an orally active antileishmanial drug. There are reports that the cationic amphiphilic molecule, imipramine, a drug used for the treatment of depression in humans, kills the promastigotes of Leishmania donovani. We tested the efficacy of imipramine in experimental infection in hamster and mouse model. Our study showed that the drug is highly effective against antimony sensitive and antimony resistant Leishmania donovani infected hamsters as well as mouse and offered almost sterile cure.
Collapse
Affiliation(s)
- Sandip Mukherjee
- CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Budhaditya Mukherjee
- CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Rupkatha Mukhopadhyay
- CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Kshudiram Naskar
- CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Shyam Sundar
- Institute of Medical Sciences, Benaras Hindu University, Varanasi, India
| | | | - Anjan Kumar Das
- Calcutta National Medical College and Hospital, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
- * E-mail:
| |
Collapse
|
136
|
McCall LI, Zhang WW, Ranasinghe S, Matlashewski G. Leishmanization revisited: immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine 2012; 31:1420-5. [PMID: 23219435 DOI: 10.1016/j.vaccine.2012.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa and associated with three main clinical presentations: cutaneous, mucocutaneous and visceral leishmaniasis. Visceral leishmaniasis is the second most lethal parasitic disease after malaria and there is so far no human vaccine. Leishmania donovani is a causative agent of visceral leishmaniasis in South East Asia and Eastern Africa. However, in Sri Lanka, L. donovani causes mainly cutaneous leishmaniasis, while visceral leishmaniasis is rare. We investigate here the possibility that the cutaneous form of L. donovani can provide immunological protection against the visceral form of the disease, as a potential explanation for why visceral leishmaniasis is rare in Sri Lanka. Subcutaneous immunization with a cutaneous clinical isolate from Sri Lanka was significantly protective against visceral leishmaniasis in BALB/c mice. Protection was associated with a mixed Th1/Th2 response. These results provide a possible rationale for the scarcity of visceral leishmaniasis in Sri Lanka and could guide leishmaniasis vaccine development efforts.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
137
|
Nico D, Feijó DF, Maran N, Morrot A, Scharfstein J, Palatnik M, Palatnik-de-Sousa CB. Resistance to visceral leishmaniasis is severely compromised in mice deficient of bradykinin B2-receptors. Parasit Vectors 2012; 5:261. [PMID: 23151408 PMCID: PMC3514163 DOI: 10.1186/1756-3305-5-261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/03/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Kinins liberated from plasma-borne kininogens, are potent innate stimulatory signals. We evaluated whether resistance to infection by Leishmania (L.) chagasi depends on activation of G-protein coupled bradykinin B2 receptors (B2R). FINDINGS B2R⁻/⁻ C57BL/6 knock-out (KOB2) and B2R⁺/⁺ C57BL/6-wild type control mice (C57) were infected with amastigotes of Leishmania (L.) chagasi. Thirty days after infection, the KOB2 mice showed 14% and 32% relative increases of liver (p< 0.017) and spleen weights (p<0.050), respectively, whereas liver parasite load increased 65% (p< 0.011) in relation to wild type mice. The relative weight increases of liver and spleen and the parasite load were positively correlated (R = 0.6911; p< 0.007 to R = 0.7629; p< 0.001, respectively). Conversely, we found a negative correlation between the increased liver relative weight and the weakened DTH response (a strong correlate to protection or natural resistance to VL) or the decreased levels of IgG2b antibodies to leishmanial antigen. Finally, we also found that IFN-γ secretion by splenocytes, an adaptive response that was significantly decreased in KOB2 mice (p< 0.002), was (i) negatively correlated to the increase in liver LDU (R = -0.6684; p = 0.035) and liver/body relative weight (R = -0.6946; p = 0.026) and (ii) positively correlated to serum IgG2b levels (R = 0.8817; p = 0.001). CONCLUSIONS We found that mice lacking B2R display increased susceptibility to the infection by Leishmania (L.) chagasi. Our findings suggest that activation of the bradykinin/B2R pathway contributes to development of host resistance to visceral leishmaniasis.
Collapse
Affiliation(s)
- Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro-UFRJ, Avda Carlos Chagas 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Caixa Postal 68040, Brazil
| | | | | | | | | | | | | |
Collapse
|
138
|
Soong L, Henard CA, Melby PC. Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 2012; 34:735-51. [PMID: 23053396 PMCID: PMC4111229 DOI: 10.1007/s00281-012-0350-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
The outcomes of Leishmania infection are determined by host immune and nutrition status, parasite species, and co-infection with other pathogens. While subclinical infection and self-healing cutaneous leishmaniasis (CL) are common, uncontrolled parasite replication can lead to non-healing local lesions or visceral leishmaniasis (VL). It is known that infection control requires Th1-differentiation cytokines (IL-12, IL-18, and IL-27) and Th1 cell and macrophage activation. However, there is no generalized consensus for the mechanisms of host susceptibility. The recent studies on regulatory T cells and IL-17-producing cells help explain the effector T cell responses that occur independently of the known Th1/Th2 cell signaling pathways. This review focuses on the immunopathogenesis of non-healing American CL and progressive VL. We summarize recent evidence from human and animal studies that reveals the mechanisms of dysregulated, hyper-responses to Leishmania braziliensis, as well as the presence of disease-promoting or the absence of protective responses to Leishmania amazonensis and Leishmania donovani. We highlight immune-mediated parasite growth and immunopathogenesis, with an emphasis on the putative roles of IL-17 and its related cytokines as well as arginase. A better understanding of the quality and regulation of innate immunity and T cell responses triggered by Leishmania will aid in the rational control of pathology and the infection.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
139
|
Ghosh J, Das S, Guha R, Ghosh D, Naskar K, Das A, Roy S. Hyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol. J Lipid Res 2012; 53:2560-72. [PMID: 23060454 DOI: 10.1194/jlr.m026914] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice were either provided a high-cholesterol (atherogenic) diet or underwent statin treatment. Subsequent LD infection showed that an atherogenic diet is associated with protection, whereas hypocholesterolemia due to statin treatment confers susceptibility to the infection. This observation was validated in apolipoprotein E knockout mice (AE) mice that displayed intrinsic hypercholesterolemia with hepatic granuloma, production of host-protective cytokines, and expansion of antileishmanial CD8(+)IFN- γ (+) and CD8(+)IFN- γ (+)TNF- α (+) T cells in contrast to the wild-type C57BL/6 (BL/6) mice when infected with LD. Normal macrophages from AE mice (N-AE-MΦ) showed 3-fold higher membrane cholesterol coupled with increased fluorescence anisotropy (FA) compared with wild-type macrophage (N-BL/6-MΦ). Characterization of in vitro LD-infected AE macrophage (LD-AE-MΦ) revealed intact raft architecture and ability to stimulate T cells, which were compromised in LD-BL/6-MΦ. This study clearly indicates that hypercholesterolemia, induced intrinsically or extrinsically, can control the pathogenesis of VL by modulating immune repertoire in favor of the host.
Collapse
Affiliation(s)
- June Ghosh
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | | | | | | | | | | | | |
Collapse
|
140
|
Kushawaha PK, Gupta R, Tripathi CDP, Khare P, Jaiswal AK, Sundar S, Dube A. Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis. PLoS One 2012; 7:e45766. [PMID: 23049855 PMCID: PMC3454378 DOI: 10.1371/journal.pone.0045766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9–97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.
Collapse
Affiliation(s)
| | - Reema Gupta
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | | | - Prashant Khare
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Anil Kumar Jaiswal
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Benaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
- * E-mail: ,
| |
Collapse
|
141
|
Tiwananthagorn S, Iwabuchi K, Ato M, Sakurai T, Kato H, Katakura K. Involvement of CD4⁺ Foxp3⁺ regulatory T cells in persistence of Leishmania donovani in the liver of alymphoplastic aly/aly mice. PLoS Negl Trop Dis 2012; 6:e1798. [PMID: 22928057 PMCID: PMC3424244 DOI: 10.1371/journal.pntd.0001798] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022] Open
Abstract
Visceral leishmaniasis (VL) is a chronic and fatal disease in humans and dogs caused by the intracellular protozoan parasites, Leishmania donovani and L. infantum (L. chagasi). Relapse of disease is frequent in immunocompromised patients, in which the number of VL cases has been increasing recently. The present study is aimed to improve the understanding of mechanisms of L. donovani persistence in immunocompromised conditions using alymphoplastic aly/aly mice. Hepatic parasite burden, granuloma formation and induction of regulatory T cells were determined for up to 7 months after the intravenous inoculation with L. donovani promastigotes. While control aly/+ mice showed a peak of hepatic parasite growth at 4 weeks post infection (WPI) and resolved the infection by 8 WPI, aly/aly mice showed a similar peak in hepatic parasite burden but maintained persistent in the chronic phase of infection, which was associated with delayed and impaired granuloma maturation. Although hepatic CD4+Foxp3+ but not CD8+Foxp3+ T cells were first detected at 4 WPI in both strains of mice, the number of CD4+Foxp3+ T cells was significantly increased in aly/aly mice from 8 WPI. Immunohistochemical analysis demonstrated the presence of Foxp3+ T cells in L. donovani–induced hepatic granulomas and perivascular neo-lymphoid aggregates. Quantitative real-time PCR analysis of mature granulomas collected by laser microdissection revealed the correlation of Foxp3 and IL-10 mRNA level. Furthermore, treatment of infected aly/aly mice with anti-CD25 or anti-FR4 mAb resulted in significant reductions in both hepatic Foxp3+ cells and parasite burden. Thus, we provide the first evidence that CD4+Foxp3+ Tregs mediate L. donovani persistence in the liver during VL in immunodeficient murine model, a result that will help to establish new strategies of immunotherapy against this intracellular protozoan pathogen. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL) with a variety of outcomes ranging from asymptomatic to fatal infection. In the last decade, an increasing number of VL cases in immunocompromised conditions have been reported. Loss of the control of parasite persistence causes relapse of the disease in these patients. To clarify why parasite persistence and disease are caused in an immunocompromised condition, we examined L. donovani infection in alymphoplastic aly/aly mice that completely lack lymph nodes and have disturbed spleen architecture. Although parasites grew in the liver of aly/+ mice for the first 4 weeks post infection (WPI) and parasites were eliminated by 8 WPI, we found that parasites persisted in the liver of aly/aly mice with the ineffective of granuloma formation to kill the parasites. These aly/aly mice showed significant increases in CD4+Foxp3+ regulatory T cells in the liver. Consequently, we treated infected mice with anti-CD25 or anti-FR4 mAb to inhibit the function of Tregs, and found significant reductions in both hepatic Foxp3+ cells and parasite burden. These results clearly demonstrated for the first time that the expansion of CD4+Foxp3+ Tregs is involved in hepatic L. donovani persistence in immunodeficient murine model.
Collapse
Affiliation(s)
- Saruda Tiwananthagorn
- Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
Visceral leishmaniasis (VL), commonly known as kala-azar, is caused by Leishmania donovani and Leishmania infantum (Leishmania chagasi in the Americas). These Leishmania species infect macrophages throughout the viscera, and parasites are typically found in the spleen, liver, and bone marrow. Patients with active disease typically exhibit marked immunosuppression, lack reactivity to the Leishmania skin test (LST), a delayed type hypersensitivity test, and their peripheral blood mononuclear cells (PBMC) fail to respond when stimulated with leishmanial antigens in vitro. However, most people infected with visceralizing species of Leishmania never develop disease. Understanding immune failure and the underlying immune mechanism that lead to disease as well as control of infection are key questions for research in this field. In this review, we discuss immunological events described in human and experimental VL and how these can affect the outcome of infection.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | | |
Collapse
|
143
|
Choudhury R, Das P, De T, Chakraborti T. 115 kDa serine protease confers sustained protection to visceral leishmaniasis caused by Leishmania donovani via IFN-γ induced down-regulation of TNF-α mediated MMP-9 activity. Immunobiology 2012; 218:114-26. [PMID: 22440312 DOI: 10.1016/j.imbio.2012.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
Visceral leishmaniasis caused by the intracellular parasite Leishmania donovani is a major public health problem in the developing world. The emergence of increasing number of L. donovani strains resistance to antimonial drugs recommended worldwide requires the intervention of effective vaccine strategy for treatment of VL. In the present study L. donovani culture derived, soluble, secretory serine protease (pSP) has been shown to be vaccine target of VL. Protection from VL could be achieved by the use of safer vaccine which generally requires an adjuvant for induction of strong Th1 response. To assess the safety, immunogenicity and efficacy of pSP as vaccine candidate in mouse model we used IL-12 as adjuvant. BALB/c mice immunized with pSP+IL-12 were protected significantly from challenged infection even after four months by reducing the parasite load in liver and spleen and suppressed the development of the disease along with an increase in IgG2a antibody level in serum, enhanced delayed type hypersensitivity and strong T-cell proliferation. Groups receiving pSP+IL-12 had an augmented pSP antigen specific Th1 cytokines like IFN-γ and TNF-α response with concomitant decrease of Th2 cytokines IL-4 and IL-10 after vaccination. In this study the vaccine efficacy of pSP was further assessed for its prophylactic potential by enumerating matrix metalloprotease-9 (MMP-9) profile which has been implicated in various diseases. MMP-9 associated with different microbial infections is controlled by their natural inhibitors (TIMPS) and by some cytokines. In this study pSP was found to regulate excessive inflammation by modulating the balance between MMP-9 and TIMP-1 expression. This modulatory effect has also been demonstrated by IFN-γ mediated down regulation of TNF-α induced MMP-9 expression in activated murine macrophages. This is the first report where a secretory L. donovani serine protease (pSP) adjuvanted with IL-12 could also act as protective imunogen by modifying cytokine mediated MMP-9 expression in experimental VL. These findings elucidate the mechanisms of regulation of MMP-9 following infection of L. donovani in vaccinated animals and thus pave the way for developing new immunotherapeutic interventions for VL.
Collapse
Affiliation(s)
- Rajdeep Choudhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | |
Collapse
|
144
|
Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis. Mol Biochem Parasitol 2012; 181:85-93. [DOI: 10.1016/j.molbiopara.2011.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 01/08/2023]
|
145
|
Geurts N, Opdenakker G, Van den Steen PE. Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 2011; 133:257-79. [PMID: 22138604 DOI: 10.1016/j.pharmthera.2011.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with processes of tissue remodeling and are expressed in all infections with protozoan parasites. We here report the status of MMP research in malaria, trypanosomiasis, leishmaniasis and toxoplasmosis. In all these infections, the balances between MMPs and endogenous MMP inhibitors are disturbed, mostly in favor of active proteolysis. When the infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. These pathologies include cerebral malaria, sleeping sickness (human African trypanosomiasis), Chagas disease (human American trypanosomiasis), leishmaniasis and toxoplasmic encephalitis in immunocompromised hosts. Destruction of the integrity of the blood-brain barrier (BBB) is a common denominator that may be executed by leukocytic MMPs under the control of host cytokines and chemokines as well as influenced by parasite products. Mechanisms by which parasite-derived products alter host expression of MMP and endogenous MMP inhibitors, have only been described for hemozoin (Hz) in malaria. Hence, understanding these interactions in other parasitic infections remains an important challenge. Furthermore, the involved parasites are also known to produce their own metalloproteinases, and this forms an extra stimulus to investigate MMP inhibitory drugs as therapeutics. MMP inhibitors (MMPIs) may dampen collateral tissue damage, as is anecdotically reported for tetracyclines as MMP regulators in parasite infections.
Collapse
Affiliation(s)
- Nathalie Geurts
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium
| | | | | |
Collapse
|
146
|
Corware K, Harris D, Teo I, Rogers M, Naresh K, Müller I, Shaunak S. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid. Biomaterials 2011; 32:8029-39. [PMID: 21807409 PMCID: PMC3168736 DOI: 10.1016/j.biomaterials.2011.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 01/19/2023]
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major infection in genetically susceptible non-healing BALB/c mice. Intradermal AmB-PMA at a total dose of 18 mg of AmB/kg body weight led to rapid parasite killing and lesion healing. No toxicity was seen. No parasite relapse occurred after 80 days follow-up. Histological studies confirmed rapid parasite clearance from macrophages followed by accelerated fibroblast mediated tissue repair, regeneration and cure of the infection. Quantitative mRNA studies of the CL lesions showed that accelerated healing was associated with increased Tumour Necrosis Factor-α and Interferon-γ, and reduced Interleukin-10. These results suggest that a cost-effective AmB-PMA could be used to pharmacologically treat and immuno-therapeutically accelerate the healing of CL lesions.
Collapse
MESH Headings
- Amphotericin B/analogs & derivatives
- Amphotericin B/therapeutic use
- Amphotericin B/toxicity
- Animals
- Cell Line
- Chemokines/metabolism
- Disease Models, Animal
- Erythrocytes/drug effects
- Humans
- Hypersensitivity, Delayed/complications
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/parasitology
- Hypersensitivity, Delayed/pathology
- Immunomodulation/drug effects
- Leishmania major/drug effects
- Leishmaniasis, Cutaneous/complications
- Leishmaniasis, Cutaneous/drug therapy
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Macrophages/drug effects
- Macrophages/parasitology
- Mice
- Mice, Inbred BALB C
- Parasite Load
- Polymethacrylic Acids/therapeutic use
- Polymethacrylic Acids/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Solubility
- Spectrophotometry, Ultraviolet
- Toxicity Tests
- Water/chemistry
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Karina Corware
- Department of Medicine, Infectious Diseases & Immunity, Hammersmith Hospital, Faculty of Medicine, Imperial College London, UK
| | - Debra Harris
- Department of Medicine, Infectious Diseases & Immunity, Hammersmith Hospital, Faculty of Medicine, Imperial College London, UK
| | - Ian Teo
- Department of Medicine, Infectious Diseases & Immunity, Hammersmith Hospital, Faculty of Medicine, Imperial College London, UK
| | - Matthew Rogers
- Department of Immunology, St. Mary's Hospital, Faculty of Medicine, Imperial College London, UK
| | - Kikkeri Naresh
- Department of Histopathology, Hammersmith Hospital, Faculty of Medicine, Imperial College London, UK
| | - Ingrid Müller
- Department of Immunology, St. Mary's Hospital, Faculty of Medicine, Imperial College London, UK
| | - Sunil Shaunak
- Department of Medicine, Infectious Diseases & Immunity, Hammersmith Hospital, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
147
|
Tuladhar R, Natarajan G, Satoskar AR. Role of co-stimulation in Leishmaniasis. Int J Biol Sci 2011; 7:1382-90. [PMID: 22110389 PMCID: PMC3221945 DOI: 10.7150/ijbs.7.1382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/28/2022] Open
Abstract
Leishmania are obligate intracellular parasites that cause a wide spectrum of diseases ranging from cutaneous, mucocutaneous and the visceral kind. Persistence or resolution of leishmaniasis is governed by host immune response. Co-stimulation is an important secondary signal that governs the extent, strength and direction of the immune response that follows. Co-stimulation by CD40, B7 and OX40 family has been shown to influence the outcome following Leishmania infection and manipulation of these pathways has shown promise for use in immune therapy of leishmaniasis. In this review, we discuss the roles of CD40, B7 and OX40 co-stimulatory pathways in regulating immunity to Leishmania and their implications in the treatment of this disease.
Collapse
Affiliation(s)
- Rashmi Tuladhar
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| | - Gayathri Natarajan
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| | - Abhay R Satoskar
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| |
Collapse
|
148
|
Stanley AC, de Labastida Rivera F, Haque A, Sheel M, Zhou Y, Amante FH, Bunn PT, Randall LM, Pfeffer K, Scheu S, Hickey MJ, Saunders BM, Ware C, Hill GR, Tamada K, Kaye PM, Engwerda CR. Critical roles for LIGHT and its receptors in generating T cell-mediated immunity during Leishmania donovani infection. PLoS Pathog 2011; 7:e1002279. [PMID: 21998581 PMCID: PMC3188526 DOI: 10.1371/journal.ppat.1002279] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022] Open
Abstract
LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage. Visceral leishmaniasis (VL) is a potentially fatal human disease caused by the intracellular protozoan parasites Leishmania donovani and L. infantum (chagasi). Parasites infect macrophages throughout the viscera, though the spleen and liver are the major sites of disease. VL is responsible for significant morbidity and mortality in the developing world, particularly in India, Sudan, Nepal, Bangladesh and Brazil. Because of the intrusive techniques required to analyse tissue in VL patients, our current understanding of the host immune response during VL largely derives from studies performed in genetically susceptible mice. We have discovered that mice which are unable to produce a cytokine called LIGHT have poor control of L. donovani infection in the liver, compared with wild-type control animals. In addition, we demonstrated that LIGHT has distinct roles during VL, depending on which of its two major cell-bound receptors it engages. Finally, we identified an antibody that stimulates the lymphotoxin β receptor (one of the LIGHT receptors), that can stimulate anti-parasitic activity during an established infection, thereby identifying this receptor as a therapeutic target during disease.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Proliferation/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Immunity, Cellular
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-12/biosynthesis
- Interleukin-23/biosynthesis
- Leishmania donovani/immunology
- Leishmania donovani/pathogenicity
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/pathology
- Liver/parasitology
- Liver/pathology
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
Collapse
Affiliation(s)
- Amanda C. Stanley
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
- Institute for Molecular Biology, University of Queensland, St Lucia, Queensland, Australia
| | - Fabian de Labastida Rivera
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Ashraful Haque
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Meru Sheel
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Yonghong Zhou
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Fiona H. Amante
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Patrick T. Bunn
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Louise M. Randall
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
- Department of Pathobiology, School of Veterinary Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Duesseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Duesseldorf, Germany
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | | | - Carl Ware
- Infectious and Inflammatory Diseases Centre, Sanford|Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Geoff R. Hill
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
| | - Koji Tamada
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, Unites States of America
| | - Paul M. Kaye
- Hull York Medical School, Department of Biology, York University, York, United Kingdom
| | - Christian R. Engwerda
- Queensland Institute of Medical Research and the Australian Centre for Vaccine Development, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
149
|
Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. J Trop Med 2011; 2012:631460. [PMID: 21912560 PMCID: PMC3168768 DOI: 10.1155/2012/631460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.
Collapse
|
150
|
Evans KJ, Kedzierski L. Development of Vaccines against Visceral Leishmaniasis. J Trop Med 2011; 2012:892817. [PMID: 21912561 PMCID: PMC3170777 DOI: 10.1155/2012/892817] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease resulting in a global morbidity of 2,090 thousand Disability-Adjusted Life Years and a mortality rate of approximately 60,000 per year. Among the three clinical forms of leishmaniasis (cutaneous, mucosal, and visceral), visceral leishmaniasis (VL) accounts for the majority of mortality, as if left untreated VL is almost always fatal. Caused by infection with Leishmania donovani or L. infantum, VL represents a serious public health problem in endemic regions and is rapidly emerging as an opportunistic infection in HIV patients. To date, no vaccine exists for VL or any other form of leishmaniasis. In endemic areas, the majority of those infected do not develop clinical symptoms and past infection leads to robust immunity against reinfection. Thus the development of vaccine for Leishmania is a realistic public health goal, and this paper summarizes advances in vaccination strategies against VL.
Collapse
Affiliation(s)
- Krystal J. Evans
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lukasz Kedzierski
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|