101
|
Fu S, Zhao Y, Li Y, Li G, Chen Y, Li Z, Sun G, Li H, Kang X, Yan F. Characterization of miRNA transcriptome profiles related to breast muscle development and intramuscular fat deposition in chickens. J Cell Biochem 2018; 119:7063-7079. [PMID: 29737555 DOI: 10.1002/jcb.27024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
Studies of the miRNA expression profiles associated with the postnatal late development of skeletal muscle and IMF deposition are lacking in chicken. Here, we evaluated the patterns of muscle fiber growth and IMF deposition in breast muscle in the Chinese domestic breed called Gushi chicken, where we constructed four small RNA libraries from breast muscle tissues at 6, 14, 22, and 30 weeks. A total of 388 known miRNAs and 31 novel miRNAs were identified based on four small RNA libraries. Comparative analysis identified 92 significant differentially expressed (SDE) miRNAs based on six combinations. KEGG pathway analysis for the SDE miRNAs showed that metabolic pathways such as glycolysis and biosynthesis of amino acids were significantly enriched before 22 weeks, and pathways such as biosynthesis of unsaturated fatty acids and fatty acid elongation were significantly enriched after 22 weeks. This trend was consistent with the patterns of breast muscle fiber growth and IMF deposition in Gushi chickens. We also constructed miRNA-mRNA interaction networks related to breast muscle development and IMF deposition. The results showed that miRNAs such as gga-miR-1a-3p, and gga-miR-133a-5p may play important roles in breast muscle development, and miRNAs such as gga-miR-103-3p, and gga-miR-138-2-3p may have key roles in IMF deposition. This study determined the dynamic miRNA transcriptome in breast muscle tissue for the first time in Gushi chickens. The results provide a valuable resource for investigating the post-transcriptional regulation mechanisms during postnatal late development of breast muscle and IMF deposition and for evaluating the muscular disease.
Collapse
Affiliation(s)
- Shouyi Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, P. R. China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| |
Collapse
|
102
|
He H, Cai M, Zhu J, Xiao W, Liu B, Shi Y, Yang X, Liang X, Zheng T, Hu S, Jia X, Chen S, Wang J, Qin Y, Lai S. miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cell Dev Biol Anim 2018; 54:241-249. [PMID: 29426973 DOI: 10.1007/s11626-018-0232-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/12/2018] [Indexed: 01/24/2023]
Abstract
Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3' untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.
Collapse
Affiliation(s)
- Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jiaoyue Zhu
- College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, People's Republic of China
| | - Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xue Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.,Chendu Academy of Agriculture and Forestry Sciences, Sichuan, Chengdu, 611130, China
| | - Xiaohu Liang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Tianhao Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, People's Republic of China.
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
103
|
Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Gan M, Yang Q, Ma J, Jiang A, Tang G, Jiang Y, Jin L, Li M, Bai L, Li X, Wang J, Zhang S, Zhu L. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018; 10:E131. [PMID: 29373534 PMCID: PMC5852707 DOI: 10.3390/nu10020131] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule. This study shows that dietary betaine supplementation significantly inhibits the white fat production in a high-fat diet (HFD)-induced obese mice. This might be due to betaine preventing the formation of new white fat (WAT), and guiding the original WAT to burn through stimulated mitochondrial biogenesis and promoting browning of WAT. Furthermore, dietary betaine supplementation decreases intramyocellular lipid accumulation in HFD-induced obese mice. Further analysis shows that betaine supplementation reduced intramyocellular lipid accumulation might be associated with increasing polyunsaturated fatty acids (PUFA), fatty acid oxidation, and the inhibition of fatty acid synthesis in muscle. Notably, by performing insulin-tolerance tests (ITTs) and glucose-tolerance tests (GTTs), dietary betaine supplementation could be observed for improvement of obesity and non-obesity induced insulin resistance. Together, these findings could suggest that inhibiting WAT production, intramyocellular lipid accumulation and inflammation, betaine supplementation limits HFD-induced obesity and improves insulin resistance.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adiposity
- Animals
- Animals, Outbred Strains
- Anti-Obesity Agents/therapeutic use
- Betaine/adverse effects
- Betaine/therapeutic use
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat/adverse effects
- Dietary Supplements
- Female
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Lipid Droplets/metabolism
- Lipid Droplets/pathology
- Lipid Metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Obesity/diet therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Weight Gain
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Zhendong Tan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xue Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yan Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mailing Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611100, China.
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - An'an Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China.
| |
Collapse
|
104
|
Sharma NK, Varma V, Ma L, Hasstedt SJ, Das SK. Obesity Associated Modulation of miRNA and Co-Regulated Target Transcripts in Human Adipose Tissue of Non-Diabetic Subjects. Microrna 2018; 4:194-204. [PMID: 26527284 PMCID: PMC4740938 DOI: 10.2174/2211536604666151103121817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Micro RNAs (miRNAs) are a class of non-coding regulatory RNAs. We performed a transcriptome-wide analysis of subcutaneous adipose tissue and in vitro studies to identify miRNAs and co-regulated target transcripts associated with insulin sensitivity (SI) and obesity in human. METHODS We selected 20 insulin-resistant (IR, SI=2.0±0.7) and 20 insulin-sensitive (IS, SI=7.2±2.3) subjects from a cohort of 117 metabolically characterized non-diabetic Caucasians for comparison. RESULTS After global profiling, 3 miRNAs had marginally different expressions between IR and IS subjects. A total of 14 miRNAs were significantly correlated with %fat mass, body mass index (BMI), or SI. The qRT-PCR validated the correlation of miR-148a-3p with BMI (r=-0.70, P=2.73X10(-6)). MiRNA target filtering analysis identified DNA methyltransferase 1 (DNMT1) as one of the target genes of miR-148a-3p. DNMT1 expression in adipose tissue was positively correlated with BMI (r=0.47, p=8.42X10(-7)) and was inversely correlated with miR-148a-3p (r=-0.34). Differentiation of SGBS preadipocytes showed up-regulation of miR-148a-3p and down-regulation of DNMT1 in differentiated adipocytes. After transfecting miR-148a-3p mimics into HeLa-S3 cells, DNMT1 was down-regulated, while transfection of adipose stem cells with miR-148a-3p inhibitor up-regulated DNMT1. CONCLUSIONS Our results indicate that miR-148a-3pmediated regulation of DNMT1 expression may play a mechanistic role in obesity.
Collapse
Affiliation(s)
| | | | | | | | - Swapan K Das
- Section on Endocrinology and Metabolism, Department of Internal Medicine Wake Forest School of Medicine, Medical Center Boulevard, NRC Building#E159 Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
105
|
Shi C, Huang F, Gu X, Zhang M, Wen J, Wang X, You L, Cui X, Ji C, Guo X. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget 2018; 7:40830-40845. [PMID: 27049726 PMCID: PMC5130048 DOI: 10.18632/oncotarget.8518] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism, adipocyte differentiation. To determine the role of adipogenic miRNAs in the adipocyte differentiation process, we used microarray technology to monitor miRNA levels in human adipose-derived mesenchymal stem cells (hMSCs-Ad), human stromal vascular cells (SVCs) and differentiated adipocytes. 79 miRNAs were found to be differentially expressed, most of which are located in obesity related chromosomal regions but have not been previously linked to adipocyte differentiation process. A systematic search was made for relevant studies in academic data bases, involving the Gene Expression Omnibus (GEO) ArrayExpress, Pubmed and Embase database. Eight studies on human adipocyte differentiation or obesity were included in the final analysis. After combining our microarray data with meta-analysis of published microarray data, we detected 42 differently expressed miRNAs (meta-signature miRNAs) in mature adipocytes compared to SVCs or hMSCs-Ad. Our study shows meta-signature miRNAs specific for adipogenesis, several of which are correlated with key gene targets demonstrating functional relationships to pathways in BMP signaling pathway, Cell differentiation, Wnt signaling, insulin receptor signaling pathway, MAPK signaling, Cell cycle and lipid metabolic process. Our study shows that the first evidence of hsa-let-7 family, hsa-miR-15a-5p, hsa-miR-27a-3p, hsa-miR-106b-5p, hsa-miR-148a-3p and hsa-miR-26b-5p got a great weight in adipogenesis. We concluded that meta-signature miRNAs involved in adipocyte differentiation and provided pathophysiological roles and novel insight into obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Chunmei Shi
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Fangyan Huang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xiaohong Gu
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juan Wen
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lianghui You
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
106
|
Zhou L, Feng Y, Dai J, Ouyang J. [Research progress of miRNA regulation in differentiation of adipose-derived stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1506-1511. [PMID: 29806396 DOI: 10.7507/1002-1892.201706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective To review the research progress of miRNA regulation in the differentiation of adipose-derived stem cells (ADSCs). Methods The recent literature associated with miRNAs and differentiation of ADSCs was reviewed. The regulatory mechanism was analyzed in detail and summarized. Results The results indicate that the expression of miRNAs changes during differentiation of ADSCs. In addition, miRNAs regulate the differentiation of ADSCs into adipocytes, osteoblasts, chondrocytes, neurons, and hepatocytes by regulating the signaling pathways involved in cell differentiation. Conclusion Through controlling the differentiation of ADSCs by miRNAs, the suitable seed cell for tissue engineering can be established. The review will provide a theoretical basis for molecular targeted therapy and stem cell therapy in clinic.
Collapse
Affiliation(s)
- Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang Hubei, 441053, P.R.China;Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Yanting Feng
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jingxing Dai
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jun Ouyang
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515,
| |
Collapse
|
107
|
Amri EZ, Scheideler M. Small non coding RNAs in adipocyte biology and obesity. Mol Cell Endocrinol 2017; 456:87-94. [PMID: 28412522 DOI: 10.1016/j.mce.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Obesity has reached epidemic proportions world-wide and constitutes a substantial risk factor for hypertension, type 2 diabetes, cardiovascular diseases and certain cancers. So far, regulation of energy intake by dietary and pharmacological treatments has met limited success. The main interest of current research is focused on understanding the role of different pathways involved in adipose tissue function and modulation of its mass. Whole-genome sequencing studies revealed that the majority of the human genome is transcribed, with thousands of non-protein-coding RNAs (ncRNA), which comprise small and long ncRNAs. ncRNAs regulate gene expression at the transcriptional and post-transcriptional level. Numerous studies described the involvement of ncRNAs in the pathogenesis of many diseases including obesity and associated metabolic disorders. ncRNAs represent potential diagnostic biomarkers and promising therapeutic targets. In this review, we focused on small ncRNAs involved in the formation and function of adipocytes and obesity.
Collapse
Affiliation(s)
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
108
|
Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. J Transl Med 2017; 97:1158-1166. [PMID: 28414326 DOI: 10.1038/labinvest.2017.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
109
|
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. GENES AND NUTRITION 2017; 12:23. [PMID: 28974990 PMCID: PMC5613467 DOI: 10.1186/s12263-017-0577-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the link between regulatory microRNAs (miRNAs) and diseases has been the object of intensive research. miRNAs have emerged as key mediators of metabolic processes, playing crucial roles in maintaining/altering physiological processes, including energy balance and metabolic homeostasis. Altered miRNAs expression has been reported in association with obesity, both in animal and human studies. Dysregulation of miRNAs may affect the status and functions of different tissues and organs, including the adipose tissue, pancreas, liver, and muscle, possibly contributing to metabolic abnormalities associated with obesity and obesity-related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. In this review, the status of current research on the role of miRNAs in obesity and related metabolic abnormalities is summarized and discussed.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Alfonso Siani
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
110
|
Losko M, Lichawska-Cieslar A, Kulecka M, Paziewska A, Rumienczyk I, Mikula M, Jura J. Ectopic overexpression of MCPIP1 impairs adipogenesis by modulating microRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:186-195. [PMID: 28939056 DOI: 10.1016/j.bbamcr.2017.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
Adipogenesis is a process of preadipocyte differentiation that requires action of numerous factors. Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) possesses the N-terminus of the PilT protein (PilT N-terminus or PIN domain) that has RNase properties. This protein degrades transcripts coding for inflammation and differentiation - related proteins. Moreover, MCPIP1 is a broad suppressor of the miRNA biogenesis. We previously found that MCPIP1 degrades transcript encoding CCAAT/Enhancer Binding Protein Beta (C/EBPβ) and influences adipogenesis. Subsequently, we aimed to determine adipocyte miRNA expression profile in differentiating mouse preadipocytes, 3T3-L1, by overexpressing MCPIP1. Using Next-Generation Sequencing (NSG) we showed that MCPIP1 overexpression results in modulated levels of 58 miRNAs in adipocytes on day 2 of differentiation. Among them, 30 miRNAs showed significantly reduced levels and 28 showed increased levels in comparison to control. Approximately one third of the modulated miRNAs were not previously reported to be involved in adipocytes differentiation. Our analysis revealed that 24 down-regulated and 23 up-regulated miRNAs (at least 1.5-fold) influence 19 signaling pathways that are important for adipogenesis. Furthermore, reduced miRNA levels result in the up-regulation of their targets. By using luciferase reporter assay, we demonstrated that miR-32-5p and miR-9-3p directly target the 3'UTR region of Mapk8 and Tiam1, respectively. In addition, activation of MAP kinases pathway (JNK and p38), proposed as being regulated by down-regulated miRNAs, was higher in WTMCPIP1 than in D141NMCPIP1 or control 3T3-L1 adipocytes. Our results indicate a considerable impact of MCPIP1 on miRNAs levels and its significance in adipogenesis.
Collapse
Affiliation(s)
- Magdalena Losko
- Department of General Biochemistry, Jagiellonian University, Krakow, Poland
| | | | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
111
|
Knockdown of lncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep 2017; 7:8080. [PMID: 28808264 PMCID: PMC5556051 DOI: 10.1038/s41598-017-08131-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/05/2017] [Indexed: 01/15/2023] Open
Abstract
Adipogenesis plays an important role in the regulation of whole-body energy homeostasis and is inextricably related to obesity. Several studies have highlighted the relevance of microRNAs in adipocyte differentiation, but the contributions of long non-coding RNAs (lncRNAs) are still largely uncharacterized. Here, we determined that lncRNA MIR31HG is related to adipocyte lineage commitment. We demonstrated that knockdown of MIR31HG inhibited adipocyte differentiation, whereas overexpression of MIR31HG promoted adipogenesis in vitro and in vivo. Furthermore, inhibition of MIR31HG reduced the enrichment of active histone markers, histone H3 lysine 4 trimethylation (H3K4me3) and acetylation (AcH3), in the promoter of the adipogenic-related gene, fatty acid binding protein 4 (FABP4), leading to suppression of its expression and adipogenesis. These results provide new insights into the molecular mechanisms of MIR31HG in terms of adipogenesis and may have implications for obesity and associated disorders.
Collapse
|
112
|
Ouyang S, Tang R, Liu Z, Ma F, Li Y, Wu J. Characterization and predicted role of microRNA expression profiles associated with early childhood obesity. Mol Med Rep 2017; 16:3799-3806. [PMID: 28765929 PMCID: PMC5646957 DOI: 10.3892/mmr.2017.7118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the pathogenesis of obesity. The aim of the present study was to characterize the miRNA profile associated with early childhood obesity in peripheral blood mononuclear cells (PBMCs). A total of 12 children (6 obese and 6 lean controls) aged 36 months old to 48 months old were recruited. The miRNA expression profile from PBMCs was detected using the multiplexed NanoString nCounter system. Bioinformatics was employed to detect target genes and miRNA-regulated biological function. A total of 9 differentially expressed miRNAs were identified in obese children compared with lean children (P<0.05). Among the 9 miRNAs, miR-199a-3p/miR-199b-3p and miR-4454 presented at least a 1.5-fold change in expression. A total of 643 potential target genes were regulated by the three miRNAs, and 291 of the potential genes were involved in a protein interaction network. Gene ontology annotation indicated that 291 potential genes were enriched in 14 biological process annotations and 2 molecular function annotations. miRNA dysregulation may be involved in early childhood obesity.
Collapse
Affiliation(s)
- Shengrong Ouyang
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Renqiao Tang
- Graduate School of Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhuo Liu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Feifei Ma
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Yuanyuan Li
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, P.R. China
| |
Collapse
|
113
|
Meng Y, Eirin A, Zhu XY, Tang H, Chanana P, Lerman A, Van Wijnen AJ, Lerman LO. The metabolic syndrome alters the miRNA signature of porcine adipose tissue-derived mesenchymal stem cells. Cytometry A 2017; 93:93-103. [PMID: 28678424 DOI: 10.1002/cyto.a.23165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/24/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023]
Abstract
Autologous transplantation of mesenchymal stem cells (MSCs) is a viable option for the treatment of several diseases. Evidence indicates that MSCs release extracellular vesicles (EVs) and that EVs shuttle miRNAs to damaged parenchymal cells to activate an endogenous repair program. We hypothesize that comorbidities may interfere with the packaging of cargo in MSC-derived EVs. Therefore, we examined whether metabolic syndrome (MetS) modulates the miRNA content packed within MSC-derived EVs. MSCs were collected from swine abdominal adipose tissue after 16 weeks of lean or obese diet (n = 7 each). Next-generation RNA sequencing of miRNAs (miRNA-seq) was performed to identify miRNAs enriched in MSC-derived EVs and their predicted target genes. Functional pathway analysis of the top 50 target genes of the top 4 miRNAs enriched in each group was performed using gene ontology analysis. Lean- and MetS-EVs were enriched in, respectively, 14 and 8 distinct miRNAs. Target genes of miRNAs enriched in MetS-EVs were implicated in the development of MetS and its complications, including diabetes-related pathways, validated transcriptional targets of AP1 family members Fra1 and Fra2, Class A/1 (Rhodopsin-like receptors), and Peptide ligand-binding receptors. In contrast, miRNAs enriched in Lean EVs target primarily EphrinA-EPHA and the Rho family of GTPases. MetS alters the miRNA content of EVs derived from porcine adipose tissue MSCs. These alterations could impair the efficacy and limit the therapeutic use of autologous MSCs in subjects with MetS. Our findings may assist in developing adequate regenerative strategies to preserve the reparative potency of MSCs in individuals with MetS. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yu Meng
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology, the First Hospital Affiliated to Jinan University, Guangzhou, 510630, China
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Pritha Chanana
- Division of Health Sciences Research & Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
114
|
Icli B, Feinberg MW. MicroRNAs in dysfunctional adipose tissue: cardiovascular implications. Cardiovasc Res 2017; 113:1024-1034. [PMID: 28505257 PMCID: PMC5852642 DOI: 10.1093/cvr/cvx098] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/20/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we focus on the emerging role of microRNAs, non-coding RNAs that regulate gene expression and signaling pathways, in dysfunctional adipose tissue. We highlight current paradigms of microRNAs involved in adipose differentiation and function in depots such as white, brown, and beige adipose tissues and potential implications of microRNA dysregulation in human disease such as obesity, inflammation, microvasculature dysfunction, and related cardiovascular diseases. We highlight accumulating studies indicating that adipocyte-derived microRNAs may not only serve as biomarkers of cardiometabolic disease, but also may directly regulate gene expression of other tissues. Finally, we discuss the future prospects, challenges, and emerging strategies for microRNA delivery and targeting for therapeutic applications in cardiovascular disease states associated with adipocyte dysfunction.
Collapse
Affiliation(s)
- Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-742F, Boston, MA 02115, USA
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-742F, Boston, MA 02115, USA
| |
Collapse
|
115
|
|
116
|
Abstract
PURPOSE OF REVIEW Work over the past decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity, and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) metabolism. RECENT FINDINGS A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the past 2 years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single-nucleotide polymorphisms in the proximity of miRNA genes associated with abnormal levels of circulating lipids in humans. Several of these miRNAs, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the LDL receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). SUMMARY MicroRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field, highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis, and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important noncoding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Abhishek K. Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
- Corresponding author: Carlos Fernández-Hernando. Phone: +1 (203)-737-4615.
| |
Collapse
|
117
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
118
|
Hu F, Xu P, Sun B, Xiao Z. Differences in the MicroRNA profiles of subcutaneous adipose-derived stem cells and omental adipose-derived stem cells. Gene 2017; 625:55-63. [PMID: 28483594 DOI: 10.1016/j.gene.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
Abstract
Adipose-derived stem cells (ASCs) isolated from subcutaneous (SC) and omentum (O) share similar characteristics, but the differences in their microRNA profiles are mostly unknown. In this study, besides significant differences in cell morphology and the differentiation ability of the two types of ASCs, the microRNA expression profiles of the cell lines were determined using SOLiD next-generation sequencing. The in-depth analysis found that miR-214, miR-222, miR-181a, miR-26a and miR-23/27/24 clusters and miR-375 act as "markers" to distinguish the different fat deposit-derived ASCs. Additionally, the global miRNA-mRNA interaction differences were revealed, and the results of the GO term enrichment and KEGG pathway in the DAVID tool showed that the molecular function, biological process and signaling pathways showed some different in the two types of ASCs. Our findings provided a clue to a more thorough understanding of the difference between SC-ASCs and O-ASCs and indicate their different potentials for clinical use.
Collapse
Affiliation(s)
- Feihu Hu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China; Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Peng Xu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
119
|
Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition 2017; 35:28-35. [DOI: 10.1016/j.nut.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
|
120
|
Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1857580. [PMID: 28293627 PMCID: PMC5331317 DOI: 10.1155/2017/1857580] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS) and thin-tailed (Tibetan sheep, TS) sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO) biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.
Collapse
|
121
|
Chen Y, Min L, Ren C, Xu X, Yang J, Sun X, Wang T, Wang F, Sun C, Zhang X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One 2017; 12:e0171751. [PMID: 28199399 PMCID: PMC5310808 DOI: 10.1371/journal.pone.0171751] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingfeng Min
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuanli Ren
- Departments of Clinical Medical Testing Laboratory, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingxiang Xu
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Yang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinchen Sun
- Department of Radiotherapy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Wang
- Departments of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Changjiang Sun
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| | - Xizhi Zhang
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail: (XZZ); (CJS)
| |
Collapse
|
122
|
Zhang J, Huang Y, Shao H, Bi Q, Chen J, Ye Z. Grape seed procyanidin B2 inhibits adipogenesis of 3T3-L1 cells by targeting peroxisome proliferator-activated receptor γ with miR-483-5p involved mechanism. Biomed Pharmacother 2017; 86:292-296. [DOI: 10.1016/j.biopha.2016.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/03/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022] Open
|
123
|
Chen Z, Luo J, Sun S, Cao D, Shi H, Loor JJ. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells. RNA Biol 2017; 14:326-338. [PMID: 28095188 DOI: 10.1080/15476286.2016.1276149] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) are a class of '18-25' nt RNA molecules which regulate gene expression and play an important role in several biologic processes including fatty acid metabolism. Here we used S-Poly (T) and high-throughput sequencing to evaluate the expression of miRNA and mRNA during early-lactation and in the non-lactating ("dry") period in goat mammary gland tissue. Results indicated that miR-148a, miR-17-5p, PPARGC1A and PPARA are highly expressed in the goat mammary gland in early-lactation and non-lactating periods. Utilizing a Luciferase reporter assay and Western Blot, PPARA, an important regulator of fatty acid oxidation, and PGC1a (PPARGC1A), a major regulator of fat metabolism, were demonstrated to be targets of miR-148a and miR-17-5p in goat mammary epithelial cells (GMECs). It was also revealed that miR-148a expression can regulate PPARA, and miR-17-5p represses PPARGC1A in GMECs. Furthermore, the overexpression of miR-148a and miR-17-5p promoted triacylglycerol (TAG) synthesis while the knockdown of miR-148a and miR-17-5p impaired TAG synthesis in GMEC. These findings underscore the importance of miR-148a and miR-17-5p as key components in the regulation of TAG synthesis. In addition, miR-148a cooperates with miR-17-5p to regulate fatty acid metabolism by repressing PPARGC1A and PPARA in GMECs. Further studies on the functional role of miRNAs in lipid metabolism of ruminant mammary cells seem warranted.
Collapse
Affiliation(s)
- Zhi Chen
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Jun Luo
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Shuang Sun
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Duoyao Cao
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Huaiping Shi
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture , College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , P.R. China
| | - Juan J Loor
- b Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , IL , USA
| |
Collapse
|
124
|
MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien Klin Wochenschr 2016; 128:519-526. [PMID: 27900532 DOI: 10.1007/s00508-016-1141-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoporosis is a prevalent skeletal disorder characterized by reduced bone mineral density and microarchitectural deterioration of bone tissue, resulting in bone fragility and low-trauma fractures. Imaging techniques are routinely used to detect low bone mass; however, they are unable to identify deterioration of bone quality. Recently, microRNAs have emerged as regulators of bone remodelling and potentially also as a new class of sensitive biomarkers of bone health to aid in diagnosis and treatment monitoring of osteoporosis. METHODS To identify new plasma-based biomarkers associated with osteoporosis we analyzed microRNAs isolated from plasma samples of 74 postmenopausal women divided into osteoporotic (N = 17) and control groups (N = 57). A prior microRNA screening was performed where a few showed promise for further analysis. Quantitative polymerase chain reaction was used to investigate differences in expression of let-7d-5p, let-7e-5p, miR-30d-5p, miR-30e-5p, miR-126-3p, miR-148a-3p, miR-199a-3p, miR-423-5p and miR-574-5p between the two groups. Furthermore, correlation analysis between microRNA expression levels and patient bone mineral density measurements and fracture risk assessment tool (FRAX) as well as trabecular bone scores were performed. RESULTS Expression of miR-148a-3p was significantly higher (p = 0.042) in the osteoporotic patient group compared to the controls. In addition, we identified correlations between miR-126-3p (ρ = 0.253, p = 0.032) and 423-5p (ρ = -0.230, p = 0.049) and parameters of bone quality and quantity. CONCLUSION The results from our study, together with the functional role of miR-148a-3p in bone suggest that this microRNA could be considered as a potential new plasma-based biomarker for pathological changes associated with osteoporosis.
Collapse
|
125
|
Shi C, Pang L, Ji C, Wang J, Lin N, Chen J, Chen L, Yang L, Huang F, Zhou Y, Guo X, Liang H, Zhang M. Obesity-associated miR-148a is regulated by cytokines and adipokines via a transcriptional mechanism. Mol Med Rep 2016; 14:5707-5712. [DOI: 10.3892/mmr.2016.5940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 10/07/2016] [Indexed: 11/06/2022] Open
|
126
|
Abstract
The worldwide epidemic of obesity demands novel and more effective therapeutic approaches. Fat cells are at the core of energy metabolism trying either to cope with a positive energy balance by hypertrophy and hyperplasia of energy storing white adipocytes or to counteract obesity by the induction of non-shivering thermogenesis in energy combusting brite/brown adipocytes. However, the comprehensive regulatory network of adipocyte formation remains to be elucidated. MicroRNAs are an emerging class of important regulatory determinants in many biological processes and diseases, including adipocyte formation and obesity. In this review, microRNAs governing the formation of white, brite and brown adipocytes as well as candidates with impact on obesity are overviewed, concluded with recommendations for further research that considers prerequisites for successful therapeutic applications.
Collapse
Affiliation(s)
- Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
127
|
Influence of gestational diabetes mellitus on human umbilical vein endothelial cell miRNA. Clin Sci (Lond) 2016; 130:1955-67. [PMID: 27562513 DOI: 10.1042/cs20160305] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
We aimed to identify miRNAs whose expression levels in fetal tissues are altered by exposure to a diabetic milieu and elucidate the impact on target protein expression. Gestational diabetes mellitus (GDM) affects both immediate and future disease risk in the offspring. We hypothesized that GDM alters miRNA expression in human umbilical vein endothelial cells (HUVECs) that may influence metabolic processes. A cross-sectional design compared differences in miRNA expression in HUVECs and target protein abundance in placentae between infants of women with GDM (IGDM) and infants born to normoglycaemic controls. miRNAs were identified using microarray profiling and literature review and validated by quantitative PCR (qPCR). In vitro transfection studies explored the impact of the miRNA on target protein expression. Expression of seven miRNA species, miR-30c-5p, miR-452-5p, miR-126-3p, miR-130b-3p, miR-148a-3p, miR-let-7a-5p and miR-let-7g-5p, was higher in the HUVECs of IGDM. Abundance of the catalytic subunit of AMP-activated protein kinase α1 (AMPKα1) was decreased in the HUVECs and BeWo cells (transformed trophoblast cell line) transfected with miR-130b and miR-148a mimics. AMPKα1 expression was also decreased in placental tissues of IGDM. The expression of several miRNAs were altered by in utero exposure to DM in infants of women whose dysglycaemia was very well controlled by current standards. Decreased expression of AMPKα1 as a result of increased levels of miR-130b and miR-148a may potentially explain the decrease in fat oxidation we reported in infants at 1 month of age and, if persistent, may predispose offspring to future metabolic disease.
Collapse
|
128
|
Zhang W, Yao C, Wei Z, Dong Q. miR-128 promoted adipogenic differentiation and inhibited osteogenic differentiation of human mesenchymal stem cells by suppression of VEGF pathway. J Recept Signal Transduct Res 2016; 37:217-223. [PMID: 27485180 DOI: 10.1080/10799893.2016.1212375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wen Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanying Wei
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qirong Dong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
129
|
Pang L, You L, Ji C, Shi C, Chen L, Yang L, Huang F, Zhou Y, Zhang J, Chen X, Guo X. miR-1275 inhibits adipogenesis via ELK1 and its expression decreases in obese subjects. J Mol Endocrinol 2016; 57:33-43. [PMID: 27154547 DOI: 10.1530/jme-16-0007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/05/2016] [Indexed: 11/08/2022]
Abstract
Excessive adipocyte differentiation and proliferation are closely associated with the onset of obesity, which has been partially linked to microRNA expression. In previous studies, using miRNA microarray screening, we found that miR-1275 was significantly decreased in human mature adipocytes. In this study, we examined the role of miR-1275 in adipogenesis. Our results indicated that miR-1275 can inhibit the differentiation of human visceral preadipocytes without affecting their proliferation. ELK1, an E-twenty-six (ETS)-domain transcription factor associated with adipocyte differentiation, was strongly suppressed by miR-1275 in human visceral adipocytes. This was demonstrated via a dual-luciferase reporter assay and pointed to ELK1 as a direct target of miR-1275. Furthermore, miR-1275 expression was significantly diminished in the visceral adipose tissue of overweight and obese human subjects accompanied by a negative correlation with body mass index. These results suggest that miR-1275 could play a future role in the management of obesity, as a novel therapeutic target or biomarker.
Collapse
Affiliation(s)
- Lingxia Pang
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China Institute of PediatricsNanjing Medical University, Nanjing, China
| | - Lianghui You
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chunmei Shi
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Yang
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China Institute of PediatricsNanjing Medical University, Nanjing, China
| | - Fangyan Huang
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China Institute of PediatricsNanjing Medical University, Nanjing, China
| | - Yahui Zhou
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China Institute of PediatricsNanjing Medical University, Nanjing, China
| | - Jun Zhang
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaohui Chen
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Department of Children Health CareNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China Institute of PediatricsNanjing Medical University, Nanjing, China
| |
Collapse
|
130
|
Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci Rep 2016; 6:28897. [PMID: 27349231 PMCID: PMC4924093 DOI: 10.1038/srep28897] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exhibit an increased propensity toward adipocyte differentiation accompanied by a reduction in osteogenesis in osteoporotic bone marrow. However, limited knowledge is available concerning the role of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into adipocytes. In this study, we demonstrated that lncRNA H19 and microRNA-675 (miR-675) derived from H19 were significantly downregulated in BMSCs that were differentiating into adipocytes. Overexpression of H19 and miR-675 inhibited adipogenesis, while knockdown of their endogenous expression accelerated adipogenic differentiation. Mechanistically, we found that miR-675 targeted the 3' untranslated regions of the histone deacetylase (HDAC) 4-6 transcripts and resulted in deregulation of HDACs 4-6, essential molecules in adipogenesis. In turn, trichostatin A, an HDAC inhibitor, significantly reduced CCCTC-binding factor (CTCF) occupancy in the imprinting control region upstream of the H19 gene locus and subsequently downregulated the expression of H19. These results show that the CTCF/H19/miR-675/HDAC regulatory pathway plays an important role in the commitment of BMSCs into adipocytes.
Collapse
|
131
|
Gu N, You L, Shi C, Yang L, Pang L, Cui X, Ji C, Zheng W, Guo X. Expression of miR-199a-3p in human adipocytes is regulated by free fatty acids and adipokines. Mol Med Rep 2016; 14:1180-6. [PMID: 27279151 PMCID: PMC4940088 DOI: 10.3892/mmr.2016.5379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
Obesity is associated with a notable risk for disease, including risk of cardiovascular disorders, type 2 diabetes mellitus (T2DM) and hypertension. Adipose tissue modulates the metabolism by releasing free fatty acids (FFAs) and adipokines, including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). Altered secretion patterns of FFAs and adipokines have been demonstrated to result in obesity-associated insulin resistance (IR) and inflammatory responses. MicroRNA-199a-3p (miR)-199a-3p expression is significantly induced in differentiated human adipose-derived mesenchymal stem cells and indicates the association with T2DM. However, the association between miR-199a-3p levels in adipocytes and obesity-associated IR, as well as inflammatory responses remains to be elucidated. The present study observed an elevation of miR-199a-3p expression level in mature human adipocytes (visceral) compared with pre-adipocytes. In addition, miR-199a-3p expression was higher in visceral adipose deposits from obese subjects. FFA, TNF-α, IL-6 and leptin significantly induced miR-199a-3p expression in mature human adipocytes, while resistin had the opposite effect. miR-199a-3p may represent a factor in the modulation of obesity-associated IR and inflammatory responses.
Collapse
Affiliation(s)
- Nan Gu
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chunmei Shi
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lei Yang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Lingxia Pang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wen Zheng
- Maternity and Child Health Hospital of Yancheng, Yancheng, Jiangsu 224002, P.R. China
| | - Xirong Guo
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital Affiliated With Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
132
|
Mesenchymal Stem Cells and Metabolic Syndrome: Current Understanding and Potential Clinical Implications. Stem Cells Int 2016; 2016:2892840. [PMID: 27313625 PMCID: PMC4903149 DOI: 10.1155/2016/2892840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is an obesity-based, complicated clinical condition that has become a global epidemic problem with a high associated risk for cardiovascular disease and mortality. Dyslipidemia, hypertension, and diabetes or glucose dysmetabolism are the major factors constituting metabolic syndrome, and these factors are interrelated and share underlying pathophysiological mechanisms. Severe obesity predisposes individuals to metabolic syndrome, and recent data suggest that mesenchymal stem cells (MSCs) contribute significantly to adipocyte generation by increasing the number of adipocytes. Accordingly, an increasing number of studies have examined the potential roles of MSCs in managing obesity and metabolic syndrome. However, despite the growing bank of experimental and clinical data, the efficacy and the safety of MSCs in the clinical setting are still to be optimized. It is thus hoped that ongoing and future studies can elucidate the roles of MSCs in metabolic syndrome and lead to MSC-based therapeutic options for affected patients. This review discusses current understanding of the relationship between MSCs and metabolic syndrome and its potential implications for patient management.
Collapse
|
133
|
miR-148a is a downstream effector of X-box-binding protein 1 that silences Wnt10b during adipogenesis of 3T3-L1 cells. Exp Mol Med 2016; 48:e226. [PMID: 27055562 PMCID: PMC4855278 DOI: 10.1038/emm.2016.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023] Open
Abstract
Wnt10b, an endogenous inhibitor of adipogenesis, maintains preadipocytes in an undifferentiated state by suppressing adipogenic transcription factors. We have previously demonstrated that Wnt10b transcription during adipogenesis is negatively regulated by X-box-binding protein 1 (XBP1), an important transcription factor of the unfolded protein response. In this report, we demonstrate that XBP1s can directly induce the transcription of microRNA-148a, which in turn mediates the silencing of Wnt10b mRNA during adipogenic differentiation of 3T3-L1 cells. Stability of Wnt10b mRNA was found to be significantly increased by knockdown of XBP1s. Using computational algorithms, a set of microRNAs was predicted to bind Wnt10b mRNA, of which microRNA-148a was selected as a potential target for XBP1s. Our results revealed that microRNA-148a could bind to the 3′UTR of Wnt10b mRNA. Its ectopic expression significantly suppressed both Wnt10b expression and β-catenin activity. When we altered the expression of XBP1 in 3T3-L1 cells, microRNA-148a levels changed accordingly. A potential XBP1 response element was found in the promoter region of microRNA-148a, and XBP1s directly bound to this response element as shown by point mutation analysis and chromatin immunoprecipitation assay. In addition, a microRNA-148a mimic significantly restored adipogenic potential in XBP1-deficient 3T3-L1 cells. These findings provide the first evidence that XBP1s can regulate Wnt10b by a post-transcriptional mechanism through directly inducing microRNA-148a.
Collapse
|
134
|
Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 2016; 6:21197. [PMID: 26887530 PMCID: PMC4758074 DOI: 10.1038/srep21197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The hyaluronan synthase 2 (HAS2)-hyaluronic acid (HA)-CD44-Caspase-3 pathway is involved in ovarian granulosa cell (GC) functions in mammals. HAS2 is a key enzyme required for HA synthesis and is the key factor in this pathway. However, the regulation of HAS2 and the HAS2-mediated pathway by microRNAs in GCs is poorly understood. Here, we report that miR-26b regulates porcine GC (pGC) apoptosis through the HAS2-HA-CD44-Caspase-3 pathway by binding directly to the 3′- untranslated region of HAS2 mRNA. Knockdown of miR-26b reduced pGC apoptosis. Luciferase reporter assays demonstrated that HAS2 is a direct target of miR-26b in pGCs. Knockdown and overexpression of miR-26b increased and decreased, respectively, HA content, and HAS2 and CD44 expression in pGCs. At the same time, inhibition and overexpression of miR-26b decreased and increased the expression of Caspase-3, a downstream factor in the HAS2-HA-CD44 pathway. Moreover, knockdown of HAS2 enhanced pGC apoptosis, reduced the inhibitory effects of a miR-26b inhibitor on pGC apoptosis, repressed HA content and CD44 expression, and promoted Caspase-3 expression. In addition, overexpression of HAS2 has a opposite effect. Collectively, miR-26b positively regulates pGC apoptosis via a novel HAS2-HA-CD44-Caspase-3 pathway by targeting the HAS2 gene.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fei Tu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
135
|
Price NL, Fernández-Hernando C. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2104-2110. [PMID: 26898181 DOI: 10.1016/j.bbalip.2016.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/06/2023]
Abstract
Obesity and metabolic disorders are a major health concern in all developed countries and a primary focus of current medical research is to improve our understanding treatment of metabolic diseases. One avenue of research that has attracted a great deal of recent interest focuses upon understanding the role of miRNAs in the development of metabolic diseases. miRNAs have been shown to be dysregulated in a number of different tissues under conditions of obesity and insulin resistance, and have been demonstrated to be important regulators of a number of critical metabolic functions, including insulin secretion in the pancreas, lipid and glucose metabolism in the liver, and nutrient signaling in the hypothalamus. In this review we will focus on the important role of miRNAs in regulating the differentiation and function of white and brown adipose tissue and the potential importance of this for maintaining metabolic function and treating metabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|