101
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
102
|
Liu W, Xu J, Zhang L, Li F, Zhang L, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. Research progress on correlations between trace element levels and epilepsy. Front Cell Dev Biol 2023; 11:1167626. [PMID: 37621773 PMCID: PMC10445535 DOI: 10.3389/fcell.2023.1167626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Research investigating the correlation between human trace element levels and disease alterations is growing. Epilepsy, a common nervous system disease, has also been found to be closely related to abnormal levels of trace elements. Studies continue to explore mechanisms of various trace elements involved in epileptic seizures through experimental animal models of epilepsy. Thus, we reviewed the research progress on the correlation between trace element levels and epilepsy in recent years and found that the trace elements most closely related to epilepsy are mainly metal ions such as selenium, iron, copper, zinc, and manganese. These results indicate that the changes in some trace elements are closely related to the increase in epilepsy susceptibility. In addition, after treatment with drugs and a ketogenic diet, the concentration of trace elements in the serum of patients with epilepsy changes. In other words, the abnormality of trace element concentrations is of great significance in the occurrence and development of epilepsy. This article is a literature update on the potential role of trace element imbalance in the development of epilepsy, providing new references for the subsequent prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingqing Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
103
|
Jiang F, Du L, Chen ZJ, Wang X, Ge D, Liu N. LNP-miR-155 cy5 Inhibitor Regulates the Copper Transporter via the β-Catenin/TCF4/SLC31A1 Signal for Colorectal Cancer Therapy. Mol Pharm 2023; 20:4138-4152. [PMID: 37358225 DOI: 10.1021/acs.molpharmaceut.3c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on β-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the β-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of β-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex β-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates β-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.
Collapse
Affiliation(s)
- Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Le Du
- Department of Biology, Hainan Medical University, Haikou, Hainan 570100, P. R. China
| | - Zhi-Ju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Dongsheng Ge
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P. R. China
| |
Collapse
|
104
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
105
|
Yin T, Yang T, Chen L, Tian R, Cheng C, Weng L, Zhang Y, Chen X. Intelligent gold nanoparticles for malignant tumor treatment via spontaneous copper manipulation and on-demand photothermal therapy based on copper induced click chemistry. Acta Biomater 2023; 166:485-495. [PMID: 37121369 DOI: 10.1016/j.actbio.2023.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The excessive copper in tumor cells is crucial for the growth and metastasis of malignant tumor. Herein, we fabricated a nanohybrid to capture, convert and utilize the overexpressed copper in tumor cells, which was expected to achieve copper dependent photothermal damage of primary tumor and copper-deficiency induced metastasis inhibition, generating accurate and effective tumor treatment. The nanohybrid consistsed of 3-azidopropylamine, 4-ethynylaniline and N-aminoethyl-N'-benzoylthiourea (BTU) co-modified gold nanoparticles (AuNPs). During therapy, the BTU segment would specifically chelate with copper in tumor cells after endocytosis to reduce the intracellular copper content, causing copper-deficiency to inhibit the vascularization and tumor migration. Meanwhile, the copper was also rapidly converted to be cuprous by BTU, which further catalyzed the click reaction between azido and alkynyl on the surface of AuNPs, resulting in on-demand aggregation of these AuNPs. This process not only in situ generated the photothermal agent in tumor cells to achieve accurate therapy avoiding unexpected damage, but also enhanced its retention time for sustained photothermal therapy. Both in vitro and in vivo results exhibited the strong tumor inhibition and high survival rate of tumor-bearing mice after application of our nanohybrid, indicating that this synergistic therapy could offer a promising approach for malignant tumor treatment. STATEMENT OF SIGNIFICANCE: The distinctive excessive copper in tumor cells is crucial for the growth and metastasis of tumor. Therefore, we fabricated intelligent gold nanoparticles to simultaneously response and reverse this tumorigenic physiological microenvironment for the synergistic therapy of malignant tumor. In this study, for the first time we converted and utilized the overexpressed Cu2+ in tumor cells to trigger intracellular click chemistry for tumor-specific photothermal therapy, resulting in accurate damage of primary tumor. Moreover, we effectively manipulated the content of Cu2+ in tumor cells to suppress the migration and vascularization of malignant tumor, resulting in effective metastasis inhibition.
Collapse
Affiliation(s)
- Tian Yin
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
106
|
Li Y, Lou J, Hong S, Hou D, Lv Y, Guo Z, Wang K, Xu Y, Zhai Y, Liu H. The role of heavy metals in the development of colorectal cancer. BMC Cancer 2023; 23:616. [PMID: 37400750 PMCID: PMC10316626 DOI: 10.1186/s12885-023-11120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE To investigate the relationship among 18 heavy metals, microsatellite instability (MSI) status, ERCC1, XRCC1 (rs25487), BRAF V600E and 5 tumor markers and their role in the development of colorectal cancer (CRC). METHODS A total of 101 CRC patients and 60 healthy controls were recruited in the present study. The levels of 18 heavy metals were measured by ICP-MS. MSI status and the genetic polymorphism were determined by PCR (FP205-02, Tiangen Biochemical Technology Co., Ltd., Beijing, China) and Sanger sequencing. Spearman's rank correlation was used to analyze the relationship among various factors. RESULTS The level of selenium (Se) was lower in the CRC group compared with the control group (p < 0.01), while vanadium (V), arsenic (As), tin (Sn), barium (Ba) and lead (Pb) were higher (p < 0.05), chromium (Cr) and copper (Cu) were significantly higher (p < 0.0001) in the CRC group than those in the control group. Multivariate logistic regression analysis indicated that Cr, Cu, As and Ba were the risk factors for CRC. In addition, CRC was positively correlated with V, Cr, Cu, As, Sn, Ba and Pb, but negatively correlated with Se. MSI was positively correlated with BRAF V600E, but negatively correlated with ERCC1. BRAF V600E was positively correlated with antimony (Sb), thallium (Tl), CA19-9, NSE, AFP and CK19. XRCC1 (rs25487) was found to be positively correlated with Se but negatively correlated with Co. The levels of Sb and Tl were significantly higher in the BRAF V600E positive group compared to the negative group. The mRNA expression level of ERCC1 was significantly higher (P = 0.035) in MSS compared to MSI. And there was a significant correlation between XRCC1 (rs25487) polymorphism and MSI status (P<0.05). CONCLUSION The results showed that low level of Se and high levels of V, As, Sn, Ba, Pb, Cr, and Cu increased the risk of CRC. Sb and Tl may cause BRAF V600E mutations, leading to MSI. XRCC1 (rs25487) was positively correlated with Se but negatively correlated with Co. The expression of ERCC1 may be related to MSS, while the XRCC1 (rs25487) polymorphism is related to MSI.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Jingwei Lou
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Shaozhong Hong
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Dengfeng Hou
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Yufeng Zhai
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China.
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
107
|
Liao M, Li C, Hu C, Ding J. Copper-binding proteins genes set predicting the overall survival and immune infiltration in hepatocellular carcinoma by bioinformatic analysis. Biochem Biophys Rep 2023; 34:101466. [PMID: 37125079 PMCID: PMC10130086 DOI: 10.1016/j.bbrep.2023.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Abnormal Copper (Cu) accumulation shared a close association with hepatocellular carcinoma (HCC), but the regulatory role of Copper-binding proteins in HCC remains largely unknown. The aim of study was to identify the potential regulatory role of Cu-binding proteins, including copper homeostasis maintainer and the downstream effectors of Cu, in the progression of HCC. We conducted a comprehensive bioinformatic analysis of Cu-binding proteins in HCC using data from TCGA and ICGC database. Univariate cox regression analysis was conducted, and four prognostic Cu-binding proteins was identified to be differentially expressed between the normal liver tissues and HCC tissues. In addition, the Cu-binding proteins-based predictive signature (CuPscore) model was generated using the least absolute shrinkage and selection operator (LASSO) cox regression model. Here, we identified the crucial prognostic value of CuPscore in HCC. The pathological stage and CuPscore were independent risk factors for the prognosis of HCC patients. Pathological stage and CuPscore-based nomogram model exhibited great performance in predicting the prognosis of HCC patients. We also observed that the CuPscore shared a close association with several immunomodulatory molecules and the proportion of several tumor infiltrating immune cells, suggesting a potential value of CuPscore in predicting the response to immunotherapy in HCC. Our results demonstrated the prognostic value of Cu-binding proteins and its correlation with immune microenvironment in HCC, providing a therapeutic basis for the precision medicine strategy through targeting Cu-binding proteins in HCC.
Collapse
Affiliation(s)
- Manyu Liao
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
- Department of Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, 100069, China
- Corresponding author. Department of General Surgery, Beijing Youan Hospital, Capital Medical University, 100069, No. 8, West Toutiao, Outside You'anmen, Fengtai District, Beijing, China.
| | - Caixia Hu
- Center of Oncology and Minimally Invasive Intervention, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Ding
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Clinical Center for Liver Cancer, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
108
|
Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D. Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 2023; 13:1209156. [PMID: 37427098 PMCID: PMC10327296 DOI: 10.3389/fonc.2023.1209156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
As an essential nutrient, copper's redox properties are both beneficial and toxic to cells. Therefore, leveraging the characteristics of copper-dependent diseases or using copper toxicity to treat copper-sensitive diseases may offer new strategies for specific disease treatments. In particular, copper concentration is typically higher in cancer cells, making copper a critical limiting nutrient for cancer cell growth and proliferation. Hence, intervening in copper metabolism specific to cancer cells may become a potential tumor treatment strategy, directly impacting tumor growth and metastasis. In this review, we discuss the metabolism of copper in the body and summarize research progress on the role of copper in promoting tumor cell growth or inducing programmed cell death in tumor cells. Additionally, we elucidate the role of copper-related drugs in cancer treatment, intending to provide new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zaihua Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yandong Miao
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Gansu Academy of Traditional Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
109
|
Masuri S, Moráň L, Vesselá T, Cadoni E, Cabiddu MG, Pečinka L, Gabrielová V, Meloni F, Havel J, Vaňhara P, Pivetta T. A novel heteroleptic Cu(II)-phenanthroline-UDCA complex as lipoxygenase inhibitor and ER-stress inducer in cancer cell lines. J Inorg Biochem 2023; 246:112301. [PMID: 37392615 DOI: 10.1016/j.jinorgbio.2023.112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Tereza Vesselá
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Viktorie Gabrielová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
110
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
111
|
Xie X, Liu L. Global status and research trends of cuprotosis research: A bibliometrics study via CiteSpace. Medicine (Baltimore) 2023; 102:e34020. [PMID: 37327302 PMCID: PMC10270484 DOI: 10.1097/md.0000000000034020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Cuproptosis, a novel copper ion-dependent cell death type being regulated in cells, has raised concerns but lacks scientific analysis. Therefore, this study aimed to analyze the global status and emerging trends in cuprotosis research using bibliometric methods. Publications related to cuprotosis were systematically retrieved from the Web of Science Core Collection and then screened according to the inclusion criteria. Next, CiteSpace and Microsoft Excel 2021 were used to measure and visualize annual publications, categories, journals, countries, institutions, authors, co-cited references, and keywords to identify future global status and trends. A total of 2776 publications on cuprotosis were included, and the overall trend in the number of publications exhibited a rapid increase over the years. Biochemistry and Molecular Biology is the most common category, whereas the Journal of Inorganic Biochemistry is the most active. The United States is the country that produces the most articles, and University of Melbourne in Australia is the core institution involved in this field. Furthermore, Chan Pak of Stanford University is the most prolific author. Oxidative stress and antioxidant, the toxicity of copper in vitro, anticancer mechanism, and brain injury in neurological diseases are hot topics. The research frontiers are copper complexes, anticancer activity, DeoxyriboNucleic Acid binding, inflammation, and nanoparticles. This study provides the current status and trends in cuprotosis research. It may help researchers to identify hot topics and get ideas for future research directions in this field, focusing on copper complexes, anticancer activity, DeoxyriboNucleic Acid binding, inflammation, and nanoparticles.
Collapse
Affiliation(s)
- Xiaoli Xie
- Taishan Nursing Vocational College, Taian, Shandong Province, China
| | - Li Liu
- Shandong Medical College, Jinan, Shandong Province, China
| |
Collapse
|
112
|
Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, Jin H, Feng L. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res 2023; 42:142. [PMID: 37277863 DOI: 10.1186/s13046-023-02720-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION Cuproptosis and ferroptosis are the two newly defined metal-related regulated cell death. However, the crosstalk between cuproptosis and ferroptosis is obscure. MATERIALS AND METHODS We analyzed the effect of ferroptosis inducers on copper ionophores-induced cell death through CCK-8 assay. Cuproptosis was studied using immunofluorescence and protein soluble-insoluble fraction isolation. GSH assay, qRT-PCR and western blot were adopted to explore the machinery of ferroptosis inducers enhanced cuproptosis. And mouse xenograft model was built to detect the synergy effect of elesclomol-Cu and sorafenib in vivo. RESULTS Herein we found that ferroptosis inducers sorafenib and erastin could enhance cuproptosis in primary liver cancer cells by increasing copper dependent lipoylated protein aggregation. Mechanically, sorafenib and erastin upregulated protein lipoylation via suppressing mitochondrial matrix-related proteases mediated ferredoxin 1 (FDX1) protein degradation, and reduced intracellular copper chelator glutathione (GSH) synthesis through inhibiting cystine importing. DISCUSSION/CONCLUSION Our findings proposed that combination of ferroptosis inducers and copper ionophores to co-targeting ferroptosis and cuproptosis could be a novel therapeutic strategy for primary liver cancer.
Collapse
Affiliation(s)
- Weikai Wang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaizhong Lu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Jiang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Wei
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
113
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
114
|
Zhang J, Han M, Zhang J, Abdalla M, Sun P, Yang Z, Zhang C, Liu Y, Chen C, Jiang X. Syphilis mimetic nanoparticles for cuproptosis-based synergistic cancer therapy via reprogramming copper metabolism. Int J Pharm 2023; 640:123025. [PMID: 37164186 DOI: 10.1016/j.ijpharm.2023.123025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Small cell lung cancer (SCLC) is one of the most devastating type of human lung cancer and has a high propensity to metastasize into the brain. Cuproptosis recently has been defined as a copper dependent cell death, offers a new lens to develop the novel copper-based nanostructure inducing cuproptosis for suppressing tumor growth and metastasis. Here, we report a syphilis mimetic TP0751-peptide decorated stem cell membrane-coated copper-based metal organic framework (Cu-MOF) nanodelivery system for SCLC brain metastasis. The Cu-MOF is employed as nanocarrier to support siRNA with high loading efficiency, and its pH sensitivity facilitates endosomal disruption upon cellular uptake. Furthermore, the cell membrane coating Cu-MOF presents a good biocompatibility, high BBB transcytosis, and specific uptake by tumor cells within the brain. In vitro and in vivo trials have shown that TP-M-Cu-MOF/siATP7a exhibited high silencing efficiency against target gene, specifically blocked copper trafficking, increased copper intake, triggered cuproptosis, and improved therapeutic efficacy in SCLC brain metastasis tumor-bearing mice. Overall, the biomimetic nanodelivery platform presented here further offers a promising way of orchestrating gene therapy to target copper-dependent signalling for reprogramming copper metabolism and cuproptosis-based synergistic therapy in mice bearing brain metastases.
Collapse
Affiliation(s)
- Jingzhe Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Mohnad Abdalla
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Cai Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Chen Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, China.
| |
Collapse
|
115
|
Villarruel-Melquiades F, Mendoza-Garrido ME, García-Cuellar CM, Sánchez-Pérez Y, Pérez-Carreón JI, Camacho J. Current and novel approaches in the pharmacological treatment of hepatocellular carcinoma. World J Gastroenterol 2023; 29:2571-2599. [PMID: 37213397 PMCID: PMC10198058 DOI: 10.3748/wjg.v29.i17.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumours worldwide. The mortality-to-incidence ratio is up to 91.6% in many countries, representing the third leading cause of cancer-related deaths. Systemic drugs, including the multikinase inhibitors sorafenib and lenvatinib, are first-line drugs used in HCC treatment. Unfortunately, these therapies are ineffective in most cases due to late diagnosis and the development of tumour resistance. Thus, novel pharmacological alternatives are urgently needed. For instance, immune checkpoint inhibitors have provided new approaches targeting cells of the immune system. Furthermore, monoclonal antibodies against programmed cell death-1 have shown benefits in HCC patients. In addition, drug combinations, including first-line treatment and immunotherapy, as well as drug repurposing, are promising novel therapeutic alternatives. Here, we review the current and novel pharmacological approaches to fight HCC. Preclinical studies, as well as approved and ongoing clinical trials for liver cancer treatment, are discussed. The pharmacological opportunities analysed here should lead to significant improvement in HCC therapy.
Collapse
Affiliation(s)
- Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Mexico City 14080, Mexico
| | - Julio Isael Pérez-Carreón
- Instituto Nacional de Medicina Genómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
116
|
Xie Y, Song X, Du D, Ni Z, Huang H. Identification of cuproptosis-related lncRNAs to predict prognosis and immune infiltration characteristics in alimentary tract malignancies. BMC Bioinformatics 2023; 24:184. [PMID: 37142949 PMCID: PMC10161432 DOI: 10.1186/s12859-023-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alimentary tract malignancies (ATM) caused nearly one-third of all tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in ATM is unknown. METHOD Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and LASSO. Then a predictive nomogram was constructed based on seven prognostic lncRNAs. In addition, the prognostic potential of the seven-lncRNA signature was verified via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score and immune landscape, and somatic gene mutation. RESULTS We identified 1211 cuproptosis-related lncRNAs and seven survival-related lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly different prognoses. ROC and calibration curve confirmed the good prediction capability of the risk model and nomogram. Somatic mutations between the two groups were compared. We also found that patients in the two groups responded differently to immune checkpoint inhibitors and immunotherapy. CONCLUSION The proposed novel seven lncRNAs nomogram could predict prognosis and guide treatment of ATM. Further research was required to validate the nomogram.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xue Song
- Department of Pneumology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Danwei Du
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Zhongkai Ni
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Hai Huang
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
117
|
Ji HB, Kim CR, Min CH, Han JH, Kim S, Lee C, Choy YB. Fe-containing metal-organic framework with D-penicillamine for cancer-specific hydrogen peroxide generation and enhanced chemodynamic therapy. Bioeng Transl Med 2023; 8:e10477. [PMID: 37206221 PMCID: PMC10189484 DOI: 10.1002/btm2.10477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Chemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (•OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH2-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.e., the NH2-MIL-101(Fe)/d-pen), as well as a catalyst with Fe-metal clusters for Fenton reaction. NH2-MIL-101(Fe)/d-pen in the form of nanoparticles was efficiently taken into cancer cells and released d-pen in a sustained manner. The released d-pen chelated Cu that is highly expressed in cancer environments and this produces extra H2O2, which is then decomposed by Fe in NH2-MIL-101(Fe) to generate •OH. Therefore, the cytotoxicity of NH2-MIL-101(Fe)/d-pen was observed in cancer cells, not in normal cells. We also suggest a formulation of NH2-MIL-101(Fe)/d-pen combined with NH2-MIL-101(Fe) loaded with the chemotherapeutic drug, irinotecan (CPT-11; NH2-MIL-101(Fe)/CPT-11). When intratumorally injected into tumor-bearing mice in vivo, this combined formulation exhibited the most prominent anticancer effects among all tested formulations, owing to the synergistic effect of CDT and chemotherapy.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
| | - Se‐Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
| | - Cheol Lee
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in BioengineeringCollege of Engineering, Seoul National UniversitySeoulRepublic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
118
|
Lu Y, Wei X, Chen M, Wang J. Non-ceruloplasmin-bound copper and copper speciation in serum with extraction using functionalized dendritic silica spheres followed by ICP-MS detection. Anal Chim Acta 2023; 1251:340993. [PMID: 36925285 DOI: 10.1016/j.aca.2023.340993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The quantification of non-ceruloplasmin-bound copper (NCBC) and total copper in biological fluids is highly required for understanding the correlation of copper with various physiological processes and diseases. In the present work, we developed dendritic spherical silica particles functionalized with EDTA, shortly as DMSPs-EDTA, from the hydrolysis of tetraethyl orthosilicate with the aid of structure-directing agents and subsequent modification of EDTA. DMSPs-EDTA serves as adsorbent with abundant binding sites to facilitate efficient extraction of NCBC. The retained NCBC on DMSPs-EDTA may be readily recovered by stripping with HNO3 (2 mol L-1). By hyphenating with ICP-MS detection, it provides a limit of detection of 1.3 pmol for NCBC. The degradation of ceruloplasmin with 200 mmol L-1 H2O2 releases the bound copper as NCBC to distribute among other ligands, which may be efficiently retained by the adsorbent and facilitate the detection of total copper. The linear ranges of 0.21-10 μmol L-1 and 0.42-30 μmol L-1 were derived for the detection of NCBC and total copper. The recovery rates for spiked NCBC or total copper in serum were derived to be 97-108% and 94-102%, respectively. The analysis of serum for a healthy subject resulted in 1.8 μmol L-1 NCBC and 9.5 μmol L-1 total copper. In addition, the proportions of 8.5-12% for NCBC were derived from the serum of healthy adults, while those for the patients with lung, hepatocellular and esophageal carcinoma were found to be 10-12%, illustrating no obvious difference against the normal group.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
119
|
Medvedíková M, Ranc V, Vančo J, Trávníček Z, Anzenbacher P. Highly Cytotoxic Copper(II) Mixed-Ligand Quinolinonato Complexes: Pharmacokinetic Properties and Interactions with Drug Metabolizing Cytochromes P450. Pharmaceutics 2023; 15:pharmaceutics15041314. [PMID: 37111801 PMCID: PMC10146558 DOI: 10.3390/pharmaceutics15041314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of two anticancer active copper(II) mixed-ligand complexes of the type [Cu(qui)(mphen)]Y·H2O, where Hqui = 2-phenyl-3-hydroxy- 1H-quinolin-4-one, mphen = bathophenanthroline, and Y = NO3 (complex 1) or BF4 (complex 2) on the activities of different isoenzymes of cytochrome P450 (CYP) have been evaluated. The screening revealed significant inhibitory effects of the complexes on CYP3A4/5 (IC50 values were 2.46 and 4.88 μM), CYP2C9 (IC50 values were 16.34 and 37.25 μM), and CYP2C19 (IC50 values were 61.21 and 77.07 μM). Further, the analysis of mechanisms of action uncovered a non-competitive type of inhibition for both the studied compounds. Consequent studies of pharmacokinetic properties proved good stability of both the complexes in phosphate buffer saline (>96% stability) and human plasma (>91% stability) after 2 h of incubation. Both compounds are moderately metabolised by human liver microsomes (<30% after 1 h of incubation), and over 90% of the complexes bind to plasma proteins. The obtained results showed the potential of complexes 1 and 2 to interact with major metabolic pathways of drugs and, as a consequence of this finding, their apparent incompatibility in combination therapy with most chemotherapeutic agents.
Collapse
Affiliation(s)
- Martina Medvedíková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Václav Ranc
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University in Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 3, 779 00 Olomouc, Czech Republic
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| |
Collapse
|
120
|
Wang X, Chen D, Shi Y, Luo J, Zhang Y, Yuan X, Zhang C, Shu H, Yu W, Tian J. Copper and cuproptosis-related genes in hepatocellular carcinoma: therapeutic biomarkers targeting tumor immune microenvironment and immune checkpoints. Front Immunol 2023; 14:1123231. [PMID: 37153542 PMCID: PMC10157396 DOI: 10.3389/fimmu.2023.1123231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, exhibits high immune heterogeneity and mortality. Emerging studies suggest that copper (Cu) plays a key role in cell survival. However, the relationship between Cu and tumor development remains unclear. Methods We investigated the effects of Cu and cuproptosis-related genes (CRGs) in patients with HCC in the TCGA-LIHC (The Cancer Genome Atlas-Liver cancer, n = 347) and ICGC-LIRI-JP (International Cancer Genome Consortium-Liver Cancer-Riken-Japan, n = 203) datasets. Prognostic genes were identified by survival analysis, and a least absolute shrinkage and selection operator (Lasso) regression model was constructed using the prognostic genes in the two datasets. Additionally, we analyzed differentially expressed genes and signal pathway enrichment. We also evaluated the effects of CRGs on tumor immune cell infiltration and their co-expression with immune checkpoint genes (ICGs) and performed validation in different tumor immune microenvironments (TIMs). Finally, we performed validation using clinical samples and predicted the prognosis of patients with HCC using a nomogram. Results A total of 59 CRGs were included for analysis, and 15 genes that significantly influenced the survival of patients in the two datasets were identified. Patients were grouped by risk scores, and pathway enrichment analysis suggested that immune-related pathways were substantially enriched in both datasets. Tumor immune cell infiltration analysis and clinical validation revealed that PRNP (Prion protein), SNCA (Synuclein alpha), and COX17 (Cytochrome c oxidase copper chaperone COX17) may be closely correlated with immune cell infiltration and ICG expression. A nomogram was constructed to predict the prognosis of patients with HCC using patients' characteristics and risk scores. Conclusion CRGs may regulate the development of HCC by targeting the TIM and ICGs. CRGs such as PRNP, SNCA, and COX17 could be promising targets for HCC immune therapy in the future.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongfang Chen
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Yuan
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chaojin Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
121
|
Balsa LM, Rodriguez MR, Ferraresi-Curotto V, Parajón-Costa BS, Gonzalez-Baró AC, León IE. Finding New Molecular Targets of Two Copper(II)-Hydrazone Complexes on Triple-Negative Breast Cancer Cells Using Mass-Spectrometry-Based Quantitative Proteomics. Int J Mol Sci 2023; 24:ijms24087531. [PMID: 37108690 PMCID: PMC10139133 DOI: 10.3390/ijms24087531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women, with a high incidence estimated to reach 2.3 million by 2030. Triple-Negative Breast Cancer (TNBC) is the greatest invasive class of breast cancer with a poor prognosis, due to the side-effects exerted by the chemotherapy used and the low effectivity of novel treatments. In this sense, copper compounds have shown to be potentially effective as antitumor agents, attracting increasing interest as alternatives to the usually employed platinum-derived drugs. Therefore, the aim of this work is to identify differentially expressed proteins in MDA-MB-231 cells exposed to two copper(II)-hydrazone complexes using label-free quantitative proteomics and functional bioinformatics strategies to identify the molecular mechanisms through which these copper complexes exert their antitumoral effect in TNBC cells. Both copper complexes increased proteins involved in endoplasmic reticulum stress and unfolded protein response, as well as the downregulation of proteins related to DNA replication and repair. One of the most relevant anticancer mechanisms of action found for CuHL1 and CuHL2 was the down-regulation of gain-of-function-mutant p53. Moreover, we found a novel and interesting effect for a copper metallodrug, which was the down-regulation of proteins related to lipid synthesis and metabolism that could lead to a beneficial decrease in lipid levels.
Collapse
Affiliation(s)
- Lucia M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - María R Rodriguez
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Verónica Ferraresi-Curotto
- Instituto de Física La Plata, IFLP (UNLP, CCT-CONICET La Plata), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ana C Gonzalez-Baró
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
122
|
Cikim G, Hatipoglu HS, Susam S. Evaluation of homocysteine, vitamin, and trace element levels in women with gallstones. J Trace Elem Med Biol 2023; 78:127177. [PMID: 37084687 DOI: 10.1016/j.jtemb.2023.127177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE It was aimed to examine the changes in homocysteine, folic acid, and vitamin B12, which metabolize homocysteine from the body, and trace elements (zinc, copper, selenium, nickel) that affect the structure of tissues and epithelium in female patients with gallstone disease. Moreover, it was aimed to investigate the contribution of these selected parameters to the etiology of the disease and their usability in treatment according to the findings obtained. MATERIALS AND METHODS Eighty patients, including 40 female patients (Group I) and 40 completely healthy female individuals (Group II) were included in this study. Serum homocysteine, vitamin B12, folate, zinc, copper, selenium, and nickel levels were evaluated. Electrochemiluminescence immunoassay was used in the analysis of vitamin B12, folic acid, and homocysteine levels, and the ICP-MS method was used in the analysis of trace element levels. RESULTS Homocysteine levels in Group I were statistically significantly higher than in Group II. In terms of vitamin B12, zinc, and selenium, Group I levels were found to be statistically significantly lower than group II. There was no statistically significant difference between Group I levels and Group II in terms of copper, nickel, and folate. CONCLUSION It was suggested that homocysteine, vitamin B12, zinc, and selenium levels should be determined in patients with gallstone disease and that vitamin B12, which is especially important in the excretion of homocysteine from the body, and zinc and selenium, which prevent the free radical formation and protect from its effects, should be added to the diets of these patients.
Collapse
Affiliation(s)
- Gurkan Cikim
- Department of Biochemistry, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| | - Hamit Sinan Hatipoglu
- Department of Surgical Medical Sciences, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Solmaz Susam
- Department of Biochemistry, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
123
|
Miao YD, Quan W, Dong X, Gan J, Ji CF, Wang JT, Zhang F. A bibliometric analysis of ferroptosis, necroptosis, pyroptosis, and cuproptosis in cancer from 2012 to 2022. Cell Death Discov 2023; 9:129. [PMID: 37061535 PMCID: PMC10105750 DOI: 10.1038/s41420-023-01421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
This study aims to visualize research hotspots and trends of "ferroptosis in cancer", "necroptosis in cancer", "pyroptosis in cancer", and "cuproptosis in cancer" through a bibliometric analysis to facilitate understanding of future developments in basic and clinical research and to provide a new perspective on cancer treatment. From January 1, 2012 to October 31, 2022, in the field of "ferroptosis in cancer", a total of 2467 organizations from 79 different countries published 3302 articles. 2274 organizations from 72 different countries published 2233 articles in the field of " necroptosis in cancer". 1366 institutions from 58 different countries contributed 1445 publications in the field of "pyroptosis in cancer". In the field of " cuproptosis in cancer", the number of articles published in the last 10 years is relatively low, with a total of 109 articles published by 116 institutions from four different countries. In the field of "ferroptosis in cancer", Tang Daolin had published 66 documents, ranked the first, while Dixon SJ is the most cited author, cited 3148 times; In the fields of "necroptosis in cancer", Vandenabeele peter had published 35 papers and Degterev had been cited 995 times, ranked the first, respectively; Kanneganti thirumala-devi had published 24 papers, is the highest number of publications in the fields of "pyroptosis in cancer", while Shi JJ was the most cited author with being cited 508 times. Both Huang Yan and Wang Tao published three papers and tied for first place and Tsvetkov p ranks first with being cited 107 times in "cuproptosis in cancer". "Cell", "Cell", "Nature", and "Science" was the most frequently co-cited journal on "ferroptosis in cancer", "necroptosis in cancer", "pyroptosis in cancer", and "cuproptosis in cancer", respectively. Further exploration of inhibitors of different Programmed cell death (PCD) and their targeted therapies are potential treatment options for cancer, but more direct clinical evidence as well as higher level clinical trials remain to be explored. Further clarification of the mechanisms of crosstalk between these PCDs may provide effective cancer treatments. And the role of different types of PCDs, especially the novel ones discovered, in cancer can be expected to remain a hot topic of research in the cancer field for quite some time to come.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Wuxia Quan
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Xin Dong
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Cui-Feng Ji
- Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Jiang-Tao Wang
- Department of Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Fang Zhang
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China.
| |
Collapse
|
124
|
Pekdemir F, Sengul A, Akgun O, Ari F, Acar‐Selcuki N. Anti‐proliferative and Apoptotic Effects of Coordination Compounds of Zinc(II), Palladium(II), and Platinum(II) with Tridentate 4‐(6‐hydroxyphenyl)‐2,6‐di(thiazol‐2‐yl)pyridine. ChemistrySelect 2023. [DOI: 10.1002/slct.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Fatih Pekdemir
- Zonguldak Bülent Ecevit University Faculty of Science Department of Chemistry 67100 Incivez Zonguldak Turkey
| | - Abdurrahman Sengul
- Zonguldak Bülent Ecevit University Faculty of Science Department of Chemistry 67100 Incivez Zonguldak Turkey
| | - Oguzhan Akgun
- Bursa Uludag University Faculty of Science and Arts Department of Biology 16059 Nilüfer Bursa Turkey
| | - Ferda Ari
- Bursa Uludag University Faculty of Science and Arts Department of Biology 16059 Nilüfer Bursa Turkey
| | - Nursel Acar‐Selcuki
- Ege University Faculty of Science Department of Chemistry 35100 Bornova İzmir Turkey
| |
Collapse
|
125
|
Xiaona X, Liu Q, Zhou X, Liang R, Yang S, Xu M, Zhao H, Li C, Chen Y, Xueding C. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in lung adenocarcinoma. Comput Biol Med 2023; 158:106831. [PMID: 37037146 DOI: 10.1016/j.compbiomed.2023.106831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
Copper-dependent cell death, called cuproptosis, is connected to tumor development, prognosis, and the immune response. Nevertheless, the function of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains unknown. This work used R software packages to classify the raw data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases of LUAD patients. Afterward, the connections of the various subgroups, clinical pathological traits, and immune infiltration (IMIF) features with the TME mutation status were explored. Ultimately, a nomogram and calibration curve were developed, aiming at enhancing the clinical application of CRG scores and estimating the survival probability of patients. Moreover, the relationships between cuproptosis and the molecular traits, immune cell infiltration of tumor tissue, prognosis, and clinical treatment of patients were investigated in this work. Subsequently, the CRG score was established to predict overall survival (OS), and its credible predictive ability in LUAD patients was identified. Afterward, a highly credible nomogram was created to contribute to the clinical viability of the CRG score. Furthermore, as demonstrated, gene signatures could be applied in assessing tumor immune cell infiltration, clinical traits, and prognosis. In addition, high tumor mutation burden, immunological activity, and significant survival probability were characterized by low CRG scores, and high CRG scores were related to immunosuppression and stromal pathway activation. The current work also discovered a predictive CRG-related signature for LUAD patients, probably contributing to TME trait clarification and more potent immunotherapy strategy exploration.
Collapse
Affiliation(s)
- Xie Xiaona
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianzi Liu
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Xuehua Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Rongtao Liang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Shengbo Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Min Xu
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Chengye Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Yanfan Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Cai Xueding
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
126
|
Cheng B, Tang C, Xie J, Zhou Q, Luo T, Wang Q, Huang H. Cuproptosis illustrates tumor micro-environment features and predicts prostate cancer therapeutic sensitivity and prognosis. Life Sci 2023; 325:121659. [PMID: 37011878 DOI: 10.1016/j.lfs.2023.121659] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Prostate cancer (PCA) is a common malignant genitourinary tumor that significantly impacts patient survival. Cuproptosis, a copper-dependent programmed cell death mechanism, plays a vital role in tumor development, therapy resistance, and immune microenvironment regulation in PCA. However, research on cuproptosis in prostate cancer is still in its early stages. METHODS Using the publicly available datasets TCGA and GEO, we first acquired the transcriptome and clinical information of PCA patients. The expression of cuprotosis-related genes (CRG) was identified and a prediction model was established based on LASSO-COX method. The predictive performance of this model was evaluated based on Kaplan-Meier method. Using GEO datasets, we further confirmed the critical genes level in the model. Tumor responses to immune checkpoint (ICP) inhibitors were predicted based on Tumor Immune Dysfunction and Exclusion (TIDE) score. The Genomics of Drug Sensitivity in Cancer (GDSC) was utilized to forecast drug sensitivity in cancer cells, whereas the GSVA was employed to analyze enriched pathways related to the cuproptosis signature. Subsequently, the function of PDHA1 gene in PCA was verified. RESULTS A predictive risk model on basis of five cuproptosis-related genes (ATP7B, DBT, LIPT1, GCSH, PDHA1) were established. The progression free survival of low-risk group was obviously longer than the high-risk group, and exhibit better response to ICB therapy.Furthermore,PDHA1 is very important in the pathological process of PCA according to regressions analysis result, and the validation of external data sets were conducted. High PDHA1 expression patients with PCA not only had a shorter PFS and were less likely to benefit from ICB treatment, but they were also less responsive to multiple targeted therapeutic drugs. In preliminary research, PDHA1 knockdown significantly decreased the proliferation and invasion of PCA cells. CONCLUSION This study established a novel cuproptosis-related gene-based prostate cancer prediction model that accurately predicts the prognosis of PCA patients. The model benefits individualized therapy and can assist clinicians in making clinical decisions for PCA patients. Furthermore, our data show that PDHA1 promotes PCA cell proliferation and invasion while modulating the susceptibility to immunotherapy and other targeted therapies. PDHA1 can be regarded as an important target for PCA therapy. This study conforms to the standards of cancer research and is linguistically fluent and meets native language standards.
Collapse
|
127
|
White BE, Liu Y, Hakonarson H, Buono RJ. RNA Sequencing in Hypoxia-Adapted T98G Glioblastoma Cells Provides Supportive Evidence for IRE1 as a Potential Therapeutic Target. Genes (Basel) 2023; 14:genes14040841. [PMID: 37107600 PMCID: PMC10138146 DOI: 10.3390/genes14040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with a median survival time of 14.6 months after diagnosis. GBM cells have altered metabolism and exhibit the Warburg effect, preferentially producing lactate under aerobic conditions. After standard-of-care treatment for GBM, there is an almost 100% recurrence rate. Hypoxia-adapted, treatment-resistant GBM stem-like cells are thought to drive this high recurrence rate. We used human T98G GBM cells as a model to identify differential gene expression induced by hypoxia and to search for potential therapeutic targets of hypoxia adapted GBM cells. RNA sequencing (RNAseq) and bioinformatics were used to identify differentially expressed genes (DEGs) and cellular pathways affected by hypoxia. We also examined expression of lactate dehydrogenase (LDH) genes using qRT-PCR and zymography as LDH dysregulation is a feature of many cancers. We found 2630 DEGs significantly altered by hypoxia (p < 0.05), 1241 upregulated in hypoxia and 1389 upregulated in normoxia. Hypoxia DEGs were highest in pathways related to glycolysis, hypoxia response, cell adhesion and notably the endoplasmic reticulum, including the inositol-requiring enzyme 1 (IRE1)-mediated unfolded protein response (UPR). These results, paired with numerous published preclinical data, provide additional evidence that inhibition of the IRE1-mediated UPR may have therapeutic potential in treating GBM. We propose a possible drug repurposing strategy to simultaneously target IRE1 and the spleen tyrosine kinase (SYK) in patients with GBM.
Collapse
|
128
|
Farhan M, El Oirdi M, Aatif M, Nahvi I, Muteeb G, Alam MW. Soy Isoflavones Induce Cell Death by Copper-Mediated Mechanism: Understanding Its Anticancer Properties. Molecules 2023; 28:molecules28072925. [PMID: 37049690 PMCID: PMC10095714 DOI: 10.3390/molecules28072925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer incidence varies around the globe, implying a relationship between food and cancer risk. Plant polyphenols are a class of secondary metabolites that have recently attracted attention as possible anticancer agents. The subclass of polyphenols, known as isoflavones, includes genistein and daidzein, which are present in soybeans and are regarded as potent chemopreventive agents. According to epidemiological studies, those who eat soy have a lower risk of developing certain cancers. Several mechanisms for the anticancer effects of isoflavones have been proposed, but none are conclusive. We show that isoflavones suppress prostate cancer cell growth by mobilizing endogenous copper. The copper-specific chelator neocuproine decreases the apoptotic potential of isoflavones, whereas the iron and zinc chelators desferroxamine mesylate and histidine do not, confirming the role of copper. Reactive oxygen species (ROS) scavengers reduce isoflavone-induced apoptosis in these cells, implying that ROS are cell death effectors. Our research also clearly shows that isoflavones interfere with the expression of the two copper transporter genes, CTR1 and ATP7A, in cancerous cells. Copper levels are widely known to be significantly raised in all malignancies, and we confirm that isoflavones can target endogenous copper, causing prooxidant signaling and, eventually, cell death. These results highlight the importance of copper dynamics within cancer cells and provide new insight into the potential of isoflavones as cancer-fighting nutraceuticals.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.F.); (M.E.O.)
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
129
|
Aroua LM, Ali R, Albadri AEAE, Messaoudi S, Alminderej FM, Saleh SM. A New, Extremely Sensitive, Turn-Off Optical Sensor Utilizing Schiff Base for Fast Detection of Cu(II). BIOSENSORS 2023; 13:359. [PMID: 36979571 PMCID: PMC10046006 DOI: 10.3390/bios13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Throughout this research, a unique optical sensor for detecting one of the most dangerous heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the sensor shows a "turn-off" state with excellent sensitivity to Cu(II) ions. This innovative fluorescent chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine Cu(II) chelation structures and associated electronic properties in solution, and the results indicate that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution containing several metal ions, the interference of other metal ions was studied. This MNC molecule has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range (0-1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful chelating agent.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Laboratory of Structural Organic Chemistry-Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (L.M.A.); (R.A.); (A.E.A.E.A.); (S.M.); (F.M.A.)
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
130
|
Ritacca AG, Falcone E, Doumi I, Vileno B, Faller P, Sicilia E. Dual Role of Glutathione as a Reducing Agent and Cu-Ligand Governs the ROS Production by Anticancer Cu-Thiosemicarbazone Complexes. Inorg Chem 2023; 62:3957-3964. [PMID: 36802558 PMCID: PMC9996813 DOI: 10.1021/acs.inorgchem.2c04392] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
α-Pyridyl thiosemicarbazones (TSC) such as Triapine (3AP) and Dp44mT are a promising class of anticancer agents. Contrary to Triapine, Dp44mT showed a pronounced synergism with CuII, which may be due to the generation of reactive oxygen species (ROS) by Dp44mT-bound CuII ions. However, in the intracellular environment, CuII complexes have to cope with glutathione (GSH), a relevant CuII reductant and CuI-chelator. Here, aiming at rationalizing the different biological activity of Triapine and Dp44mT, we first evaluated the ROS production by their CuII-complexes in the presence of GSH, showing that CuII-Dp44mT is a better catalyst than CuII-3AP. Furthermore, we performed density functional theory (DFT) calculations, which suggest that a different hard/soft character of the complexes could account for their different reactivity with GSH.
Collapse
Affiliation(s)
- Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
131
|
Lazou M, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Transition metal(II) complexes with the non–steroidal anti–inflammatory drug oxaprozin: Characterization and biological profile. J Inorg Biochem 2023; 243:112196. [PMID: 36966675 DOI: 10.1016/j.jinorgbio.2023.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
A series of copper(II), nickel(II) and cobalt(II) complexes with the non-steroidal anti-inflammatory drug oxaprozin (Hoxa) have been synthesized and characterized by diverse techniques. The crystal structures of two copper(II) complexes, namely the dinuclear complex [Cu2(oxa)4(DMF)2] (1) and the polymeric complex {[Cu2(oxa)4]·2MeOH·0.5MeOH}2 (12) were determined by single-crystal X-ray diffraction studies. In order to evaluate in vitro the antioxidant activity of the resultant complexes, their scavenging ability towards 1,1-diphenyl-picrylhydrazyl (DPPH), hydroxyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was investigated revealing their high effectiveness against these radicals. The binding of the complexes to bovine serum albumin and human serum albumin was examined and the corresponding determined albumin-binding constants showed a tight and reversible interaction. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques including UV-vis spectroscopy, cyclic voltammetry, DNA-viscosity measurements and competitive studies with ethidium bromide. Intercalation may be proposed as the most possible DNA-interaction mode of the complexes.
Collapse
|
132
|
Relationships between the Content of Micro- and Macroelements in Animal Samples and Diseases of Different Etiologies. Animals (Basel) 2023; 13:ani13050852. [PMID: 36899709 PMCID: PMC10000063 DOI: 10.3390/ani13050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Many of the micro- and macro-elements (MMEs) required by the body are found in environmental objects in concentrations different from their original concentration that can lead to dangerous animal diseases ("microelementoses"). The aim was to study the features of MME (accumulating in wild and exotic animals) in connection with particular diseases. The work using 67 mammal species from four Russian zoological institutions was completed in 2022. Studies of 820 cleaned and defatted samples (hair, fur, etc.) after "wet-acid-ashing" on an electric stove and in a muffle furnace were performed using a Kvant-2A atomic absorption spectrometer. The content of zinc, copper, iron, cadmium, lead, and arsenic was assessed. The level of MME accumulation in the animal body contributes not only to the MME status and the development of various concomitant diseases, but the condition itself can occur by intake of a number of micronutrients and/or drugs. Particular correlations between the accumulation of Zn and skin, oncological diseases, Cu-musculoskeletal, cardiovascular diseases, Fe-oncological diseases, Pb-metabolic, nervous, oncological diseases, and Cd-cardiovascular diseases were established. Therefore, monitoring of the MME status of the organism must be carried out regularly (optimally once every 6 months).
Collapse
|
133
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
134
|
Frydrych A, Krośniak M, Jurowski K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients-Critical Review: State-of-the-Art. Nutrients 2023; 15:1012. [PMID: 36839370 PMCID: PMC9961387 DOI: 10.3390/nu15041012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The scoping review aimed to characterise the role of selected essential elements (Zn, Cu, Se, Fe, Mn) in food for special medical purposes (FSMPs) aimed at oncology patients. The scope review was conducted using Scopus, Google Scholar, and Web of Science to find published references on this subject. Data from the reviewed literature were related to the physiological functions of the element in the body, and the effects of deficiencies and excesses, referring to the latest ESPEN and EFSA guidelines, among others. Important dietary indices/parameters based on the literature review are provided for each element. On the basis of the literature, data on the level of elements in patients with cancer were collected. The content of these elements in 100 mL of FSMPs was read from the manufacturers' declarations. The literature has been provided on the importance of each element in cancer. Our findings show that the essential elements (Zn, Cu, Se, Fe, and Mn) of FSMPs for cancer patients are not adequately treated. We suggest solutions to ensure the safe use of FSMPs in oncology patients.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Aleksandrowska 67/93, 91-205 Łódź, Poland
| |
Collapse
|
135
|
Hołota M, Michlewska S, Garcia-Gallego S, del Olmo NS, Ortega P, Bryszewska M, de la Mata FJ, Ionov M. Combination of Copper Metallodendrimers with Conventional Antitumor Drugs to Combat Cancer in In Vitro Models. Int J Mol Sci 2023; 24:4076. [PMID: 36835489 PMCID: PMC9960994 DOI: 10.3390/ijms24044076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.
Collapse
Affiliation(s)
- Marcin Hołota
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology & Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Natalia Sanz del Olmo
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology & Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
136
|
Jung HS, Koo S, Won M, An S, Park H, Sessler JL, Han J, Kim JS. Cu(ii)-BODIPY photosensitizer for CAIX overexpressed cancer stem cell therapy. Chem Sci 2023; 14:1808-1819. [PMID: 36819853 PMCID: PMC9930985 DOI: 10.1039/d2sc03945a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance originating from cancer stem cells (CSCs) is a major cause of cancer treatment failure and highlights the need to develop CSC-targeting therapies. Although enormous progress in both photodynamic therapy (PDT) and chemodynamic therapy (CDT) has been made in recent decades, the efficacy of these modalities against CSC remains limited. Here, we report a new generation photosensitizer, CA9-BPS-Cu(ii), a system that combines three subunits within a single molecule, namely a copper catalyst for CDT, a boron dipyrromethene photosensitizer for PDT, and acetazolamide for CSC targeting via carbonic anhydrase-9 (CA9) binding. A therapeutic effect in MDA-MB-231 cells was observed that is ascribed to elevated oxidative stress mediated by a combined CDT/PDT effect, as well as through copper-catalysed glutathione oxidation. The CSC targeting ability of CA9-BPS-Cu(ii) was evident from the enhanced affinity of CA9-BPS-Cu(ii) towards CD133-positive MDA-MB-231 cells where CA9 is overexpressed vs. CD133-negative cells. Moreover, the efficacy of CA9-BPS-Cu(ii) was successfully demonstrated in a xenograft mouse tumour model.
Collapse
Affiliation(s)
- Hyo Sung Jung
- Department of Biological Sciences, Hyupsung University Hwasung-si 18330 Korea
| | - Seyoung Koo
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Miae Won
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Seeun An
- Department of Biological Sciences, Hyupsung University Hwasung-si 18330 Korea
| | - Haebeen Park
- Department of Biological Sciences, Hyupsung University Hwasung-si 18330 Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University Hwasung-si 18330 Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
137
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
138
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
139
|
Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J, Rady AM. Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepatocellular Carcinoma to 5-FU via Redox Management. Pharmaceuticals (Basel) 2023; 16:169. [PMID: 37259318 PMCID: PMC9967644 DOI: 10.3390/ph16020169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 11/20/2023] Open
Abstract
The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug.
Collapse
Affiliation(s)
| | | | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
140
|
Pinheiro AC, Nunes IJ, Ferreira WV, Tomasini PP, Trindade C, Martins CC, Wilhelm EA, Oliboni RDS, Netz PA, Stieler R, Casagrande ODL, Saffi J. Antioxidant and Anticancer Potential of the New Cu(II) Complexes Bearing Imine-Phenolate Ligands with Pendant Amine N-Donor Groups. Pharmaceutics 2023; 15:pharmaceutics15020376. [PMID: 36839698 PMCID: PMC9960331 DOI: 10.3390/pharmaceutics15020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Cu(II) complexes bearing NNO-donor Schiff base ligands (2a, b) have been synthesized and characterized. The single crystal X-ray analysis of the 2a complex revealed that a mononuclear and a dinuclear complex co-crystallize in the solid state. The electronic structures of the complexes are optimized by Density Functional Theory (DFT) calculations. The monomeric nature of 2a and 2b species is maintained in solution. Antioxidant activities of the ligands (1a, b) and Cu(II) complexes (2a, b) were determined by in vitro assays such as 1,1-diphenyl-2-picrylhydrazyl free radicals (DPPH.) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS+). Our results demonstrated that 2a showed better antioxidant activity. MTT assays were performed to assess the toxicity of ligands and Cu(II) complexes in V79 cells. The antiproliferative activity of compounds was tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and SW620 (colorectal carcinoma) and on MRC-5 (normal lung fibroblast). All compounds showed high cytotoxicity in the all-cell lines but showed no selectivity for tumor cell lines. Antiproliferative activity by clonogenic assay 2b showed a more significant inhibitory effect on the MCF-7 cell lines than on MRC-5. DNA damage for the 2b compound at 10 µM concentration was about three times higher in MCF-7 cells than in MRC-5 cells.
Collapse
Affiliation(s)
- Adriana Castro Pinheiro
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ianka Jacondino Nunes
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Wesley Vieira Ferreira
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Cristiano Trindade
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Carolina Cristóvão Martins
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Ethel Antunes Wilhelm
- Laboratory in Biochemical Pharmacology, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Robson da Silva Oliboni
- Group of Catalysis of Theoretical Studies, Center of Chemical, Pharmaceutical and Food Science Center, Federal University of Pelotas (UFPel), Pelotas 96160-000, RS, Brazil
| | - Paulo Augusto Netz
- Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Rafael Stieler
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Correspondence:
| |
Collapse
|
141
|
Construction and characterization of a cuproptosis- and immune checkpoint-based LncRNAs signature for breast cancer risk stratification. Breast Cancer 2023; 30:393-411. [PMID: 36662399 DOI: 10.1007/s12282-023-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cuproptosis is the most recently identified form of cell death, and copper homeostasis is an important cancer therapeutic target. However, the therapeutic benefits of cuproptosis-targeted treatment in BRCA remain undetermined. This study utilized LncRNAs linked to cuproptosis genes and immune checkpoint genes to generate a BRCA predictive signature. METHODS We screened a population of LncRNAs that correlated with both cuproptosis genes and immune checkpoint genes and used ten of these LncRNAs to construct a prognosis-predictive signature. We then validated and proved the efficacy of the signature in predicting the prognosis of BRCA patients. We also unraveled the relationship between the signature and the immunological milieu, immune function, and susceptibility to chemotherapy. RESULTS The signature derived from the ten cuproptosis- and immune-related prognostic LncRNAs (CuImP-LncRNAs) can be implied to categorize patients into two groups, including the high- and low-risk groups. The value of the signature was validated, and the risk score was verified as an independent prognostic indicator. The TIME and TMB distribution patterns and chemosensitivity were depicted in the high- and low-risk groups, respectively. Patients of the high-risk group with a suppressive immunological intratumor context were more sensitive to a broad range of antitumor agents. In contrast, low-risk individuals with active immune function responded more favorably to immunotherapy. CONCLUSION Our findings provided a novel and effective model for predicting BRCA prognosis and the propensity to different treatment modalities, thus contributing to the optimization of personalized BRCA therapy in the future.
Collapse
|
142
|
Giampà M, Corinti D, Maccelli A, Fornarini S, Berden G, Oomens J, Schwarzbich S, Glaser T, Crestoni ME. Binding Modes of a Cytotoxic Dinuclear Copper(II) Complex with Phosphate Ligands Probed by Vibrational Photodissociation Ion Spectroscopy. Inorg Chem 2023; 62:1341-1353. [PMID: 36655890 PMCID: PMC9890465 DOI: 10.1021/acs.inorgchem.2c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dinuclear copper complex bearing a 2,7-disubstituted-1,8-naphthalenediol ligand, [(HtomMe){Cu(OAc)}2](OAc), a potential anticancer drug able to bind to two neighboring phosphates in the DNA backbone, is endowed with stronger cytotoxic effects and inhibition ability of DNA synthesis in human cancer cells as compared to cisplatin. In this study, the intrinsic binding ability of the charged complex [(HtomMe){Cu(OAc)}2]+ is investigated with representative phosphate diester ligands with growing chemical complexity, ranging from simple inorganic phosphate up to mononucleotides. An integrated method based on high-resolution mass spectrometry (MS), tandem MS, and infrared multiple photon dissociation (IRMPD) spectroscopy in the 600-1800 cm-1 spectral range, backed by quantum chemical calculations, has been used to characterize complexes formed in solution and delivered as bare species by electrospray ionization. The structural features revealed by IRMPD spectroscopy have been interpreted by comparison with linear IR spectra of the lowest-energy structures, revealing diagnostic signatures of binding modes of the dinuclear copper(II) complex with phosphate groups, whereas the possible competitive interaction with the nucleobase is silenced in the gas phase. This result points to the prevailing interaction of [(HtomMe){Cu(OAc)}2]+ with phosphate diesters and mononucleotides as a conceivable contribution to the observed anticancer activity.
Collapse
Affiliation(s)
- Marco Giampà
- Department
of Clinical and Molecular Medicine, Norwegian
University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy,
| | - Alessandro Maccelli
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Sabrina Schwarzbich
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy,
| |
Collapse
|
143
|
A Novel Cuproptosis-Associated Gene Signature to Predict Prognosis in Patients with Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3419401. [PMID: 36714025 PMCID: PMC9876676 DOI: 10.1155/2023/3419401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Background Pancreatic cancer (PAAD) is a malignant tumor with a poor prognosis and lacks sensitive biomarkers for diagnosis and targeted therapy. Cuproptosis, a recently proposed form of cell death based on cellular copper ion concentration, plays a key role in cancer biology. This study is aimed at constructing a risk model for predicting the prognosis of PAAD patients based on cuproptosis-related genes. Methods Pancreatic-related data from UCSC-TCGA and UCSC-GTEx databases were extracted for analysis, and TCGA-PAAD samples were randomly divided into the training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes coexpressed with 19 copper death genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of the Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Results The Cox risk model has an eight prognostic cuproptosis-related gene signature. Kaplan-Meier survival curves demonstrated that the high-risk group had a shorter survival time. The ROC curve of the risk score was well created to predict one-, three-, and five-year survival rates, and AUC of the risk score was higher than other clinical characteristics. Cox regression analysis revealed that the risk score has an independent prognostic value for PAAD. GSEA reveals specific tumor pathways associated with the risk model (Myc targets v1, mTORC1 signaling, and E2F targets). Conclusions We constructed a prognostic model containing eight cuproptosis-related genes (AKR1B10, KLHL29, PROM2, PIP5K1C, KIF18B, AMIGO2, MRPL3, and PI4KB) that can accurately predict the prognosis of PAAD patients. The results will provide new perspectives for individualized outcome prediction and new therapy development for PAAD patients.
Collapse
|
144
|
Zhang P, Pei S, Liu J, Zhang X, Feng Y, Gong Z, Zeng T, Li J, Wang W. Cuproptosis-related lncRNA signatures: Predicting prognosis and evaluating the tumor immune microenvironment in lung adenocarcinoma. Front Oncol 2023; 12:1088931. [PMID: 36733364 PMCID: PMC9887198 DOI: 10.3389/fonc.2022.1088931] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Background Cuproptosis, a unique kind of cell death, has implications for cancer therapy, particularly lung adenocarcinoma (LUAD). Long non-coding RNAs (lncRNAs) have been demonstrated to influence cancer cell activity by binding to a wide variety of targets, including DNA, RNA, and proteins. Methods Cuproptosis-related lncRNAs (CRlncRNAs) were utilized to build a risk model that classified patients into high-and low-risk groups. Based on the CRlncRNAs in the model, Consensus clustering analysis was used to classify LUAD patients into different subtypes. Next, we explored the differences in overall survival (OS), the tumor immune microenvironment (TIME), and the mutation landscape between different risk groups and molecular subtypes. Finally, the functions of LINC00592 were verified through in vitro experiments. Results Patients in various risk categories and molecular subtypes showed statistically significant variations in terms of OS, immune cell infiltration, pathway activity, and mutation patterns. Cell experiments revealed that LINC00592 knockdown significantly reduced LUAD cell proliferation, invasion, and migration ability. Conclusion The development of a trustworthy prediction model based on CRlncRNAs may significantly aid in the assessment of patient prognosis, molecular features, and therapeutic modalities and may eventually be used in clinical applications.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianlan Liu
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeitian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Tianyu Zeng, ; Jun Li, ; Wei Wang,
| |
Collapse
|
145
|
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D, Liu J. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 2023:1-15. [PMID: 36622894 DOI: 10.1080/15548627.2023.2165323] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ferroptosis is a type of iron-dependent regulated cell death characterized by unrestricted lipid peroxidation and membrane damage. Although GPX4 (glutathione peroxidase 4) plays a master role in blocking ferroptosis by eliminating phospholipid hydroperoxides, the regulation of GPX4 remains poorly understood. Here, we report an unexpected role for copper in promoting ferroptotic cell death, but not cuproptosis, by inducing macroautophagic/autophagic degradation of GPX4. Copper chelators reduce ferroptosis sensitivity but do not inhibit other types of cell death, such as apoptosis, necroptosis, and alkaliptosis. Conversely, exogenous copper increases GPX4 ubiquitination and the formation of GPX4 aggregates by directly binding to GPX4 protein cysteines C107 and C148. TAX1BP1 (Tax1 binding protein 1) then acts as an autophagic receptor for GPX4 degradation and subsequent ferroptosis in response to copper stress. Consequently, copper enhances ferroptosis-mediated tumor suppression in a mouse model of pancreatic cancer tumor, whereas copper chelators attenuate experimental acute pancreatitis associated with ferroptosis. Taken together, these findings provide new insights into the link between metal stress and autophagy-dependent cell death.Abbreviations: CALCOCO2, calcium binding and coiled-coil domain 2; GPX4, glutathione peroxidase 4; MAP1LC3A/B, microtubule associated protein 1 light chain 3 alpha/beta; MPO, myeloperoxidase; NCOA4, nuclear receptor coactivator 4; OPTN, optineurin; PDAC, pancreatic ductal adenocarcinoma; RIPK1, receptor interacting serine/threonine kinase 1; ROS, reactive oxygen species; SLC40A1, solute carrier family 40 member 1; SQSTM1, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TM, tetrathiomolybdate.
Collapse
Affiliation(s)
- Qian Xue
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ding Yan
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaofen Li
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Xin Chen
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
146
|
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: adding new paradigms to the links with diseases. Apoptosis 2023; 28:277-292. [PMID: 36611106 DOI: 10.1007/s10495-022-01806-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a new type of iron-dependent cell death induced by a failure of the lipid repair protein GPX4 or the Xc- antiporter, which is essential for glutathione production. Some heavy metals such as arsenic (As), cobalt (Co), cadmium (Cd), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), mercury (Hg) as well as zinc (Zn) are shown to induce ferroptotic cell death involving the generation of oxidative stress, mitochondrial dysfunctioning, lipid peroxidation, and several other cellular etiologies. However, selenium (Se) treatment has been shown to enhance adaptive transcription responses to protect cells from ferroptosis. Heavy metals like Cadmium exposure activated ALK4/5 signaling via Smad3 and Akt signaling which leads to cell death mechanism. Continuous exposure to a small dose of mercury can damage tissues, and methylmercury bind to sulfhydryl proteins and GSH, this elevates oxidative stress, free radical accumulation, glutathione depletion, mitochondrial damage, and inhibited the nuclear factor-κB pathway which leads to ferroptotic cell death. Animals exposed to nickel and cobalt may have increased lipid peroxidation which can induce ferroptosis. Glutathione depletion is caused by Zn intoxication and exposure to manganese. These metals are systemic toxins that have been shown adverse effects on humans. Ferroptosis has recently been related to several pathological disorders, including, Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as cardiovascular disease, and any type of cancer. For these disorders and some heavy metal toxicity, ferroptosis suppression needs to be looked upon as a promising therapeutic choice.
Collapse
Affiliation(s)
- Kumudini Sahoo
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.,School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| |
Collapse
|
147
|
Selyutina OY, Mastova AV, Polyakov NE. The Interaction of Anthracycline Based Quinone-Chelators with Model Lipid Membranes: 1H NMR and MD Study. MEMBRANES 2023; 13:membranes13010061. [PMID: 36676868 PMCID: PMC9861344 DOI: 10.3390/membranes13010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Anthracycline antibiotics, e.g., doxorubicin, daunomycin, and other anthraquinones, are an important family of antitumor agents widely used in chemotherapy, which is currently the principal method for treating many malignancies. Thus, development of improved antitumor drugs with enhanced efficacy remains a high priority. Interaction of anthraquinone-based anticancer drugs with cell membranes attracts significant attention due to its importance in the eventual overcoming of multidrug resistance (MDR). The use of drugs able to accumulate in the cell membrane is one of the possible ways of overcoming MDR. In the present work, the aspects of interaction of anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione) (Q1) with a model membrane were studied by means of NMR and molecular dynamics simulations. A fundamental shortcoming of anthracycline antibiotics is their high cardiotoxicity caused by reactive oxygen species (ROS). The important feature of Q1 is its ability to chelate transition metal ions responsible for ROS generation in vivo. In the present study, we have shown that Q1 and its chelating complexes penetrated into the lipid membrane and were located in the hydrophobic part of the bilayer near the bilayer surface. The chelate complex formation of Q1 with metal ions increased its penetration ability. In addition, it was found that the interaction of Q1 with lipid molecules could influence lipid mobility in the bilayer. The obtained results have an impact on the understanding of molecular mechanisms of Q1 biological activity.
Collapse
|
148
|
Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, X-ray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity. INORGANICS 2023. [DOI: 10.3390/inorganics11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of latonduine derivatives, namely 11-nitro-indolo[2,3-d]benzazepine-7-(1-amino-hydantoin) (B), triazole-fused indolo[2,3-d]benzazepine-based Schiff bases HL1 and HL2 and metal complexes [M(p-cymene)(HL1)Cl]Cl, where M = Ru (1), Os (2), and [Cu(HL2)Cl2] (3) were synthesized and characterized by spectroscopic techniques (UV–vis, 1H, 13C, 15N–1H HSQC NMR) and ESI mass spectrometry. The molecular structures of B and HL1 were confirmed by single-crystal X-ray diffraction, while that of 3 by electron diffraction of nanometer size crystalline sample. Molecular docking calculations of species B in the binding pocket of PIM-1 enzyme revealed that the 1-amino-hydantoin moiety is not involved in any hydrogen-bonding interactions, even though a good accommodation of the host molecule in the ATP binding pocket of the enzyme was found. The antiproliferative activity of organic compounds B, HL1 and HL2, as well as complexes 1–3 was investigated in lung adenocarcinoma A549, colon adenocarcinoma LS-174 and triple-negative breast adenocarcinoma MDA-MB-231 cells and normal human lung fibroblast cells MRC-5 by MTT assays; then, the results are discussed.
Collapse
|
149
|
Amira Solehah Pungut N, Hoe Tan C, Mat Saad H, Shin Sim K, Yin Xing Tiong S, Wei Ang C, Hau Gan C, Voon Kong K, Wai Tan K. A new cinnamaldehyde-rhodamine based dual chemosensor for Cu2+ and Fe3+ and its applicability in live cell imaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
150
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y, Luo J. Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol 2023; 13:1123420. [PMID: 37035162 PMCID: PMC10076572 DOI: 10.3389/fonc.2023.1123420] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Copper is an essential micronutrient for human body and plays a vital role in various biological processes including cellular respiration and free radical detoxification. Generally, copper metabolism in the body is in a stable state, and there are specific mechanisms to regulate copper metabolism and maintain copper homeostasis. Dysregulation of copper metabolism may have a great connection with various types of diseases, such as Wilson disease causing copper overload and Menkes disease causing copper deficiency. Cancer presents high mortality rates in the world due to the unlimited proliferation potential, apoptosis escape and immune escape properties to induce organ failure. Copper is thought to have a great connection with cancer, such as elevated levels in cancer tissue and serum. Copper also affects tumor progression by affecting angiogenesis, metastasis and other processes. Notably, cuproptosis is a novel form of cell death that may provide novel targeting strategies for developing cancer therapy. Copper chelators and copper ionophores are two copper coordinating compounds for the treatment of cancer. This review will explore the relationship between copper metabolism and cancers, and clarify copper metabolism and cuproptosis for cancer targeted therapy.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Niujing Dong
- China Astronaut Research and Training Center, Beijing, China
| | - Yuting Ji
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| |
Collapse
|