101
|
Mercatelli R, Triulzi T, Pavone FS, Orlandi R, Cicchi R. Collagen ultrastructural symmetry and its malignant alterations in human breast cancer revealed by polarization-resolved second-harmonic generation microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000159. [PMID: 32472568 DOI: 10.1002/jbio.202000159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Several specific alterations of the extracellular matrix can be considered a distinctive hallmark of cancer. In particular, a different morphology of the collagen scaffold is frequently found within the peritumoural environment. In this study, we report about a significant difference in the ultrastructural organization of collagen at the supra-molecular level between the perilesional scaffold and the tumour area in human breast carcinoma samples. In particular, we demonstrated that polarization-resolved second-harmonic generation (P-SHG) microscopy is able to link the altered collagen architecture at the ultrastructural level found in perilesional tissue with a different organization of collagen fibrils at the molecular level.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Italy
- Aerospazio Tecnologie s.r.l., Italy
| | - Tiziana Triulzi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Saverio Pavone
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - Rosaria Orlandi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| |
Collapse
|
102
|
Wang Z, Servio P, Rey AD. Mechanogeometry of nanowrinkling in cholesteric liquid crystal surfaces. Phys Rev E 2020; 101:062705. [PMID: 32688582 DOI: 10.1103/physreve.101.062705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Biological plywoods are multifunctional fibrous composites materials, ubiquitous in nature. The chiral fibrous organization is found in chitin (insects), cellulosics (plants), and collagen I (cornea and bone of mammals) and is a solid analog of that of cholesteric liquid crystals. The surface and interfaces of plywoods are distinguished by hierarchical topographies and nanowrinkling. In this paper, we present a theory to model the emergence of these surfaces and interfaces using liquid crystal-based shape equations that directly connect material properties with geometric wrinkling. The model applies to liquid crystal precursors of the plywood solid analoges. We focus on wrinkling geometry, wrinkling mechanics, and the mechanogeometry relationships that underlie multifunctionality ubiquitous in biological surfaces. Scaling wrinkling laws that connect mechanical pressures and stresses to folding and bending are formulated and quantified. A synthesis of the connections between mechanics and geometry is achieved using the topology of stress curves and curvature of the wrinkles. Taken together the results show that anchoring is a versatile surface morphing mechanism with a rich surface bending stress field, two ingredients behind many potential multifunctionalities.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Phillip Servio
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| |
Collapse
|
103
|
Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Symmetry (Basel) 2020. [DOI: 10.3390/sym12071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process.
Collapse
|
104
|
Tortora MMC, Mishra G, Prešern D, Doye JPK. Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis. SCIENCE ADVANCES 2020; 6:eaaw8331. [PMID: 32789165 PMCID: PMC7399560 DOI: 10.1126/sciadv.aaw8331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/16/2020] [Indexed: 05/20/2023]
Abstract
Lyotropic cholesteric liquid crystal phases are ubiquitously observed in biological and synthetic polymer solutions, characterized by a complex interplay between thermal fluctuations and entropic and enthalpic forces. The elucidation of the link between microscopic features and macroscopic chiral structure, and of the relative roles of these competing contributions on phase organization, remains a topical issue. Here, we provide theoretical evidence of a previously unidentified mechanism of chirality amplification in lyotropic liquid crystals, whereby phase chirality is governed by fluctuation-stabilized helical deformations in the conformations of their constituent molecules. Our results compare favorably to recent experimental studies of DNA origami assemblies and demonstrate the influence of intramolecular mechanics on chiral supramolecular order, with potential implications for a broad class of experimentally relevant colloidal systems.
Collapse
Affiliation(s)
- Maxime M. C. Tortora
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Garima Mishra
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Domen Prešern
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jonathan P. K. Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
105
|
Chen P, Wei BY, Hu W, Lu YQ. Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903665. [PMID: 31566267 DOI: 10.1002/adma.201903665] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Planar optical elements that can manipulate the multidimensional physical parameters of light efficiently and compactly are highly sought after in modern optics and nanophotonics. In recent years, the geometric phase, induced by the photonic spin-orbit interaction, has attracted extensive attention for planar optics due to its powerful beam shaping capability. The geometric phase can usually be generated via inhomogeneous anisotropic materials, among which liquid crystals (LCs) have been a focus. Their pronounced optical properties and controllable and stimuli-responsive self-assembly behavior introduce new possibilities for LCs beyond traditional panel displays. Recent advances in LC-mediated geometric phase planar optics are briefly reviewed. First, several recently developed photopatterning techniques are presented, enabling the accurate fabrication of complicated LC microstructures. Subsequently, nematic LC-based transmissive planar optical elements and chiral LC-based broadband reflective elements are reviewed systematically. Versatile functionalities are revealed, from conventional beam steering and focusing, to advanced structuring. Combining the geometric phase with structured LC materials offers a satisfactory platform for planar optics with desired functionalities and drastically extends exceptional applications of ordered soft matter. Some prospects on this rapidly advancing field are also provided.
Collapse
Affiliation(s)
- Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Bing-Yan Wei
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Hu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Institute for Smart Liquid Crystals, JITRI, Changshu, 215500, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
106
|
Sviben S, Spaeker O, Bennet M, Albéric M, Dirks JH, Moussian B, Fratzl P, Bertinetti L, Politi Y. Epidermal Cell Surface Structure and Chitin-Protein Co-assembly Determine Fiber Architecture in the Locust Cuticle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25581-25590. [PMID: 32343541 PMCID: PMC7304823 DOI: 10.1021/acsami.0c04572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The geometrical similarity of helicoidal fiber arrangement in many biological fibrous extracellular matrices, such as bone, plant cell wall, or arthropod cuticle, to that of cholesteric liquid mesophases has led to the hypothesis that they may form passively through a mesophase precursor rather than by direct cellular control. In search of direct evidence to support or refute this hypothesis, here, we studied the process of cuticle formation in the tibia of the migratory locust, Locusta migratoria, where daily growth layers arise by the deposition of fiber arrangements alternating between unidirectional and helicoidal structures. Using focused ion beam/scanning electron microscopy (FIB/SEM) volume imaging and scanning X-ray scattering, we show that the epidermal cells determine an initial fiber orientation, from which the final architecture emerges by the self-organized co-assembly of chitin and proteins. Fiber orientation in the locust cuticle is therefore determined by both active and passive processes.
Collapse
Affiliation(s)
- Sanja Sviben
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Oliver Spaeker
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Mathieu Bennet
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Marie Albéric
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
- Laboratoire
Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR CNRS 7574, 75005 Paris, France
| | - Jan-Henning Dirks
- Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Biomimetics-Innovation-Centre, Hochschule Bremen—City University of Applied
Sciences, 28199 Bremen, Germany
| | - Bernard Moussian
- Institute
of Biology Valrose, Université Côte
d’Azur, CNRS, Inserm, Parc Valrose, 06108 Nice Cedex 2, France
| | - Peter Fratzl
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Luca Bertinetti
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| | - Yael Politi
- Department
of Biomaterials, Max Planck Institute of
Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
107
|
Jullien A, Neradovskiy M, Scarangella A, Mitov M. Biomimicry of iridescent, patterned insect cuticles: comparison of biological and synthetic, cholesteric microcells using hyperspectral imaging. J R Soc Interface 2020; 17:20200239. [PMID: 32546113 PMCID: PMC7328402 DOI: 10.1098/rsif.2020.0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
Biological systems inspire the design of multifunctional materials and devices. However, current synthetic replicas rarely capture the range of structural complexity observed in natural materials. Prior to the definition of a biomimetic design, a dual investigation with a common set of criteria for comparing the biological material and the replica is required. Here, we deal with this issue by addressing the non-trivial case of insect cuticles tessellated with polygonal microcells with iridescent colours due to the twisted cholesteric organization of chitin fibres. By using hyperspectral imaging within a common methodology, we compare, at several length scales, the textural, structural and spectral properties of the microcells found in the two-band cuticle of the scarab beetle Chrysina gloriosa with those of the polygonal texture formed in flat films of cholesteric liquid crystal oligomers. The hyperspectral imaging technique offers a unique opportunity to reveal the common features and differences in the spectral-spatial signatures of biological and synthetic samples at a 6-nm spectral resolution over 400 nm-1000 nm and a spatial resolution of 150 nm. The biomimetic design of chiral tessellations is relevant to the field of non-specular properties such as deflection and lensing in geometric phase planar optics.
Collapse
Affiliation(s)
- Aurélie Jullien
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, UMR 7010, Valbonne, France
| | - Maxim Neradovskiy
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, UMR 7010, Valbonne, France
| | - Adriana Scarangella
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES, CNRS, UPR 8011, Université de Toulouse, Toulouse, France
| | - Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales, CEMES, CNRS, UPR 8011, Université de Toulouse, Toulouse, France
| |
Collapse
|
108
|
Abstract
Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.
Collapse
|
109
|
Shoura MJ, Giovan SM, Vetcher AA, Ziraldo R, Hanke A, Levene SD. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Nucleic Acids Res 2020; 48:4371-4381. [PMID: 32182357 PMCID: PMC7192630 DOI: 10.1093/nar/gkaa153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/12/2022] Open
Abstract
In Cre site-specific recombination, the synaptic intermediate is a recombinase homotetramer containing a pair of loxP DNA target sites. The enzyme system's strand-exchange mechanism proceeds via a Holliday-junction (HJ) intermediate; however, the geometry of DNA segments in the synapse has remained highly controversial. In particular, all crystallographic structures are consistent with an achiral, planar Holliday-junction (HJ) structure, whereas topological assays based on Cre-mediated knotting of plasmid DNAs are consistent with a right-handed chiral junction. We use the kinetics of loop closure involving closely spaced (131-151 bp) loxP sites to investigate the in-aqueo ensemble of conformations for the longest-lived looped DNA intermediate. Fitting the experimental site-spacing dependence of the loop-closure probability, J, to a statistical-mechanical theory of DNA looping provides evidence for substantial out-of-plane HJ distortion, which unequivocally stands in contrast to the square-planar intermediate geometry from Cre-loxP crystal structures and those of other int-superfamily recombinases. J measurements for an HJ-isomerization-deficient Cre mutant suggest that the apparent geometry of the wild-type complex is consistent with temporal averaging of right-handed and achiral structures. Our approach connects the static pictures provided by crystal structures and the natural dynamics of macromolecules in solution, thus advancing a more comprehensive dynamic analysis of large nucleoprotein structures and their mechanisms.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stefan M Giovan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alexandre A Vetcher
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Riccardo Ziraldo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas Hanke
- Department of Physics, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Physics, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
110
|
Punjani V, Mohiuddin G, Kaur S, Choudhury AR, Paladugu S, Dhara S, Ghosh S, Pal SK. Chiral Bent-Shaped Molecules Exhibiting Unusually Wide Range of Blue Liquid-Crystalline Phases and Multistimuli-Responsive Behavior. Chemistry 2020; 26:5859-5871. [PMID: 32083772 DOI: 10.1002/chem.201905707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/02/2020] [Indexed: 11/11/2022]
Abstract
Recently, an unprecedented observation of polar order, thermochromic behavior, and exotic mesophases in new chiral, bent-shaped systems with a -CH3 moiety placed at the transverse position of the central core was reported. Herein, a homologous series of compounds with even-numbered carbon chains from n=4 to 18 were synthesized, in which -Cl was substituted for -CH3 at the kink position and a drastic modification in the phase structure of the bent-shaped molecule was observed. An unusual stabilization of the cubic blue phase (BP) over a wide range of 16.4 °C has been witnessed. Two homologues in this series (1-12 and 1-14) exhibit an interesting phase sequence consisting of BPI/II, chiral nematic, twist grain boundary, smectic A, and smectic X (SmX) phases. The higher homologues (1-16 and 1-18) stabilize the SmX phase enantiotropically over the entire temperature range. Crystal structure analysis confirmed the bent molecular architecture, with a bent angle of 148°, and revealed the presence of two different molecular conformations in an asymmetric unit of compound 1-4. A DFT study corroborated that the -Cl moiety at the central core of the molecule led to an increase in the dipole moment along the transverse direction, which, in turn, facilitated the unusual stabilization of frustrated structures. Crystal polymorphism has been evidenced in three homologues (1-10, 1-12, and 1-14) of the series. On the application of mechanical pressure through grinding, compound 1-10 transformed from a bright yellow crystalline solid to a dark orange-green amorphous solid, which reversed upon dropwise addition of dichloromethane, indicating reversible mechanochromism in this class of compounds. In addition, excellent thermochromic behavior has been observed for compound 1-10 with a controlled temperature-color combination.
Collapse
Affiliation(s)
- Vidhika Punjani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| | - Golam Mohiuddin
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| | - Supreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| | | | - Surajit Dhara
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | - Sharmistha Ghosh
- Department of Physics, University of Calcutta, 92 Acharyya Prafulla Chandra Road, Kolkata, 700009, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli, 140306, India
| |
Collapse
|
111
|
Zhu Q, Liu S, Sun J, Liu J, Kirubaharan CJ, Chen H, Xu W, Wang Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr Polym 2020; 235:115933. [DOI: 10.1016/j.carbpol.2020.115933] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
|
112
|
Palomares LO, Reyes JA. Optical spectra of graded pitch structurally chiral media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:175303. [PMID: 31931495 DOI: 10.1088/1361-648x/ab6aed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study optical spectra when circularly polarized light normally impinges on a structurally chiral medium (SCM) with variable pitch which locally has a [Formula: see text] point group symmetry. In this case, a structural period is defined as a length along the nonhomogeneity axis, where the director rotates a full turn. We considered three different pitch gradients: (a) The pitch value is constant in each structural period and it uniformly increases or decreases in subsequent periods. (b) The pitch value linearly increases or decreases from the initial to the final structural period. (c) The pitch value linearly increases or decreases in a period, with identical periods in the slab. In the first and second case, spectra show a Bragg-type broad-band. It is broader as the difference between the initial and final pitch value in the SCM increases. However, for the third case, there are regions where waves are mainly transmitted as right circularly polarized (RCP) or left circularly polarized (LCP) waves. Inside these regions there are multiple narrow bands for both RCP and LCP waves. Meanwhile, reflexion is almost absent in the spectra except for the optical bands, where there is reflexion for RCP and LCP waves. Thus, spectra exhibit conversion of RCP waves in LCP (LCP in RCP) waves. Moreover, we found that the center frequency of the bands are harmonics of the center frequency of the first band.
Collapse
Affiliation(s)
- Laura O Palomares
- Física Química, Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364, C.P. 01000, Ciudad de México, Mexico
| | | |
Collapse
|
113
|
From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. CRYSTALS 2020. [DOI: 10.3390/cryst10030199] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial with attractive properties. Equally important is the interesting and useful behavior exhibited by solid CNC films, created by drying a cholesteric-forming suspension. However, the pathway along which these films are realized, starting from a CNC suspension that may have low enough concentration to be fully isotropic, is more complex than often appreciated, leading to reproducibility problems and confusion. Addressing a broad audience of physicists, chemists, materials scientists and engineers, this Review focuses primarily on the physics and physical chemistry of CNC suspensions and the process of drying them. The ambition is to explain rather than to repeat, hence we spend more time than usual on the meanings and relevance of the key colloid and liquid crystal science concepts that must be mastered in order to understand the behavior of CNC suspensions, and we present some interesting analyses, arguments and data for the first time. We go through the development of cholesteric nuclei (tactoids) from the isotropic phase and their potential impact on the final dry films; the spontaneous CNC fractionation that takes place in the phase coexistence window; the kinetic arrest that sets in when the CNC mass fraction reaches ∼10 wt.%, preserving the cholesteric helical order until the film has dried; the ’coffee-ring effect’ active prior to kinetic arrest, often ruining the uniformity in the produced films; and the compression of the helix during the final water evaporation, giving rise to visible structural color in the films.
Collapse
|
114
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
115
|
Interplay between Convective and Viscoelastic Forces Controls the Morphology of In Vitro Paclitaxel-Stabilized Microtubules. CRYSTALS 2020. [DOI: 10.3390/cryst10010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microtubules (MTs) are self-assembling, high-aspect-ratio tubular nanostructures formed from the polymerization of tubulin protein. MTs are capable of globally assembling into optically birefringent morphologies, but there is disagreement on the mechanisms driving this behavior. We investigated the temporal evolution of paclitaxel (PTX)-stabilized MT solutions under a range of in vitro conditions. Significant morphological differences were observed in the polymerized PTX-MT solutions as a consequence of varying the orientation of the reaction vessel (vertical vs. horizontal), the type of heating source (hot plate vs. incubator), the incubation time, and the concentration of PTX (high vs. low). The most robust birefringent patterns were found only in vertically oriented cuvettes that were heated asymmetrically on a hot plate, suggesting dependence upon a convective flow, which we confirmed with a combination of optical and thermal imaging. Higher concentrations of PTX led to denser PTX-MT domain formation and brighter birefringence, due to more complete polymerization. Combining our experimental observations, we conclude that birefringent patterns arise principally through a combination of convective and viscoelastic forces, and we identify the sequence of dynamical stages through which they evolve.
Collapse
|
116
|
Daban JR. Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Lett 2020; 594:395-411. [PMID: 31879954 DOI: 10.1002/1873-3468.13724] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Experimental evidence indicates that the chromatin filament is self-organized into a multilayer planar structure that is densely stacked in metaphase and unstacked in interphase. This chromatin organization is unexpected, but it is shown that diverse supramolecular assemblies, including dinoflagellate chromosomes, are multilayered. The mechanical strength of planar chromatin protects the genome integrity, even when double-strand breaks are produced. Here, it is hypothesized that the chromatin filament in the loops and topologically associating domains is folded within the thin layers of the multilaminar chromosomes. It is also proposed that multilayer chromatin has two states: inactive when layers are stacked and active when layers are unstacked. Importantly, the well-defined topology of planar chromatin may facilitate DNA replication without entanglements and DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
117
|
Semeraro EF, Hengl N, Karrouch M, Michot LJ, Paineau E, Jean B, Putaux JL, Lancelon-Pin C, Sharpnack L, Pignon F. Layered organization of anisometric cellulose nanocrystals and beidellite clay particles accumulated near the membrane surface during cross-flow ultrafiltration: In situ SAXS and ex situ SEM/WAXD characterization. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
118
|
Ailincai D, Gavril G, Marin L. Polyvinyl alcohol boric acid - A promising tool for the development of sustained release drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110316. [PMID: 31761179 DOI: 10.1016/j.msec.2019.110316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023]
Abstract
The paper deals with the design and investigation of the morphology, in vitro drug release and biocompatibility of some new formulations based on polyvinyl alcohol boric acid (PVAB) and diclofenac sodium salt (DCF), with the aim to explore the ability of PVAB to act as a matrix for controlled drug delivery systems. A series of three formulations was obtained by mixing the drug and the polymeric matrix in different mass ratios, with high drug content from 10% w/w to 30% w/w. Their structural and supramolecular characterization, performed by FTIR spectroscopy and X-ray diffraction, revealed important physical interactions between the drug and the polymeric matrix. The morphological data, obtained by X-ray diffraction, polarized optical microscopy and scanning electron microscopy revealed the presence of the drug into the PVAB polymeric matrix, as micrometric polycrystals with a mean diameter in the range 10-15 μm, depending on the drug/polymer ratio. The investigation of their surface peculiarities indicated highly hydrophilic surfaces with a water to air contact angle between 29.9 and 41.4 deg and a surface free energy of 45.6-54.2 N/m2. The in vitro release kinetics was monitored by UV-VIS spectroscopy and the cytotoxic effect was investigated in vitro on fibroblasts and HeLa cells. The PVAB proved excellent cytocompatibility, a relative cell viability of the fibroblasts higher than 90% being recorded for concentrations of PVAB up to 7.5% w/v. The drug has been strongly anchored into the electron deficient PVAB matrix, fact which led to its prolonged release up to 5 days. These findings recommend PVAB as a versatile tool for the development of sustained release drug delivery systems with real chances to cross the gap from theory to applications.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Gabriela Gavril
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
119
|
|
120
|
Gornik SG, Hu I, Lassadi I, Waller RF. The Biochemistry and Evolution of the Dinoflagellate Nucleus. Microorganisms 2019; 7:microorganisms7080245. [PMID: 31398798 PMCID: PMC6723414 DOI: 10.3390/microorganisms7080245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Dinoflagellates are known to possess a highly aberrant nucleus-the so-called dinokaryon-that exhibits a multitude of exceptional biological features. These include: (1) Permanently condensed chromosomes; (2) DNA in a cholesteric liquid crystalline state, (3) extremely large DNA content (up to 200 pg); and, perhaps most strikingly, (4) a deficit of histones-the canonical building blocks of all eukaryotic chromatin. Dinoflagellates belong to the Alveolata clade (dinoflagellates, apicomplexans, and ciliates) and, therefore, the biological oddities observed in dinoflagellate nuclei are derived character states. Understanding the sequence of changes that led to the dinokaryon has been difficult in the past with poor resolution of dinoflagellate phylogeny. Moreover, lack of knowledge of their molecular composition has constrained our understanding of the molecular properties of these derived nuclei. However, recent advances in the resolution of the phylogeny of dinoflagellates, particularly of the early branching taxa; the realization that divergent histone genes are present; and the discovery of dinoflagellate-specific nuclear proteins that were acquired early in dinoflagellate evolution have all thrown new light nature and evolution of the dinokaryon.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies (COS), Universität Heidelberg, 69120 Heidelberg, Germany.
| | - Ian Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
121
|
Wu L, Sun H. Manipulation of cholesteric liquid crystal phase behavior and molecular assembly by molecular chirality. Phys Rev E 2019; 100:022703. [PMID: 31574769 DOI: 10.1103/physreve.100.022703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/10/2023]
Abstract
Molecular simulation is used to study the effect of molecular chirality on liquid crystalline phase transition and molecular assembly behavior. Based on a flexible chain (FCh) model with helical arrangement of side beads, the phase behavior of FCh models with various molecular chiralities are studied as functions of pressure (or density). By modifying the molecular chirality of FCh, we can manipulate the relative stability of the nematic and cholesteric phases continuously; and we found that increasing molecular chirality may destabilize cholesteric order due to the effective reduction of chiral interactions. A semismectic phase is identified in the high-density region, in which the two-dimensional fluid layers overlap due to shift alignment formed by FCh particles. The global phase diagram of the FCh model is constructed and the potential energy surface is calculated to elucidate the formation of cholesteric phase in terms of two-body interactions.
Collapse
Affiliation(s)
- Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
122
|
Alvariño C, Heinrich B, Donnio B, Deschenaux R, Therrien B. Supramolecular Arene-Ruthenium Metallacycle with Thermotropic Liquid-Crystalline Properties. Inorg Chem 2019; 58:9505-9512. [PMID: 31247839 DOI: 10.1021/acs.inorgchem.9b01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of 1,4-di(4-pyridinyl)benzene with poly(arylester) dendrimers bearing cyanobiphenyl end-groups gives a bidentate dendromesogenic ligand (L) that exhibits thermotropic liquid-crystalline properties. Combination of the diruthenium complex [Ru2(p-cymene)2(donq)][DDS]2 (M) with L, by coordination-driven self-assembly, affords the discrete and well-defined metallacycle M2L2. Like L, this supramolecular dendritic system displays mesomorphic properties above 50 °C. Both compounds L and M2L2 show smectic phases, characterized by a multilayered organization of the multiple components.
Collapse
Affiliation(s)
- Cristina Alvariño
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , CNRS-Université de Strasbourg , 23 rue du Loess, BP43 , Strasbourg cedex 2 67034 , France
| | - Robert Deschenaux
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| | - Bruno Therrien
- Institut de Chimie , Université de Neuchâtel , Avenue de Bellevaux 51 , Neuchâtel 2000 , Switzerland
| |
Collapse
|
123
|
Gao Y, Jiang Y, Hu W, Jiang H, Li J. Cholesteryl Liquid Crystals as Oil-Based Lubricant Additives: Effect of Mesogenic Phases and Structures on Tribological Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6981-6992. [PMID: 31066284 DOI: 10.1021/acs.langmuir.9b00459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical operation could be seriously affected by friction and controlling it by oil lubrication has been considered as an effective way. Good lubricant additives are very necessary to avoid the friction damages, and to find or design new additives is always a challenge. In this study, a systematic investigation of using cholesteryl liquid crystals (LCs) as lubricant additives to obtain exceptional tribological behaviors was performed. In total, four cholesteryl LC compounds were synthesized targetedly and their thermal and mesogenic properties were studied to see the inherent relationship between the mesogenic phases and antifriction and antiwear performance. Through a series of tribological and related tests, including the UMT TriboLab test, three-dimensional optical microscopy, oil film thickness and viscosity tests, etc., the effect of the mesogenic phases and structures of the synthesized cholesteryl LCs on their tribological properties as lubricant additives was investigated and a related mechanism was analyzed. The result showed that within and close to the mesogenic phase temperature ranges, which we called as effective temperature ranges of LC additives ( TEF), the LCs presented better tribological behaviors, meaning they could be used in special lubrication applications that need to be confined in certain temperature scopes; however, the ester groups with long alky tails could help dissolve in base oils and adsorb onto the friction pairs. Among the four LCs, LC-D with a long perfluoroalkyl tail brought widest mesogenic phase with considerably enhanced lubrication performance and increased oil film thickness, viscosity, and thermal stability, indicating that the perfluoroalkyl group could be well used in the structural modification of LC additives to give unexpected tribological performance. This study, in conjunction with our experimental data, suggested that the liquid crystals may be evaluated as potential friction modifiers for temperature-controllable lubrication and also shed a fresh light on the development of novel liquid crystal lubrication materials.
Collapse
Affiliation(s)
- Yiming Gao
- Laboratory for Advanced Lubricating Materials , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
- Department of Chemistry, College of Science , Shanghai University , 200444 Shanghai , China
| | - Ying Jiang
- Laboratory for Advanced Lubricating Materials , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Wenjing Hu
- Laboratory for Advanced Lubricating Materials , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Haizhen Jiang
- Department of Chemistry, College of Science , Shanghai University , 200444 Shanghai , China
| | - Jiusheng Li
- Laboratory for Advanced Lubricating Materials , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| |
Collapse
|
124
|
Dadinova LA, Chesnokov YM, Kamyshinsky RA, Orlov IA, Petoukhov MV, Mozhaev AA, Soshinskaya EY, Lazarev VN, Manuvera VA, Orekhov AS, Vasiliev AL, Shtykova EV. Protective Dps-DNA co-crystallization in stressed cells: an in vitro structural study by small-angle X-ray scattering and cryo-electron tomography. FEBS Lett 2019; 593:1360-1371. [PMID: 31090064 DOI: 10.1002/1873-3468.13439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023]
Abstract
Under severe or prolonged stress, bacteria produce a nonspecific DNA-binding protein (Dps), which effectively protects DNA against damaging agents both in vitro and in vivo by forming intracellular biocrystals. The phenomenon of protective crystallization of DNA in living cells has been intensively investigated during the last two decades; however, the results of studies are somewhat contradictory, and up to now, there has been no direct determination of a Dps-DNA crystal structure. Here, we report the in vitro analysis of the vital process of Dps-DNA co-crystallization using two complementary structural methods: synchrotron small-angle X-ray scattering in solution and cryo-electron tomography. Importantly, for the first time, the DNA in the co-crystals was visualized, and the lattice parameters of the crystalline Dps-DNA complex were determined.
Collapse
Affiliation(s)
- Liubov A Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Yurii M Chesnokov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Roman A Kamyshinsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,National Research Center 'Kurchatov Institute', Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan A Orlov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.,European Molecular Biology Laboratory, EMBL Hamburg Outstation, Germany
| | - Andrey A Mozhaev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Yu Soshinskaya
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - Vassili N Lazarev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valentin A Manuvera
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Anton S Orekhov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Alexander L Vasiliev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,National Research Center 'Kurchatov Institute', Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Eleonora V Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
125
|
Zhao J, Gulan U, Horie T, Ohmura N, Han J, Yang C, Kong J, Wang S, Xu BB. Advances in Biological Liquid Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900019. [PMID: 30892830 DOI: 10.1002/smll.201900019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Biological liquid crystals, a rich set of soft materials with rod-like structures widely existing in nature, possess typical lyotropic liquid crystalline phase properties both in vitro (e.g., cellulose, peptides, and protein assemblies) and in vivo (e.g., cellular lipid membrane, packed DNA in bacteria, and aligned fibroblasts). Given the ability to undergo phase transition in response to various stimuli, numerous practices are exercised to spatially arrange biological liquid crystals. Here, a fundamental understanding of interactions between rod-shaped biological building blocks and their orientational ordering across multiple length scales is addressed. Discussions are made with regard to the dependence of physical properties of nonmotile objects on the first-order phase transition and the coexistence of multi-phases in passive liquid crystalline systems. This work also focuses on how the applied physical stimuli drives the reorganization of constituent passive particles for a new steady-state alignment. A number of recent progresses in the dynamics behaviors of active liquid crystals are presented, and particular attention is given to those self-propelled animate elements, like the formation of motile topological defects, active turbulence, correlation of orientational ordering, and cellular functions. Finally, future implications and potential applications of the biological liquid crystalline materials are discussed.
Collapse
Affiliation(s)
- Jianguo Zhao
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
- Third Institute of Physics-Biophysics, University of Göttingen, 37077, Göttingen, Germany
| | - Utku Gulan
- Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Takafumi Horie
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Naoto Ohmura
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Jun Han
- Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, 362200, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Steven Wang
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
126
|
Jullien A, Scarangella A, Bortolozzo U, Residori S, Mitov M. Nanoscale hyperspectral imaging of tilted cholesteric liquid crystal structures. SOFT MATTER 2019; 15:3256-3263. [PMID: 30919852 DOI: 10.1039/c8sm02506a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ongoing research on chiral liquid crystals takes advantage of the peculiar behavior of twisted structures subject to curvature. We demonstrate the fine tunability of the characteristics of the bandgap of a cholesteric structure in which the orientation of the helix axis spatially changes. To date, the spectral resolution of the order of 6 nm, herein reached by hyperspectral imaging, has not been solved in tilted helices. A correlation between spectral shifts and spatial twists is thus made possible.
Collapse
Affiliation(s)
- Aurélie Jullien
- Institut de Physique de Nice (InPhyNi), Université Côte d'Azur, CNRS UMR 7010, 1361 route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | |
Collapse
|
127
|
Surface Anchoring Effects on the Formation of Two-Wavelength Surface Patterns in Chiral Liquid Crystals. CRYSTALS 2019. [DOI: 10.3390/cryst9040190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a theoretical analysis and linear scaling of two-wavelength surface nanostructures formed at the free surface of cholesteric liquid crystals (CLC). An anchoring model based on the capillary shape equation with the high order interaction of anisotropic interfacial tension is derived to elucidate the formation of the surface wrinkling. We showed that the main pattern-formation mechanism is originated due to the interaction between lower and higher order anchoring modes. A general phase diagram of the surface morphologies is presented in a parametric space of anchoring coefficients, and a set of anchoring modes and critical lines are defined to categorize the different types of surface patterns. To analyze the origin of surface reliefs, the correlation between surface energy and surface nano-wrinkles is investigated, and the symmetry and similarity between the energy and surface profile are identified. It is found that the surface wrinkling is driven by the director pressure and is annihilated by two induced capillary pressures. Linear approximation for the cases with sufficient small values of anchoring coefficients is used to realize the intrinsic properties and relations between the surface curvature and the capillary pressures. The contributions of capillary pressures on surface nano-wrinkling and the relations between the capillary vectors are also systematically investigated. These new findings establish a new approach for characterizing two-length scale surface wrinkling in CLCs, and can inspire the design of novel functional surface structures with the potential optical, friction, and thermal applications.
Collapse
|
128
|
Frka-Petesic B, Kamita G, Guidetti G, Vignolini S. The angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. PHYSICAL REVIEW MATERIALS 2019; 3:045601. [PMID: 33225202 PMCID: PMC7116400 DOI: 10.1103/physrevmaterials.3.045601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cellulose nanocrystals (CNCs) are bio-sourced chiral nanorods that can form stable colloidal suspensions able to spontaneously assemble above a critical concentration into a cholesteric liquid crystal, with a cholesteric pitch usually in the micron range. When these suspensions are dried on a substrate, solid films with a pitch of the order of few hundreds of nanometers can be produced, leading to intense reflection in the visible range. However, the resulting cholesteric nanostructure is usually not homogeneous within a sample and comports important variations of the cholesteric domain orientation and pitch, which affect the photonic properties. In this work, we first propose a model accounting for the formation of the photonic structure from the vertical compression of the cholesteric suspension upon solvent evaporation, starting at the onset of the kinetic arrest of the drying suspension and ending when solvent evaporation is complete. From that assumption, various structural features of the films can be derived, such as the variation of the cholesteric pitch with the domain tilt, the orientation distribution density of the final cholesteric domains and the distortion of the helix from the unperturbed cholesteric case. The angular-resolved optical response of such films is then derived, including the iridescence and the generation of higher order reflection bands, and a simulation of the angular optical response is provided, including its tailoring under external magnetic fields. Second, we conducted an experimental investigation of CNC films covering a structural and optical analysis of the films. The macroscopic appearance of the films is discussed and complemented with angular-resolved optical spectroscopy, optical and electron microscopy, and our quantitative analysis shows an excellent agreement with the proposed model. This allows us to access the precise composition and the pitch of the suspension when it transited into a kinetically arrested phase directly from the optical analysis of the film. This work highlights the key role that the anisotropic compression of the kinetically arrested state plays in the formation of CNC films and is relevant to the broader case of structure formation in cast dispersions and colloidal self-assembly upon solvent evaporation.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Gen Kamita
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Giulia Guidetti
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| | - Silvia Vignolini
- Melville laboratory for polymer Synthesis, Chemistry dept., University of Cambridge
| |
Collapse
|
129
|
Abstract
In this review, we compare the circular dichroism (CD) spectra of liquid-crystalline dispersion (LCD) particles formed in PEG-containing aqueous-salt solutions with the purpose of determining the packing of ds DNA molecules in these particles. Depending on the osmotic pressure of the solution, the phase exclusion of ds DNA molecules at room temperature results in the formation of LCD particles with the cholesteric or the hexagonal packing of molecules. The heating of dispersion particles with the hexagonal packing of the ds DNA molecules results in a new phase transition, accompanied by an appearance of a new optically active phase of ds DNA molecules. Our results are rationalized by way of a concept of orientationally ordered “quasinematic” layers formed by ds DNA molecules, with a parallel alignment in the hexagonal structure. These layers can adopt a twisted configuration with a temperature increase; and as a result of this process, a new, helicoidal structure of dispersion particle is formed (termed as the “re-entrant” cholesteric phase). To prove the cholesteric pattern of ds DNA molecules in this phase, the “liquid-like” state of the dispersion particles was transformed into its “rigid” counterpart.
Collapse
|
130
|
Joshi G, Okeyoshi K, Mitsumata T, Kaneko T. Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. J Colloid Interface Sci 2019; 546:184-191. [PMID: 30913492 DOI: 10.1016/j.jcis.2019.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Uniaxial orientation is highly desirable for fabricating advanced soft materials. Liquid crystal (LC) polymer deposition was strategically manipulated at the air-LC interface, by controlling the drying temperature and initial concentration of aqueous solution of xanthan gum in a limited space. Interface-assisted orientation led to membrane-like depositions bridging the millimeter-scale gap between the substrates both, vertically and horizontally. The applicability of this approach lies in synchronization of the molecular orientation beyond their individual LC domains into the condensed state. Cross-polarized microscopy and SEM analysis correlated the orientation of the deposited polymer with the controlled mobility of xanthan gum LC domains at the evaporative interface. Subsequently, a phase diagram was prepared for the variety of oriented structures, depending upon the drying conditions. The deposited membrane behaved as an oriented hydrogel showing reversible anisotropic swelling/deswelling only along its thickness.
Collapse
Affiliation(s)
- Gargi Joshi
- Energy and Environment Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kosuke Okeyoshi
- Energy and Environment Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Tetsu Mitsumata
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tatsuo Kaneko
- Energy and Environment Area, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
131
|
Abstract
Many nanoparticle-based chiral liquid crystals are composed of polydisperse rod-shaped particles with considerable spread in size or shape, affecting the mesoscale chiral properties in, as yet, unknown ways. Using an algebraic interpretation of Onsager-Straley theory for twisted nematics, we investigate the role of length polydispersity on the pitch of nanorod-based cholesterics with a continuous length polydispersity, and find that polydispersity enhances the twist elastic modulus, K 2 , of the cholesteric material without affecting the effective helical amplitude, K t . In addition, for the infinitely large average aspect ratios considered here, the dependence of the pitch on the overall rod concentration is completely unaffected by polydispersity. For a given concentration, the increase in twist elastic modulus (and reduction of the helical twist) may be up to 50% for strong size polydispersity, irrespective of the shape of the unimodal length distribution. We also demonstrate that the twist reduction is reinforced in bimodal distributions, obtained by doping a polydisperse cholesteric with very long rods. Finally, we identify a subtle, non-monotonic change of the pitch across the isotropic-cholesteric biphasic region.
Collapse
|
132
|
Jung HS, Kim MH, Park WH. Preparation and Structural Investigation of Novel β-Chitin Nanocrystals from Cuttlefish Bone. ACS Biomater Sci Eng 2019; 5:1744-1752. [DOI: 10.1021/acsbiomaterials.8b01652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hyeong-Seop Jung
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| | - Min Hee Kim
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
133
|
Khadem SA, Rey AD. Thermodynamic modelling of acidic collagenous solutions: from free energy contributions to phase diagrams. SOFT MATTER 2019; 15:1833-1846. [PMID: 30694286 DOI: 10.1039/c8sm02140f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tropocollagen is considered one of the main precursors in the fabrication of collagen-based biomaterials. Triple helix acidic solutions of collagen I have been shown experimentally to lead to chiral plywood architectures found in bone and "cornea" like tissues. As these plywoods are solid analogues of liquid crystal architectures, bio-inspired processing and fabrication platforms based on liquid crystal physics and thermodynamics will continue to play an essential role. For tissue engineering applications, it has been shown that dilute isotropic collagen solutions need to be flow processed first and then dehydrated. Thus, a complete fundamental understanding of the thermodynamics and free energy contributions in acidic collagen aqueous solutions is necessary to avoid expensive trial-and-error fabrication. To achieve this goal, we analyze the microscopic mechanisms of ordering and interactions in solutions of triple helix collagen, namely mixing, attraction, excluded-volume and chirality. To capture the mentioned physics, we then incorporate and integrate the Flory-Huggins, Maier-Saupe, Onsager and Frank theories. Nonetheless, they together are incapable of providing an acceptable mesophasic description in acidic collagenous solutions because tropocollagen biomacromolecules are positively charged. We then explore a simple and accurate electrostatic mean-field potential. Our results on collagen are in good agreement with experiments and include phase diagrams, phase transition thresholds, and critical isotropic/cholesteric order parameters. The present extended theory is shown to properly converge to classical liquid crystal models and is used to express the phenomenological Landau-de Gennes parameters with more fundamental quantities. This study provides a platform to derive accurate process models for the fabrication of collagen-based materials, considering and benefitting from the full range of underlying interactions.
Collapse
Affiliation(s)
- Sayyed Ahmad Khadem
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | | |
Collapse
|
134
|
Shanker G, Bindushree A, Chaithra K, Pratap P, Gupta RK, Achalkumar A, Yelamaggad C. Room temperature helical fluids in single-component systems. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
135
|
Yevdokimov YM, Skuridin SG, Salyanov VI, Bobrov YA, Bucharsky VA, Kats EI. New optical evidence of the cholesteric packing of DNA molecules in “re-entrant” phase. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
136
|
Kose O, Tran A, Lewis L, Hamad WY, MacLachlan MJ. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 2019; 10:510. [PMID: 30705267 PMCID: PMC6355765 DOI: 10.1038/s41467-019-08351-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022] Open
Abstract
Cellulose nanocrystals (CNCs) derived from biomass spontaneously organize into a helical arrangement, termed a chiral nematic structure. This structure mimics the organization of chitin found in the exoskeletons of arthropods, where it contributes to their remarkable mechanical strength. Here, we demonstrate a photonic sensory mechanism based on the reversible unwinding of chiral nematic CNCs embedded in an elastomer, leading the materials to display stimuli-responsive stretchable optics. Vivid interference colors appear as the film is stretched and disappear when the elastomer returns to its original shape. This reversible optical effect is caused by a mechanically-induced transition of the CNCs between a chiral nematic and pseudo-nematic arrangement.
Collapse
Affiliation(s)
- Osamu Kose
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Andy Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Lev Lewis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Wadood Y Hamad
- FPInnovations, 2665 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
137
|
Bagnani M, Nyström G, De Michele C, Mezzenga R. Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids. ACS NANO 2019; 13:591-600. [PMID: 30543398 DOI: 10.1021/acsnano.8b07557] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloid fibrils offer the possibility of controlling their contour length, aspect ratio, and length distribution, without affecting other structural parameters. Here we show that a fine control in the contour length distribution of β-lactoglobulin amyloid fibrils, achieved by mechanical shear stresses of different levels, translates into the organization of tactoids of different shapes and morphologies. While longer fibrils lead to highly elongated nematic tactoids in an isotropic continuous matrix, only sufficiently shortened amyloid fibrils lead to cholesteric droplets. The progressive decrease in amyloid fibrils length leads to a linear decrease of the anchoring strength and homogeneous tactoid → bipolar tactoid → cholesteric droplet transitions. Upon fibrils length increase, we first find experimentally and predict theoretically a decrease of the cholesteric pitch, before full disappearance of the cholesteric phase. The latter is understood to arise from the decrease of the energy barrier separating cholesteric and nematic phases over thermal energy for progressively longer, semiflexible fibrils.
Collapse
Affiliation(s)
- Massimo Bagnani
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
| | - Gustav Nyström
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
| | - Cristiano De Michele
- Dipartimento di Fisica , "Sapienza" Università di Roma , P.le A. Moro 2 , 00185 Roma , Italy
| | - Raffaele Mezzenga
- Department of Health Science and Technology , ETH Zurich , Schmelzbergstrasse 9, LFO E23 Zurich 8092 , Switzerland
- Department of Materials , ETH Zurich , Wolfgang-Pauli-Strasse 10 , Zurich 8093 , Switzerland
| |
Collapse
|
138
|
Barloy L, Heinrich B, Douce L, Henry M, Scarpi-Luttenauer M, Kyritsakas N, Mobian P. A robust Ti(iv)-based mesogen constructed around a TiO4N2 core. Dalton Trans 2019; 48:1960-1963. [DOI: 10.1039/c8dt04972f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ti(iv)-complex with thermotropic liquid crystal properties is reported.
Collapse
Affiliation(s)
- L. Barloy
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - B. Heinrich
- Université de Strasbourg
- CNRS
- Institut de Physique et de Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - L. Douce
- Université de Strasbourg
- CNRS
- Institut de Physique et de Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - M. Henry
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - M. Scarpi-Luttenauer
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - N. Kyritsakas
- Laboratoire de Tectonique Moléculaire
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - P. Mobian
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
139
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
140
|
Wang H, Bisoyi HK, Urbas AM, Bunning TJ, Li Q. The Halogen Bond: An Emerging Supramolecular Tool in the Design of Functional Mesomorphic Materials. Chemistry 2018; 25:1369-1378. [DOI: 10.1002/chem.201802927] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Hao Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent Ohio 44242 USA
| | - Hari Krishna Bisoyi
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent Ohio 44242 USA
| | - Augustine M. Urbas
- Materials and Manufacturing Directorate Air Force Research Laboratory Wright-Patterson AFB Ohio 45433 USA
| | - Timothy J. Bunning
- Materials and Manufacturing Directorate Air Force Research Laboratory Wright-Patterson AFB Ohio 45433 USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent Ohio 44242 USA
| |
Collapse
|
141
|
Lee SS, Kim SH. Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromol Res 2018. [DOI: 10.1007/s13233-018-6148-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
142
|
Mitov M, Soldan V, Balor S. Observation of an anisotropic texture inside the wax layer of insect cuticle. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:622-626. [PMID: 30394343 DOI: 10.1016/j.asd.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The outermost part of insect cuticles is very often covered with wax, which prevents desiccation and serves for chemical communication in many species. Earlier studies on cuticular waxes have mainly focused on their chemical composition revealing complex mixtures of lipids. In the absence of information on their physical organization, cuticular waxes have been considered isotropic. Here we report the presence of parallel stripes in the wax layer of the carapace of the scarab beetle, Chrysina gloriosa, with a textural periodicity of ca. 28 nm, as revealed by electron microscopy of transverse sections. Observations at oblique incidence argue for a layered organization of the wax, which might be related to a layer-by-layer deposition of excreted wax. Our findings may lay the foundation for further studies on the internal structure of cuticular waxes for other insects.
Collapse
Affiliation(s)
- Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS, Toulouse, France.
| | - Vanessa Soldan
- Centre de Biologie Intégrative (CBI), Plateforme de Microscopie Électronique Intégrative (METi), CNRS, University of Toulouse III Paul-Sabatier, Toulouse, France
| | - Stéphanie Balor
- Centre de Biologie Intégrative (CBI), Plateforme de Microscopie Électronique Intégrative (METi), CNRS, University of Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
143
|
Saw TB, Xi W, Ladoux B, Lim CT. Biological Tissues as Active Nematic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802579. [PMID: 30156334 DOI: 10.1002/adma.201802579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.
Collapse
Affiliation(s)
- Thuan Beng Saw
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
| | - Wang Xi
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
- Biomedical Institute for Global Health, Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| |
Collapse
|
144
|
Rajeev A, Deshpande AP, Basavaraj MG. Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-methylimidazolium chloride (AmimCl)/water mixtures. SOFT MATTER 2018; 14:7615-7624. [PMID: 30159579 DOI: 10.1039/c8sm01448e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Water added to a solution of microcrystalline cellulose (MCC) in 1-allyl-3-methylimidazolium chloride (AmimCl) reduces the solvent quality and causes significant changes in the flow properties and microstructure due to restructuring and aggregation of cellulose molecules. We report an experimental investigation by means of polarization optical microscopy (POM) and rheology of the distinct phases formed in 5-20 wt% MCC/AmimCl solutions due to the addition of water. With increase in the cellulose concentration, the MCC/AmimCl/water mixtures showed different morphologies such as the non-aligned cholesteric liquid crystalline (LC) domain, the coexistence of spherulite-like structures within the LC domain and a space-spanning network of spherulite-like structures at high concentrations of water. In situ microscopy during shear and POM observations pre and post shear revealed a significant increase in the size of the birefringent domains as the shear rate is increased, which continued to exist even after the cessation of shear. With an increase in the concentration of water, the zero shear viscosity of the MCC/AmimCl/water mixtures was found to go through a minimum, beyond which the aggregation of cellulose commenced. The corresponding oscillatory shear response showed a sol-gel transition with an increase in water concentration. Moreover, at high cellulose concentrations (12-20 wt%), the MCC/AmimCl/water gels exhibited self-similarity and followed the Chambon-Winter (CW) criterion. The similar phase behavior and rheological response observed for MCC dissolved in 1-butyl-3 methylimidazolium chloride (BmimCl) indicated the generality of the presented results.
Collapse
Affiliation(s)
- Ashna Rajeev
- Polymer Engineering and Colloid Science Laboratory (PECS), Department of Chemical Engineering, Indian Institute of Technology Madras, India.
| | | | | |
Collapse
|
145
|
Yevdokimov YM, Skuridin SG, Salyanov VI, Kats EI. Anomalous behavior of the DNA liquid-crystalline dispersion particles and their phases. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
146
|
Yamada S, Morita M, Agou T, Kubota T, Ichikawa T, Konno T. Thermoresponsive luminescence properties of polyfluorinated bistolane-type light-emitting liquid crystals. Org Biomol Chem 2018; 16:5609-5617. [PMID: 30027986 DOI: 10.1039/c8ob01497c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed and characterized four polyfluorinated bistolane derivatives. These compounds, which possess either two alkoxy substituents or an alkoxy group and a bromine atom in their two molecular terminals, were synthesized from readily available 4-alkoxy-1-ethynylbenzene with a facile three-step procedure. Their thermodynamic and photophysical properties were evaluated in detail, and they were found to display both liquid-crystalline (LC) and photoluminescence properties. Remarkably, the photoluminescence behaviors dramatically changed during the thermal phase transition between the crystal and LC phases. Thus, these polyfluorinated bistolanes may be promising candidates for thermoresponsive luminous molecules.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
147
|
Iftime MM, Marin L. Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. ULTRASONICS SONOCHEMISTRY 2018; 45:238-247. [PMID: 29705318 DOI: 10.1016/j.ultsonch.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
A series of chiral hydrogels was prepared from a homogeneous mixture of chitosan and betulinic aldehyde in different molar ratios, under the effect of ultrasound. The hydrogelation mechanism has been investigated by FTIR and CD spectroscopy, wide angle X-ray diffraction and polarized light microscopy. The morphology of hydrogels was examined by SEM. The swelling ability has been tested in three media of different pH. It was concluded that hydrogelation occurred by different pathways, closely related to the peculiarities of the chitosan-betulin systems. Circular dichroism measurements revealed chiroptical properties of the hydrogels, correlated to their content and crosslinking pathway.
Collapse
Affiliation(s)
- Manuela Maria Iftime
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Luminita Marin
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
148
|
Rofouie P, Wang Z, Rey AD. Two-wavelength wrinkling patterns in helicoidal plywood surfaces: imprinting energy landscapes onto geometric landscapes. SOFT MATTER 2018; 14:5180-5185. [PMID: 29911719 DOI: 10.1039/c8sm01022f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a model to investigate the formation of two-length scale surface patterns in biological and synthetic anisotropic soft matter materials through the high order interaction of anisotropic interfacial tension and capillarity at their free surfaces. The unique pattern-formation mechanism emerging from the presented model is based on the interaction between lower and higher order anchoring modes. Analytical and numerical solutions are used to shed light on why and how simple anisotropic anchoring generates two-lengthscale wrinkles whose amplitudes are given in terms of anchoring coefficients. The novel finding is that the surface energy landscape with its maxima and minima can be imprinted onto the surface geometric landscape. Symmetry relations and scaling laws are used to provide the explicit relations between the anchoring constants and surface profile of the two length scale wrinkles. These new findings establish a new paradigm for characterizing surface wrinkling in biological liquid crystals, and inspire the design of novel functional surface structures.
Collapse
Affiliation(s)
- P Rofouie
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2, Canada.
| | | | | |
Collapse
|
149
|
Bisoyi HK, Bunning TJ, Li Q. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706512. [PMID: 29603448 DOI: 10.1002/adma.201706512] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Indexed: 05/22/2023]
Abstract
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, OH, 44242, USA
| | - Timothy J Bunning
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, OH, 44242, USA
| |
Collapse
|
150
|
Martella D, Parmeggiani C. Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry 2018; 24:12206-12220. [DOI: 10.1002/chem.201800477] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Martella
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| | - Camilla Parmeggiani
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| |
Collapse
|