101
|
Kim YC, Jun SW, Ahn YH. Single bacteria identification with second-harmonic generation in MoS 2. Biosens Bioelectron 2023; 241:115675. [PMID: 37725844 DOI: 10.1016/j.bios.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Transition-metal dichalcogenides exhibit extraordinary optical nonlinearities, making them promising candidates for advanced photonic applications. Here, we present the microbial control over second-harmonic generation (SHG) in monolayer MoS2 and the identification of single-cell bacteria. Bacteria deposited on monolayer MoS2 induce a change in the SHG signal, in the form of anisotropic polarization responses that depend on the relative orientation of the bacteria with respect to the MoS2 crystallographic direction. The anisotropic enhancement is consistent with the presence of a tensile stress along the lateral direction of bacteria axis; SHG imaging is highly effective in monitoring biomaterial strain as low as 0.1%. We also investigate the ultraviolet-induced removal of single bacteria, through the SHG imaging of MoS2. By monitoring the transient SHG signals, we determine the rupture times for bacteria, which varies noticeably for each species. This allows us to distinguish specific bacteria that share habitats; SHG imaging is useful for label free identification of pathogens at the single cell levels such as E. coli and L. casei. This label-free detection and identification of pathogens at the single-cell level can have a profound impact on the development of diagnostic tools for various applications.
Collapse
Affiliation(s)
- Young Chul Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Seung Won Jun
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea
| | - Yeong Hwan Ahn
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon 16499, South Korea.
| |
Collapse
|
102
|
Yin W, Zhuang J, Li J, Xia L, Hu K, Yin J, Mu Y. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303398. [PMID: 37612816 DOI: 10.1002/smll.202303398] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Digital nucleic acid detection based on microfluidics technology can quantify the initial amount of nucleic acid in the sample with low equipment requirements and simple operations, which can be widely used in clinical and in vitro diagnosis. Recently, isothermal amplification technologies such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) assisted technologies have become a hot spot of attention and state-of-the-art digital nucleic acid chips have provided a powerful tool for these technologies. Herein, isothermal amplification technologies including RPA, LAMP, and CRISPR-Cas assisted methods, based on digital nucleic acid microfluidics chips recently, have been reviewed. Moreover, the challenges of digital isothermal amplification and possible strategies to address them are discussed. Finally, future directions of digital isothermal amplification technology, such as microfluidic chip and device manufacturing, multiplex detection, and one-pot detection, are outlined.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
103
|
Esteves MAC, Viana AS, Viçosa GN, Botelho AMN, Moustafa AM, Mansoldo FRP, Ferreira ALP, Vermelho AB, Ferreira-Carvalho BT, Planet PJ, Figueiredo AMS. RdJ detection tests to identify a unique MRSA clone of ST105-SCC mecII lineage and its variants disseminated in the metropolitan region of Rio de Janeiro. Front Microbiol 2023; 14:1275918. [PMID: 38053559 PMCID: PMC10694290 DOI: 10.3389/fmicb.2023.1275918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Hospital bloodstream infection (BSI) caused by methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality and is frequently related to invasive procedures and medically complex patients. An important feature of MRSA is the clonal structure of its population. Specific MRSA clones may differ in their pathogenic, epidemiological, and antimicrobial resistance profiles. Whole-genome sequencing is currently the most robust and discriminatory technique for tracking hypervirulent/well-adapted MRSA clones. However, it remains an expensive and time-consuming technique that requires specialized personnel. In this work, we describe a pangenome protocol, based on binary matrix (1,0) of open reading frames (ORFs), that can be used to quickly find diagnostic, apomorphic sequence mutations that can serve as biomarkers. We use this technique to create a diagnostic screen for MRSA isolates circulating in the Rio de Janeiro metropolitan area, the RdJ clone, which is prevalent in BSI. The method described here has 100% specificity and sensitivity, eliminating the need to use genomic sequencing for clonal identification. The protocol used is relatively simple and all the steps, formulas and commands used are described in this work, such that this strategy can also be used to identify other MRSA clones and even clones from other bacterial species.
Collapse
Affiliation(s)
| | - Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Nogueira Viçosa
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ahmed M. Moustafa
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Adriana Lucia Pires Ferreira
- Hospital Universitário Clementino Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Dasa Medicina Diagnóstica, Duque de Caxias, Brazil
| | - Alane Beatriz Vermelho
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paul Joseph Planet
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Programa de Pós-graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
104
|
Sami AJ, Bilal S, Ahsan NUA, Hameed N, Saleem S. Rhodamine B functionalized silver nanoparticles paper discs as turn-on fluorescence sensor, coupled with a smartphone for the detection of microbial contamination in drinking water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1442. [PMID: 37945767 DOI: 10.1007/s10661-023-12077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.
Collapse
Affiliation(s)
- Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
- Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore, 54590, Pakistan.
| | - Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Biochemistry, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Noor-Ul-Ain Ahsan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Nayyab Hameed
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Shaifa Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
105
|
Huang S, Wang X, Chen X, Liu X, Xu Q, Zhang L, Huang G, Wu J. Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. Sci Rep 2023; 13:19199. [PMID: 37932335 PMCID: PMC10628258 DOI: 10.1038/s41598-023-45766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
CRISPR based technologies have been used for fast and sensitive detection of pathogens. To test the possibility of CRISPR based detection strategy in Pseudomonas aeruginosa infections, a combined method of recombinase polymerase amplification followed by Cas12a-mediated detection via fluorescence reader or lateral flow biosensor (named Cas12a-RCFL) has been established in this study. The Cas12a-RCFL can detect as low as 50 CFU/mL Pseudomonas aeruginosa. The whole detection process can be finished within one hour with satisfied detection specificity. Cas12a-RCFL also shows good sensitivity of detecting Pseudomonas aeruginosa inStaphylococcus aureus and Acinetobacter baumannii contaminated samples. For the detection of 22 clinical samples, Cas12a-RCFL matches with PCR sequencing result exactly without DNA purification. This Cas12a-RCFL is rapid and sensitive with low cost, which shows good quality to be adopted as a point-of-care testing method.
Collapse
Affiliation(s)
- Siyi Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xinchong Chen
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyu Liu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qiuqing Xu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Lijun Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
106
|
Liu J, Lu D, Wang J. A simple, sensitive and colorimetric assay for Pseudomonas aeruginosa infection analysis. Biotechniques 2023; 75:210-217. [PMID: 37881830 DOI: 10.2144/btn-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Skin and soft tissue infections caused by Pseudomonas aeruginosa are common acquired diseases in postpartum care. Many methods have been developed in recent years for detecting P. aeruginosa, but they are criticized for the drawbacks of labor-intensiveness, complicated operation and high cost. Here, a simple, sensitive and colorimetric assay for P. aeruginosa detection is described. The approach displays a green color for positive samples and colorless for target-free samples. The approach exhibits a wide detection range and a low limit of detection of 45 CFU/ml. Thus, the developed ligation-initiated multiple-signal amplification method may be used for on-site testing of pathogenic bacteria and assist in the early diagnosis of postpartum care skin infections.
Collapse
Affiliation(s)
- Jie Liu
- Obstetric Clinic, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Dan Lu
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| | - Junyuan Wang
- Department of Gynecology, Chatu Hospital, the Fourth Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
107
|
Saengsawang N, Ruang-Areerate P, Kaeothaisong N, Leelayoova S, Mungthin M, Juntanawiwat P, Hanyanunt P, Potisuwan P, Kesakomol P, Butsararattanagomen P, Wichaiwong P, Dungchai W, Ruang-Areerate T. Validation of quantitative loop-mediated isothermal amplification assay using a fluorescent distance-based paper device for detection of Escherichia coli in urine. Sci Rep 2023; 13:18781. [PMID: 37907677 PMCID: PMC10618465 DOI: 10.1038/s41598-023-46001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) causes up to 90% of urinary tract infections (UTI) which is more prevalent among females than males. In urine, patients with symptomatic UTI usually have a high concentration of bacterial infection, ≥ 105 colony-forming units (CFU) per mL, in which the culture method is regularly the gold standard diagnosis. In this study, a simple and inexpensive distance-based paper device (dPAD) combined with the fluorescent closed tube LAMP assay was validated for simultaneously screening and semi-quantifying the infection level of E. coli in 440 urine samples of patients with UTI. The dPAD could measure the LAMP amplicons and semi-quantify the levels of E. coli infection in heavy (≥ 104 CFU/mL), light (≤ 103 CFU/mL) and no infection. The sensitivity and specificity had reliable performances, achieving as high as 100 and 92.7%, respectively. The one step LAMP assay could be performed within 3 h, which was 7.5 times faster than the culture method. To empower early UTI diagnosis and fast treatment, this inexpensive dPAD tool combined with the fluorescent closed tube LAMP assay is simple, reliably fast and practically portable for point-of-care settings, particularly in resource-limited areas, which can be set up in all levels of healthcare facilities.
Collapse
Affiliation(s)
- Natkrittaya Saengsawang
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Panthita Ruang-Areerate
- BIOTEC, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nuanlaong Kaeothaisong
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Piraporn Juntanawiwat
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Patomroek Hanyanunt
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Patsanun Potisuwan
- Division of Microbiology, Department of Clinical Pathology, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Piyanate Kesakomol
- Department of Microbiology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Pornphan Butsararattanagomen
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pattarawadee Wichaiwong
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Wijitar Dungchai
- Analytical Chemistry, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Toon Ruang-Areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
108
|
Huang YY, Li QS, Li ZD, Sun AH, Hu SP. Rapid diagnosis of Mycobacterium marinum infection using targeted nanopore sequencing: a case report. Front Cell Infect Microbiol 2023; 13:1238872. [PMID: 37965260 PMCID: PMC10642934 DOI: 10.3389/fcimb.2023.1238872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mycobacterium marinum (M. marinum) is a non-tuberculous mycobacterium (NTM) that can cause infectious diseases in aquatic animals and humans. Culture-based pathogen detection is the gold standard for diagnosing NTM infection. However, this method is time-consuming and has low positivity rates for fastidious organisms. Oxford Nanopore MinION sequencing is an emerging third-generation sequencing technology that can sequence DNA or RNA directly in a culture-independent manner and offers rapid microbial identification. Further benefits include low cost, short turnaround time, long read lengths, and small equipment size. Nanopore sequencing plays a crucial role in assessing drug resistance, clinical identification of microbes, and monitoring infectious diseases. Some reports on Mycobacterium tuberculosis (MTB) using nanopore sequencing have been published, however, there are few reports on NTM, such as M. marinum. Here, we report the use of nanopore sequencing for the diagnosis of M. marinum.
Collapse
Affiliation(s)
- Yan-Ying Huang
- Department of Pathology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Qiu-Shi Li
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Zhao-Dong Li
- Department of Clinical laboratory, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Sheng-Ping Hu
- Department of Orthopaedic, Hangzhou Red Cross Hospital, Hangzhou, China
| |
Collapse
|
109
|
Yang C, Zhang H. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification. Mikrochim Acta 2023; 190:451. [PMID: 37880465 DOI: 10.1007/s00604-023-06021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
Biosensors have been widely used for bacteria determination with great success. However, the "lock-and-key" methodology used by biosensors to identify bacteria has a significant limitation: it can only detect one species of bacteria. In recent years, optical (fluorescent and colorimetric) sensor arrays are gradually gaining attention from researchers as a new type of biosensor. They can acquire multiple features of a target simultaneously, form a feature pattern, and determine the bacteria species with the help of pattern recognition/machine learning algorithms. Previous reviews in this area have focused on the interaction between the sensor array and bacteria or the materials used to make the sensors. This review, on the other hand, will provide researchers with a better understanding of the field by discussing fluorescent and colorimetric sensor arrays based on the mechanism of optical signal generation. These sensor arrays will be compared based on the identified species. Finally, we will discuss the limitations of these sensor arrays and explore possible solutions.
Collapse
Affiliation(s)
- Changmao Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China.
| |
Collapse
|
110
|
Akhtarian S, Doostmohammadi A, Archonta DE, Kraft G, Brar SK, Rezai P. Microfluidic Sensor Based on Cell-Imprinted Polymer-Coated Microwires for Conductometric Detection of Bacteria in Water. BIOSENSORS 2023; 13:943. [PMID: 37887136 PMCID: PMC10605092 DOI: 10.3390/bios13100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The rapid, inexpensive, and on-site detection of bacterial contaminants using highly sensitive and specific microfluidic sensors is attracting substantial attention in water quality monitoring applications. Cell-imprinted polymers (CIPs) have emerged as robust, cost-effective, and versatile recognition materials with selective binding sites for capturing whole bacteria. However, electrochemical transduction of the binding event to a measurable signal within a microfluidic device to develop easy-to-use, compact, portable, durable, and affordable sensors remains a challenge. For this paper, we employed CIP-functionalized microwires (CIP-MWs) with an affinity towards E. coli and integrated them into a low-cost microfluidic sensor to measure the conductometric transduction of CIP-bacteria binding events. The sensor comprised two CIP-MWs suspended perpendicularly to a PDMS microchannel. The inter-wire electrical resistance of the microchannel was measured before, during, and after exposure of CIP-MWs to bacteria. A decline in the inter-wire resistance of the sensor after 30 min of incubation with bacteria was detected. Resistance change normalization and the subsequent analysis of the sensor's dose-response curve between 0 to 109 CFU/mL bacteria revealed the limits of detection and quantification of 2.1 × 105 CFU/mL and 7.3 × 105 CFU/mL, respectively. The dynamic range of the sensor was 104 to 107 CFU/mL where the bacteria counts were statistically distinguishable from each other. A linear fit in this range resulted in a sensitivity of 7.35 μS per CFU/mL. Experiments using competing Sarcina or Listeria cells showed specificity of the sensor towards the imprinted E. coli cells. The reported CIP-MW-based conductometric microfluidic sensor can provide a cost-effective, durable, portable, and real-time solution for the detection of pathogens in water.
Collapse
Affiliation(s)
- Shiva Akhtarian
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Ali Doostmohammadi
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Daphne-Eleni Archonta
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| | - Garrett Kraft
- Sixth Wave Innovations Inc., Halifax, NS B4A 0H3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada; (S.A.); (A.D.)
| |
Collapse
|
111
|
Zanghaei A, Ameri A, Hashemi A, Soheili V, Ghanbarian H. Rapid identification of bacteria by the pattern of redox reactions rate using 2',7'-dichlorodihydrofluorescein diacetate. Biochem Biophys Res Commun 2023; 678:78-83. [PMID: 37619314 DOI: 10.1016/j.bbrc.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Bacterial infection is a life-threatening situation, and its rapid diagnosis is essential for treatment. Apart from medical applications, rapid identification of bacteria is vital in the food industry or the public health system. There are various bacterial identification techniques, including molecular-based methods, immunological approaches, and biosensor-based procedures. The most commonly used methods are culture-based methods, which are time-consuming. The objective of this study is to find a fingerprint of bacteria to identify them. Three strains of bacteria were selected, and seven different concentrations of each bacterium were prepared. The bacteria were then treated with two different molar concentrations of the fluorescent fluorophore, dichlorodihydrofluorescein diacetate for 30 minutes. Then, using the fluorescence mode of a multimode reader, the fluorescence emission of each bacterium is scanned twice during 60 minutes. Plotting the difference between two scans versus the bacteria concentration results in a unique fluorescence pattern for each bacterium. Observation of the redox state of bacteria, during 90 minutes, results in a fluorescence pattern that is clearly a fingerprint of different bacteria. This pattern is independent of fluorophore concentration. Mean Squares Errors (MSE) between the fluorescence patterns of similar bacteria is less than that of different bacteria, which shows the method can properly identify the bacteria. In this study, a new label-free method is developed to detect and identify different species of bacteria by measuring the redox activity and using the fluorescence fluorophore, dichlorodihydrofluorescein diacetate. This robust and low-cost method can properly identify the bacteria, uses only one excitation and emission wavelength, and can be simply implemented with current multimode plate readers.
Collapse
Affiliation(s)
- Abolfazl Zanghaei
- Department of Biomedical Engineering and Biophysics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Ameri
- Department of Biomedical Engineering and Biophysics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghanbarian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
Fang M, Lin L, Zheng M, Liu W, Lin R. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. J Mater Chem B 2023; 11:9386-9403. [PMID: 37720998 DOI: 10.1039/d3tb01543b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Bacterial infections and inflammation pose a severe threat to human health and the social economy. The existence of super-bacteria and the increasingly severe phenomenon of antibiotic resistance highlight the development of new antibacterial agents. Due to low cytotoxicity, high biocompatibility, and different antibacterial mechanisms from those for antibiotics, functionalized carbon dots (FCDs) promise a new platform for the treatment of bacterial infectious diseases. However, few articles have systematically sorted out the available antibacterial mechanisms for FCDs and their application in the treatment of bacterial inflammation. This review focuses on the available antibacterial mechanisms for FCDs, including covalent and non-covalent interactions, reactive oxygen species, photothermal therapy, and size effect. Meanwhile, the design of antibacterial FCDs is introduced, including surface modification, doping, and combination with other nanomaterials. Furthermore, this review specifically concentrates on the research advances of antibacterial FCDs in the treatment of bacterial inflammation. Finally, the advantages and challenges of applying FCDs in practical antimicrobial applications are discussed.
Collapse
Affiliation(s)
- Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Muyue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
113
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
114
|
Flores ME, Jafarzadeh A, Moghadam SV, Vadde KK, Dhar DA, Nunu RR, Kapoor V. Occurrence and removal of fecal bacteria and microbial source tracking markers in a stormwater detention basin overlying the Edwards Aquifer recharge zone in Texas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103836-103850. [PMID: 37691063 DOI: 10.1007/s11356-023-29636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
The Edwards Aquifer is the primary water resource for over 2 million people in Texas and faces challenges including fecal contamination of water recharging the aquifer, while effectiveness of best management practices (BMPs) such as detention basins in mitigating fecal pollution remains poorly understood. For this study, the inlet and outlet of a detention basin overlying the aquifer's recharge zone were sampled following storm events using automated samplers. Microbial source tracking and culture-based methods were used to determine the occurrence and removal of fecal genetic markers and fecal coliform bacteria in collected water samples. Markers included E. coli (EC23S857), Enterococcus (Entero1), human (HF183), canine (BacCan), and bird (GFD). Fecal coliforms, EC23S857, and Entero1 were detected following each storm event. GFD was the most frequent host-associated marker detected (91% of samples), followed by BacCan (46%), and HF183 (17%). Wilcoxon signed rank tests indicated significantly lower outlet concentrations for fecal coliforms, EC23S857, and Entero1, but not for HF183, GFD, and BacCan. Higher GFD and BacCan outlet concentrations may be due to factors independent of basin design, such as the non-point source nature of bird fecal contamination and domestic dog care practices in neighborhoods contributing to the basin. Mann-Whitney tests showed marker concentrations were not significantly higher during instances of fecal coliform water quality criterion exceedance, except for E. coli, and that fecal coliform concentrations were not significantly different based on marker detection. Overall, results suggest that the detention basin is effective in attenuating fecal contamination associated with fecal coliforms and the general markers, but not for host-associated markers. Consequently, management efforts should focus on mitigating dog and bird-associated fecal pollution in the study region.
Collapse
Affiliation(s)
- Mauricio Eduardo Flores
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Sina Vedadi Moghadam
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Dipti Anik Dhar
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Rebecca R Nunu
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
115
|
Guo J, Liang Q, Zhang H, Tian M, Zhang H, Wei G, Zhang W. Exo-III Enzyme-Assisted Triple Cycle Signal Amplifications for Sensitive and Accurate Identification of Pathogenic Bacteria. Appl Biochem Biotechnol 2023; 195:6203-6211. [PMID: 36847983 DOI: 10.1007/s12010-023-04391-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Early determination of infectious pathogens is vitally important to select appropriate antibiotics, and to manage nosocomial infection. Herein, we propose a target recognition triggered triple signal amplification-based approach for sensitive pathogenic bacteria detection. In the proposed approach, a double-strand DNA probe (capture probe) that is composed of an aptamer sequence and a primer sequence is designed for specific identification of target bacteria and initiation of following triple signal amplification. After recognition of target bacteria, primer sequence is released from capture probe to bind with the designed H1 probe, forming a blunt terminal in the H1 probe. Exonuclease-III (Exo-III enzyme) specifically recognizes the blunt terminal in H1 probe and degrades the sequence from 3' terminal, resulting a single-strand DNA to induce the following signal amplification. Eventually, the approach exhibits a low detection limit of 36 cfu/mL with a broad dynamic range. The high selectivity endows the method a promising prospective for clinical sample analysis.
Collapse
Affiliation(s)
- Jie Guo
- Department of Endoscopy Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei Province, Huangshi, People's Republic of China
| | - Qun Liang
- Health Commission of Huangshi, Hubei Province, Huangshi, People's Republic of China
| | - Huifang Zhang
- Department of Gastroenterology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei Province, Huangshi, People's Republic of China
| | - Miao Tian
- Department of Endoscopy Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei Province, Huangshi, People's Republic of China
| | - Huajun Zhang
- Department of Operation Management, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei Province, Huangshi, People's Republic of China.
| | - Guo Wei
- Department of Pediatric, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, People's Republic of China.
| | - Wantao Zhang
- Department of Operation Management, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Hubei Province, Huangshi, People's Republic of China.
| |
Collapse
|
116
|
Xu Y, Jiang Y, Wang Y, Meng F, Qin W, Lin Y. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid assists in the diagnosis of pathogens associated with lower respiratory tract infections in children. Front Cell Infect Microbiol 2023; 13:1220943. [PMID: 37822360 PMCID: PMC10562542 DOI: 10.3389/fcimb.2023.1220943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Worldwide, lower respiratory tract infections (LRTI) are an important cause of hospitalization in children. Due to the relative limitations of traditional pathogen detection methods, new detection methods are needed. The purpose of this study was to evaluate the value of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) samples for diagnosing children with LRTI based on the interpretation of sequencing results. A total of 211 children with LRTI admitted to the First Affiliated Hospital of Guangzhou Medical University from May 2019 to December 2020 were enrolled. The diagnostic performance of mNGS versus traditional methods for detecting pathogens was compared. The positive rate for the BALF mNGS analysis reached 95.48% (95% confidence interval [CI] 92.39% to 98.57%), which was superior to the culture method (44.07%, 95% CI 36.68% to 51.45%). For the detection of specific pathogens, mNGS showed similar diagnostic performance to PCR and antigen detection, except for Streptococcus pneumoniae, for which mNGS performed better than antigen detection. S. pneumoniae, cytomegalovirus and Candida albicans were the most common bacterial, viral and fungal pathogens. Common infections in children with LRTI were bacterial, viral and mixed bacterial-viral infections. Immunocompromised children with LRTI were highly susceptible to mixed and fungal infections. The initial diagnosis was modified based on mNGS in 29.6% (37/125) of patients. Receiver operating characteristic (ROC) curve analysis was performed to predict the relationship between inflammation indicators and the type of pathogen infection. BALF mNGS improves the sensitivity of pathogen detection and provides guidance in clinical practice for diagnosing LRTI in children.
Collapse
Affiliation(s)
- Yunjian Xu
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yueting Jiang
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yan Wang
- CapitalBio Technology Inc., Beijing, China
| | | | - Wenyan Qin
- CapitalBio Technology Inc., Beijing, China
| | - Yongping Lin
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Department of Laboratory Medicine, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| |
Collapse
|
117
|
Hu J, Liang L, He M, Lu Y. Sensitive and Direct Analysis of Pseudomonas aeruginosa through Self-Primer-Assisted Chain Extension and CRISPR-Cas12a-Based Color Reaction. ACS OMEGA 2023; 8:34852-34858. [PMID: 37779973 PMCID: PMC10536833 DOI: 10.1021/acsomega.3c04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic Gram-negative pathogen that may cause infections to immunocompromised patients. However, sensitive and reliable analysis of P. aeruginosa remains a huge challenge. In this method, target recognition assists the formation of a self-primer and initiates single-stranded chain production. The produced single-stranded DNA chain is identified by CRISPR-Cas12a, and consequently, the trans-cleavage activity of the Cas12a enzyme is activated to parallelly digest Ag+ aptamer sequences that are chelated with silver ions (Ag+). The released Ag+ reacted with 3,3',5,5'-tetramethylbenzidine (TMB) for coloring. Compared with the traditional color developing strategies, which mainly rely on the DNA hybridization, the color developing strategy in this approach exhibits a higher efficiency due to the robust trans-cleavage activity of the Cas12a enzyme. Consequently, the method shows a low limit of detection of a wide detection of 5 orders of magnitudes and a low limit of detection of 21 cfu/mL, holding a promising prospect in early diagnosis of infections. Herein, we develop a sensitive and reliable method for direct and colorimetric detection of P. aeruginosa by integrating self-primer-assisted chain production and CRISPR-Cas12a-based color reaction and believe that the established approach will facilitate the development of bacteria-analyzing sensors.
Collapse
Affiliation(s)
- Jiangchun Hu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Ling Liang
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Mingfang He
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Yongping Lu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| |
Collapse
|
118
|
Warmt C, Broweleit LM, Fenzel CK, Henkel J. An experimental comparison between primer and nucleotide labelling to produce RPA-amplicons used for multiplex detection of antibiotic resistance genes. Sci Rep 2023; 13:15734. [PMID: 37735542 PMCID: PMC10514322 DOI: 10.1038/s41598-023-42830-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Direct labelling of amplification products using isothermal amplification is currently done most frequently by incorporating previously labelled primer. Although this method is well proven and widely used, it is not a universal solution due to some weaknesses. Alternatively, labelled nucleotides could be used, whose application and functionality have been already partially demonstrated. It remains to be determined how this method performs in comparison to traditional labelling, in particular combined with isothermal amplification methods. In this work, we show a detailed analysis of the labelling efficiency under different conditions and compare the results with the traditional primer-labelling method in the context of RPA amplification. Impressively, our results showed that using Cy5-labelled dUTPs can achieve much more efficient labelling for fragments above 200 bp, while using them for smaller fragments does not bring any relevant disadvantages, but also no major benefit. Furthermore, this work successfully demonstrate for the first time a quadruplex microarray for the detection of resistance genes using RPA and direct labelling with Cy5-dUTP as a potential application scenario. The sensitivities achieved here extend to SNP discovery for the detection of the proper blaKPC variant.
Collapse
Affiliation(s)
- Christian Warmt
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany.
| | - Lisa-Marie Broweleit
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Carolin Kornelia Fenzel
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| |
Collapse
|
119
|
Zelikovich D, Dery L, Sagi-Cohen H, Mandler D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem Sci 2023; 14:9630-9650. [PMID: 37736620 PMCID: PMC10510851 DOI: 10.1039/d3sc02178e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.
Collapse
Affiliation(s)
- Din Zelikovich
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Hila Sagi-Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
120
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
121
|
Spirgel R, Comolli J, Guido NJ. A Machine Learning Method for Genome Engineering Design Tool Attribution. Health Secur 2023; 21:407-414. [PMID: 37594776 DOI: 10.1089/hs.2022.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
As the ability to engineer biological systems improves with increasingly advanced technology, the risk of accidental or intentional release of a dangerous genetically modified organism becomes greater. It is important that authorities can carry out attribution for the source of a genetically modified biological agent release. In the absence of evidence that ties a release directly to the individuals responsible, attribution can be carried out in part by discovering the in silico tools used to design the engineered genetic components, which can leave a signature in the DNA of the organism. Previous attribution methods have focused on identifying the laboratory of origin of an engineered organism using machine learning on plasmid signatures. The next logical step is to address attribution using signatures from the tools that are used to create the engineered modifications. A random forest classifier was developed that discriminates between design tools used to optimize coding regions for incorporation into the genome of another organism. To this end, tens of thousands of genes were optimized with 4 different codon optimization methods and relevant features from these sequences were generated for a machine learning classifier. This method achieves more than 97% accuracy in predicting which tools were used to design codon optimized genes for expression in other organisms. The methods presented here lay the groundwork for the creation of effective organism engineering attribution techniques. Such methods can act both as deterrents for future attempts at creating dangerous organisms as well as tools for forensic science.
Collapse
Affiliation(s)
- Rebecca Spirgel
- Rebecca Spirgel, MS, is Associate Technical Staff, Group 23, MIT Lincoln Laboratory, Lexington, MA
| | - James Comolli
- James Comolli, PhD, Group 23, MIT Lincoln Laboratory, Lexington, MA
| | - Nicholas J Guido
- Nicholas J. Guido, PhD, are Technical Staff, Group 23, MIT Lincoln Laboratory, Lexington, MA
| |
Collapse
|
122
|
Palandurkar GS, Kumar S. Biofilm's Impact on Inflammatory Bowel Diseases. Cureus 2023; 15:e45510. [PMID: 37868553 PMCID: PMC10585119 DOI: 10.7759/cureus.45510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The colon has a large surface area covered with a thick mucus coating. Colon's biomass consists of about 1,012 colony-forming units per gram of feces and 500-1,000 distinct bacterial species. The term inflammatory bowel disease (IBD) indicates the collection of intestinal illnesses in which the digestive system (esophagus, large intestine, mouth, stomach, and small intestine) experiences persistent inflammation. IBD development is influenced by environmental (infections, stress, and nutrition) and genetic factors. The microbes present in gut microbiota help maintain intestinal homeostasis and support immune and epithelial cell growth, differentiation, as well as proliferation. It has been discovered that a variety of variables and microorganisms are crucial for the development of biofilms and mucosal colonization during IBD. An extracellular matrix formed by bacteria supports biofilm production in our digestive system and harms the host's immunological response. Irritable bowel syndrome (IBS) and IBD considerably affect human socioeconomic well-being and the standard of living. IBD is a serious public health issue, affecting millions of people across the globe. The gut microbiome may significantly influence IBS pathogenesis, even though few diagnostic and treatment options are available. As a result, current research focuses more on disrupting biofilm in IBD patients and stresses primarily on drugs that help improve the quality of life for human well-being. We evaluate studies on IBD and bacterial biofilm to add fresh insights into the existing state of knowledge of biofilm formation in IBD, incidence of IBD patients, molecular level of investigations, bacteria that are involved in the formation of biofilm, and present and down the line regimens and probiotics. Planning advanced ways to control and eradicate bacteria in biofilms should be the primary goal to add fresh insights into generating innovative diagnostic and alternative therapy options for IBD.
Collapse
Affiliation(s)
- Gopal S Palandurkar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
123
|
Yan J, Cheng Q, Liu H, Wang L, Yu K. Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry 2023; 153:108497. [PMID: 37393678 DOI: 10.1016/j.bioelechem.2023.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Influenza A virus (IAV) can cause influenza, a highly infectious zoonotic respiratory disease, and early detection is essential to prevent and control its rapid spread in the population. Given the limitations of traditional detection methods in clinical laboratories, we report a large surface TPB-DVA COFs (TPB: 1,3,5-Tris(4-aminophenyl) benzene, DVA: 1,4-Benzenedicarboxaldehyd, COFs: Covalent organic frameworks) nanomaterial modified electrochemical DNA biosensor, which has dual-probe specific recognition and signal amplification. The biosensor enables quantitative detection of influenza A viruses' complementary DNA (cDNA) from 10 fM to 1 × 103 nM (LOD = 5.42 fM) with good specificity and high selectivity. The reliability of the biosensor and portable device was verified by comparing the virus concentrations in animal tissues with those measured by digital droplet PCR (ddPCR) (P > 0.05). Moreover, the potential for influenza surveillance in this work was demonstrated by detecting the tissue samples from mice at different stages of infection. In summary, the good performance of this electrochemical DNA biosensor we proposed suggested it has the potential to be a rapid detection device for the influenza A virus, which could assist doctors or other professionals in obtaining rapid and accurate results for outbreak investigation and disease diagnosis.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Qian Cheng
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
124
|
Maricar S, Gudlur S, Miserez A. Phase-Separating Peptides Recruiting Aggregation-Induced Emission Fluorogen for Rapid E. coli Detection. Anal Chem 2023. [PMID: 37327402 DOI: 10.1021/acs.analchem.3c01046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rationally designed biomolecular condensates have found applications primarily as drug-delivery systems, thanks to their ability to self-assemble under physico-chemical triggers (such as temperature, pH, or ionic strength) and to concomitantly trap client molecules with exceptionally high efficiency (>99%). However, their potential in (bio)sensing applications remains unexplored. Here, we describe a simple and rapid assay to detect E. coli by combining phase-separating peptide condensates containing a protease recognition site, within which an aggregation-induced emission (AIE)-fluorogen is recruited. The recruited AIE-fluorogen's fluorescence is easily detected with the naked eye when the samples are viewed under UV-A light. In the presence of E. coli, the bacteria's outer membrane protease (OmpT) cleaves the phase-separating peptides at the encoded protease recognition site, resulting in two shorter peptide fragments incapable of liquid-liquid phase separation. As a result, no condensates are formed and the fluorogen remains non-fluorescent. The assay feasibility was first tested with recombinant OmpT reconstituted in detergent micelles and subsequently confirmed with E. coli K-12. In its current format, the assay can detect E. coli K-12 (108 CFU) within 2 h in spiked water samples and 1-10 CFU/mL with the addition of a 6-7 h pre-culture step. In comparison, most commercially available E. coli detection kits can take anywhere from 8 to 24 h to report their results. Optimizing the peptides for OmpT's catalytic activity can significantly improve the detection limit and assay time. Besides detecting E. coli, the assay can be adapted to detect other Gram-negative bacteria as well as proteases having diagnostic relevance.
Collapse
Affiliation(s)
- Syed Maricar
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| | - Sushanth Gudlur
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 637553, Singapore
| |
Collapse
|
125
|
Xiao S, Cao C, Ming T, Cao Y, Yu Z, Gan N. Simultaneous and rapid screening of live and dead E. coli O157:H7 with three signal outputs: An all-in-one biosensor using phage-apoferritin@CuO 2 signal tags on MXenes-modified electrode platform. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131875. [PMID: 37343409 DOI: 10.1016/j.jhazmat.2023.131875] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Simultaneous detection of live and dead bacteria is a huge challenge for food safety. To solve this issue, an all-in-one biosensor for bacteria was developed using the phage-apoferritin@CuO2 (phage-Apo@CP) probe on an antimicrobial peptide (AMP)/MXenes-modified detection platform. With the specific recognition of AMP and phage-Apo@CP, the biosensor for the target Escherichia coli O157:H7 (E. coli O157:H7) presented multi-mode (bioluminescent, colorimetric, and electrochemical) signals to simultaneously measure live and dead bacteria. The bioluminescent signal caused by the adenosine triphosphate (ATP) from the bacteria was used to quantify live bacteria. The colorimetric and voltammetric signals triggered by ·OH and Cu2+ from the probe with the assistance of acid could rapidly screen and quantitative determination of total E. coli O157:H7 concentration. Thus, the dead one was obtained according to the total and live ones. All three signals could be mutually corrected to improve the accuracy. The biosensor was successfully used for on-site measurement of live and dead E. coli O157:H7 in food samples with the limit of detection of 30 CFU/mL for live ones and 6 CFU/mL for total bacteria within 50 min. This work presents a novel pathway for rapid and simultaneous quantification of both live and dead bacteria.
Collapse
Affiliation(s)
- Shu Xiao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Cong Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
126
|
Liu J, Zeng S, Wan Y, Liu T, Chen F, Wang A, Tang W, Wang J, Yuan H, Negahdary M, Lin Y, Li Y, Wang L, Wu Z. Hybridization chain reaction cascaded amplification platform for sensitive detection of pathogen. Talanta 2023; 265:124829. [PMID: 37352781 DOI: 10.1016/j.talanta.2023.124829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Rapid, sensitive, and accurate identification of pathogens is vital for preventing and controlling fish disease, reducing economic losses in aquaculture, and interrupting the spread of food-borne diseases in human populations. Herein, we proposed a hybridization chain reaction (HCR) cascaded dual-signal amplification platform for the ultrasensitive and specific detection of pathogenic microorganisms. A couple of specific primers for target bacterial 16S rRNAs were used to obtain amplified target single-stranded DNAs (AT-ssDNA). Then, AT-ssDNA initiated HCR amplification along with the opening of fluorophore (FAM) and a quencher (BHQ1) labeled hairpin reporter probe (H1), and the FAM fluorescence signal recovered. The proposed strategy could achieve a detection limit down to 0.31 CFU/mL for Staphylococcus aureus (S. aureus), 0.49 CFU/mL for Escherichia coli (E. coli) in buffer, and a linear range from 1 to 1 × 106 CFU/mL for S. aureus, 1 to 1 × 107 CFU/mL for E. coli. Furthermore, this platform enabled sensitive and precise detection of pathogenic microorganisms in complex samples such as fish blood and different organ tissues (large intestine, gallbladder, heart, liver, ren, gill, skin), which shows great potential in disease prevention and control in aquatic products.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Shu Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China.
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Tianmi Liu
- Testing Center of Aquatic Product Quality Safety of Hainan Province, Haikou, 570206, China
| | - Fei Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Anwei Wang
- Testing Center of Aquatic Product Quality Safety of Hainan Province, Haikou, 570206, China
| | - Wenning Tang
- Products Quality Supervision and Inspection Institute of Hainan Province, Haikou, 570206, China
| | - Jiali Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Haoyu Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China; Marine College, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Yutong Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yajing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Lingxuan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Zijing Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 56 Renmin Road, Haikou, 570228, China
| |
Collapse
|
127
|
Heining L, Welp L, Hugo A, Elsner M, Seidel M. Immunomagnetic separation coupled with flow cytometry for the analysis of Legionella pneumophila in aerosols. Anal Bioanal Chem 2023:10.1007/s00216-023-04738-z. [PMID: 37204446 PMCID: PMC10404198 DOI: 10.1007/s00216-023-04738-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Legionella pneumophila are pathogenic bacteria that can be found in high concentrations in artificial water systems like evaporative cooling towers, which have been the source of frequent outbreaks in recent years. Since inhaled L. pneumophila can lead to Legionnaires' disease, the development of suitable sampling and rapid analysis strategies for these bacteria in aerosols is therefore of great relevance. In this work, different concentrations of viable L. pneumophila Sg 1 were nebulized and sampled by the cyclone sampler Coriolis® µ under defined conditions in a bioaerosol chamber. To quantify intact Legionella cells, the collected bioaerosols were subsequently analyzed by immunomagnetic separation coupled with flow cytometry (IMS-FCM) on the platform rqmicro.COUNT. For analytical comparison, measurements with qPCR and cultivation were performed. Limits of detection (LOD) of 2.9 × 103 intact cells m-3 for IMS-FCM and 7.8 × 102 intact cells m-3 for qPCR indicating a comparable sensitivity as in culture (LOD = 1.5 × 103 culturable cells m-3). Over a working range of 103 - 106 cells mL-1, the analysis of nebulized and collected aerosol samples with IMS-FCM and qPCR provides higher recovery rates and more consistent results than by cultivation. Overall, IMS-FCM is a suitable culture-independent method for quantification of L. pneumophila in bioaerosols and is promising for field application due to its simplicity in sample preparation.
Collapse
Affiliation(s)
- Lena Heining
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Laura Welp
- Institut für Energie- und Umwelttechnik e.V., Bliersheimer Straße 58-60, 47229, Duisburg, Germany
| | - Achim Hugo
- Institut für Energie- und Umwelttechnik e.V., Bliersheimer Straße 58-60, 47229, Duisburg, Germany
| | - Martin Elsner
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Michael Seidel
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
128
|
Elshimy R, Khawagi WY, Naguib IA, Bukhari SI, El-Shiekh RA. 9-Methoxyellipticine: Antibacterial Bioactive Compound Isolated from Ochrosia elliptica Labill. Roots. Metabolites 2023; 13:metabo13050643. [PMID: 37233684 DOI: 10.3390/metabo13050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023] Open
Abstract
Antibacterial resistance bears a major threat to human health worldwide, causing about 1.2 million deaths per year. It is noteworthy that carbazole derivatives have shown a potential antibacterial activity, for example, 9-methoxyellipticine, which was isolated from Ochrosia elliptica Labill. roots (Apocynaceae) in the present study. An in vitro screening of the antibacterial activity of 9-methoxyellipticine was investigated against four multidrug-resistant (MDR) Klebsiella pneumoniae and Shiga toxin-producing Escherichia coli (STEC O157) as Gram-negative bacteria, in addition to Methicillin-resistant Staphylococcus aureus (MRSA) with Bacillus cereus as Gram-positive bacteria. The compound had significant antibacterial activity against the two Gram-negative isolates and lower activity against the Gram-positive ones. The synergistic use of 9-methoxyellipticine and antibiotics was successfully effective in reducing the MDR microorganisms. Lung pneumonia and kidney infection mice models were used to investigate the compound's efficacy in vivo for the first time. Noteworthy reductions in K. pneumoniae and STEC shedding and the colonization were observed, with a reduction in pro-inflammatory factors and immunoglobulin levels. Other related lesions such as inflammatory cell infiltration, alveolar interstitial congestion, and edema were noticed to occur, lessened to different limits. The anti-STEC and anti-K. pneumoniae activities of 9-methoxyellipticine were revealed, providing a new alternative against MDR nosocomial infections.
Collapse
Affiliation(s)
- Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza 12451, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza 12511, Egypt
| | - Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
129
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
130
|
Zhang C, Lai Q, Chen W, Zhang Y, Mo L, Liu Z. Three-Dimensional Electrochemical Sensors for Food Safety Applications. BIOSENSORS 2023; 13:bios13050529. [PMID: 37232890 DOI: 10.3390/bios13050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Considering the increasing concern for food safety, electrochemical methods for detecting specific ingredients in the food are currently the most efficient method due to their low cost, fast response signal, high sensitivity, and ease of use. The detection efficiency of electrochemical sensors is determined by the electrode materials' electrochemical characteristics. Among them, three-dimensional (3D) electrodes have unique advantages in electronic transfer, adsorption capacity and exposure of active sites for energy storage, novel materials, and electrochemical sensing. Therefore, this review begins by outlining the benefits and drawbacks of 3D electrodes compared to other materials before going into more detail about how 3D materials are synthesized. Next, different types of 3D electrodes are outlined together with common modification techniques for enhancing electrochemical performance. After this, a demonstration of 3D electrochemical sensors for food safety applications, such as detecting components, additives, emerging pollutants, and bacteria in food, was given. Finally, improvement measures and development directions of electrodes with 3D electrochemical sensors are discussed. We think that this review will help with the creation of new 3D electrodes and offer fresh perspectives on how to achieve extremely sensitive electrochemical detection in the area of food safety.
Collapse
Affiliation(s)
- Chi Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Qingteng Lai
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yanke Zhang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Long Mo
- Department of Cardiology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
131
|
Lu P, Zhan C, Huang C, Zhou Y, Hong F, Wang Z, Dong Y, Li N, He Q, Chen Y. Cartridge voltage-sensitive micropump immunosensor based on a self-assembled polydopamine coating mediated signal amplification strategy. Biosens Bioelectron 2023; 226:115087. [PMID: 36754742 DOI: 10.1016/j.bios.2023.115087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Current biosensing detection assays were developed to focus on rapid, low-cost, stable detection for clinical diagnosis and food safety monitoring. In this work, a novel portable cartridge voltage-sensitive micropump immunosensor (CVMS) biosensing device based on the integration of the microchannel circuit biosensing principle and polydopamine (PDA) was presented for rapid and sensitive detection of pathogenic factors in real samples at trace levels. The CVMS can sensitively evaluate voltage signal changes caused by clogging effects in the closed-loop circuit when the insulated microspheres pass through the microchannel. The targets could trigger the immune reaction between antibody-antigens that leads to the change in the concentration of horseradish peroxidase (HRP). And the HRP was further employed to catalyze the polymerization of dopamine into PDA, resulting in the rapid formation of the magnetic @PDA nanoparticles (MNP@PDA) with core-shell structures. The abundant functional groups on the MNP@PDA surface can efficiently adsorb polystyrene microspheres, thus causing changes in the number of polystyrene microspheres (PS). The CVMS can accurately monitor the change of PS with a portable device, which weighs less than 0.8 kg and costs only $50. The completion of CVMS takes 90 min to complete. The limit of detection of this immunosensor for procalcitonin and ochratoxin A were 42 pg/mL and 77 pg/mL, respectively, which improved about 15 folds and 38 folds, respectively, than those of enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Peng Lu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yang Zhou
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nan Li
- Daye Public Inspection and Test Center, Daye, 435100, Hubei, China
| | - Qifu He
- Daye Public Inspection and Test Center, Daye, 435100, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Daye Public Inspection and Test Center, Daye, 435100, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
132
|
Tatavarti R, Nadimpalli S, Mangina GVK, Kiran Machiraju N, Pachiyappan A, Hiremath S, Jagannathan V, Viswanathan P. Photonic system for real-time detection, discrimination, and quantification of microbes in air. FRONTIERS IN PHYSICS 2023; 11. [DOI: 10.3389/fphy.2023.1118885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We report the results of the non-invasive photonic system AUM for remote detection and characterization of different pathogenic bacterial strains and mixtures. AUM applies the concepts of elastic light scattering, statistical mechanics, artificial intelligence, and machine learning to identify, classify and quantify various microbes in the scattering volume in real-time and, therefore, can become a potential tool in controlling and managing diseases caused by pathogenic microbes.
Collapse
|
133
|
Zhang P, Li Y, Zhang D, Zhu X, Guo J, Ma C, Shi C. Real-time detection of SARS-CoV-2 in clinical samples via ultrafast ligation-dependent RNA transcription amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1915-1922. [PMID: 37000537 DOI: 10.1039/d3ay00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
RNA has been recognized as an important biomarker of many infectious pathogens; thus, sensitive, simple and rapid detection of RNA is urgently required for the control of epidemics. Herein, we report an ultrafast ligation-dependent RNA transcription amplification assay with high sensitivity and specificity for real-time detection of SARS-CoV-2 in real clinical samples, termed splint-based cascade transcription amplification (SCAN). Target RNA is first recognized by two DNA probes, which are then ligated together by SplintR, followed by the binding of the T7 promotor and T7 RNA polymerase to the ligated probe and the start of the transcription process. By introducing a vesicular stomatitis virus (VSV) terminator in the ligated probe, large amounts of RNA transcripts are rapidly produced within 10 min, which then directly hybridize with molecular beacons (MBs) and trigger the conformational switch of the MBs to generate a fluorescence signal that can be monitored in real time. The SCAN assay, which can be completed within 30-50 min, has a limit of detection of 104 copies per mL, while exhibiting high specificity to distinguish the target pathogen from those causing similar syndromes. More importantly, the results of SCAN for SARS-CoV-2 detection in clinical samples display great agreement with the most used qRT-PCR and qRT-LAMP, indicating great potential in the diagnosis of pathogens in clinical practice.
Collapse
Affiliation(s)
- Peng Zhang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Dongmei Zhang
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, PR China
| | - Xinghao Zhu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Jinling Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
134
|
Ji C, Shao J. Shine: A novel strategy to extract specific, sensitive and well-conserved biomarkers from massive microbial genomic datasets. BMC Bioinformatics 2023; 24:128. [PMID: 37016282 PMCID: PMC10071469 DOI: 10.1186/s12859-023-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/17/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Concentrations of the pathogenic microorganisms' DNA in biological samples are typically low. Therefore, DNA diagnostics of common infections are costly, rarely accurate, and challenging. Limited by failing to cover updated epidemic testing samples, computational services are difficult to implement in clinical applications without complex customized settings. Furthermore, the combined biomarkers used to maintain high conservation may not be cost effective and could cause several experimental errors in many clinical settings. Given the limitations of recent developed technology, 16S rRNA is too conserved to distinguish closely related species, and mosaic plasmids are not effective as well because of their uneven distribution across prokaryotic taxa. RESULTS Here, we provide a computational strategy, Shine, that allows extraction of specific, sensitive and well-conserved biomarkers from massive microbial genomic datasets. Distinguished with simple concatenations with blast-based filtering, our method involves a de novo genome alignment-based pipeline to explore the original and specific repetitive biomarkers in the defined population. It can cover all members to detect newly discovered multicopy conserved species-specific or even subspecies-specific target probes and primer sets. The method has been successfully applied to a number of clinical projects and has the overwhelming advantages of automated detection of all pathogenic microorganisms without the limitations of genome annotation and incompletely assembled motifs. Using on our pipeline, users may select different configuration parameters depending on the purpose of the project for routine clinical detection practices on the website https://bioinfo.liferiver.com.cn with easy registration. CONCLUSIONS The proposed strategy is suitable for identifying shared phylogenetic markers while featuring low rates of false positive or false negative. This technology is suitable for the automatic design of minimal and efficient PCR primers and other types of detection probes.
Collapse
Affiliation(s)
- Cong Ji
- Liferiver Science and Technology Institute, Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, China.
| | - Junbin Shao
- Liferiver Science and Technology Institute, Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, China.
| |
Collapse
|
135
|
Xu J, Zhou P, Liu J, Zhao L, Fu H, Han Q, Wang L, Wu W, Ou Q, Ma Y, He J. Utilizing Metagenomic Next-Generation Sequencing (mNGS) for Rapid Pathogen Identification and to Inform Clinical Decision-Making: Results from a Large Real-World Cohort. Infect Dis Ther 2023; 12:1175-1187. [PMID: 36988865 PMCID: PMC10147866 DOI: 10.1007/s40121-023-00790-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Clinical metagenomic next-generation sequencing (mNGS) has proven to be a powerful diagnostic tool in pathogen detection. However, its clinical utility has not been thoroughly evaluated. METHODS In this single-center prospective study at the First Affiliated Hospital of Soochow University, a total of 228 samples from 215 patients suspected of having acute or chronic infections between June 2018 and December 2018 were studied. Samples that met the mNGS quality control (QC) criteria (N = 201) were simultaneously analyzed using conventional tests (CTs), including multiple clinical microbiological tests and real-time PCR (if applicable). RESULTS Pathogen detection results of mNGS in the 201 QC-passed samples were compared to CTs and exhibited a sensitivity of 98.8%, specificity of 38.5%, and accuracy of 87.1%. Specifically, 109 out of 160 (68.1%) CT+/mNGS+ samples exhibited concordant results at the species/genus level, 25 samples (15.6%) showed overlapping results, while the remaining 26 samples (16.3%) had discordant results between the CT and mNGS assays. In addition, mNGS could identify pathogens at the species level, whereas only the genera of some pathogens could be identified by CT. In this cohort, mNGS results were used to guide treatment plans in 24 out of 41 cases that had available follow-up information, and the symptoms were improved in over 70% (17/24) of them. CONCLUSION Our data demonstrated the analytic performance of our mNGS pipeline for pathogen detection using a large clinical cohort and strongly supports the notion that in clinical practice, mNGS represents a valuable supplementary tool to CTs to rapidly determine etiological factors of various types of infection and to guide treatment decision-making.
Collapse
Affiliation(s)
- Jie Xu
- Clinical Laboratory Center, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Peng Zhou
- Center of Translational Medicine and Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China
| | - Jia Liu
- Dinfectome Inc., NanjingJiangsu, 210000, China
| | - Lina Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hailong Fu
- Clinical Laboratory Center, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Qingzhen Han
- Center of Translational Medicine and Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China
| | - Lin Wang
- Center of Translational Medicine and Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China
| | - Weiwei Wu
- Dinfectome Inc., NanjingJiangsu, 210000, China
| | - Qiuxiang Ou
- Dinfectome Inc., NanjingJiangsu, 210000, China
| | - Yutong Ma
- Dinfectome Inc., NanjingJiangsu, 210000, China
| | - Jun He
- Clinical Laboratory Center, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- HLA Laboratory of Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, 13/F (West), Hospital Comprehensive Building, No.899 Ping Hai Road, Suzhou, 215031, Jiangsu, China.
| |
Collapse
|
136
|
Gichure JN, Coorey R, Njage PMK, Dykes GA, Muema EK, Buys EM. The Microbial Genetic Diversity and Succession Associated with Processing Waters at Different Broiler Processing Stages in an Abattoir in Australia. Pathogens 2023; 12:pathogens12030488. [PMID: 36986410 PMCID: PMC10053010 DOI: 10.3390/pathogens12030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The high organic content of abattoir-associated process water provides an alternative for low-cost and non-invasive sample collection. This study investigated the association of microbial diversity from an abattoir processing environment with that of chicken meat. Water samples from scalders, defeathering, evisceration, carcass-washer, chillers, and post-chill carcass rinsate were collected from a large-scale abattoir in Australia. DNA was extracted using the Wizard® Genomic DNA Purification Kit, and the 16S rRNA v3-v4 gene region was sequenced using Illumina MiSeq. The results revealed that the Firmicutes decreased from scalding to evisceration (72.55%) and increased with chilling (23.47%), with the Proteobacteria and Bacteroidota changing inversely. A diverse bacterial community with 24 phyla and 392 genera was recovered from the post-chill chicken, with Anoxybacillus (71.84%), Megamonas (4.18%), Gallibacterium (2.14%), Unclassified Lachnospiraceae (1.87%), and Lactobacillus (1.80%) being the abundant genera. The alpha diversity increased from scalding to chilling, while the beta diversity revealed a significant separation of clusters at different processing points (p = 0.01). The alpha- and beta-diversity revealed significant contamination during the defeathering, with a redistribution of the bacteria during the chilling. This study concluded that the genetic diversity during the defeathering is strongly associated with the extent of the post-chill contamination, and may be used to indicate the microbial quality of the chicken meat.
Collapse
Affiliation(s)
- Josphat Njenga Gichure
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield 0028, South Africa
- Department of Food Science, Nutrition and Technology, South Eastern Kenya University, Kitui P.O. Box 170-90200, Kenya
| | - Ranil Coorey
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth 6845, Australia
| | - Patrick Murigu Kamau Njage
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gary A Dykes
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia 4067, Australia
| | - Esther K Muema
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield 0028, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
137
|
Xia L, Yin J, Zhuang J, Yin W, Zou Z, Mu Y. Adsorption-Free Self-Priming Direct Digital Dual-crRNA CRISPR/Cas12a-Assisted Chip for Ultrasensitive Detection of Pathogens. Anal Chem 2023; 95:4744-4752. [PMID: 36867551 DOI: 10.1021/acs.analchem.2c05560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Rapid and sensitive pathogen detection methods are critical for disease diagnosis and treatment. RPA-CRISPR/Cas12 systems have displayed remarkable potential in pathogen detection. A self-priming digital PCR chip is a powerful and attractive tool for nucleic detection. However, the application of the RPA-CRISPR/Cas12 system to the self-priming chip still has great challenges due to the problems of protein adsorption and two-step detection mode of RPA-CRISPR/Cas12. In this study, an adsorption-free self-priming digital chip was developed and a direct digital dual-crRNAs (3D) assay was established based on the chip for ultrasensitive detection of pathogens. This 3D assay combined the advantages of rapid amplification of RPA, specific cleavage of Cas12a, accurate quantification of digital PCR, and point-of-care testing (POCT) of microfluidics, enabling accurate and reliable digital absolute quantification of Salmonella in POCT. Our method can provide a good linear relationship of Salmonella detection in the range from 2.58 × 101 to 2.58 × 104 cells/mL with a limit of detection ∼0.2 cells/mL within 30 min in a digital chip by targeting the invA gene of Salmonella. Moreover, the assay could directly detect Salmonella in milk without nucleic acid extraction. Therefore, the 3D assay has the significant potential to provide accurate and rapid pathogen detection in POCT. This study provides a powerful nucleic detection platform and facilitates the application of CRISPR/Cas-assisted detection and microfluidic chips.
Collapse
Affiliation(s)
- Liping Xia
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province 310015, China.,Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Juxin Yin
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province 310015, China.,Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.,Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
138
|
El-Shiekh RA, Elhemely MA, Naguib IA, Bukhari SI, Elshimy R. Luteolin 4'-Neohesperidoside Inhibits Clinically Isolated Resistant Bacteria In Vitro and In Vivo. Molecules 2023; 28:2609. [PMID: 36985581 PMCID: PMC10053799 DOI: 10.3390/molecules28062609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Multidrug resistance (MDR) pathogens are usually associated with higher morbidity and mortality rates. Flavonoids are good candidates for the development of new potential antimicrobials. This research investigated whether luteolin 4'-neohesperidoside (L4N) has antibacterial and synergistic activities against four antibiotic-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, fosA-positive shiga toxin producing the Escherichia coli serogroup O111 (STEC O111), and Bacillus cereus. In vitro antimicrobial susceptibility testing revealed highly potent anti-MRSA (MIC of 106.66 ± 6.95 µg/mL), anti-K. pneumoniae (MIC of 53.33 ± 8.47 µg/mL) and anti-STEC O111 (MIC of 26.66 ± 5.23 µg/mL) activities. Significant synergistic combination was clearly noted in the case of gentamycin (GEN) against Gram-negative bacteria. In the case of B. cereus, the combination of vancomycin (VAN) with L4N could efficiently inhibit bacterial growth, despite the pathogen being VAN-resistant (MIC of 213.33 ± 7.9 µg/mL). In vivo evaluation of L4N showed significant decreases in K. pneumoniae and STEC shedding and colonization. Treatment could significantly diminish the levels of pro-inflammatory markers, tumor necrosis factor-alpha (TNF-α), and immunoglobulin (IgM). Additionally, the renal and pulmonary lesions were remarkably enhanced, with a significant decrease in the bacterial loads in the tissues. Finally, this study presents L4N as a potent substitute for traditional antibiotics with anti-STEC O111 and anti-K. pneumoniae potential, a finding which is reported here for the first time.
Collapse
Affiliation(s)
- Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Mai A. Elhemely
- School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M20 4GJ, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza 12451, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Giza 12511, Egypt
| |
Collapse
|
139
|
Yang FA, Wu YT, Liu YW, Liao WC. Hybridization chain reaction-assisted enzyme cascade genosensor for the detection of Listeria monocytogenes. Talanta 2023; 254:124193. [PMID: 36549135 DOI: 10.1016/j.talanta.2022.124193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Foodborne diseases caused by pathogens may threaten public health and the social economy. We demonstrated a method for identifying pathogenic Listeria monocytogenes using DNA logic operations. To achieve accurate species distinguishing, three specific sequences of Listeria monocytogenes genomic DNA were screened out and used as the feature sequences. Three complementary probes with tag modification were designed as sensing elements and exert affinity for magnetic beads, glucose oxidase (GOx), and horseradish peroxidase (HRP). To obtain a digital output (YES/NO answer) for rapid determination, a Boolean logic function was employed. Three sensing probes enabled the recognition of the target sequence (input) and the formation of a target DNA/probe hybrid. Through magnetic separation and affinity binding events, the target DNA/probes hybrid led to the construction of GOx/HRP enzyme cascade, which produced a visualized color signal (output) in the presence of substrates, glucose, and 3, 3', 5, 5'-tetramethylbenzidine (TMB). A hybridization chain reaction (HCR) was coupled with this sensing scaffold to increase the binding of the enzyme cascade and amplify the output signal. The logical functional biosensor showed high selectivity of Listeria monocytogenes over other Listeria species. This sensing platform provides a simple, sensitive, and highly specific method for detecting Listeria monocytogenes.
Collapse
Affiliation(s)
- Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Ting Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
140
|
Duo Y, Luo G, Zhang W, Wang R, Xiao GG, Li Z, Li X, Chen M, Yoon J, Tang BZ. Noncancerous disease-targeting AIEgens. Chem Soc Rev 2023; 52:1024-1067. [PMID: 36602333 DOI: 10.1039/d2cs00610c] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Noncancerous diseases include a wide plethora of medical conditions beyond cancer and are a major cause of mortality around the world. Despite progresses in clinical research, many puzzles about these diseases remain unanswered, and new therapies are continuously being sought. The evolution of bio-nanomedicine has enabled huge advancements in biosensing, diagnosis, bioimaging, and therapeutics. The recent development of aggregation-induced emission luminogens (AIEgens) has provided an impetus to the field of molecular bionanomaterials. Following aggregation, AIEgens show strong emission, overcoming the problems associated with the aggregation-caused quenching (ACQ) effect. They also have other unique properties, including low background interferences, high signal-to-noise ratios, photostability, and excellent biocompatibility, along with activatable aggregation-enhanced theranostic effects, which help them achieve excellent therapeutic effects as an one-for-all multimodal theranostic platform. This review provides a comprehensive overview of the overall progresses in AIEgen-based nanoplatforms for the detection, diagnosis, bioimaging, and bioimaging-guided treatment of noncancerous diseases. In addition, it details future perspectives and the potential clinical applications of these AIEgens in noncancerous diseases are also proposed. This review hopes to motivate further interest in this topic and promote ideation for the further exploration of more advanced AIEgens in a broad range of biomedical and clinical applications in patients with noncancerous diseases.
Collapse
Affiliation(s)
- Yanhong Duo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Wentao Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Renzhi Wang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmacology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Meili Chen
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
141
|
Bromberger B, Mester PJ. Rapid detection of Listeria monocytogenes in dairy products by a novel chemilumonogenic approach. Food Microbiol 2023; 109:104150. [DOI: 10.1016/j.fm.2022.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
|
142
|
Bakhshpour-Yucel M, Gür SD, Seymour E, Aslan M, Lortlar Ünlü N, Ünlü MS. Highly-Sensitive, Label-Free Detection of Microorganisms and Viruses via Interferometric Reflectance Imaging Sensor. MICROMACHINES 2023; 14:281. [PMID: 36837980 PMCID: PMC9960798 DOI: 10.3390/mi14020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic microorganisms and viruses can easily transfer from one host to another and cause disease in humans. The determination of these pathogens in a time- and cost-effective way is an extreme challenge for researchers. Rapid and label-free detection of pathogenic microorganisms and viruses is critical in ensuring rapid and appropriate treatment. Sensor technologies have shown considerable advancements in viral diagnostics, demonstrating their great potential for being fast and sensitive detection platforms. In this review, we present a summary of the use of an interferometric reflectance imaging sensor (IRIS) for the detection of microorganisms. We highlight low magnification modality of IRIS as an ensemble biomolecular mass measurement technique and high magnification modality for the digital detection of individual nanoparticles and viruses. We discuss the two different modalities of IRIS and their applications in the sensitive detection of microorganisms and viruses.
Collapse
Affiliation(s)
- Monireh Bakhshpour-Yucel
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Sinem Diken Gür
- Department of Biotechnology, Hacettepe University, Ankara 06800, Turkey
| | - Elif Seymour
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mete Aslan
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - Nese Lortlar Ünlü
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| | - M. Selim Ünlü
- Department of Electrical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
143
|
Vaghef-Koodehi A, Ernst OD, Lapizco-Encinas BH. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal Chem 2023; 95:1409-1418. [PMID: 36599093 DOI: 10.1021/acs.analchem.2c04366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Presented here is the first continuous separation of microparticles and cells of similar characteristics employing linear and nonlinear electrokinetic phenomena in an insulator-based electrokinetic (iEK) system. By utilizing devices with insulating features, which distort the electric field distribution, it is possible to combine linear and nonlinear EK phenomena, resulting in highly effective separation schemes that leverage the new advancements in nonlinear electrophoresis. This work combines mathematical modeling and experimentation to separate four distinct binary mixtures of particles and cells. A computational model with COMSOL Multiphysics was used to predict the retention times (tR,p) of the particles and cells in iEK devices. Then, the experimental separations were carried out using the conditions identified with the model, where the experimental retention time (tR,e) of the particles and cells was measured. A total of four distinct separations of binary mixtures were performed by increasing the level of difficulty. For the first separation, two types of polystyrene microparticles, selected to mimic Escherichia coli and Saccharomyces cerevisiae cells, were separated. By leveraging the knowledge gathered from the first separation, a mixture of cells of distinct domains and significant size differences, E. coli and S. cerevisiae, was successfully separated. The third separation also featured cells of different domains but closer in size: Bacillus cereus versus S. cerevisiae. The last separation included cells in the same domain and genus, B. cereus versus Bacillus subtilis. Separation results were evaluated in terms of number of plates (N) and separation resolution (Rs), where Rs values for all separations were above 1.5, illustrating complete separations. Experimental results were in agreement with modeling results in terms of retention times, with deviations in the 6-27% range, while the variation between repetitions was between 2 and 18%, demonstrating good reproducibility. This report is the first prediction of the retention time of cells in iEK systems.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Olivia D Ernst
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| |
Collapse
|
144
|
Pardo-Freire M, Domingo-Calap P. Phages and Nanotechnology: New Insights against Multidrug-Resistant Bacteria. BIODESIGN RESEARCH 2023; 5:0004. [PMID: 37849463 PMCID: PMC10521656 DOI: 10.34133/bdr.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 10/19/2023] Open
Abstract
Bacterial infections are a major threat to the human healthcare system worldwide, as antibiotics are becoming less effective due to the emergence of multidrug-resistant strains. Therefore, there is a need to explore nontraditional antimicrobial alternatives to support rapid interventions and combat the spread of pathogenic bacteria. New nonantibiotic approaches are being developed, many of them at the interface of physics, nanotechnology, and microbiology. While physical factors (e.g., pressure, temperature, and ultraviolet light) are typically used in the sterilization process, nanoparticles and phages (bacterial viruses) are also applied to combat pathogenic bacteria. Particularly, phage-based therapies are rising due to the unparalleled specificity and high bactericidal activity of phages. Despite the success of phages mostly as compassionate use in clinical cases, some drawbacks need to be addressed, mainly related to their stability, bioavailability, and systemic administration. Combining phages with nanoparticles can improve their performance in vivo. Thus, the combination of nanotechnology and phages might provide tools for the rapid and accurate detection of bacteria in biological samples (diagnosis and typing), and the development of antimicrobials that combine the selectivity of phages with the efficacy of targeted therapy, such as photothermal ablation or photodynamic therapies. In this review, we aim to provide an overview of how phage-based nanotechnology represents a step forward in the fight against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Marco Pardo-Freire
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain
| |
Collapse
|
145
|
Stern Bauer T, Yakobi R, Hurevich M, Yitzchaik S, Hayouka Z. Impedimetric Bacterial Detection Using Random Antimicrobial Peptide Mixtures. SENSORS (BASEL, SWITZERLAND) 2023; 23:561. [PMID: 36679359 PMCID: PMC9866871 DOI: 10.3390/s23020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The biosensing of bacterial pathogens is of a high priority. Electrochemical biosensors are an important future tool for rapid bacteria detection. A monolayer of bacterial-binding peptides can serve as a recognition layer in such detection devices. Here, we explore the potential of random peptide mixtures (RPMs) composed of phenylalanine and lysine in random sequences and of controlled length, to form a monolayer that can be utilized for sensing. RPMs were found to assemble in a thin and diluted layer that attracts various bacteria. Faradaic electrochemical impedance spectroscopy was used with modified gold electrodes to measure the charge-transfer resistance (RCT) caused due to the binding of bacteria to RPMs. Pseudomonas aeruginosa was found to cause the most prominent increase in RCT compared to other model bacteria. We show that the combination of highly accessible antimicrobial RPMs and electrochemical analysis can be used to generate a new promising line of bacterial biosensors.
Collapse
Affiliation(s)
- Tal Stern Bauer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ravit Yakobi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mattan Hurevich
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
146
|
Ruiz-Linares M, Monroy-Rojas JF, Solana C, Baca P, Aguado B, Soriano-Lerma A, Arias-Moliz MT, Ferrer-Luque CM. Antimicrobial potential of new diclofenac hydrogels for disinfection in regenerative endodontics: An in vitro and ex vivo study. Int Endod J 2023; 56:103-117. [PMID: 36169591 DOI: 10.1111/iej.13840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
AIM There is a need to explore new alternatives for root canal disinfection in regenerative endodontics, since the current strategies are far from ideal. Currently, the potential use of diclofenac (DC) is being investigated for controlling root canal infections. The objective was to evaluate the antimicrobial efficacy of novel DC-based hydrogels (DCHs) against polymicrobial biofilms grown in radicular dentine and root canals and to compare results with triantibiotic (TAH) and diantibiotic (DAH) hydrogels, and calcium hydroxide (Ca[OH]2 ). METHODOLOGY The in vitro antimicrobial activity of intracanal medicaments was evaluated against 3-week-old polymicrobial root canal biofilms grown on human radicular dentine. Dentine samples were obtained and randomly divided into the study groups (n = 4/group): (1) 1 mg/ml TAH; (2) 1 mg/ml DAH; (3) 5% diclofenac (DCH); (4) 2.5% DCH; (5) 1.25% DCH; (6) 1 mg/ml DAH + 5% DCH; (7) Ca(OH)2 paste; (8) positive control. The microbial viability, in terms of percentage of intact cell membranes, was assessed after 7 days by confocal scanning laser microscopy (CSLM). The ex vivo efficacy of intracanal medications was evaluated in root canals infected with a polymicrobial suspension. Intracanal microbiological samples at baseline (S1) and 7 days post-treatment (S2) were taken; microbial quantification and cell viability were assessed by quantitative polymerase chain reaction (qPCR) and flow cytometry (FC). The mean Log10 of bacterial DNA copies in root canal samples before (S1) and the Log10 reduction of DNA copies S1-S2 in qPCR were recorded. The absolute value of total cells stained, and the percentage reduction of intact membrane cells after treatment (S1-S2), were analysed by FC. Global comparison was done using the Kruskal-Wallis test, whilst the Mann-Whitney U test was used for pair-by-pair comparison. RESULTS Confocal scanning laser microscopy analysis indicated that the greatest effectiveness was obtained with 5% DCH, showing significant differences with respect to the other groups (p < .001). In root canals, the highest Log10 DNA reduction S1-S2 was obtained with 5% DCH and TAH, with no differences between them. The results of FC showed that only 5% DCH proved significantly superior to the other treatments. CONCLUSIONS Sodium DC hydrogels demonstrate antimicrobial efficacy against endodontic biofilms.
Collapse
Affiliation(s)
- Matilde Ruiz-Linares
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Javier F Monroy-Rojas
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Carmen Solana
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Pilar Baca
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Beatriz Aguado
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Ana Soriano-Lerma
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - María Teresa Arias-Moliz
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Microbiology, School of Dentistry, University of Granada, Granada, Spain
| | - Carmen María Ferrer-Luque
- Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
147
|
Ivanov AV, Safenkova IV, Drenova NV, Zherdev AV, Dzantiev BB. Comparison of Biosensing Methods Based on Different Isothermal Amplification Strategies: A Case Study with Erwinia amylovora. BIOSENSORS 2022; 12:1174. [PMID: 36551141 PMCID: PMC9776058 DOI: 10.3390/bios12121174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Isothermal amplifications allow for the highly sensitive detection of nucleic acids, bypassing the use of instrumental thermal cycling. This work aimed to carry out an experimental comparison of the four most promising techniques: recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) coupled with lateral flow test or coupled with additional amplification based on CRISPR/Cas12a resulting from the fluorescence of the Cas12a-cleaved probe. To compare the four amplification techniques, we chose the bacterial phytopathogen Erwinia amylovora (causative agent of fire blight), which has a quarantine significance in many countries and possesses a serious threat to agriculture. Three genes were chosen as the targets and primers were selected for each one (two for RPA and six for LAMP). They were functionalized by labels (biotin, fluorescein) at the 5' ends for amplicons recognition by LFT. As a result, we developed LAMP-LFT, LAMP-CRISPR/Cas, RPA-LFT, and RPA-CRISPR/Cas for E. amylovora detection. The detection limit was 104 CFU/mL for LAMP-LFT, 103 CFU/mL for LAMP-CRISPR/Cas, and 102 CFU/mL for RPA-LFT and RPA-CRISPR/Cas. The results of four developed test systems were verified by qPCR on a panel of real samples. The developed assays based on RPA, LAMP, CRISPR/Cas12a, and LFT are rapid (30-55 min), user-friendly, and highly sensitive for E. amylovora detection. All proposed detection methods can be applied to fire blight diagnosis and effective management of this disease.
Collapse
Affiliation(s)
- Aleksandr V. Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Natalia V. Drenova
- All-Russian Plant Quarantine Centre, Pogranichnaya Street 32, Bykovo, 140150 Ramenskoe, Moscow Region, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
148
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors-The Future of Pathogen Real-Time Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249757. [PMID: 36560126 PMCID: PMC9785510 DOI: 10.3390/s22249757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 05/26/2023]
Abstract
Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armored and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
149
|
Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. LAB ON A CHIP 2022; 22:4758-4773. [PMID: 36398687 DOI: 10.1039/d2lc00776b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections have long been a serious global health issue. Biofilm formation complicates matters even more. The biofilm's extracellular polymeric substances (EPSs) matrix protects bacteria from the host's immune responses, yielding strong adhesion and drug resistance as the biofilm matures. Early bacterial biofilm detection and bacterial biofilm growth monitoring are crucial to treating biofilm-associated infections. Current detection methods are highly sensitive but not portable, are time-consuming, and require expensive equipment and complex operating procedures, limiting their use at the point of care. Therefore, there is an urgent need to develop affordable, on-body, and non-invasive biomedical sensors to continuously monitor and detect early biofilm growth at the point of care through personalized telemedicine. Herein, recent advances in developing non-invasive biomedical sensors for early detection and monitoring bacterial biofilm growth are comprehensively reviewed. First, biofilm's life cycle and its impact on the human body, such as biofilm-associated disease and infected medical devices, are introduced together with the challenges of biofilm treatment. Then, the current methods used in clinical and laboratory settings for biofilm detection and their challenges are discussed. Next, the current state of non-invasive sensors for direct and indirect detection of bacterial biofilms are summarized and highlighted with the detection parameters and their design details. Finally, commercially available products, challenges of current devices, and the further trend in biofilm detection sensors are discussed.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| |
Collapse
|
150
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|