101
|
Rensen SS, Slaats Y, Nijhuis J, Jans A, Bieghs V, Driessen A, Malle E, Greve JW, Buurman WA. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1473-82. [PMID: 19729473 DOI: 10.2353/ajpath.2009.080999] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation and oxidative stress are considered critical factors in the progression of nonalcoholic fatty liver disease. Myeloperoxidase (MPO) is an important neutrophil enzyme that can generate aggressive oxidants; therefore, we studied the association between MPO and nonalcoholic fatty liver disease. The distribution of inflammatory cells containing MPO in liver biopsies of 40 severely obese subjects with either nonalcoholic steatohepatitis (NASH) (n = 22) or simple steatosis (n = 18) was investigated by immunohistochemistry. MPO-derived oxidative protein modifications were identified by immunohistochemistry and correlated to hepatic gene expression of CXC chemokines and M1/M2 macrophage markers as determined by quantitative PCR. MPO plasma levels were determined by ELISA. The number of hepatic neutrophils and MPO-positive Kupffer cells was increased in NASH and was accompanied by accumulation of hypochlorite-modified and nitrated proteins, which can be generated by the MPO-H2O2 system. Liver CXC chemokine expression was higher in patients with accumulation of MPO-mediated oxidation products and correlated with hepatic neutrophil sequestration. Plasma MPO levels were elevated in NASH patients. Interestingly, neutrophils frequently surrounded steatotic hepatocytes, resembling the crown-like structures found in obese adipose tissue. Furthermore, hepatic M2 macrophage marker gene expression was increased in NASH. Our data indicate that accumulation of MPO-mediated oxidation products, partly derived from Kupffer cell MPO, is associated with induction of CXC chemokines and hepatic neutrophil infiltration and may contribute to the development of NASH.
Collapse
Affiliation(s)
- Sander S Rensen
- Department of Surgery, Maastricht University Medical Centre, PO Box 616, Maastricht 6200 MD, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Geiger R, Treml B, Pinna A, Barnickel L, Prossliner H, Reinstadler H, Pilch M, Hauer M, Walther C, Steiner HJ, Giese T, Wemhöner A, Scholl-Bürgi S, Gottardi W, Arnitz R, Sergi C, Nagl M, Löckinger A. Tolerability of inhaled N-chlorotaurine in the pig model. BMC Pulm Med 2009; 9:33. [PMID: 19602222 PMCID: PMC2722574 DOI: 10.1186/1471-2466-9-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
Background N-chlorotaurine, a long-lived oxidant produced by human leukocytes, can be applied in human medicine as an endogenous antiseptic. Its antimicrobial activity can be enhanced by ammonium chloride. This study was designed to evaluate the tolerability of inhaled N-chlorotaurine (NCT) in the pig model. Methods Anesthetized pigs inhaled test solutions of 1% (55 mM) NCT (n = 7), 5% NCT (n = 6), or 1% NCT plus 1% ammonium chloride (NH4Cl) (n = 6), and 0.9% saline solution as a control (n = 7), respectively. Applications with 5 ml each were performed hourly within four hours. Lung function, haemodynamics, and pharmacokinetics were monitored. Bronchial lavage samples for captive bubble surfactometry and lung samples for histology and electron microscopy were removed. Results Arterial pressure of oxygen (PaO2) decreased significantly over the observation period of 4 hours in all animals. Compared to saline, 1% NCT + 1% NH4Cl led to significantly lower PaO2 values at the endpoint after 4 hours (62 ± 9.6 mmHg vs. 76 ± 9.2 mmHg, p = 0.014) with a corresponding increase in alveolo-arterial difference of oxygen partial pressure (AaDO2) (p = 0.004). Interestingly, AaDO2 was lowest with 1% NCT, even lower than with saline (p = 0.016). The increase of pulmonary artery pressure (PAP) over the observation period was smallest with 1% NCT without difference to controls (p = 0.91), and higher with 5% NCT (p = 0.02), and NCT + NH4Cl (p = 0.05). Histological and ultrastructural investigations revealed no differences between the test and control groups. The surfactant function remained intact. There was no systemic resorption of NCT detectable, and its local inactivation took place within 30 min. The concentration of NCT tolerated by A549 lung epithelial cells in vitro was similar to that known from other body cells (0.25–0.5 mM). Conclusion The endogenous antiseptic NCT was well tolerated at a concentration of 1% upon inhalation in the pig model. Addition of ammonium chloride in high concentration provokes a statistically significant impact on blood oxygenation.
Collapse
Affiliation(s)
- Ralf Geiger
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Laggner H, Muellner MK, Schreier S, Sturm B, Hermann M, Exner M, Gmeiner BMK, Kapiotis S. Hydrogen sulphide: A novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 2009; 41:741-7. [PMID: 17577734 DOI: 10.1080/10715760701263265] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypochlorite (HOCl), the product of the activated myeloperoxidase/H(2)O(2)/chloride (MPO/H(2)O(2)/Cl(- )) system is favored as a trigger of LDL modifications, which may play a pivotal role in early atherogenesis. As HOCl has been shown to react with thiol-containing compounds like glutathione and N-acetylcysteine protecting LDL from HOCl modification, we have tested the ability of hydrogen sulfide (H(2)S) - which has recently been identified as an endogenous vasorelaxant - to counteract the action of HOCl on LDL. The results show that H(2)S could inhibit the atherogenic modification of LDL induced by HOCl, as measured by apolipoprotein alterations. Beside its HOCl scavenging potential, H(2)S was found to inhibit MPO (one may speculate that this occurs via H(2)S/heme interaction) and destroy H(2)O(2). Thus, H(2)S may interfere with the reactants and reaction products of the activated MPO/H(2)O(2)/Cl(- ) system. Our data add to the evidence of an anti-atherosclerotic action of this gasotransmitter taking the role of HOCl in the atherogenic modification of LDL into account.
Collapse
Affiliation(s)
- Hilde Laggner
- Department of Medical Chemistry, Centre of Physiology and Pathophysiology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Schindhelm RK, van der Zwan LP, Teerlink T, Scheffer PG. Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification? Clin Chem 2009; 55:1462-70. [PMID: 19556446 DOI: 10.1373/clinchem.2009.126029] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Inflammation and oxidative stress are associated with atherosclerosis. Myeloperoxidase (MPO) is linked to both inflammation and oxidative stress by its location in leukocytes and its role in catalyzing the formation of oxidizing agents. Recent evidence suggests that MPO activity precipitates atherogenesis. Measurement of MPO in plasma may therefore contribute to cardiovascular disease (CVD) risk stratification. CONTENT Cross-sectional studies, case-control studies, and prospective-cohort studies investigating the relation between MPO and CVD have been evaluated. Differences in study populations, sample materials, sample handling, and assays were ascertained. Potential causal mechanisms linking MPO to accelerated atherosclerosis are discussed here. A majority of studies indicate that measurement of MPO in plasma was associated with improved CVD risk stratification above and beyond risk stratification results obtained with markers used in routine clinical practice. However, comparison of these epidemiological studies with regard to MPO and outcome is hampered because the reported MPO concentration depends on the assay method, sampling material, and preanalytical and analytical procedures. The link between MPO and CVD can, at least partly, be explained by MPO-dependent oxidation of LDL and HDL, subsequently leading to cholesterol accumulation in the arterial wall. Furthermore, MPO may reduce the bioavailability of nitric oxide, resulting in endothelial dysfunction. Finally, MPO destabilizes atherosclerotic plaques. SUMMARY Increasing evidence suggests that MPO is causally linked to atherosclerosis and its measurement may improve CVD risk estimation. Before MPO can be used in routine clinical practice, however, standardization of sampling and laboratory procedures is needed.
Collapse
Affiliation(s)
- Roger K Schindhelm
- Department of Clinical Chemistry, Isala Clinics, Zwolle, the Netherlands.
| | | | | | | |
Collapse
|
105
|
Chantepie S, Malle E, Sattler W, Chapman MJ, Kontush A. Distinct HDL subclasses present similar intrinsic susceptibility to oxidation by HOCl. Arch Biochem Biophys 2009; 487:28-35. [PMID: 19464255 DOI: 10.1016/j.abb.2009.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/07/2009] [Accepted: 05/14/2009] [Indexed: 02/02/2023]
Abstract
The heme protein myeloperoxidase (MPO) functions as a catalyst for lipoprotein oxidation. Hypochlorous acid (HOCl), a potent two-electron oxidant formed by the MPO-H(2)O(2)-chloride system of activated phagocytes, modifies antiatherogenic high-density lipoprotein (HDL). The structural heterogeneity and oxidative susceptibility of HDL particle subfractions were probed with HOCl. All distinct five HDL subfraction were modified by HOCl as demonstrated by the consumption of tryptophan residues and free amino groups, cross-linking of apolipoprotein AI, formation of HOCl-modified epitopes, increased electrophoretic mobility and altered content of unsaturated fatty acids in HDL subclasses. Small, dense HDL3 were less susceptible to oxidative modification than large, light HDL2 on a total mass basis at a fixed HOCl:HDL mass ratio of 1:32, but in contrast not on a particle number basis at a fixed HOCl:HDL molar ratio of 97:1. We conclude that structural and physicochemical differences between HDL subclasses do not influence their intrinsic susceptibility to oxidative attack by HOCl.
Collapse
MESH Headings
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Blood Protein Electrophoresis
- Electrophoresis, Agar Gel
- Fatty Acids, Unsaturated/analysis
- Humans
- Hypochlorous Acid/pharmacology
- In Vitro Techniques
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/classification
- Lipoproteins, HDL/drug effects
- Lipoproteins, HDL2/blood
- Lipoproteins, HDL2/chemistry
- Lipoproteins, HDL2/drug effects
- Lipoproteins, HDL3/blood
- Lipoproteins, HDL3/chemistry
- Lipoproteins, HDL3/drug effects
- Oxidants/pharmacology
- Oxidation-Reduction
- Tryptophan/chemistry
Collapse
Affiliation(s)
- Sandrine Chantepie
- Université Pierre et Marie Curie-Paris 6, UMR S939 "Dyslipydemia, Inflammation and Atherosclerosis in Metabolic Diseases", F-75013 Paris, France.
| | | | | | | | | |
Collapse
|
106
|
Lopes-Virella MF, Virella G. Clinical significance of the humoral immune response to modified LDL. Clin Immunol 2009; 134:55-65. [PMID: 19427818 DOI: 10.1016/j.clim.2009.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/31/2022]
Abstract
Human low density lipoprotein (LDL) undergoes oxidation and glycation in vivo. By themselves, oxidized LDL (oxLDL) and AGE-LDL have proinflammatory properties and are considered atherogenic. But the atherogenicity of these lipoproteins are significantly increased as a consequence of the formation of immune complexes (IC) involving specific autoantibodies. OxLDL and AGE antibodies have been shown to be predominantly of the IgG1 and IgG3 isotypes. OxLDL antibodies are able to activate the complement system by the classical pathway and to induce FcR-mediated phagocytosis. In vitro and ex vivo studies performed with modified LDL-IC have proven their pro-inflammatory and atherogenic properties. Clinical studies have demonstrated that the levels of circulating modified LDL-IC correlate with parameters indicative of cardiovascular and renal disease in diabetic patients and other patient populations. The possibility that spontaneously formed or induced modified LDL antibodies (particularly IgM oxLDL antibodies) may have a protective effect has been suggested, but the data is unclear and needs to be further investigated.
Collapse
|
107
|
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1713-65. [PMID: 18707220 DOI: 10.1089/ars.2008.2027] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelium is essential for the maintenance of vascular homeostasis. Central to this role is the production of endothelium-derived nitric oxide (EDNO), synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelial dysfunction, manifested as impaired EDNO bioactivity, is an important early event in the development of various vascular diseases, including hypertension, diabetes, and atherosclerosis. The degree of impairment of EDNO bioactivity is a determinant of future vascular complications. Accordingly, growing interest exists in defining the pathologic mechanisms involved. Considerable evidence supports a causal role for the enhanced production of reactive oxygen species (ROS) by vascular cells. ROS directly inactivate EDNO, act as cell-signaling molecules, and promote protein dysfunction, events that contribute to the initiation and progression of endothelial dysfunction. Increasing data indicate that strategies designed to limit vascular ROS production can restore endothelial function in humans with vascular complications. The purpose of this review is to outline the various ways in which ROS can influence endothelial function and dysfunction, describe the redox mechanisms involved, and discuss approaches for preventing endothelial dysfunction that may highlight future therapeutic opportunities in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
108
|
Mass spectrometric analysis of HOCl- and free-radical-induced damage to lipids and proteins. Biochem Soc Trans 2008; 36:1077-82. [DOI: 10.1042/bst0361077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl− system, can cause formation of phospholipid chlorohydrins, or α-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal.
Collapse
|
109
|
Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008; 44:1973-2001. [PMID: 18423414 DOI: 10.1016/j.freeradbiomed.2008.03.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/16/2008] [Accepted: 03/20/2008] [Indexed: 02/08/2023]
Abstract
The extracellular compartments of most biological tissues are significantly less well protected against oxidative damage than intracellular sites and there is considerable evidence for such compartments being subject to a greater oxidative stress and an altered redox balance. However, with some notable exceptions (e.g., plasma and lung lining fluid) oxidative damage within these compartments has been relatively neglected and is poorly understood. In particular information on the nature and consequences of damage to extracellular matrix is lacking despite the growing realization that changes in matrix structure can play a key role in the regulation of cellular adhesion, proliferation, migration, and cell signaling. Furthermore, the extracellular matrix is widely recognized as being a key site of cytokine and growth factor binding, and modification of matrix structure might be expected to alter such behavior. In this paper we review the potential sources of oxidative matrix damage, the changes that occur in matrix structure, and how this may affect cellular behavior. The role of such damage in the development and progression of inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Martin D Rees
- The Heart Research Institute, 114 Pyrmont Bridge Rd, Camperdown, NSW 2050, Australia
| | | | | | | |
Collapse
|
110
|
Schmid W, Lee A, Son J, Koller E, Volf I. Hypochlorite-oxidized low density lipoproteins reduce production and bioavailability of nitric oxide in RAW 264.7 macrophages by distinct mechanisms. Life Sci 2008; 83:50-8. [PMID: 18558412 DOI: 10.1016/j.lfs.2008.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 05/04/2008] [Accepted: 05/04/2008] [Indexed: 10/22/2022]
Abstract
Oxidative modification of low density lipoproteins is thought to play a pivotal role in the development and exacerbation of atherosclerosis and atherogenesis, and is believed to be closely associated with alterations in the vascular production of nitric oxide (NO). Previous work has shown that several products emerging from lipid peroxidation (e.g. lipid hydroperoxides, lysophospholipids, oxidized cholesterol) are able to reduce NO production in macrophages. The naturally occurring oxidant hypochlorite has been shown to be responsible for the in vivo formation of hypochlorite-oxidized LDL and such OxLDL are known to lack lipid peroxidation products. In this work we demonstrate that hypochlorite-oxidized LDL mediate profound effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages. By means of the membrane-permeable NO indicator 4,5-diaminofluorescein diacetate, we are able to show decreased levels of intracellular authentic nitric oxide following incubation with hypochlorite-oxidized LDL. The observed effects are dose-dependent and comparable to results obtained in the presence of the NOS inhibitor NG-monomethyl-L-arginine. This marked reduction of intracellular NO is accompanied by a dose-dependent inhibition of inducible nitric oxide synthase (iNOS) protein and mRNA expression. Furthermore, hyp-OxLDL lead to the generation of peroxynitrite, thereby also reducing bioavailability of NO. By mediating these effects on production and bioavailability of NO, hyp-OxLDL might also contribute to atherogenesis by reducing the antiatherogenic effects of nitric oxide.
Collapse
Affiliation(s)
- Werner Schmid
- Center for Physiology and Pathophysiology, Institute of Physiology, Medical University of Vienna, and Department of Urology, Rudolfstiftung Hospital, Vienna, Austria.
| | | | | | | | | |
Collapse
|
111
|
Vossmann M, Kirst M, Ludolfs D, Schreiber M. West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E. Virology 2008; 373:322-8. [DOI: 10.1016/j.virol.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
112
|
Van Antwerpen P, Moreau P, Zouaoui Boudjeltia K, Babar S, Dufrasne F, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J. Development and validation of a screening procedure for the assessment of inhibition using a recombinant enzyme. Talanta 2008; 75:503-10. [DOI: 10.1016/j.talanta.2007.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/14/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022]
|
113
|
Marsche G, Furtmüller PG, Obinger C, Sattler W, Malle E. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc Res 2008; 79:187-94. [PMID: 18296711 DOI: 10.1093/cvr/cvn051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Myeloperoxidase (MPO), a cardiovascular risk factor in humans, is an in vivo catalyst for lipoprotein modification via intermediate formation of reactive chlorinating species. Among the different lipoprotein classes, anti-atherogenic high-density lipoprotein (HDL) represents a major target for modification by hypochlorous acid (HOCl), generated from H2O2 by MPO in the presence of physiological chloride concentrations. As MPO was identified as an HDL-associated protein that could facilitate selective oxidative modification of its physiological carrier, the aim of the present study was to investigate whether and to what extent modification of HDL by HOCl affects the binding affinity of MPO in vitro. METHODS AND RESULTS We show that binding affinity of 125I-labelled MPO to HDL markedly increases as a function of increasing extent of HOCl modification of HDL. In contrast to native HDL, HOCl-HDL potently inhibits MPO binding/uptake by endothelial cells and effectively attenuates metabolism of MPO by macrophages. Reduction of HDL-associated chloramines with methionine strongly impaired binding affinity of MPO towards HOCl-HDL. This indicates that N-chloramines generated by HOCl are regulators of the high-affinity interaction between HOCl-HDL and positively charged MPO. Most importantly, the presence of HOCl-HDL is almost without effect on the halogenating activity of MPO. CONCLUSION We propose that MPO-dependent modification of HDL and concomitant increase in the binding affinity for MPO could generate a vicious cycle of MPO transport to and MPO-dependent modification at sites of chronic inflammation.
Collapse
Affiliation(s)
- Gunther Marsche
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
114
|
Dever GJ, Benson R, Wainwright CL, Kennedy S, Spickett CM. Phospholipid chlorohydrin induces leukocyte adhesion to ApoE-/- mouse arteries via upregulation of P-selectin. Free Radic Biol Med 2008; 44:452-63. [PMID: 18005671 DOI: 10.1016/j.freeradbiomed.2007.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 10/07/2007] [Accepted: 10/08/2007] [Indexed: 11/20/2022]
Abstract
HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H(2)O(2)-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE(-/-) and C57 Bl/6 mice. Treatment of ApoE(-/-) artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE(-/-) mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.
Collapse
Affiliation(s)
- Gary J Dever
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
115
|
Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol 2007; 152:838-54. [PMID: 17592500 PMCID: PMC2078229 DOI: 10.1038/sj.bjp.0707358] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/09/2022] Open
Abstract
Myeloperoxidase (MPO), a member of the haem peroxidase-cyclooxygenase superfamily, is abundantly expressed in neutrophils and to a lesser extent in monocytes and certain type of macrophages. MPO participates in innate immune defence mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity of MPO is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and the initiation and propagation of acute and chronic vascular inflammatory disease. The fact that circulating levels of MPO have been shown to predict risks for major adverse cardiac events and that levels of MPO-derived chlorinated compounds are specific biomarkers for disease progression, has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, detailed information on the structure of ferric MPO and its complexes with low- and high-spin ligands is available. This, together with a thorough understanding of reaction mechanisms including redox properties of intermediates, enables a rationale attempt in developing specific MPO inhibitors that still maintain MPO activity during host defence and bacterial killing but interfere with pathophysiologically persistent activation of MPO. The various approaches to inhibit enzyme activity of MPO and to ameliorate adverse effects of MPO-derived oxidants will be discussed. Emphasis will be put on mechanism-based inhibitors and high-throughput screening of compounds as well as the discussion of physiologically useful HOCl scavengers.
Collapse
Affiliation(s)
- E Malle
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - P G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
| | - W Sattler
- Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - C Obinger
- Division of Biochemistry, Department of Chemistry, BOKU – University of Natural Resources and Applied Life Sciences Vienna, Austria
| |
Collapse
|
116
|
Kohnen S, Franck T, Van Antwerpen P, Boudjeltia KZ, Mouithys-Mickalad A, Deby C, Moguilevsky N, Deby-Dupont G, Lamy M, Serteyn D. Resveratrol inhibits the activity of equine neutrophil myeloperoxidase by a direct interaction with the enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8080-7. [PMID: 17844991 DOI: 10.1021/jf071741n] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Resveratrol is a polyphenolic antioxidant present in beverage and food known for its multiple protective effects. We report the inhibitory effects of resveratrol on equine myeloperoxidase (MPO), a hemic peroxidase present in the granules of the neutrophils involved in the inflammatory response. Resveratrol inhibited the production of reactive oxygen species (ROS) by stimulated equine neutrophils by acting as a direct scavenger of the ROS released by the cells but did not modify the degranulation of the stimulated neutrophils as the amounts of released MPO were unchanged. Resveratrol strongly inhibited the chlorination, oxidation, and nitration activities of MPO in a dose-dependent manner. By an original technique of specific immunological extraction followed by enzymatic detection (SIEFED), we demonstrated that resveratrol inhibited the peroxidasic activity of the MPO measured by a direct interaction such as the fixation of resveratrol on the enzyme. The observation of a decrease of the accumulation of compound II suggested that resveratrol acts as an electron donor for MPO reduction.
Collapse
Affiliation(s)
- Stephan Kohnen
- Department of Clinical Sciences, Large Animal Surgery, Faculty of Veterinary Medicine B41, University of Liège, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Van Antwerpen P, Dufrasne F, Lequeux M, Boudjeltia KZ, Lessgyer I, Babar S, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J. Inhibition of the myeloperoxidase chlorinating activity by non-steroidal anti-inflammatory drugs: Flufenamic acid and its 5-chloro-derivative directly interact with a recombinant human myeloperoxidase to inhibit the synthesis of hypochlorous acid. Eur J Pharmacol 2007; 570:235-43. [PMID: 17610876 DOI: 10.1016/j.ejphar.2007.05.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 05/25/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
The present in vitro study was designed to assess the inhibition of the myeloperoxidase (MPO)/H(2)O(2)/Cl(-) system by several non steroidal anti-inflammatory drugs (NSAIDs) of the oxicam family and of nimesulide and to compare their effect with flufenamic acid in order to investigate their influence on the chlorinating activity of MPO as a protective mechanism during chronic inflammatory syndromes. The inhibition of the system was assessed by measurement of the taurine chlorination while the accumulation of compound II was used to investigate the mechanism of inhibition. The oxidation products of NSAIDs by the MPO/H(2)O(2)/Cl(-) system were identified and flufenamic acid and derivatives were also assessed in the inhibition of LDL oxidation in two models. Flufenamic acid (IC(50) = 1.1+/-0.3 microM) is the most efficient inhibitor of the MPO/H(2)O(2)/Cl(-) system and nimesulide (IC(50) = 2.1+/-0.3 microM) is more active than the other NSAIDs of the oxicam family (IC(50) = 8-12 microM). The accumulation of compound II revealed that flufenamic acid acts as an electron donor while the other NSAIDs are antagonists of chloride anions. The identification of the oxidation products confirms that flufenamic behaves like an electron donor and is directly oxidized in the 5-hydroxy-derivative but gives also the 5-chloro-derivative which similarly inhibits the MPO/H(2)O(2)/Cl(-) system. Flufenamic acid has the best inhibiting activity towards the MPO/H(2)O(2)/Cl(-) system. However, in models that assess the LDL oxidation, flufenamic acid and its derivatives were unable to properly inhibit MPO activity as the enzyme is adsorbed on macrostructures such as LDL molecules.
Collapse
Affiliation(s)
- Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry, Institute of Pharmacy, Université Libre de Bruxelles, Campus Plaine 205-5, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Marsche G, Weigle B, Sattler W, Malle E. Soluble RAGE blocks scavenger receptor CD36-mediated uptake of hypochlorite-modified low-density lipoprotein. FASEB J 2007; 21:3075-82. [PMID: 17536039 PMCID: PMC4861206 DOI: 10.1096/fj.07-8316com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engagement of the receptor for advanced glycation end products (RAGE) by its signal transduction ligands evokes inflammatory cell infiltration and activation of the vessel wall. However, soluble RAGE (sRAGE), the truncated form spanning the extracellular binding domain of RAGE, has potent anti-inflammatory properties by acting as a decoy for RAGE ligands. We now show that sRAGE binds with high affinity to atherogenic low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl), the major oxidant generated by the myeloperoxidase-H2O2-chloride system of phagocytes activated during inflammation. We further demonstrate that sRAGE can be coprecipitated with HOCl-LDL from spiked serum. To determine the functional significance of sRAGE binding to HOCl-LDL, cell association studies with macrophages were performed. sRAGE effectively inhibited cellular uptake of HOCl-LDL and subsequent lipid accumulation. Using Chinese hamster ovary cells overexpressing class B scavenger receptor CD36 or SR-BI, two preferential scavenger receptors for HOCl-LDL, we demonstrate that sRAGE only interferes with CD36-mediated uptake of HOCl-LDL. The present findings indicate that sRAGE acts as a sink for HOCl-LDL, which is abundantly present in human atherosclerotic lesions. We propose that sRAGE represents a physiological antagonist that interferes with scavenger receptor-mediated cholesterol accumulation and foam cell formation of macrophages.
Collapse
Affiliation(s)
- Gunther Marsche
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | | | - Wolfgang Sattler
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Ernst Malle
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
- Correspondence: Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria.
| |
Collapse
|
119
|
Odobasic D, Kitching AR, Semple TJ, Holdsworth SR. Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. J Am Soc Nephrol 2007; 18:760-70. [PMID: 17267745 DOI: 10.1681/asn.2006040375] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Myeloperoxidase (MPO) is an enzyme that is found in neutrophils and monocytes/macrophages. Intracellularly, it plays a major role in microbial killing, but extracellularly, it may cause host tissue damage. The role of endogenous MPO was studied during neutrophil-mediated (heterologous) and T helper 1 (Th1)/macrophage-mediated (autologous) phases of crescentic glomerulonephritis. Glomerulonephritis was induced in C57BL/6 wild-type (WT) and MPO-deficient (MPO(-/-)) mice by intravenous injection of sheep anti-mouse glomerular basement membrane globulin. MPO activity was increased in kidneys of WT mice during both the heterologous and autologous phases of glomerulonephritis. During the heterologous phase of glomerulonephritis, proteinuria was decreased, whereas glomerular neutrophil accumulation and P-selectin expression were enhanced in MPO(-/-) mice. In the autologous, crescentic phase of glomerulonephritis, MPO(-/-) mice had increased accumulation of CD4(+) cells and macrophages in glomeruli compared with WT mice. However, no difference in renal injury (crescent formation, proteinuria, and serum creatinine levels) was observed. Neutrophils and macrophages from MPO(-/-) mice exhibited reduced production of reactive oxygen species. Assessment of systemic immunity to sheep globulin showed that MPO(-/-) mice had increased splenic CD4(+) cell proliferation, cytokine production, and dermal delayed-type hypersensitivity, as well as enhanced levels of circulating IgG, IgG1, and IgG3. MPO(-/-) mice also had an augmented Th1:Th2 ratio compared with WT mice (IFN-gamma:IL-4 and IgG3:IgG1 ratios). These results suggest that endogenous MPO locally contributes to glomerular damage during neutrophil-mediated glomerulonephritis, whereas it attenuates initiation of the adaptive immune response inducing crescentic, autologous-phase glomerulonephritis by suppressing T cell proliferation, cytokine production, and Th1:Th2 ratio.
Collapse
Affiliation(s)
- Dragana Odobasic
- Centre for Inflammatory Diseases, Monash University, Department of Medicine, Monash Medical Centre, Level 5 Block E, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
120
|
Marsche G, Semlitsch M, Hammer A, Frank S, Weigle B, Demling N, Schmidt K, Windischhofer W, Waeg G, Sattler W, Malle E. Hypochlorite-modified albumin colocalizes with RAGE in the artery wall and promotes MCP-1 expression via the RAGE-Erk1/2 MAP-kinase pathway. FASEB J 2007; 21:1145-52. [PMID: 17218539 PMCID: PMC4864469 DOI: 10.1096/fj.06-7439com] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signal transduction via the endothelial receptor for advanced glycation end products (RAGE) plays a key role in vascular inflammation. Recent observations have shown that the myeloperoxidase-H2O2-chloride system of activated phagocytes is highly up-regulated under inflammatory conditions where hypochlorous acid (HOCl) is formed as the major oxidant. Albumin, an in vivo carrier for myeloperoxidase is highly vulnerable to oxidation and a major representative of circulating advanced oxidized proteins during inflammatory diseases. Immunohistochemical studies performed in the present study revealed marked colocalization of HOCl-modified epitopes with RAGE and albumin in sections of human atheroma, mainly at the endothelial lining. We show that albumin modified with physiologically relevant concentrations of HOCl, added as reagent or generated by the myeloperoxidase-H2O2-chloride system, is a high affinity ligand for RAGE. Albumin, modified by HOCl in the absence of free amino acids/carbohydrates/lipids to exclude formation of AGE-like structures, induced a rapid, RAGE-dependent activation of extracellular signal-regulated kinase 1/2 and up-regulation of the proinflammatory mediator monocyte chemoattractant protein-1. Cellular activation could be blocked either by a specific polyclonal anti-RAGE IgG and/or a specific mitogen-activated protein-kinase kinase inhibitor. The present study demonstrates that HOCl-modified albumin acts as a ligand for RAGE and promotes RAGE-mediated inflammatory complications.
Collapse
Affiliation(s)
- Gunther Marsche
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Michaela Semlitsch
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Astrid Hammer
- Medical University of Graz, Center of Molecular Medicine, Institute of Cell Biology, Histology, and Embryology, Graz, Austria
| | - Sasa Frank
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Bernd Weigle
- Technical University of Dresden, Institute of Immunology, Dresden, Germany, and Karl-Franzens University
| | - Nina Demling
- University Children’s Hospital, Research Unit of Osteological Research and Analytical Mass Spectrometry, Graz, Austria
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Graz, Austria
| | - Werner Windischhofer
- University Children’s Hospital, Research Unit of Osteological Research and Analytical Mass Spectrometry, Graz, Austria
| | - Georg Waeg
- Institute of Molecular Biosciences, Graz, Austria
| | - Wolfgang Sattler
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Ernst Malle
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
- Correspondence: Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, A-8010 Graz, Austria.
| |
Collapse
|
121
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
122
|
Yang J, Cheng Y, Ji R, Zhang C. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. Am J Physiol Heart Circ Physiol 2006; 291:H3087-93. [PMID: 16844918 DOI: 10.1152/ajpheart.00412.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, which is characterized by neointima formation, is an inflammatory disease. However, there is no inflammatory product-elicited neointimal model to support the causal role of inflammation in atherogenesis. We reported previously that leukocyte-derived MPO induces vascular injury responses such as endothelial dysfunction. We now test the role of MPO in inflammatory neointima formation. We infused temporarily isolated rat common carotid arteries with MPO (200 nM) and incubated for 1 h. We found that although MPO itself did not induce any neointima formation 2 wk after treatment, in the presence of its substrate, hydrogen peroxide, MPO was able to elicit neointimal hyperplasia. We further confirmed that MPO-induced neointimal hyperplasia is mediated by its product, hypochlorous acid (HOCl). HOCl elicited apoptosis both in intima and media followed by vascular proliferative response and resulted in neointima formation with a heterogeneous cell population. Both histological and functional features of HOCl-treated vessels are similar to those in atherosclerotic lesions. To our knowledge, this is the first direct in vivo demonstration of neointimal formation induced by a product of the inflammatory cascade. The results suggest that MPO may be a mediator for pathological neointima growth. This novel neointimal model could be useful for studying inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Jian Yang
- Vascular Biology Center and Dept. of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
123
|
Arnhold J, Monzani E, Furtmüller PG, Zederbauer M, Casella L, Obinger C. Kinetics and Thermodynamics of Halide and Nitrite Oxidation by Mammalian Heme Peroxidases. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600436] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Enrico Monzani
- Dipartimento di Chimica Generale, University of Pavia, Pavia, Italy
| | - Paul G. Furtmüller
- Department of Chemistry, Division in Biochemistry, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria, Fax: +43‐1‐36006‐6059
| | - Martina Zederbauer
- Department of Chemistry, Division in Biochemistry, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria, Fax: +43‐1‐36006‐6059
| | - Luigi Casella
- Dipartimento di Chimica Generale, University of Pavia, Pavia, Italy
| | - Christian Obinger
- Department of Chemistry, Division in Biochemistry, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria, Fax: +43‐1‐36006‐6059
| |
Collapse
|
124
|
Zouaoui Boudjeltia K, Roumeguere T, Delree P, Moguilevsky N, Ducobu J, Vanhaeverbeek M, Wespes E. Presence of LDL modified by myeloperoxidase in the penis in patients with vascular erectile dysfunction: a preliminary study. Eur Urol 2006; 51:262-8; discussion 268-9. [PMID: 17007997 DOI: 10.1016/j.eururo.2006.08.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 08/22/2006] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Erectile dysfunction (ED) is a major vascular disorder. Atherosclerosis is closely related to lipoprotein metabolism and especially, oxidative modifications of low-density lipoproteins (LDLs), which are involved in early development of the atherosclerotic lesions. Current major questions include how LDLs are oxidised (OxLDL) in vivo. Myeloperoxidase (MPO) is an enzyme present in the azurophile granules of neutrophils and monocytes that can contribute to LDL oxidation in the presence of H(2)O(2). We have developed a new monoclonal antibody against LDL modified by MPO (Mox-LDL) and have used it on penile biopsies from patients operated on for penile implant. METHODS Seven patients with vascular ED and one impotent patient after radical prostatectomy (RP) underwent biopsy of the cavernous body during penile implant procedures. An immunohistochemical study with a monoclonal antibody against Mox-LDL and an antibody against apoprotein B (ApoB), the protein moiety of LDL, to confirm the presence of LDL was performed. RESULTS The staining was positive for Mox-LDL and ApoB and was present between the endothelial cells of the sinusoid spaces and the smooth muscle cells in the seven patients with vascular ED. The patient with RP was negative for Mox-LDL. DISCUSSION Because it is known that modified LDL could decrease nitric oxide production, Mox-LDL could be one of the agents responsible for ED. Further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Karim Zouaoui Boudjeltia
- Experimental Medicine Laboratory, ULB 222 Unit, ISPPC, CHU de Charleroi, Hôpital A. Vésale, Montigny-Le-Tilleul, Belgium
| | | | | | | | | | | | | |
Collapse
|
125
|
Messner MC, Albert CJ, Hsu FF, Ford DA. Selective plasmenylcholine oxidation by hypochlorous acid: formation of lysophosphatidylcholine chlorohydrins. Chem Phys Lipids 2006; 144:34-44. [PMID: 16859663 DOI: 10.1016/j.chemphyslip.2006.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/09/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The plasmalogen sn-1 vinyl ether bond is targeted by hypochlorous acid (HOCl) produced by activated phagocytes. In the present study, the attack of the plasmalogen sn-1 vinyl ether bond by HOCl is shown to be preferred compared to the attack of double bonds present in the sn-2 position aliphatic chain (sn-2 alkenes) of both plasmenylcholine and phosphatidylcholine. Lysophosphatidylcholine (LPC) is a product from the initial HOCl attack of plasmenylcholine and the sn-2 alkene bonds present in this LPC product are secondary targets of HOCl leading to the production of LPC-chlorohydrins (ClOH). The aliphatic ClOH was demonstrated in both the positive and negative ion mode using collisionally-activated dissociation (CAD) of the molecular ion of LPC-ClOH. Furthermore, HOCl treatment of endothelial cells led to the preferential attack of plasmalogens in comparison to that of diacyl choline glycerophospholipids. Taken together, plasmenylcholine is oxidized preferentially over phosphatidylcholine and leads to the production of LPC-ClOH.
Collapse
Affiliation(s)
- Maria C Messner
- Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
126
|
Kapiotis S, Jirovetz L, Hermann M, Laggner H, Exner M, Esterbauer H, Gmeiner BMK. Products of the reaction of HOCl with tryptophan protect LDL from atherogenic modification. Biochimie 2006; 88:785-91. [PMID: 16488068 DOI: 10.1016/j.biochi.2006.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/10/2006] [Indexed: 11/22/2022]
Abstract
Hypochlorite (HOCl) attacks amino acid residues in LDL making the particle atherogenic. Tryptophan is prone to free radical reactions and modification by HOCl. We hypothesized, that free tryptophan may quench the HOCl attack therefore protecting LDL. Free tryptophan inhibits LDL apoprotein modification and lipid oxidation. Tryptophan-HOCl metabolites associate with LDL reducing its oxidizability initiated by endothelial cells, Cu(2+) and peroxyl radicals. One tryptophan-HOCl metabolite was identified as 4-methyl-carbostyril which showed antioxidative activity when present during Cu(2+) mediated lipid oxidation, but did not associate with LDL. Indole-3-acetaldehyde, a decomposition product of tryptophan chloramine (the product of the tryptophan-HOCl reaction) was found to associate with LDL increasing its resistance to oxidation. Myeloperoxidase treatment of LDL in the presence of chloride, H(2)O(2) and tryptophan protected the lipoprotein from subsequent cell-mediated oxidation. We conclude that, in vivo, the activated myeloperoxidase system can generate antioxidative metabolites from tryptophan by the reaction of hypochlorite with this essential amino acid.
Collapse
Affiliation(s)
- Stylianos Kapiotis
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western world. Its incidence has been increasing lately in developing countries. Several lines of evidence support a role for oxidative stress in atherogenesis. Growing evidence indicates that chronic and acute overproduction of reactive oxygen species (ROS) under pathophysiologic conditions is integral in the development of cardiovascular diseases (CVD). ROS mediate various signaling pathways that underlie vascular inflammation in atherogenesis from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of oxidative stress support the notion that ROS have a causal role in atherosclerosis and other cardiovascular diseases. Human investigations also support the oxidative stress hypothesis of atherosclerosis. Oxidative stress is the unifying mechanism for many CVD risk factors, which additionally supports its central role in CVD. A main source of ROS in vascular cells is the reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase system. This is a membrane-associated enzyme, composed of five subunits, catalyzing the one-electron reduction of oxygen, using NADH or NADPH as the electron donor. This system is an important target for genetic investigations. Identification of groups of patients with genetically prone or resistant of oxidative stress is therefore an obvious target of investigation. A better understanding of the complexity of cellular redox reactions, development of a new class of antioxidants targeted to specific subcellular sites, and the phenotype-genotype linkage analysis for oxidative stress will likely be avenues for future research with regards to the broader use of pharmacological therapies in the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Uma Singh
- The Laboratory for Atherosclerosis and Metabolic Research, UC Davis Medical Center, Sacramento, CA, United States
| | | |
Collapse
|
128
|
Plass CA, Schmid W, Holy EW, Kreatschitsch U, Laggner H, Volf I. Redox-sensitive impairment of porcine coronary artery vasodilation by hypochlorite-modified LDL. Atherosclerosis 2006; 190:330-7. [PMID: 16730731 DOI: 10.1016/j.atherosclerosis.2006.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 02/02/2023]
Abstract
Atherosclerotic vascular disease is associated with abnormal vasomotor function and oxidized low density lipoproteins (OxLDL) are believed to play a keyrole therein. Several compounds emerging from LDL lipid peroxidation have been shown to be able to alter vasomotion but the role of oxidized apoB in this process is not fully understood. Myeloperoxidase has been identified in atherosclerotic lesions and hypochlorite produced by this enzyme represents a strong oxidant. LDL oxidation by hypochlorite differs from most other forms of LDL oxidation in that hypochlorite-mediated oxidation shows a predilection for the protein moiety of LDL and does not result in lipid peroxidation. In this work, we use porcine coronary artery segments and show that hypochlorite-oxidized LDL (hyp-OxLDL) are able to impair dilatation induced by substance P in a dose- and modification-dependent way. Treatment of hyp-OxLDL with methionine resulted in quantitative elimination of reactive chloramines in LDL and complete recovery of relaxation. As application of the scavenger receptor antagonist maleylated albumin strongly interferes with the effects of hyp-OxLDL on vasomotion, we conclude that specific binding of hypochlorite-modified apoB is likely to be involved in mediating the observed effects.
Collapse
Affiliation(s)
- Christian A Plass
- Institute of Physiology, Center for Physiology & Pathophysiology, Medical University of Vienna, Schwarzspanierstr 17, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
129
|
Yang J, Ji R, Cheng Y, Sun JZ, Jennings LK, Zhang C. L-arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. J Pharmacol Exp Ther 2006; 318:1044-9. [PMID: 16717106 DOI: 10.1124/jpet.106.104422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reduced nitric oxide (NO) bioavailability and impaired vascular function are the key pathological characteristics of inflammatory diseases such as atherosclerosis. We have recently found that leukocyte-derived hypochlorous acid is able to react with the nitric-oxide synthase (NOS) substrate L-arginine to produce chlorinated L-arginine (cl-L-Arg). Interestingly, cl-L-Arg potently inhibits the formation of NO metabolites in cultured endothelial cells. It is unknown whether cl-L-Arg has a direct inhibitory effect on endothelial NOS (eNOS). In addition, the effect of cl-L-Arg on the other NOS isoforms, neuronal NOS (nNOS) and inducible NOS (iNOS), is also unknown. Therefore, we designed the current study to test the effects of cl-L-Arg on eNOS, nNOS, and iNOS. Using recombinant NOS, we found that cl-L-Arg had a direct inhibitory effect on the activity of NOS. The effect of cl-L-Arg on NOS activity is nonselective, as all three NOS isoforms were inhibited with a similar IC(50). We further determined the effect of cl-L-Arg on the three NOS isoforms at the tissue level. The results demonstrated that cl-L-Arg potently inhibited all three NOS isoform-mediated vessel reactivities, as well as the NOS signaling molecule cGMP. Cl-L-Arg might serve as a novel endogenous NOS inhibitor and an important mediator for vascular dysfunction under inflammatory conditions such as atherosclerosis. Blocking cl-L-Arg formation may be a new therapeutic approach to cardiovascular diseases.
Collapse
Affiliation(s)
- Jian Yang
- Vascular Biology Center, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
130
|
Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:392-415. [PMID: 16698314 DOI: 10.1016/j.bbalip.2006.03.024] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Substantial evidence supports the notion that oxidative processes contribute to the pathogenesis of atherosclerosis and coronary heart disease. The nature of the oxidants that give rise to the elevated levels of oxidised lipids and proteins, and decreased levels of antioxidants, detected in human atherosclerotic lesions are, however, unclear, with multiple species having been invoked. Over the last few years, considerable data have been obtained in support of the hypothesis that oxidants generated by the heme enzyme myeloperoxidase play a key role in oxidation reactions in the artery wall. In this article, the evidence for a role of myeloperoxidase, and oxidants generated therefrom, in the modification of low-density lipoprotein, the major source of lipids in atherosclerotic lesions, is reviewed. Particular emphasis is placed on the reactions of the reactive species generated by this enzyme, the mechanisms and sites of damage, the role of modification of the different components of low-density lipoprotein, and the biological consequences of such oxidation on cell types present in the artery wall and in the circulation, respectively.
Collapse
Affiliation(s)
- Ernst Malle
- Medical University Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
131
|
Vakhrusheva T, Panasenko O. Chondroitin 6-sulfate and dextran sulfate promote hypochlorite-induced peroxidation of phosphatidylcholine liposomes. Chem Phys Lipids 2006; 140:18-27. [PMID: 16458872 DOI: 10.1016/j.chemphyslip.2006.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/29/2005] [Accepted: 01/01/2006] [Indexed: 11/28/2022]
Abstract
In this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO- (1mM) at 37 degrees C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000. Lipid peroxidation was assessed by thiobarbituric acid-reactive substance (TBARS) production. DXSs and C6S enhanced TBARS production in a dose-dependent manner. The decline in TBARS production at the relatively high C6S concentrations may be attributed to C4S present in C6S, since in contrast to C6S, C4S is known to react with hypochlorite. Dextrans, nonsulfated analogues of DXS, failed to modulate TBARS production. This fact indicates the important role of negatively charged sulfate groups for DXS to facilitate hypochlorite-induced peroxidation of PC liposomes. The electrostatic nature of the mechanism providing for the pro-oxidative effect of DXS was also supported by the influence of liposome surface charge and solution ionic strength on the extent of liposome peroxidation. The addition of calcium ions to the incubation mixture did not prevent the pro-oxidative action of DXS. The relevance of the results to atherogenesis is discussed.
Collapse
Affiliation(s)
- Tatyana Vakhrusheva
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya Street, 1a, Moscow 119992, Russia.
| | | |
Collapse
|
132
|
Van Antwerpen P, Legssyer I, Zouaoui Boudjeltia K, Babar S, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J. Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Eur J Pharmacol 2006; 537:31-6. [PMID: 16631159 DOI: 10.1016/j.ejphar.2006.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/31/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
The oxidative modification of low-density lipoproteins (LDL) is a key event in the formation of atheromatous lesions. Indeed, oxidized derivatives accumulate in the vascular wall and promote a local inflammatory process which triggers the progression of the atheromatous plaque. Myeloperoxidase (MPO) has been mentioned as a major contributor to this oxidative process. It takes part in the oxidation both of lipids by chlorination and peroxidation and of apolipoprotein B-100. Based on recent observations with several anti-inflammatory and thiol-containing drugs, the present study was designed to test the hypothesis that anti-hypertensive agents from the angiotensin converting enzyme (ACE) inhibitors group inhibit the oxidative modifications of Apo B-100 caused by MPO. Captopril, ramipril, enalapril, lisinopril and fosinopril were assessed by measuring: their inhibiting effect on the MPO/H(2)O(2)/Cl(-) system, the accumulation of compound II, which reflects the inhibition of the synthesis of HOCl and the LDL oxidation by MPO in presence of several concentrations of ACE inhibitors. Only captopril, a thiol-containing ACE inhibitor, was able to significantly decrease the oxidative modification of LDL in a dose dependent manner and this by scavenging HOCl. This efficient anti-hypertensive drug therefore appears to also protect against the atherosclerotic process by this newly documented mechanism.
Collapse
Affiliation(s)
- Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry, Institute of Pharmacy, Université Libre de Bruxelles, Campus Plaine 205-5, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Kapiotis S, Hermann M, Exner M, Laggner H, Gmeiner BMK. Copper- and magnesium protoporphyrin complexes inhibit oxidative modification of LDL induced by hemin, transition metal ions and tyrosyl radicals. Free Radic Res 2006; 39:1193-202. [PMID: 16298745 DOI: 10.1080/10715760500138981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu(2+)-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe(3+)-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H(2)O(2) was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu(2+)), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H(2)O(2) and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 mumol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.
Collapse
Affiliation(s)
- Stylianos Kapiotis
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
134
|
Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 2006; 111:16-26. [PMID: 16476484 DOI: 10.1016/j.pharmthera.2005.06.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/28/2005] [Indexed: 11/21/2022]
Abstract
Myeloperoxidase (MPO), a heme protein abundantly expressed in polymorphonuclear neutrophils (PMN), has long been viewed to function primarily as a bactericidal enzyme centrally linked to innate host defense. Recent observations now extend this perspective and suggest that MPO is profoundly involved in the regulation of cellular homeostasis and may play a central role in initiation and propagation of acute and chronic vascular inflammatory disease. For example, low levels of MPO-derived hypochlorous acid (HOCl) interfere with intracellular signaling events, MPO-dependent oxidation of lipoproteins modulates their affinity to macrophages and the vessel wall, MPO-mediated depletion of endothelial-derived nitric oxide (NO) impairs endothelium-dependent vasodilatation, and nitrotyrosine (NO(2)Tyr) formation by MPO sequestered into the vessel wall may affect matrix protein structure and function. Future studies are needed to further elucidate the significance of MPO in the development of acute and chronic vascular disease and to evaluate MPO as a potential target for treatment.
Collapse
Affiliation(s)
- Denise Lau
- Department of Cardiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | |
Collapse
|
135
|
Borawski J. Myeloperoxidase as a marker of hemodialysis biocompatibility and oxidative stress: the underestimated modifying effects of heparin. Am J Kidney Dis 2006; 47:37-41. [PMID: 16377383 DOI: 10.1053/j.ajkd.2005.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/03/2005] [Indexed: 11/11/2022]
Abstract
Myeloperoxidase (MPO) is a microbicidal and reactive species-generating enzyme. It traditionally is considered to be stored mostly within polymorphonuclear leukocytes and is strongly implicated in the pathogenesis of numerous diseases. MPO also has been studied for at least 20 years as a marker of hemodialysis procedure biocompatibility and oxidative stress generation; research yielded discordant and inconclusive results. In this review, a novel and growing body of evidence indicating that MPO also is a potent blood vessel-bound enzyme that can be mobilized rapidly and extensively into circulating blood by exogenous heparin is discussed. Beneficial consequences of such evoked arterial wall MPO depletion that may be counterbalanced in part by the harmful effects of circulating MPO on polymorphonuclear leukocyte activation and thus atherosclerosis propagation also are presented. Potential clinical implications of these undervalued phenomena in commonly atherosclerotic maintenance hemodialysis patients regularly administered large doses of heparin for temporary blood anticoagulation (frequently over years) are stressed, including the challenging issue of morbidity and mortality. In view of the plausible clinical importance of the novel MPO-oxidative stress-heparin interaction in this population, the need for additional studies assessing different dialyzer membranes, various heparin types (unfractionated heparin versus low-molecular-weight heparins versus pentasaccharides), as well as different anticoagulation regimens, is emphasized.
Collapse
Affiliation(s)
- Jacek Borawski
- Department of Nephrology and Transplantology, Medical University, Białystok, Poland.
| |
Collapse
|
136
|
Rees M, Pattison D, Davies M. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem J 2006; 391:125-34. [PMID: 15932347 PMCID: PMC1237146 DOI: 10.1042/bj20050630] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl- to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2 approximately 3.1x10(5) and 9 M(-1) x s(-1) (at 37 degrees C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2 approximately 0.05 and 0.01 M(-1) x s(-1) (at 37 degrees C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 degrees C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 degrees C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci.
Collapse
Affiliation(s)
- Martin D. Rees
- Free Radical Group, Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| | - David I. Pattison
- Free Radical Group, Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
| | - Michael J. Davies
- Free Radical Group, Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
137
|
Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: Fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys 2006; 445:245-55. [PMID: 16171772 DOI: 10.1016/j.abb.2005.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/03/2005] [Accepted: 08/10/2005] [Indexed: 01/23/2023]
Abstract
Substantial evidence supports the notion that oxidative processes participate in the pathogenesis of atherosclerotic heart disease. Major evidence for myeloperoxidase (MPO) as enzymatic catalyst for oxidative modification of lipoproteins in the artery wall has been suggested in numerous studies performed with low-density lipoprotein. In contrast to low-density lipoprotein, plasma levels of high-density lipoprotein (HDL)-cholesterol and apoAI, the major apolipoprotein of HDL, inversely correlate with the risk of developing coronary artery disease. These antiatherosclerotic effects are attributed mainly to HDL's capacity to transport excess cholesterol from arterial wall cells to the liver during 'reverse cholesterol transport'. There is now strong evidence that HDL is a selective in vivo target for MPO-catalyzed oxidation impairing the cardioprotective and antiinflammatory capacity of this antiatherogenic lipoprotein. MPO is enzymatically active in human lesion material and was found to be associated with HDL extracted from human atheroma. MPO-catalyzed oxidation products are highly enriched in circulating HDL from individuals with cardiovascular disease where MPO concentrations are also increased. The oxidative potential of MPO involves an array of intermediate-generated reactive oxygen and reactive nitrogen species and the ability of MPO to generate chlorinating oxidants-in particular hypochlorous acid/hypochlorite-under physiological conditions is a unique and defining activity for this enzyme. All these MPO-generated reactive products may affect structure and function of HDL as well as the activity of HDL-associated enzymes involved in conversion and remodeling of the lipoprotein particle, and represent clinically useful markers for atherosclerosis.
Collapse
Affiliation(s)
- Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
138
|
Westendorf T, Graessler J, Kopprasch S. Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARgamma mRNA expression and modulates SR-BI gene expression in murine macrophages. Mol Cell Biochem 2005; 277:143-52. [PMID: 16132726 DOI: 10.1007/s11010-005-5873-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 04/20/2005] [Indexed: 12/16/2022]
Abstract
The uptake of oxidized low-density lipoprotein (oxLDL) by scavenger receptors of macrophages with resulting foam cell formation is considered a critical event in atherogenesis. Since hypochlorite-oxidized LDL (HOCl-LDL) has been shown to be recognized by macrophages and evidence was provided that HOCl-LDL is internalized via class B scavenger receptors CD36 and SR-BI, the regulatory relationships between CD36, SR-BI, and the nuclear transcription factor PPARgamma in murine macrophages (RAW 264.7) on exposure to HOCl-LDL were examined. Using the highly sensitive real-time RT-PCR we could demonstrate that HOCl-LDL upregulated CD36 and PPARgamma levels dose- and time dependently while modulating SR-BI message levels differently in dependence on HOCl-LDL concentration and incubation time. On exposure of macrophages to HOCl-LDL but not native LDL in varying concentrations, a significant positive correlation between CD36 and PPARgamma (rho = 0.603, p = 0.001) was observed indicating the presence of a positive feedback mechanism by which HOCl-LDL could promote its own uptake. The transcriptional expression of SR-BI in macrophages was not significantly related to PPARgamma mRNA levels after treatment with HOCl-LDL suggesting a differential regulation of the two members of the scavenger receptor class B family in response to HOCl-LDL.
Collapse
Affiliation(s)
- Thomas Westendorf
- Department of Internal Medicine III, Pathological Biochemistry, Carl Gustav Carus Medical School, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
139
|
Chen S, Liu L, Sun X, Liu Y, Song T. Captopril Restores Endothelium-Dependent Relaxation Induced by Advanced Oxidation Protein Products in Rat Aorta. J Cardiovasc Pharmacol 2005; 46:803-9. [PMID: 16306805 DOI: 10.1097/01.fjc.0000188162.64642.c7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To explore whether advanced oxidation protein products (AOPP) can cause endothelial dysfunction in vitro, and whether captopril exerts beneficial effect on impaired endothelium-dependent relaxation induced by exogenous advanced oxidation protein products and to investigate the potential mechanisms. Both the Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation of aortic rings were measured by recording isometric tension after the rings were exposed to AOPP-BSA in the absence or presence of captopril to assess the injury effect of AOPP-BSA and the protective effect of captopril on the aortic endothelium, respectively. Co-incubation of aortic rings with AOPP-BSA (3 mmol/L) for 90 minutes resulted in a significant inhibition of EDR to ACh, but had no effects on endothelium-independent relaxation to SNP. After incubation of the rings in the co-presence of captopril (3 to 30 micromol/L) or enalaprilat (30 micromol/L) with AOPP-BSA (3 mmol/L) for 90 minutes, captopril significantly and enalaprilat only partly attenuated the inhibition of EDR induced by AOPP-BSA. This protective effect of captopril (30 micromol/L) was abolished by N-nitro-L-arginine methyl ester (10 micromol/L), an inhibitor of nitric oxide synthase. Furthermore, the superoxide anion scavenger superoxide dismutase (SOD, 200 U/mL), and the nitric oxide precursor L-arginine (3 mmol/L) also ameliorated the impaired EDR caused by AOPP-BSA. But D-arginine had no effect on the impaired EDR caused by AOPP-BSA. AOPP-BSA can trigger endothelial dysfunction and captopril can protect the endothelium against functional damage induced by AOPP-BSA in rat aorta, increase nitric oxide bioavailability. The mechanisms of endothelial dysfunction induced by AOPP-BSA may include the decrease of NO and the generation of oxygen-free radicals.
Collapse
|
140
|
Van Antwerpen P, Boudjeltia KZ, Babar S, Legssyer I, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J. Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Biochem Biophys Res Commun 2005; 337:82-8. [PMID: 16171780 DOI: 10.1016/j.bbrc.2005.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/25/2022]
Abstract
Oxidized low-density lipoproteins (LDL) accumulate in the vascular wall and promote a local inflammatory process contributing to the progression of atheromatous plaque. The key role of myeloperoxidase (MPO) in this process has been documented and the enzyme has been involved in the oxidative modification of apolipoprotein B-100 in the intima and at the surface of endothelial cells. As the inhibition of this last phenomenon could be of relevance in pharmacological interventions, thiol-containing molecules such as glutathione, captopril, and N-acetylcysteine (NAC) and its lysinate salt (NAL) were tested in this system and their properties were compared with those of flufenamic acid (control). This last compound already demonstrated an inhibition of the production of HOCl by MPO and a more intense inhibition of MPO activity than glutathione, NAC, NAL, and captopril. However, NAC and NAL inhibited the oxidative modification of LDL more intensively than captopril and glutathione whereas flufenamic acid had no comparable inhibiting effect. This could be related to the presence of LDL close to the catalytic site of the enzyme. NAC and NAL therefore appeared as the most efficient inhibitors probably as a consequence of their relatively small size. The relevance of such effects has to be documented by in vivo studies.
Collapse
Affiliation(s)
- Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry, Institute of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ou J, Wang J, Xu H, Ou Z, Sorci-Thomas MG, Jones DW, Signorino P, Densmore JC, Kaul S, Oldham KT, Pritchard KA. Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet. Circ Res 2005; 97:1190-7. [PMID: 16224061 PMCID: PMC1480357 DOI: 10.1161/01.res.0000190634.60042.cb] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previously we showed L-4F, a novel apolipoprotein A-I (apoA-I) mimetic, improved vasodilation in 2 dissimilar models of vascular disease: hypercholesterolemic LDL receptor-null (Ldlr(-/-)) mice and transgenic sickle cell disease mice. Here we determine the mechanisms by which D-4F improves vasodilation and arterial wall thickness in hypercholesterolemic Ldlr(-/-) mice and Ldlr(-/-)/apoA-I null (apoA-I(-/-)), double-knockout mice. Ldlr(-/-) and Ldlr(-/-)/apoA-I(-/-) mice were fed Western diet (WD) with and without D-4F. Oral D-4F restored endothelium- and endothelial NO synthase (eNOS)-dependent vasodilation in direct relationship to duration of treatments and reduced wall thickness in as little as 2 weeks in vessels with preexisting disease in Ldlr(-/-) mice. D-4F had no effect on total or HDL cholesterol concentrations but reduced proinflammatory HDL levels. D-4F had no effect on plasma myeloperoxidase concentrations but reduced myeloperoxidase association with apoA-I as well as 3-nitrotyrosine in apoA-I. D-4F increased endothelium- and eNOS-dependent vasodilation in Ldlr(-/-)/apoA-I(-/-) mice but did not reduce wall thickness as it had in Ldlr(-/-) mice. Vascular endothelial cells were treated with 22(R)-hydroxycholesterol with and without L-4F. 22(R)-Hydroxycholesterol decreased NO (*NO) and increased superoxide anion (O2*-) production and increased ATP-binding cassette transporter-1 and collagen expression. L-4F restored *NO and O2*- balance, had little effect on ATP-binding cassette transporter-1 expression, but reduced collagen expression. These data demonstrate that although D-4F restores vascular endothelial cell and eNOS function to increase vasodilation, HDL containing apoA-I, or at least some critical concentration of the antiatherogenic lipoprotein, is required for D-4F to decrease vessel wall thickness.
Collapse
Affiliation(s)
- Jingsong Ou
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
- The First Affiliated Hospital of Guangzhou Medical College, China, Guangzhou Institute of Respiratory Disease, Division of Cardiothoracic Surgery
| | - Jingli Wang
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Hao Xu
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Zhijun Ou
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Division of Cardiology
| | - Mary G. Sorci-Thomas
- Wake Forest University School of Medicine, Department of Pathology, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Deron W. Jones
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
| | - Paul Signorino
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
| | - John C. Densmore
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
| | - Sushma Kaul
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
| | - Keith T. Oldham
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Kirkwood A. Pritchard
- Medical College of Wisconsin, Departments of Surgery, Division of Pediatric Surgery
- Children’s Research Institute
- Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226
- Please send all correspondence concerning this manuscript to: Kirkwood A. Pritchard Jr., Ph.D., Medical College of Wisconsin, Pediatric Surgery, CRI, CVC, M-4060, 8701 Watertown Plank Road, Milwaukee, WI 53226, 414-456-5615,
| |
Collapse
|
142
|
Hasegawa T, Malle E, Farhood A, Jaeschke H. Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning. Am J Physiol Gastrointest Liver Physiol 2005; 289:G760-7. [PMID: 15994427 DOI: 10.1152/ajpgi.00141.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although it is well documented that neutrophils are critical for the delayed phase of hepatic ischemia-reperfusion injury, there is no direct evidence for a specific neutrophil-derived oxidant stress in vivo. Therefore, we used a model of 60 min of partial hepatic ischemia and 0-24 h of reperfusion to investigate neutrophil accumulation and to analyze biomarkers for a general oxidant stress [glutathione disulfide (GSSG) and malondialdehyde (MDA)] and for a neutrophil-specific oxidant stress [hypochlorite (HOCl)-modified epitopes] in rats. Plasma alanine transaminase activities and histology showed progressively increasing liver injury during reperfusion, when hepatic GSSG and soluble MDA levels were elevated. At that time, few neutrophils were present in sinusoids. However, the number of hepatocytes positively stained for HOCl-modified epitopes increased from 6 to 24 h of reperfusion, which correlated with the bulk of hepatic neutrophil accumulation and extravasation into the parenchyma. Consistent with a higher oxidant stress at later times, hepatic GSSG and protein-bound MDA levels further increased. Treatment with the NADPH oxidase inhibitor diphenyleneiodonium chloride attenuated postischemic oxidant stress (GSSG, protein-bound MDA, and hepatocytes positively stained for HOCl-modified epitopes) and liver injury at 24 h of reperfusion. Ischemic preconditioning suppressed all oxidant stress biomarkers, liver injury, and extravasation of neutrophils. In conclusion, extravasated neutrophils generate HOCl, which diffuses into hepatocytes and causes oxidative modifications of intracellular proteins during the neutrophil-mediated reperfusion injury phase. Ischemic preconditioning is an effective intervention for reduction of the overall inflammatory response and, in particular, for limitation of the cytotoxic activity of neutrophils during the later reperfusion period.
Collapse
Affiliation(s)
- Tadashi Hasegawa
- Liver Research Institute, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
143
|
Bräsen JH, Nieminen-Kelhä M, Markmann D, Malle E, Schneider W, Neumayer HH, Budde K, Luft FC, Dragun D. Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1)-mediated pathway and vascular oxidative injury in older-age rat renal transplants. Kidney Int 2005; 67:1583-94. [PMID: 15780115 DOI: 10.1111/j.1523-1755.2005.00240.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Older-age renal allografts are associated with inferior survival; however, the mechanisms are unclear. Reactive oxygen species participate in aging and in chronic vascular disease. We investigated how mediators of oxidative stress may increase allograft susceptibility to vascular injury. METHODS We employed the low-responder allogeneic F344-to-Lew rat renal transplantation model. We used nonimmunosuppressed young (donors and recipients aged 12 weeks), old (donors and recipients aged 52 weeks), and old-to-young animal (donors aged 52 weeks and recipients aged 12 weeks) combinations. Grafts were transplanted after 2 hours cold preservation in University of Wisconsin solution and harvested 1, 2, 7 and 10 days later. Additionally, old animals receiving continuous 1.5 mg/kg cyclosporine (CyA) immunosuppression were included. Renal allograft pathology was scored according to Banff criteria. We studied intragraft vascular adhesion molecule-1 (VCAM-1), lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), and hypochlorite-modified LDL expression as well as ED-1+ monocytes/macrophages and CD8+ lymphocyte infiltration. Intragraft in situ superoxide anion radical production was determined with dihydroethidium assay on cryosections. RESULTS During the first 2 posttransplant days, old transplants demonstrated higher functional impairment and increased oxidative stress, while young transplant had higher ED-1+ monocytes/macrophage infiltration and VCAM-1 expression. The degree of VCAM-1 expression and ED-1+ monocytes/macrophage and CD8+ lymphocyte infiltration correlated at later time points directly with the transplant age. VCAM-1 and LOX-1 staining were localized predominantly on the endothelium of arterial vessels, shifting the distribution to vascular smooth muscle layer strongly dependent on donor age and the grade of vascular injury. LOX-1 staining colocalized with hypochlorite-modified epitopes in the media of injured arteries. We measured increased in situ superoxide anion radical production in corresponding areas. Immunosuppression with CyA had no protective effect on vascular injury and LOX-1 expression. CONCLUSION Induction of LOX-1-related oxidation pathways and increased susceptibility to oxidative stress could play an important role in promoting vascular injury in old renal transplants independent of the recipient age.
Collapse
Affiliation(s)
- Jan Hinrich Bräsen
- HELIOS Klinikum-Berlin, Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
The concept of vulnerable plaque is well established with increasing evidence from clinical and basic research. The paradigm has shifted from focusing exclusively on the hemodynamic effects of plaque (ie, resulting lumenal stenosis alone as a predictor of stroke risk) to assessment of the structure and composition of plaque (eg, denuded endothelium with inflammatory elements as a nidus for platelet-fibrin clumping). It is increasingly evident that methods to detect and characterize vulnerable plaque must be developed and optimized. Although MR imaging, CT, and ultrasound provide data regarding single lesions, future investigations relying heavily on nuclear medicine techniques may offer functional assessment of the entire cardiovascular system.
Collapse
Affiliation(s)
- John W Chen
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
145
|
Witting PK, Wu BJ, Raftery M, Southwell-Keely P, Stocker R. Probucol Protects against Hypochlorite-induced Endothelial Dysfunction. J Biol Chem 2005; 280:15612-8. [PMID: 15722355 DOI: 10.1074/jbc.m414256200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is associated with endothelial dysfunction and a heightened state of inflammation characterized, in part, by an increase in vascular myeloperoxidase and proteins modified by its principal oxidant, hypochlorous acid (HOCl). Here we examined whether probucol could protect against endothelial dysfunction induced by the two-electron oxidant HOCl. Hypochlorous acid eliminated endothelium-dependent relaxation of rabbit aorta, whereas endothelial function and tissue cGMP was preserved and elevated, respectively, in animals pretreated with probucol. Exogenously added probucol also protected against HOCl-induced endothelial dysfunction. In vitro, HOCl oxidized probucol in a two-phase process with rate constants k(1) = 2.7 +/- 0.3 x 10(2) and k(2) = 0.7 +/- 0.2 x 10(2) m(-1) s(-1) that resulted in a dose- and time-dependent accumulation of probucol-derived disulfoxide, 4,4'-dithiobis(2,6-di-tert-butyl-phenol) (DTBP), DTBP-derived thiosulfonate, disulfone, and sulfonic acid, together with 3,3',5,5'-tetra-tert-butyl-4,4'-diphenoquinone (DPQ) as determined by high performance liquid chromatography and mass spectrometry. Like HOCl, selected one-electron oxidants converted probucol into DTBP and DPQ. Also, dietary and in vitro added DTBP protected aortic rings from HOCl-induced endothelial dysfunction and in vitro oxidation by HOCl gave rise to the thiosulfonate, disulfone, and sulfonic acid intermediates and DPQ. However, the product profiles of the in vitro oxidation systems were different from those in aortas of rabbits receiving dietary probucol or DTBP +/- HOCl treatment. Together, the results show that both probucol and DTBP react with HOCl and protect against HOCl-induced endothelial dysfunction, although direct scavenging of HOCl is unlikely to be responsible for the vascular protection by the two compounds.
Collapse
Affiliation(s)
- Paul K Witting
- Centre for Vascular Research, Bioanalytical Mass Spectrometry Facility, and School of Chemistry, University of New South Wales, UNSW Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
146
|
Zouaoui Boudjeltia K, Moguilevsky N, Legssyer I, Babar S, Guillaume M, Delree P, Vanhaeverbeek M, Brohee D, Ducobu J, Remacle C. Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation. Biochem Biophys Res Commun 2005; 325:434-8. [PMID: 15530411 DOI: 10.1016/j.bbrc.2004.10.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 11/29/2022]
Abstract
The present paradigm of atherogenesis proposes that low density lipoproteins (LDL) are trapped in subendothelial space of the vascular wall where they are oxidized. Myeloperoxidase (MPO) plays a key role in oxidative damage. We propose that LDL oxidation by myeloperoxidase (Mox-LDL) could occur at the surface of the endothelial cells and not restricted to the subendothelial space. The triad constituted by endothelial cells, circulating LDL and MPO in close interaction, constitutes a synergic mechanism for the genesis of Mox-LDL.
Collapse
Affiliation(s)
- K Zouaoui Boudjeltia
- Laboratoire de Médecine Expérimentale (ULB 222 Unit) ISPPC Hôpital Vésale, Montigny-Le-Tilleul, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.
Collapse
Affiliation(s)
- Seymour J Klebanoff
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195-7185, USA.
| |
Collapse
|
148
|
Abstract
Atherosclerosis and related diseases are the leading cause of death in Western world. The disease process begins with the formation of fatty streaks already during the first decade of life but does not manifest clinically until several decades later. Gene therapy is a potential new way to target multiple factors playing a role in the development and progression of atherosclerosis. A great number of genes involved in the development of atherosclerosis have been identified and have been tested both in vitro and in vivo as potential new targets for therapy. Pre-clinical experiments have shown the feasibility and safety of several gene therapy applications for the treatment of atherosclerosis and clinical trials have also provided evidence for the applicability of gene therapy for the treatment of cardiovascular diseases. In this review we discuss vectors and potential gene therapy approaches for intervention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- E Vähäkangas
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | | |
Collapse
|
149
|
Kato Y, Kawai Y, Morinaga H, Kondo H, Dozaki N, Kitamoto N, Osawa T. Immunogenicity of a brominated protein and successive establishment of a monoclonal antibody to dihalogenated tyrosine. Free Radic Biol Med 2005; 38:24-31. [PMID: 15589368 DOI: 10.1016/j.freeradbiomed.2004.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/10/2004] [Accepted: 09/17/2004] [Indexed: 11/26/2022]
Abstract
During inhalation of allergens and experimental sepsis, formation of brominated tyrosine has been reported. In this study, we first examined the immunogenicity of brominated protein prepared by treatment of N-bromosuccinimide (NBS). The immunized serum obtained reacted with brominated bovine serum albumin (BSA). The NBS dose-dependent formation of immunoreactivity, which was estimated by enzyme-linked immunosorbent assay, was observed, and the increase coincided with 3,5-dibromotyrosine (DiBrY) formation in the modified BSA, which was chemically determined by liquid chromatography/quadrupole tandem mass spectrometry (LC/MS/MS). Second, by use of immunized mice, monoclonal antibodies to the brominated one were prepared. The two established novel monoclonal antibodies obtained from the immunized mice reacted with DiBrY, 3,5-dichlorotyrosine (DiClY), and 3,5-diiodotyrosine (DiIY). Moreover, 3,5-dihalo-4-hydroxybenzoic acids (3,5-dichloro-4-hydroxybenzoic acid and 3,5-dibromo-4-hydroxybenzoic acid) were recognized by these antibodies. These results suggest that dihalogenated tyrosines (DiBrY, DiClY, and DiIY) are the epitopes. Lastly, we used the antibody in an immunohistochemical study. Lipopolysaccharide (LPS) was intraperitoneally administered to mice, and livers were removed. Positive staining of LPS-treated mouse liver tissues by both the anti-dihalotyrosine antibody and anti-myeloperoxidase antibody was estimated, suggesting that inflammatory tissue damage induces the formation of dihalotyrosine in vivo.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji 670-0092, Japan.
| | | | | | | | | | | | | |
Collapse
|
150
|
Moguilevsky N, Zouaoui Boudjeltia K, Babar S, Delrée P, Legssyer I, Carpentier Y, Vanhaeverbeek M, Ducobu J. Monoclonal antibodies against LDL progressively oxidized by myeloperoxidase react with ApoB-100 protein moiety and human atherosclerotic lesions. Biochem Biophys Res Commun 2004; 323:1223-8. [PMID: 15451427 DOI: 10.1016/j.bbrc.2004.08.220] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Indexed: 10/26/2022]
Abstract
Oxidized-LDL are involved in atherosclerosis pathogenesis, while the production of anti-ox-LDL monoclonal antibodies is critical for the development of diagnostic tools. This work reports the production of four monoclonal antibodies raised against human LDL, oxidized at different levels by the myeloperoxidase system. Characterization of these monoclonal antibodies showed that they do not cross-react with neither native LDL, VLDL nor hydrogen peroxide or Cu(2+)-oxidized LDL. Three of these antibodies recognize an epitope restricted to the protein moiety of mildly oxidized LDL, whereas the fourth antibody was partly dependent on the lipid presence of strongly oxidized LDL. All the antibodies were shown to react with human atherosclerotic lesions.
Collapse
Affiliation(s)
- N Moguilevsky
- Applied Genetics, University of Brussels (ULB), IBMM, Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|