101
|
Dardou D, Datiche F, Cattarelli M. Does taste or odor activate the same brain networks after retrieval of taste potentiated odor aversion? Neurobiol Learn Mem 2007; 88:186-97. [PMID: 17531515 DOI: 10.1016/j.nlm.2007.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/04/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
When simultaneous presentation of odor and taste cues precedes illness, rats acquire robust aversion to both conditioned stimuli. Such a phenomenon referred to as taste-potentiated odor aversion (TPOA) requires information processing from two sensory modalities. Whether similar or different brain networks are activated when TPOA memory is retrieved by either the odor or the taste presentation remains an unsolved question. By means of Fos mapping, we investigated the neuronal substrate underlying TPOA retrieval elicited by either the odor or the taste conditioned stimulus. Whatever the sensory modality used to reactivate TPOA memory, a significant change in Fos expression was observed in the hippocampus, the basolateral nucleus of amygdala and the medial and the orbito-frontal cortices. Moreover, only the odor presentation elicited a significantly higher Fos immunoreactivity in the piriform cortex, the entorhinal cortex and the insular cortex. Lastly, according to the stimulus tested to induce TPOA retrieval, the BLA was differentially activated and a higher Fos expression was induced by the odor than by the taste in this nucleus. The present study indicates that even if they share some brain regions, the cerebral patterns induced by either the odor or the taste are different. Data are discussed in view of the relevance of each conditioned stimulus to reactivate TPOA memory and of the involvement of the different labeled brain areas in information processing and TPOA retrieval.
Collapse
Affiliation(s)
- David Dardou
- CESG-CNRS UMR 5170, 15 rue H. Picardet, 21000 Dijon, France.
| | | | | |
Collapse
|
102
|
Wang HC, Chai SC, Wu YS, Wang CC. Does the medial thalamus play a role in the negative affective component of visceral pain in rats? Neurosci Lett 2007; 420:80-4. [PMID: 17512660 DOI: 10.1016/j.neulet.2007.04.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/27/2007] [Accepted: 04/27/2007] [Indexed: 11/19/2022]
Abstract
Pain consists of sensory and negative affective components. Using a conditioned place aversion (CPA) paradigm, we investigated whether the medial thalamus (MT) played a role in the affective component of visceral pain induced by intraperitoneal injection of acetic acid into male Long-Evan rats. Acetic acid produced writhing response as well as CPA. The bilateral MT-lesions resulted in slight reduction of writhing response, but CPA was not affected. The results suggest that while MT may play a role in visceral nociception, it does not participate in the negative affective component of visceral pain.
Collapse
Affiliation(s)
- Han-Cheng Wang
- Department of Neurology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
103
|
Hasanein P, Parviz M, Keshavarz M, Javanmardi K. CB1 RECEPTOR ACTIVATION IN THE BASOLATERAL AMYGDALA PRODUCES ANTINOCICEPTION IN ANIMAL MODELS OF ACUTE AND TONIC NOCICEPTION. Clin Exp Pharmacol Physiol 2007; 34:439-49. [PMID: 17439413 DOI: 10.1111/j.1440-1681.2007.04592.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Recent studies have suggested that the basolateral nucleus of the amygdala (BLA) participates in the processing of pain information, especially noxious somatic information. Cannabinoid receptors or CB1 mRNA are expressed more in the BLA than in other nuclei of the amygdala. Thus, the aim of the present study was to examine whether CB1 receptors in the BLA may be involved in modulating acute and/or tonic nociceptive processing. 2. Adult rats were exposed to intra-BLA microinjection of the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo [1,2,3,-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate [WIN 55,212-2 (1, 2.5, 5 or 10 microg/side)] and subjected to the tail flick and formalin tests. 3. The rats demonstrated a dose-dependent increase in latency to withdraw from a thermal noxious stimulus in the tail flick test and a decrease in formalin-induced pain behaviours. The antinociceptive effects of the CB1 receptor agonist WIN 55,212-2 (10 microg/side) in both tests were attenuated in the presence of the selective CB1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3- carboxamide (AM251; 0.55 ng/side). Administration of the CB1 receptor antagonist AM251 (0.55, 5.5, or 55.5 ng/side) alone did not alter the nociceptive thresholds in either test. Bilateral microinjection of the selective CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 1 microg/side) had no effect on the antinociception produced by WIN 55,212-2, suggesting that the antinociceptive actions of WIN 55,212-2 are mediated by CB1 receptors. 4. The findings suggest the existence of a CB1-mediated inhibitory system in the BLA that, when activated, can diminish responsivity to acute and tonic noxious stimuli, but that normally has no tonic effect on the response threshold of these stimuli.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran
| | | | | | | |
Collapse
|
104
|
Ji G, Neugebauer V. Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007; 97:3893-904. [PMID: 17392412 DOI: 10.1152/jn.00135.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As a hormone in the hypothalamic-pituitary-adrenocortical (HPA) axis corticotropin-releasing factor (CRF) mediates stress responses. CRF can also act as a neuromodulator of synaptic transmission outside the HPA axis. A major site of extrahypothalamic expression of CRF and its G-protein-coupled receptors is the amygdala, a key player in affect-related disorders such as anxiety. The laterocapsular division of the central nucleus of the amygdala (CeLC) is important for the modulation of pain affect. This study determined the effects of CRF1 and CRF2 receptor antagonists in CeLC neurons in an arthritis pain model. Extracellular single-unit recordings were made from CeLC neurons in anesthetized adult rats. All neurons responded more strongly to noxious than to innocuous mechanical stimulation (compression) of peripheral tissues, including the knee. Evoked responses and background activity were measured before and during the development of a kaolin/carrageenan-induced knee joint arthritis. Drugs were administered into the CeLC by microdialysis before and/or after arthritis induction. All CeLC neurons showed increased responses to mechanical stimuli ("sensitization") 5-6 h postinduction of arthritis. A selective CRF1 receptor antagonist (NBI27914; 1-100 microM, concentration in microdialysis probe; 15 min) inhibited evoked responses and background activity in arthritis (n = 9) but had no effect under normal conditions before arthritis (n = 9). In contrast, a selective CRF2 receptor antagonist (Astressin-2B; 1-100 microM, 15 min) had no effect in arthritis (n = 7) but increased the neurons' responses under normal conditions (n = 8). These data suggest that CRF1 receptors in the amygdala contribute to pain-related sensitization, whereas the normally inhibitory function of CRF2 receptors is lost in the arthritis pain model.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | |
Collapse
|
105
|
Nishii H, Nomura M, Aono H, Fujimoto N, Matsumoto T. Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. ACTA ACUST UNITED AC 2007; 141:105-12. [PMID: 17335920 DOI: 10.1016/j.regpep.2006.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 12/15/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Cyclophosphamide (CP)-induced cystitis is often used as an animal model of visceral pain. Various neuropeptides in the hypothalamic and amygdaloid nuclei are implicated in pain-induced responses. However, little information is available regarding the regulation of the neuropeptides in response to visceral pain. In the present study, we examined the effects of CP-induced cystitis on the levels of mRNAs encoding galanin, corticotropin-releasing hormone (CRH), substance P, and enkephalins in the hypothalamic and limbic nuclei using in situ hybridization histochemistry in mouse. Galanin mRNA levels in CP-treated group increased significantly in the arcuate nucleus and the paraventricular nucleus (PVN) but not in the medial preoptic area after the intraperitoneal administration of CP (200 mg/kg body weight) in comparison to those in saline-treated group. CRH mRNA levels in CP-treated group also increased significantly in the central amygdala as well as the PVN after the CP administration. In contrast, CP-induced cystitis failed to upregulate the preprotachykinin-A and preproenkephalin genes which encode substance P and enkephalins, respectively in the hypothalamic and limbic nuclei at any of the time points examined. These results suggest that visceral nociception may upregulate both galanin and CRH gene expression in the hypothalamic and limbic nuclei.
Collapse
Affiliation(s)
- Hisae Nishii
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | |
Collapse
|
106
|
|
107
|
Makarenko EY, Andreeva LA, Mart'yanov AA. Effects of corticoliberin CRF(4-6) fragment on pain sensitivity in rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2007; 37:49-52. [PMID: 17180318 DOI: 10.1007/s11055-007-0148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Indexed: 05/13/2023]
Abstract
The effects of the tripeptide fragment corticoliberin CRF(4-6) (Pro-Pro-Ile) on pain sensitivity were studied in rats using the hotplate method. CRF(4-6) given centrally (6, 30, and 150 nmol/rat) had dose-dependent antinociceptive actions: the latent period of the paw-licking response increased by 7.4 +/- 1.4, 10.1 +/- 1.5, and 16.7 +/- 4.2 sec from the control level of 10.2 +/- 0.9 sec. The durations of the effect were 30 min for CRF(4-6) at a dose of 6 nmol and 60 min for doses of 30 and 150 nmol of tripeptide. Administration of the corticoliberin antagonist alpha h CRF(9-41) (centrally, 6.5 nmol) 60 min before tripeptide completely blocked the antinociceptive effects of CRF(4-6) (6 nmol). Thus, corticoliberin receptors are involved in mediating the antinociceptive influence of CRF(4-6). It can be suggested that the tripeptide either directly interacts with corticoliberin receptors or modulates the activity of CRFergic neurons.
Collapse
Affiliation(s)
- E Yu Makarenko
- M. V. Lomonosov Moscow State University, 199992 Moscow, Russia
| | | | | |
Collapse
|
108
|
Pedersen LH, Scheel-Krüger J, Blackburn-Munro G. Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain 2007; 127:17-26. [PMID: 16965855 DOI: 10.1016/j.pain.2006.06.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 11/28/2022]
Abstract
The contribution of the amygdala to neuropathic pain processing in animals has not been clearly acknowledged. To assess the relative contribution of amygdala GABA-A receptors in mediating sensory-discriminative and affective-motivational pain components, the GABA-A receptor agonist muscimol and the antagonist bicuculline (both 10-25 ng/microl) were administered by acute bilateral injection directly into the central amygdala in rats with a chronic constriction injury (CCI). Escape/avoidance behaviour reflecting the affective-motivational dimension of pain was measured using a light/dark chamber in combination with suprathreshold nociceptive stimulation, and was defined as a shift from the 'non-aversive' dark area of the chamber to the 'aversive' light area. Hindpaw mechanical allodynia and mechanical hyperalgesia thresholds reflecting the sensory-discriminative dimension of pain were determined prior to and following escape/avoidance testing. Muscimol administration into the amygdala attenuated escape/avoidance behaviour and reversed hindpaw mechanical hypersensitivity in CCI rats; the magnitude of reduction in escape/avoidance behaviour was 2- to 3-fold greater than mechanical allodynia. Surprisingly, administration of bicuculline also attenuated escape/avoidance behaviour but had no effect on nociceptive behaviours. The muscimol-induced reversal of hindpaw mechanical hypersensitivity was completely blocked by co-administration of bicuculline, in contrast to escape/avoidance behaviour. Motility behaviour was unaffected by injection of either drug as determined in the open field test. Thus, amygdala GABA-A receptors appear to play an important role in sensory and especially affective pain processing in neuropathic rats. Furthermore, after nerve injury reflex nociceptive behaviours appear to be under tonic control by descending inputs, which originate from or are modulated within the amygdala.
Collapse
|
109
|
Ikeda R, Takahashi Y, Inoue K, Kato F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 2006; 127:161-72. [PMID: 17055162 DOI: 10.1016/j.pain.2006.09.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 08/12/2006] [Accepted: 09/05/2006] [Indexed: 12/20/2022]
Abstract
Neurons in the latero-capsular part of the central nucleus of the amygdala (CeA), a region now called the "nociceptive amygdala", receive predominantly nociceptive information from the dorsal horn through afferent pathways relayed at the nucleus parabrachialis (PB). Excitatory synaptic transmission between the PB afferents and these neurons is reported to become potentiated within a few hours of the establishment of arthritic or visceral pain, making it a possible mechanism linking chronic pain and unpleasant negative emotional experiences. However, it remains unknown whether such synaptic potentiation is consolidated or becomes adaptively extinct in the longer-lasting form of chronic pain, such as neuropathic pain, an as yet serious and frequent type of pain of important clinical concern. To address this issue, we recorded postsynaptic currents in CeA neurons evoked by PB tract stimulation in acute brain slices from young rats with neuropathic pain, as evaluated by tactile allodynic responses, following unilateral spinal nerve ligature made 1 week earlier. CeA neurons contralateral to the nerve ligation showed significantly larger-amplitude postsynaptic currents than those in the ipsilateral CeA and sham- and non-operated groups. The degree of synaptic potentiation, as compared between two sides, was positively correlated to that of tactile allodynia responses. In addition, blockade of NMDA receptors did not affect this potentiation. We conclude that potentiation of the PB-CeA synapse is consolidated in long-lasting neuropathic pain but that this potentiation results from a molecular mechanism distinct from that in arthritic and visceral pain.
Collapse
Affiliation(s)
- Ryo Ikeda
- Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
110
|
Bryant CD, Eitan S, Sinchak K, Fanselow MS, Evans CJ. NMDA receptor antagonism disrupts the development of morphine analgesic tolerance in male, but not female C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R315-26. [PMID: 16601258 DOI: 10.1152/ajpregu.00831.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple studies demonstrate that coadministration of N-methyl-D-aspartate (NMDA) receptor antagonists with the opioid agonist morphine attenuates the development of analgesic tolerance. Sex differences in the effects of noncompetitive, but not competitive NMDA receptor antagonists on acute morphine analgesia, have been reported in mice, yet the role of sex in modulation of morphine tolerance by NMDA receptor antagonists has yet to be addressed. Therefore, we tested whether there is a sex difference in the effect of NMDA receptor antagonists on the development of morphine analgesic tolerance in C57BL/6J mice. Acutely, at a dose required to affect morphine tolerance in male mice, the noncompetitive NMDA receptor antagonist dizocilpine (MK-801) prolonged morphine analgesia similarly in both sexes in the hot plate and tail withdrawal assays. In the hot plate assay, coadministration of MK-801 or the competitive antagonist 3-(2-carboxpiperazin-4-yl)propyl-1-phosphanoic acid (CPP) with morphine attenuated the development of tolerance in male mice, while having no effect in females. Like normal and sham females, ovariectomized mice were similarly insensitive to the attenuation of morphine tolerance by MK-801 in the hot plate assay. Surprisingly, in the tail withdrawal assay, MK-801 facilitated the development of morphine-induced hyperalgesia and tolerance in males but not females. The results demonstrate that male mice are more sensitive to modulation of nociception and morphine analgesia after repeated coadministration of NMDA receptor antagonists. Furthermore, the underlying mechanisms are likely to be different from those mediating the sex difference in the modulation of acute morphine analgesia that has previously been reported.
Collapse
Affiliation(s)
- Camron D Bryant
- Interdepartmental Program in Neuroscience, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
111
|
Dardou D, Datiche F, Cattarelli M. Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem 2006; 13:150-60. [PMID: 16547160 PMCID: PMC1409841 DOI: 10.1101/lm.148706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
When an odor is paired with a delayed illness, rats acquire a relatively weak odor aversion. In contrast, rats develop a strong aversion to an olfactory cue paired with delayed illness if it is presented simultaneously with a gustatory cue. Such a conditioning effect has been referred to as taste-potentiated odor aversion learning (TPOA). TPOA is an interesting model for studying neural mechanisms of plasticity because of its robustness and rapid acquisition. However, the neural substrate involved in TPOA retrieval has not been well characterized. To address this question, we used immunocytochemical detection of inducible transcription factors encoded by the immediate-early genes Fos and Egr1. Thirsty male rats were conditioned to TPOA learning, and they were submitted to retrieval in the presence of the learned odor 3 d later. Significant increases in both Fos and Egr1 expressions were observed in basolateral amygdala, insular cortex, and hippocampus in aversive rats in comparison with the all the control groups. The pattern of neuronal activity seemed unlikely to be related to the sole LiCl injection. Lastly, opposite patterns of Fos and Egr1 were noted in the entorhinal cortex and the central nucleus of amygdala, suggesting a differential involvement of these markers in retrieval of TPOA.
Collapse
Affiliation(s)
- David Dardou
- Centre Européen des Sciences du Goût, Centre National de la Recherche Scientifique (CESG-CNRS), UMR 5170, 21000 Dijon, France.
| | | | | |
Collapse
|
112
|
Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H, Ji RR, Zhao ZQ, Zhang YQ. Is endogenous d-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem 2006; 96:1636-47. [PMID: 16476080 DOI: 10.1111/j.1471-4159.2006.03677.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functional activation of NMDA receptors requires co-activation of glutamate- and glycine-binding sites. D-serine is considered to be an endogenous ligand for the glycine site of NMDA receptors. Using a combination of a rat formalin-induced conditioned place avoidance (F-CPA) behavioral model and whole-cell patch-clamp recording in rostral anterior cingulate cortex (rACC) slices, we examined the effects of d-amino acid oxidase (DAAO), an endogenous D-serine-degrading enzyme, and 7-chlorokynurenate (7Cl-KYNA), an antagonist of the glycine site of NMDA receptors, on pain-related aversion. Degradation of endogenous D-serine with DAAO, or selective blockade of the glycine site of NMDA receptors by 7Cl-KYNA, effectively inhibited NMDA-evoked currents in rACC slices. Intra-rACC injection of DAAO (0.1 U) and 7Cl-KYNA (2 and 0.2 mM, 0.6 microL per side) 20 min before F-CPA conditioning greatly attenuated F-CPA scores, but did not affect formalin-induced acute nociceptive behaviors and electric foot shock-induced conditioned place avoidance. This study reveals for the first time that endogenous D-serine plays a critical role in pain-related aversion by activating the glycine site of NMDA receptors in the rACC. Furthermore, these results extend our hypothesis that activation of NMDA receptors in the rACC is necessary for the acquisition of specific pain-related negative emotion. Thus a new and promising strategy for the prevention of chronic pain-induced emotional disturbance might be raised.
Collapse
Affiliation(s)
- Wen-Hua Ren
- Institutes of Brain Science, Institute of Neurobiology [corrected] Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Borsook D, Becerra L, Carlezon WA, Shaw M, Renshaw P, Elman I, Levine J. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2006; 11:7-20. [PMID: 16495096 DOI: 10.1016/j.ejpain.2005.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 01/06/2023]
Abstract
Sensory and emotional systems normally interact in a manner that optimizes an organism's ability to survive using conscious and unconscious processing. Pain and analgesia are interpreted by the nervous system as aversive and rewarding processes that trigger specific behavioral responses. Under normal physiological conditions these processes are adaptive. However, under chronic pain conditions, functional alterations of the central nervous system frequently result in maladaptive behaviors. In this review, we examine: (a) the interactions between sensory and emotional systems involved in processing pain and analgesia in the physiological state; (b) the role of reward/aversion circuitry in pain and analgesia; and (c) the role of alterations in reward/aversion circuitry in the development of chronic pain and co-morbid psychiatric disorders. These underlying features have implications for understanding the neurobiology of functional illnesses such as depression and anxiety and for the development and evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Department of Psychiatry, Brain Imaging Center, McLean Hospital and Harvard Medical School, Belmont MA 02748, United States.
| | | | | | | | | | | | | |
Collapse
|
114
|
Minami M, Katayama T, Satoh M. Brain Cytokines and Chemokines: Roles in Ischemic Injury and Pain. J Pharmacol Sci 2006; 100:461-70. [PMID: 16682788 DOI: 10.1254/jphs.crj06005x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Cytokines and chemokines were originally identified as essential mediators for inflammatory and immune responses. Enhanced production and release of cytokines/chemokines are observed also in the central nervous system (CNS) under diverse pathological conditions. There is growing evidence showing that brain cytokines/chemokines play crucial roles in the neuro-glio-vascular interaction underlying the pathology of various brain disorders and therefore are potential targets for development of novel and effective therapeutics for CNS diseases. Here the evidence of the involvement of cytokines/chemokines in ischemic brain injury and pain is reviewed.
Collapse
Affiliation(s)
- Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapparo, Japan.
| | | | | |
Collapse
|
115
|
Finnegan TF, Chen SR, Pan HL. Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol 2005; 95:2032-41. [PMID: 16306173 DOI: 10.1152/jn.01004.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The basolateral amygdala (BLA) is the major amygdaloid nucleus distributed with mu opioid receptors. The afferent input from the BLA to the central nucleus of the amygdala (CeA) is considered important for opioid analgesia. However, little is known about the effect of mu opioids on synaptic transmission in the BLA. In this study, we examined the effect of mu opioid receptor stimulation on the inhibitory and excitatory synaptic inputs to CeA-projecting BLA neurons. BLA neurons were retrogradely labeled with a fluorescent tracer injected into the CeA of rats. Whole cell voltage-clamp recordings were performed on labeled BLA neurons in brain slices. The specific mu opioid receptor agonist, (D-Ala2,N-Me-Phe4,Gly5-ol)-enkephalin (DAMGO, 1 microM), significantly reduced the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in 77% of cells tested. DAMGO also significantly decreased the peak amplitude of evoked IPSCs in 75% of cells examined. However, DAMGO did not significantly alter the frequency of mEPSCs or the peak amplitude of evoked EPSCs in 90% and 75% of labeled cells, respectively. Bath application of the Kv channel blockers, 4-AP (Kv1.1, 1.2, 1.3, 1.5, 1.6, 3.1, 3.2), alpha-dendrotoxin (Kv1.1, 1.2, 1.6), dendrotoxin-K (Kv1.1), or tityustoxin-Kalpha (Kv1.2) each blocked the inhibitory effect of DAMGO on mIPSCs. Double immunofluorescence labeling showed that some of the immunoreactivities of Kv1.1 and Kv1.2 were colocalized with synaptophysin in the BLA. This study provides new information that activation of presynaptic mu opioid receptors primarily attenuates GABAergic synaptic inputs to CeA-projecting neurons in the BLA through a signaling mechanism involving Kv1.1 and Kv1.2 channels.
Collapse
MESH Headings
- Amygdala/chemistry
- Amygdala/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Bicuculline/pharmacology
- Elapid Venoms/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Excitatory Postsynaptic Potentials/physiology
- Kv1.1 Potassium Channel/analysis
- Kv1.1 Potassium Channel/drug effects
- Kv1.1 Potassium Channel/physiology
- Kv1.2 Potassium Channel/analysis
- Kv1.2 Potassium Channel/drug effects
- Kv1.2 Potassium Channel/physiology
- Limbic System/physiology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Patch-Clamp Techniques
- Peptides/pharmacology
- Potassium Channel Blockers/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Scorpion Venoms/pharmacology
- Signal Transduction/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Synaptophysin/analysis
- gamma-Aminobutyric Acid/physiology
- Nociceptin Receptor
Collapse
Affiliation(s)
- Thomas F Finnegan
- Department of Anesthesiology , Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey Pennsylvania, USA
| | | | | |
Collapse
|
116
|
Strittmatter M, Ostertag D, Hoffmann KH, Paulus C, Fischer C, Meyer S. Monoaminerge Transmitter in der Zerebrospinalflüssigkeit von Patienten mit akuten, chronischen und episodischen Schmerzen. DER NERVENARZT 2005; 76:443-52. [PMID: 15175858 DOI: 10.1007/s00115-004-1746-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND STUDY PURPOSE Pain and depression share similar neurobiological characteristics, and it is a common clinical observation that pain and depression may coincide in the same patient. They also appear to influence each other in the process of chronification. Furthermore, there is a complex coupling of pain and depression by monoaminergic transmitter system. PATIENTS AND METHODS On the basis of these findings, norepinephrine (NE), epinephrine (E), dopamine (DOP), 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and vanillylmandelic acid (VMA) concentrations were determined in the cerebrospinal fluid (CSF) in patients with acute (20), chronic (27), and episodic pain syndrome (44) in a prospective study. The biochemical parameters were correlated to self-assessment pain and depression scores. The control group consisted of 13 pain-free patients with diseases affecting the muscular system. RESULTS Patients with chronic and episodic pain syndromes had significantly more depressive and psychovegetative symptoms compared to patients with acute pain. In patients with acute pain, DOP was significantly higher than in controls and chronic and episodic pain patients. In addition DOP was positively correlated to self-assessment pain score (p*<0.05). In patients with chronic and episodic pain, NE and 5-HIAA were positively correlated to the duration of disease and were significantly lower than in the control group. In neither of these two groups could significant correlations be established between these parameters and pain or depression self-assessment scores. In all groups, positive correlations were seen between the neurotransmitter and their metabolites. CONCLUSION The pathological decrease of NE and 5-HIAA in the CSF points to the crucial role of noradrenergic and serotonergic transmitter systems in the generation, modulation, and perpetuation of chronic and episodic pain syndromes. It indicates that antidepressants are effective drugs in these diseases. However, a discriminative neurochemical pattern between pain and depression could not be established. The demonstration of polyvalent correlations between different neurotransmitters is indicative of complex neurobiological coupling between cortical, limbic, and hypothalamic neuronal networks on the one hand and the nociceptive descending system on the other hand in the genesis of pain and depression.
Collapse
Affiliation(s)
- M Strittmatter
- Klinik für Neurologie mit Stroke Unit, Klinikum Merzig, Merzig.
| | | | | | | | | | | |
Collapse
|
117
|
Minami M, Satoh M. [Roles of the amygdala in pain-related aversive responses]. Nihon Yakurigaku Zasshi 2005; 125:5-9. [PMID: 15738615 DOI: 10.1254/fpj.125.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
118
|
Lehner M, Taracha E, Skórzewska A, Wisłowska A, Zienowicz M, Maciejak P, Szyndler J, Bidziński A, Płaźnik A. Sensitivity to pain and c-Fos expression in brain structures in rats. Neurosci Lett 2004; 370:74-9. [PMID: 15489021 DOI: 10.1016/j.neulet.2004.07.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/29/2004] [Accepted: 07/29/2004] [Indexed: 11/19/2022]
Abstract
The induction of c-Fos protein--a product of the c-fos gene, a marker of changes in neuronal activity, was studied in brain structures of animals differing in their sensitivity to the acute painful stimulation, a foot-shock (MS--more sensitive rats; LS--less sensitive rats, according to the arbitrary criterion in the flinch-jump pretest). After the pretest the animals were dived into the control group, exposed on retest 10 days later to the testing cage only (C1 group), and aversively stimulated animals (MS and LS groups, given five mild footshocks 1.5 h before immunocytochemical part of the experiment). Additional control group of naive, intact animals, was studied in parallel (C group). It was shown that animals subjected to the flinch-jump test retained a strong emotional reaction on re-exposure to the shock cage on retest (a conditioned fear) 10 days later, as revealed by the widespread expression of c-Fos protein in the examined brain structures, as compared with the control, naive rats not exposed to the testing cage. In the lateral habenular nucleus (LHAB) a similar effect has been found in the control animals re-exposed to the testing cage only (C1 group), and in the MS group, suggesting that this brain area participates predominantly in processing of emotional-cognitive component of a painful stimulation. In the periaqueductal gray and basolateral nucleus of amygdala the most pronounced, but significantly higher in comparison with C group only, expression of c-Fos was detected in MS rats. Interestingly, a strong and uniform enhancement of c-Fos expression appeared in all other brain structures examined, including cortical areas, indicating their sensitivity to non-direct (conditioned) aversive stimuli. The only significant difference in c-Fos expression between LS and MS rats found in LHAB points to this brain structure as selectively engaged in processing of the emotional-cognitive component of a painful stimulation. The reactivity of LHAB may be responsible for the genetically determined differences in sensitivity to pain.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Gao YJ, Ren WH, Zhang YQ, Zhao ZQ. Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain 2004; 110:343-53. [PMID: 15275785 DOI: 10.1016/j.pain.2004.04.030] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 03/09/2004] [Accepted: 04/12/2004] [Indexed: 12/11/2022]
Abstract
The pain experience includes a sensory-discriminative and an affective-emotional component. The sensory component of pain has been extensively studied, while data about the negative affective component of pain are quite limited. The anterior cingulate cortex (ACC), and amygdala are thought to be key neural substrates underlying emotional responses. Using formalin-induced conditioned place avoidance (F-CPA) and electric foot-shock conditioned place avoidance (S-CPA) models, the present study observed the effects of bilateral excitotoxic (quinolinic acid 200 nmol/microl) lesions of the ACC and amygdala on pain and fear induced negative emotion, as well as on sensory component of pain. In the place-conditioning paradigm, both intraplantar (i.pl.) injection of formalin and electric foot-shock produced conditioned place avoidance. Excitotoxin-induced lesion of either the ACC or amygdala significantly reduced the magnitude of F-CPA. However, the decrease in the magnitude of S-CPA occurred only in the amygdala, but not ACC lesioned animals. Neither ACC nor amygdala lesion significantly changed formalin-induced acute nociceptive behaviors. These results suggest that the amygdala is involved in both pain- and fear-related negative emotion, and the ACC might play a critical role in the expression of pain-related negative emotion.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Institute of Neurobiology, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | | | | | | |
Collapse
|
120
|
Park C, Park C, Joong J. Effect of Intraperitoneal Nalbuphine-HCl on C-fos Expression in Rat Brain induced by Incisional Pain. Korean J Pain 2004. [DOI: 10.3344/jkps.2004.17.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- ChulSoo Park
- Department of Anesthesiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - ChongMin Park
- Department of Anesthesiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - JiYoung Joong
- Department of Anesthesiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|