101
|
Vega MA, Nieto C, Marcelo G, Martín Del Valle EM. Cytotoxicity of paramagnetic cations-Loaded polydopamine nanoparticles. Colloids Surf B Biointerfaces 2018; 167:284-290. [PMID: 29679804 DOI: 10.1016/j.colsurfb.2018.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023]
Abstract
Polydopamine (PD) is a synthetic melanin pigment of great importance in biomedicine, where its affinity for metallic cations, especially paramagnetic ions, has sparked interest in its use in the development of magnetic resonance imaging (MRI) contrast agents. In this work, we report the cytotoxicity of metal-enriched PD nanoparticles on NIH3T3, a healthy cell line and BT474, a breast cancer cell line. Remarkably, it was found that the metal- enriched PD particles (Mn+ = Fe3+, Fe2+ and Cu2+) were highly cytotoxic to the breast cancer cells, even after 24 h of treatment. Although, this effect was not selective systems, since an acute cytotoxic effect was also observed on the healthy cell line, this system can be considered as starting point for designing advanced antineoplastic agents.
Collapse
Affiliation(s)
- Milena A Vega
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain
| | - Celia Nieto
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain
| | - Gema Marcelo
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, Pl/La Merced s/n 37008, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
102
|
Sulzer D, Cassidy C, Horga G, Kang UJ, Fahn S, Casella L, Pezzoli G, Langley J, Hu XP, Zucca FA, Isaias IU, Zecca L. Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. NPJ PARKINSONS DISEASE 2018; 4:11. [PMID: 29644335 PMCID: PMC5893576 DOI: 10.1038/s41531-018-0047-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 11/10/2022]
Abstract
The diagnosis of Parkinson’s disease (PD) occurs after pathogenesis is advanced and many substantia nigra (SN) dopamine neurons have already died. Now that therapies to block this neuronal loss are under development, it is imperative that the disease be diagnosed at earlier stages and that the response to therapies is monitored. Recent studies suggest this can be accomplished by magnetic resonance imaging (MRI) detection of neuromelanin (NM), the characteristic pigment of SN dopaminergic, and locus coeruleus (LC) noradrenergic neurons. NM is an autophagic product synthesized via oxidation of catecholamines and subsequent reactions, and in the SN and LC it increases linearly during normal aging. In PD, however, the pigment is lost when SN and LC neurons die. As shown nearly 25 years ago by Zecca and colleagues, NM’s avid binding of iron provides a paramagnetic source to enable electron and nuclear magnetic resonance detection, and thus a means for safe and noninvasive measure in living human brain. Recent technical improvements now provide a means for MRI to differentiate between PD patients and age-matched healthy controls, and should be able to identify changes in SN NM with age in individuals. We discuss how MRI detects NM and how this approach might be improved. We suggest that MRI of NM can be used to confirm PD diagnosis and monitor disease progression. We recommend that for subjects at risk for PD, and perhaps generally for older people, that MRI sequences performed at regular intervals can provide a pre-clinical means to detect presymptomatic PD.
Collapse
Affiliation(s)
- David Sulzer
- 1Department of Psychiatry, Columbia University Medical Center , New York State Psychiatric Institute, New York, NY USA.,2Department of Neurology, Columbia University Medical Center, New York, NY USA.,3Department of Pharmacology, Columbia University Medical Center, New York, NY USA
| | - Clifford Cassidy
- 4The Royal's Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON Canada
| | - Guillermo Horga
- 1Department of Psychiatry, Columbia University Medical Center , New York State Psychiatric Institute, New York, NY USA
| | - Un Jung Kang
- 2Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Stanley Fahn
- 2Department of Neurology, Columbia University Medical Center, New York, NY USA
| | - Luigi Casella
- 5Department of Chemistry, University of Pavia, Pavia, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST "Gaetano Pini-CTO", Milan, Italy
| | - Jason Langley
- 7Center for Advanced NeuroImaging, University of California Riverside, Riverside, CA USA
| | - Xiaoping P Hu
- 8Department of Bioengineering, University of California Riverside, Riverside, CA USA
| | - Fabio A Zucca
- 9Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Ioannis U Isaias
- Department of Neurology, University Hospital and Julius-Maximillian-University, Wuerzburg, Germany
| | - Luigi Zecca
- 9Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| |
Collapse
|
103
|
|
104
|
Abstract
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| | - Maryam Clark
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Po-Wah So
- Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, King's College London, London, United Kingdom
| |
Collapse
|
105
|
Nieto C, Vega MA, Marcelo G, Martín del Valle E. Polydopamine nanoparticles kill cancer cells. RSC Adv 2018; 8:36201-36208. [PMID: 35558470 PMCID: PMC9088449 DOI: 10.1039/c8ra05586f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Polydopamine (PD) is a synthetic melanin analogue of growing importance in the field of biomedicine, especially with respect to cancer research, due, in part, to its biocompatibility.
Collapse
Affiliation(s)
- Celia Nieto
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | - Milena A. Vega
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | - Gema Marcelo
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | | |
Collapse
|
106
|
Griesbach GS, Masel BE, Helvie RE, Ashley MJ. The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases. J Neurotrauma 2017; 35:17-24. [PMID: 28920532 DOI: 10.1089/neu.2017.5103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.
Collapse
Affiliation(s)
- Grace S Griesbach
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,2 Department of Neurosurgery, David Geffen School of Medicine at the University of California , Los Angeles, California
| | - Brent E Masel
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California.,3 University of Texas Medical Branch , Galveston, Texas
| | - Richard E Helvie
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| | - Mark J Ashley
- 1 Centre for Neuro Skills Clinical Research and Education Foundation , Bakersfield, California
| |
Collapse
|
107
|
Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics 2017; 9:1447-1455. [PMID: 28944802 PMCID: PMC5647261 DOI: 10.1039/c7mt00244k] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated iron and decreased copper levels are cardinal features of the degenerating substantia nigra pars compacta in the Parkinson's disease brain. Both of these redox-active metals, and fellow transition metals manganese and zinc, are found at high concentrations within the midbrain and participate in a range of unique biological reactions. We examined the total metal content and cellular compartmentalisation of manganese, iron, copper and zinc in the degenerating substantia nigra, disease-affected but non-degenerating fusiform gyrus, and unaffected occipital cortex in the post mortem Parkinson's disease brain compared with age-matched controls. An expected increase in iron and a decrease in copper concentration was isolated to the soluble cellular fraction, encompassing both interstitial and cytosolic metals and metal-binding proteins, rather than the membrane-associated or insoluble fractions. Manganese and zinc levels did not differ between experimental groups. Altered Fe and Cu levels were unrelated to Braak pathological staging in our cases of late-stage (Braak stage V and VI) disease. The data supports our hypothesis that regional alterations in Fe and Cu, and in proteins that utilise these metals, contribute to the regional selectively of neuronal vulnerability in this disorder.
Collapse
Affiliation(s)
- Sian Genoud
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Adam P Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Glenda M Halliday
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Neuroscience Research Australia, Randwick, NSW 2031, Australia and School of Medical Sciences, University of New South Wales, NSW 2052, Australia
| | - Simon J G Lewis
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia. and Healthy Brain Ageing Program, University of Sydney, NSW 2006, Australia and Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen J Ball
- Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia. and Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, NSW 2007, Australia and Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kay L Double
- Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
108
|
Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, Zhang Y, Yao Y, Gillen KM, Wilman AH, Gupta A, Tsiouris AJ, Kovanlikaya I, Chiang GCY, Weinsaft JW, Tanenbaum L, Chen W, Zhu W, Chang S, Lou M, Kopell BH, Kaplitt MG, Devos D, Hirai T, Huang X, Korogi Y, Shtilbans A, Jahng GH, Pelletier D, Gauthier SA, Pitt D, Bush AI, Brittenham GM, Prince MR. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging 2017; 46:951-971. [PMID: 28295954 PMCID: PMC5592126 DOI: 10.1002/jmri.25693] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | | | - Zhe Liu
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | - Kofi Deh
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Jianqi Li
- Department of Physics, East China Normal University, Shanghai, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kelly M. Gillen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Alan H. Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Jonathan W. Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Brian H. Kopell
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, USA
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - David Devos
- Department of Medical Pharmacology, University of Lille, Lille, France
- Department of Neurology and Movement Disorders, University of Lille, Lille, France
- Department of Toxicology, Public Health and Environment, University of Lille, Lille, France
- INSERM U1171, University of Lille, Lille, France
| | - Toshinori Hirai
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Xuemei Huang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Radiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yukunori Korogi
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Alexander Shtilbans
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
- Parkinson's Disease and Movement Disorder Institute, Weill Cornell Medical College, New York, NY, USA
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Daniel Pelletier
- Department of Neurology, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Susan A. Gauthier
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - David Pitt
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ashley I. Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, AUS
| | - Gary M. Brittenham
- Department of Pediatrics, Columbia University, Children's Hospital of New York, New York, NY, USA
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
109
|
Ito H, Kawaguchi H, Kodaka F, Takuwa H, Ikoma Y, Shimada H, Kimura Y, Seki C, Kubo H, Ishii S, Takano H, Suhara T. Normative data of dopaminergic neurotransmission functions in substantia nigra measured with MRI and PET: Neuromelanin, dopamine synthesis, dopamine transporters, and dopamine D2 receptors. Neuroimage 2017; 158:12-17. [DOI: 10.1016/j.neuroimage.2017.06.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022] Open
|
110
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
111
|
Liddell JR, White AR. Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's disease. Neurochem Int 2017; 117:126-138. [PMID: 28577988 DOI: 10.1016/j.neuint.2017.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/26/2023]
Abstract
Parkinson's disease is neuropathologically characterised by loss of catecholamine neurons in vulnerable brain regions including substantia nigra pars compacta and locus coeruleus. This review discusses how the susceptibility of these regions is defined by their shared biochemical characteristics that differentiate them from other neurons. Parkinson's disease is biochemically characterised by mitochondrial dysfunction, accumulation of iron, diminished copper content and depleted glutathione levels in these regions. This review also discusses this neuropathology, and provides evidence for how these pathological features are mechanistically linked to each other. This leads to the conclusion that disruption of mitochondrial function, or iron, copper or glutathione metabolism in isolation provokes the pathological impairment of them all. This creates a vicious cycle that drives pathology leading to mitochondrial failure and neuronal cell death in vulnerable brain regions.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia.
| | - Anthony R White
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
112
|
Amit T, Bar-Am O, Mechlovich D, Kupershmidt L, Youdim MBH, Weinreb O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology 2017; 123:359-367. [PMID: 28571715 DOI: 10.1016/j.neuropharm.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript. As a consequence of these observations, iron chelation is one of the major new therapeutic strategies for the treatment of AD. This review describes the benefits and importance of the multimodal brain permeable chimeric iron-chelating/propargylamine drug M30, concerning its neuroprotective/neurorestorative inter-related activities relevant of the pathological features ascribed to AD, with a special focus on the effect of the drug on APP regulation and processing.
Collapse
Affiliation(s)
- Tamar Amit
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orit Bar-Am
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Danit Mechlovich
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Lana Kupershmidt
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orly Weinreb
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
113
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci 2017; 9:129. [PMID: 28515690 PMCID: PMC5413566 DOI: 10.3389/fnagi.2017.00129] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative
stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain.,Neurosciences Division, Center for Applied Medical Research (CIMA), University of NavarraPamplona, Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de CompostelaSantiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED)Madrid, Spain
| |
Collapse
|
114
|
Dietrich O, Levin J, Ahmadi SA, Plate A, Reiser MF, Bötzel K, Giese A, Ertl-Wagner B. MR imaging differentiation of Fe2+ and Fe3+ based on relaxation and magnetic susceptibility properties. Neuroradiology 2017; 59:403-409. [DOI: 10.1007/s00234-017-1813-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/19/2017] [Indexed: 12/24/2022]
|
115
|
Ferrari E, Capucciati A, Prada I, Zucca FA, D’Arrigo G, Pontiroli D, Bridelli MG, Sturini M, Bubacco L, Monzani E, Verderio C, Zecca L, Casella L. Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. ACS Chem Neurosci 2017; 8:501-512. [PMID: 28292181 DOI: 10.1021/acschemneuro.6b00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the substantia nigra of human brain, neuromelanin (NM) released by degenerating neurons can activate microglia with consequent neurodegeneration, typical of Parkinson's disease (PD). Synthetic analogues of NM were prepared to develop a PD model reproducing the neuropathological conditions of the disease. Soluble melanin-protein conjugates were obtained by melanization of fibrillated β-lactoglobulin (fLG). The melanic portion of the conjugates contains either eumelanic (EufLG) or mixed eumelanic/pheomelanic composition (PheofLG), the latter better simulating natural NMs. In addition, the conjugates can be loaded with controlled amounts of iron. Upon melanization, PheofLG-Fe conjugates maintain the amyloid cross-β protein core as the only structurally organized element, similarly to human NMs. The similarity in composition and structural organization with the natural pigment is reflected by the ability of synthetic NMs to activate microglia, showing potential of the novel conjugates to model NM induced neuroinflammation. Thus, synthetic NM/microglia constitute a new model to develop anti-Parkinson drugs.
Collapse
Affiliation(s)
- Emanuele Ferrari
- Institute of Biomedical
Technologies, National Research Council of Italy, Via Fratelli
Cervi 93, 20090 Segrate (Milan), Italy
| | - Andrea Capucciati
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ilaria Prada
- Institute of Neuroscience, National Research Council of Italy, Via Luigi Vanvitelli, 32, 20129 Milano, Italy
| | - Fabio Andrea Zucca
- Institute of Biomedical
Technologies, National Research Council of Italy, Via Fratelli
Cervi 93, 20090 Segrate (Milan), Italy
| | - Giulia D’Arrigo
- Institute of Neuroscience, National Research Council of Italy, Via Luigi Vanvitelli, 32, 20129 Milano, Italy
| | - Daniele Pontiroli
- Department of Physics and Earth Sciences “M. Melloni”, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Maria Grazia Bridelli
- Department of Physics and Earth Sciences “M. Melloni”, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Claudia Verderio
- Institute of Neuroscience, National Research Council of Italy, Via Luigi Vanvitelli, 32, 20129 Milano, Italy
- IRCCS Humanitas, Via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Luigi Zecca
- Institute of Biomedical
Technologies, National Research Council of Italy, Via Fratelli
Cervi 93, 20090 Segrate (Milan), Italy
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
116
|
Yang M, Yang H, Guan H, Kato T, Mukaisho K, Sugihara H, Ogasawara K, Terada T, Tooyama I. Characterization of a Novel Monoclonal Antibody against Human Mitochondrial Ferritin and Its Immunohistochemical Application in Human and Monkey Substantia Nigra. Acta Histochem Cytochem 2017; 50:49-55. [PMID: 28386150 PMCID: PMC5374103 DOI: 10.1267/ahc.16034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial ferritin (FtMt) is a novel iron storage protein with high homology to H-ferritin. Unlike the ubiquitously expressed H- and L-ferritin, FtMt is expressed in specific tissues such as the testis, heart, and brain. The function of FtMt is not fully understood; however, evidence suggests that it has a neuroprotective role in neurodegenerative diseases. We have previously reported that FtMt is expressed in catecholaminergic neurons of the monkey brainstem. To explore FtMt expression in human dopaminergic neurons, we designed a novel monoclonal antibody, C65-2, directed against human FtMt. Here, we report the properties of our C65-2 antibody. Western blots analysis and immunoabsorption tests demonstrated that the C65-2 antibody specifically recognized FtMt with no cross-reactivity to H-ferritin. Immunohistochemistry showed that the C65-2 antibody detected FtMt in neurons of the substantia nigra pars compacta (SNc) in humans and monkeys. We confirmed that FtMt is expressed in dopaminergic neurons of the human SNc. Our results suggest that FtMt is involved in various physiological and pathological mechanisms in human dopaminergic neurons, and the C65-2 monoclonal antibody promises to be a useful tool for determining the localization and biological functions of FtMt in the brain.
Collapse
Affiliation(s)
- Mingchun Yang
- Molecular Neuroscience Research Center, Shiga University of Medical Science
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University
| | - Hongkuan Yang
- Molecular Neuroscience Research Center, Shiga University of Medical Science
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University
| | - Hongpeng Guan
- Molecular Neuroscience Research Center, Shiga University of Medical Science
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University
| | - Tomoko Kato
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| | | | | | | | | | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science
| |
Collapse
|
117
|
Abstract
INTRODUCTION Parkinson's disease (PD) is an insidious disorder affecting more than 1-2% of the population over the age of 65. Understanding the etiology of PD may create opportunities for developing new treatments. Genomic and transcriptomic studies are useful, but do not provide evidence for the actual status of the disease. Conversely, proteomic studies deal with proteins, which are real time players, and can hence provide information on the dynamic nature of the affected cells. The number of publications relating to the proteomics of PD is vast. Therefore, there is a need to evaluate the current proteomics literature and establish the connections between the past and the present to foresee the future. Areas covered: PubMed and Web of Science were used to retrieve the literature associated with PD proteomics. Studies using human samples, model organisms and cell lines were selected and reviewed to highlight their contributions to PD. Expert commentary: The proteomic studies associated with PD achieved only limited success in facilitating disease diagnosis, monitoring and progression. A global system biology approach using new models is needed. Future research should integrate the findings of proteomics with other omics data to facilitate both early diagnosis and the treatment of PD.
Collapse
Affiliation(s)
- Murat Kasap
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Gurler Akpinar
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Aylin Kanli
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| |
Collapse
|
118
|
Portbury SD, Hare DJ, Sgambelloni CJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Age modulates the injury-induced metallomic profile in the brain. Metallomics 2017; 9:402-410. [DOI: 10.1039/c6mt00260a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
119
|
Enge TG, Ecroyd H, Jolley DF, Yerbury JJ, Dosseto A. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis. Metallomics 2017; 9:161-174. [DOI: 10.1039/c6mt00270f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
120
|
Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT, Cerutti S, Smith AK, Smith SA, Zecca L, Costa A. Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med 2016; 78:1790-1800. [DOI: 10.1002/mrm.26584] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Paula Trujillo
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Paul E. Summers
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - Emanuele Ferrari
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | | | - Luca T. Mainardi
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Sergio Cerutti
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Alex K. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
- Department of Radiology and Radiological Sciences; Vanderbilt University; Nashville Tennessee USA
| | - Luigi Zecca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Antonella Costa
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| |
Collapse
|
121
|
Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP. Parkinson's disease–related increase of ‐weighted hypointensity in substantia nigra pars compacta. Mov Disord 2016; 32:441-449. [DOI: 10.1002/mds.26883] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jason Langley
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia USA
- Center for Advanced NeuroimagingUniversity of California RiversideRiverside CA
| | | | - Jan Sedlacik
- Department of NeuroradiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)Hamburg Germany
| | - Kai Boelmans
- Department of NeurologyJulius‐Maximilians‐UniversityWürzburg Germany
| | - Xiaoping P. Hu
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia USA
- Center for Advanced NeuroimagingUniversity of California RiversideRiverside CA
- Department of BioengineeringUniversity of California RiversideRiverside California USA
| |
Collapse
|
122
|
Walker T, Michaelides C, Ekonomou A, Geraki K, Parkes HG, Suessmilch M, Herlihy AH, Crum WR, So PW. Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction. Aging (Albany NY) 2016; 8:2488-2508. [PMID: 27743512 PMCID: PMC5115902 DOI: 10.18632/aging.101069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated age-related in vivo R2 increases in the SN over ages 7 - 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative 'anti-brain aging' therapies and combining these strategies may be synergistic.
Collapse
Affiliation(s)
- Thomas Walker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christos Michaelides
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antigoni Ekonomou
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Harold G Parkes
- CR-UK Clinical MR Research Group, Institute of Cancer Research, London, United Kingdom
| | - Maria Suessmilch
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
123
|
Wang Z, Luo XG, Gao C. Utility of susceptibility-weighted imaging in Parkinson's disease and atypical Parkinsonian disorders. Transl Neurodegener 2016; 5:17. [PMID: 27761236 PMCID: PMC5054585 DOI: 10.1186/s40035-016-0064-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
In the clinic, the diagnosis of Parkinson's disease (PD) largely depends on clinicians' experience. When the diagnosis is made, approximately 80% of dopaminergic cells in the substantia nigra (SN) have been lost. Additionally, it is rather challenging to differentiate PD from atypical parkinsonian disorders (APD). Clinially-available 3T conventional MRI contributes little to solve these problems. The pathologic alterations of parkinsonism show abnormal brain iron deposition, and therefore susceptibility-weighted imaging (SWI), which is sensitive to iron concentration, has been applied to find iron-related lesions for the diagnosis and differentiation of PD in recent decades. Until now, the majority of research has revealed that in SWI the signal intensity changes in deep brain nuclei, such as the SN, the putamen (PUT), the globus pallidus (GP), the thalamus (TH), the red nucleus (RN) and the caudate nucleus (CN), thereby raising the possibility of early diagnosis and differentiation. Furthermore, the signal changes in SN, PUT and TH sub-regions may settle the issues with higher accuracy. In this article, we review the brain iron deposition of PD, MSA-P and PSP in SWI in the hope of exhibiting a profile of SWI features in PD, MSA and PSP and its clinical values.
Collapse
Affiliation(s)
- Zhibin Wang
- Neurology Department, The First Affiliated Hospital of China Medical University, 155# Nanjing Bei Street Heping District, Shenyang, 110001 People's Republic of China
| | - Xiao-Guang Luo
- Neurology Department, The First Affiliated Hospital of China Medical University, 155# Nanjing Bei Street Heping District, Shenyang, 110001 People's Republic of China
| | - Chao Gao
- Neurology Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025 People's Republic of China
| |
Collapse
|
124
|
Uberti F, Morsanuto V, Bardelli C, Molinari C. Protective effects of 1α,25-Dihydroxyvitamin D3 on cultured neural cells exposed to catalytic iron. Physiol Rep 2016; 4:4/11/e12769. [PMID: 27252250 PMCID: PMC4908484 DOI: 10.14814/phy2.12769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/25/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies have postulated a role for vitamin D and its receptor on cerebral function, and anti‐inflammatory, immunomodulatory and neuroprotective effects have been described; vitamin D can inhibit proinflammatory cytokines and nitric oxide synthesis during various neurodegenerative insults, and may be considered as a potential drug for the treatment of these disorders. In addition, iron is crucial for neuronal development and neurotransmitter production in the brain, but its accumulation as catalytic form (Fe3+) impairs brain function and causes the dysregulation of iron metabolism leading to tissue damage due to the formation of toxic free radicals (ROS). This research was planned to study the role of vitamin D to prevent iron damage in neuroblastoma BE(2)M17 cells. Mechanisms involved in neurodegeneration, including cell viability, ROS production, and the most common intracellular pathways were studied. Pretreatment with calcitriol (the active form of vitamin D) reduced cellular injury induced by exposure to catalytic iron.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, UPO - University of Eastern Piedmont, Novara, Italy
| | - Vera Morsanuto
- Laboratory of Physiology, Department of Translational Medicine, UPO - University of Eastern Piedmont, Novara, Italy
| | - Claudio Bardelli
- Laboratory of Physiology, Department of Translational Medicine, UPO - University of Eastern Piedmont, Novara, Italy
| | - Claudio Molinari
- Laboratory of Physiology, Department of Translational Medicine, UPO - University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
125
|
Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:121-125. [PMID: 27687624 DOI: 10.1007/s10334-016-0590-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this study was to assess the reproducibility of substantia nigra pars compacta (SNpc) and locus coeruleus (LC) delineation and measurement with neuromelanin-sensitive MRI. MATERIALS AND METHODS Eleven subjects underwent two neuromelanin-sensitive MRI scans. SNpc and LC volumes were extracted for each scan. Reproducibility of volume and magnetization transfer contrast measurements in SNpc and LC was assessed using intraclass correlation coefficients (ICC) and dice similarity coefficients (DSC). RESULTS SNpc and LC volume measurements showed excellent reproducibility (SNpc-ICC: 0.94, p < 0.001; LC-ICC: 0.96, p < 0.001). SNpc and LC were accurately delineated between scans (SNpc-DSC: 0.80 ± 0.03; LC-DSC: 0.63 ± 0.07). CONCLUSION Neuromelanin-sensitive MRI can consistently delineate SNpc and LC.
Collapse
|
126
|
Lee JH, Baek SY, Song Y, Lim S, Lee H, Nguyen MP, Kim EJ, Huh GY, Chun SY, Cho H. The Neuromelanin-related T2* Contrast in Postmortem Human Substantia Nigra with 7T MRI. Sci Rep 2016; 6:32647. [PMID: 27596274 PMCID: PMC5011647 DOI: 10.1038/srep32647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/12/2016] [Indexed: 11/11/2022] Open
Abstract
High field magnetic resonance imaging (MRI)-based delineation of the substantia nigra (SN) and visualization of its inner cellular organization are promising methods for the evaluation of morphological changes associated with neurodegenerative diseases; however, corresponding MR contrasts must be matched and validated with quantitative histological information. Slices from two postmortem SN samples were imaged with a 7 Tesla (7T) MRI with T1 and T2* imaging protocols and then stained with Perl’s Prussian blue, Kluver-Barrera, tyrosine hydroxylase, and calbindin immunohistochemistry in a serial manner. The association between T2* values and quantitative histology was investigated with a co-registration method that accounts for histology slice preparation. The ventral T2* hypointense layers between the SNr and the crus cerebri extended anteriorly to the posterior part of the crus cerebri, which demonstrates the difficulty with an MRI-based delineation of the SN. We found that the paramagnetic hypointense areas within the dorsolateral SN corresponded to clusters of neuromelanin (NM). These NM-rich zones were distinct from the hypointense ventromedial regions with high iron pigments. Nigral T2* imaging at 7T can reflect the density of NM-containing neurons as the metal-bound NM macromolecules may decrease T2* values and cause hypointense signalling in T2* imaging at 7T.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sun-Yong Baek
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, South Korea
| | - YoungKyu Song
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Sujeong Lim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hansol Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Minh Phuong Nguyen
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Busan, South Korea
| | - Gi Yeong Huh
- Department of Forensic Medicine, Pusan National University School of Medicine, Yangsan, South Korea
| | - Se Young Chun
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
127
|
Expression of Iron Transporters and Pathological Hallmarks of Parkinson’s and Alzheimer’s Diseases in the Brain of Young, Adult, and Aged Rats. Mol Neurobiol 2016; 54:5213-5224. [DOI: 10.1007/s12035-016-0067-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
|
128
|
Isaias IU, Trujillo P, Summers P, Marotta G, Mainardi L, Pezzoli G, Zecca L, Costa A. Neuromelanin Imaging and Dopaminergic Loss in Parkinson's Disease. Front Aging Neurosci 2016; 8:196. [PMID: 27597825 PMCID: PMC4992725 DOI: 10.3389/fnagi.2016.00196] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease.
Collapse
Affiliation(s)
- Ioannis U Isaias
- Department of Neurology, University Hospital WuerzburgWürzburg, Germany; Centro Parkinson, Pini-CTOMilan, Italy
| | - Paula Trujillo
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Paul Summers
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano Milan, Italy
| | | | - Luigi Zecca
- Italian National Research Council, Institute of Biomedical Technologies Segrate, Italy
| | - Antonella Costa
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy
| |
Collapse
|
129
|
Jorge García A, Polidori C, Nieves-Aldrey JL. Pheomelanin in the secondary sexual characters of male parasitoid wasps (Hymenoptera: Pteromalidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:311-319. [PMID: 27224206 DOI: 10.1016/j.asd.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
The occurrence and distribution of eumelanin and pheomelanin, the most prevalent biological pigments, has been rarely investigated in insects. Particularly yellowish to brownish body parts, which in many vertebrates are associated with pheomelanin, are visible in many insects but their chemical nature was rarely examined to a similar detail. Here, by using Dispersive Raman spectroscopy analysis, we found both eumelanin and pheomelanin in different body parts of male parasitoid wasps of three species of the genus Mesopolobus (Hymenoptera: Pteromalidae), which are known to have species-specific spots and coloured stripes on the legs and/or antennae which are displayed to females during courtship. We found a strong eumelanin signal in the antennal clava of all studied Mesopolobus species and in the circular black spot or callosity and the triangular black projection on the outer apical angle of the typically expanded middle tibia of Mesopolobus tibialis and Mesopolobus xanthocerus. Eumelanin was also the predominant pigment in the black thorax of Mesopolobus and other members of the family. Pheomelanin, on the other hand, was detected as predominant only in certain body parts of M. tibialis and M. xanthocerus, precisely in a very narrow, longitudinal brownish stripe on the middle femur and, only in M. tibialis, in a brownish oval-longitudinal stripe on the middle tibia. The two melanin types co-occurred in most pigmented areas, but more often one is clearly predominant relative to the other, according to the variation of Raman signal intensity of their signature peaks. A further tibial yellowish-orange stripe present in both these species did not include melanins of any type. Pheomelanin, could be more widespread than previously known in insects. A convergent evolution of melanin-based male sexual ornaments between vertebrates (e.g. bird feathers) and wasps can be suggested, opening to a new line of comparative evolutionary studies.
Collapse
Affiliation(s)
- Alberto Jorge García
- Laboratorio de Microscopía, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain.
| | - Carlo Polidori
- Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, s/n, E-45071 Toledo, Spain.
| | - José Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
| |
Collapse
|
130
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
131
|
Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson's disease. J Transl Med 2016; 96:496-507. [PMID: 26829122 DOI: 10.1038/labinvest.2015.161] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Laboratory studies involving repeated exposure to paraquat (PQ) in different animal models can induce many of the pathological features of Parkinson's disease (PD), such as the loss of dopaminergic neurons in the nigrostriatal dopamine system. Epidemiological studies identify an increased risk of developing PD in human populations living in areas where PQ exposure is likely to occur and among workers lacking appropriate protective equipment. The mechanisms involved in developing PD may not be due to any single cause, but rather a multifactorial situation may exist where PQ exposure may cause PD in some circumstances. Multifactorial theory is adopted into this review that includes a number of sub-cellular mechanisms to explain the pathogenesis of PD. The theory is placed into an environmental context of chronic low-dose exposure to PQ that consequently acts as an oxidative stress inducer. Oxidative stress and the metabolic processes of PQ-inducing excitotoxicity, α-synuclein aggregate formation, autophagy, alteration of dopamine catabolism, and inactivation of tyrosine hydroxylase are positioned as causes for the loss of dopaminergic cells. The environmental context and biochemistry of PQ in soils, water, and organisms is also reviewed to identify potential routes that can lead to chronic rates of low-dose exposure that would replicate the type of response that is observed in animal models, epidemiological studies, and other types of laboratory investigations involving PQ exposure. The purpose of this review is to synthesize key relations and summarize hypotheses linking PD to PQ exposure by using the multifactorial approach. Recommendations are given to integrate laboratory methods to the environmental context as a means to improve on experimental design. The multifactorial approach is necessary for conducting valid tests of causal relations, for understanding of potential relations between PD and PQ exposure, and may prevent further delay in solving what has proven to be an evasive etiological problem.
Collapse
|
132
|
Bautista E, Vergara P, Segovia J. Iron-induced oxidative stress activates AKT and ERK1/2 and decreases Dyrk1B and PRMT1 in neuroblastoma SH-SY5Y cells. J Trace Elem Med Biol 2016; 34:62-9. [PMID: 26854247 DOI: 10.1016/j.jtemb.2015.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 11/27/2022]
Abstract
Iron is essential for proper neuronal functioning; however, excessive accumulation of brain iron is reported in Parkinson's, Alzheimer's, Huntington's diseases and amyotrophic lateral sclerosis. This indicates that dysregulated iron homeostasis is involved in the pathogenesis of these diseases. To determinate the effect of iron on oxidative stress and on cell survival pathways, such as AKT, ERK1/2 and DyrK1B, neuroblastoma SH-SY5Y cells were exposed to different concentration of FeCl2 (iron). We found that iron induced cell death in SH-SY5Y cells in a concentration-dependent manner. Detection of iNOS and 3-nitrotyrosine confirms the presence of increased nitrogen species. Furthermore, we found a decrease of catalase and protein arginine methyl-transferase 1 (PRMT1). Interestingly, iron increased the activity of ERK and AKT and reduced DyrK1B. Moreover, after FeCl2 treatment, the transcription factors c-Jun and pSmad1/5 were activated. These results indicate that the presence of high levels of iron increase the vulnerability of neurons to oxidative stress.
Collapse
Affiliation(s)
- Elizabeth Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico.
| |
Collapse
|
133
|
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 2016; 139 Suppl 1:179-197. [DOI: 10.1111/jnc.13425] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Abdel A. Belaidi
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| | - Ashley I. Bush
- The Florey Institute for Neuroscience and Mental Health; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
134
|
Li K, Reichmann H. Role of iron in neurodegenerative diseases. J Neural Transm (Vienna) 2016; 123:389-99. [PMID: 26794939 DOI: 10.1007/s00702-016-1508-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.
Collapse
Affiliation(s)
- Kai Li
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Heinz Reichmann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
135
|
Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, Sunshine J, Griswold M, Gulani V. Simultaneous T 1 and T 2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. ACTA ACUST UNITED AC 2015; 1:136-144. [PMID: 26824078 PMCID: PMC4727840 DOI: 10.18383/j.tom.2015.00166] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance fingerprinting (MRF) is an imaging tool that produces multiple magnetic resonance imaging parametric maps from a single scan. Herein we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. In total, 56 normal volunteers (24 men and 32 women) aged 11-71 years were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter (WM), deep gray nuclei, thalami, and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model that included either sex, age, or both, where variables were included if they contributed significantly (P < .05). In addition, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t tests. MRF-derived T1 and T2 in frontal WM regions increased with age, whereas occipital and temporal regions remained relatively stable. Deep gray nuclei such as substantia nigra, were found to have age-related decreases in relaxometry. Differences in sex were observed in T1 and T2 of temporal regions, the cerebellum, and pons. Men were found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between the genu and splenium of the corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification measures relaxometry trends in healthy individuals that are in agreement with the current understanding of neurobiology and has the ability to uncover additional patterns that have not yet been explored.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Alice Yu
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Matthew Rogers
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yiying Liu
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Schluchter
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jeffrey Sunshine
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
136
|
|
137
|
Pavlin M, Repič M, Vianello R, Mavri J. The Chemistry of Neurodegeneration: Kinetic Data and Their Implications. Mol Neurobiol 2015; 53:3400-3415. [PMID: 26081152 DOI: 10.1007/s12035-015-9284-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
We collected experimental kinetic rate constants for chemical processes responsible for the development and progress of neurodegeneration, focused on the enzymatic and non-enzymatic degradation of amine neurotransmitters and their reactive and neurotoxic metabolites. A gross scheme of neurodegeneration on the molecular level is based on two pathways. Firstly, reactive species oxidise heavy atom ions, which enhances the interaction with alpha-synuclein, thus promoting its folding to the beta form and giving rise to insoluble amyloid plaques. The latter prevents the function of vesicular transport leading to gradual neuronal death. In the second pathway, radical species, OH(·) in particular, react with the methylene groups of the apolar part of the lipid bilayer of either the cell or mitochondrial wall, resulting in membrane leakage followed by dyshomeostasis, loss of resting potential and neuron death. Unlike all other central neural system (CNS)-relevant biogenic amines, dopamine and noradrenaline are capable of a non-enzymatic auto-oxidative reaction, which produces hydrogen peroxide. This reaction is not limited to the mitochondrial membrane where scavenging enzymes, such as catalase, are located. On the other hand, dopamine and its metabolites, such as dopamine-o-quinone, dopaminechrome, 5,6-dihydroxyindole and indo-5,6-quinone, also interact directly with alpha-synuclein and reversibly inhibit plaque formation. We consider the role of the heavy metal ions, selected scavengers and scavenging enzymes, and discuss the relevance of certain foods and food supplements, including curcumin, garlic, N-acetyl cysteine, caffeine and red wine, as well as the long-term administration of non-steroid anti-inflammatory drugs and occasional tobacco smoking, that could all act toward preventing neurodegeneration. The current analysis can be employed in developing strategies for the prevention and treatment of neurodegeneration, and, hopefully, aid in the building of an overall kinetic molecular model of neurodegeneration itself.
Collapse
Affiliation(s)
- Matic Pavlin
- Computational Biophysics, German Research School for Simulation Sciences, Joint Venture of RWTH Aachen University and Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Biomedicine, Institute for Advanced Simulations (IAS-5/INM-9), 52425, Jülich, Germany
| | - Matej Repič
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Robert Vianello
- Quantum Organic Chemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
138
|
Hernández-Tamames JA, Mato Abad V, García-Álvarez R, González-Zabaleta J, Pereira Loureiro J, Álvarez-Linera J. Effect of Water T2 Shortening in the Quantification of in-vitro Proton MR Spectroscopy. J Neuroimaging 2015; 26:58-61. [DOI: 10.1111/jon.12258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/27/2015] [Accepted: 04/04/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Virginia Mato Abad
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO); Universidad Rey Juan Carlos; Madrid Spain
| | | | - Javier González-Zabaleta
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO); Universidad Rey Juan Carlos; Madrid Spain
| | - Javier Pereira Loureiro
- Laboratorio de Imagen Médica y Diagnóstico Radiológico (IMEDIR); Universidad de A Coruña; A Coruña Spain
| | | |
Collapse
|
139
|
Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin – A critical review. J Chem Neuroanat 2015; 64-65:20-32. [DOI: 10.1016/j.jchemneu.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
|
140
|
Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson's and Wilson's diseases. J Trace Elem Med Biol 2015; 31:193-203. [PMID: 24954801 DOI: 10.1016/j.jtemb.2014.05.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/05/2014] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
Impaired cellular homeostasis of metals, particularly of Cu, Fe and Mn may trigger neurodegeneration through various mechanisms, notably induction of oxidative stress, promotion of α-synuclein aggregation and fibril formation, activation of microglial cells leading to inflammation and impaired production of metalloproteins. In this article we review available studies concerning Fe, Cu and Mn in Parkinson's disease and Wilson's disease. In Parkinson's disease local dysregulation of iron metabolism in the substantia nigra (SN) seems to be related to neurodegeneration with an increase in SN iron concentration, accompanied by decreased SN Cu and ceruloplasmin concentrations and increased free Cu concentrations and decreased ferroxidase activity in the cerebrospinal fluid. Available data in Wilson's disease suggest that substantial increases in CNS Cu concentrations persist for a long time during chelating treatment and that local accumulation of Fe in certain brain nuclei may occur during the course of the disease. Consequences for chelating treatment strategies are discussed.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Czech Republic; Institute of Neuroradiology, University Medicine Göttingen, Göttingen, Germany.
| | - Per M Roos
- Department of Neurology, Division of Clinical Neurophysiology, Oslo University Hospital, Oslo, Norway; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Trond Peder Flaten
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Aaseth
- Department of Medicine, Innlandet Hospital Trust, Kongsvinger Hospital Division, Kongsvinger, Norway
| |
Collapse
|
141
|
Sukhorukova EG, Alekseeva OS, Korzhevsky DE. Catecholaminergic neurons of mammalian brain and neuromelanin. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014050020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014; 13:1045-60. [PMID: 25231526 DOI: 10.1016/s1474-4422(14)70117-6] [Citation(s) in RCA: 1271] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
Collapse
Affiliation(s)
- Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK; Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Robert R Crichton
- Faculte de Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
143
|
Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014; 6:748-73. [PMID: 24549403 DOI: 10.1039/c3mt00347g] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
"Serum ferritin" presents a paradox, as the iron storage protein ferritin is not synthesised in serum yet is to be found there. Serum ferritin is also a well known inflammatory marker, but it is unclear whether serum ferritin reflects or causes inflammation, or whether it is involved in an inflammatory cycle. We argue here that serum ferritin arises from damaged cells, and is thus a marker of cellular damage. The protein in serum ferritin is considered benign, but it has lost (i.e. dumped) most of its normal complement of iron which when unliganded is highly toxic. The facts that serum ferritin levels can correlate with both disease and with body iron stores are thus expected on simple chemical kinetic grounds. Serum ferritin levels also correlate with other phenotypic readouts such as erythrocyte morphology. Overall, this systems approach serves to explain a number of apparent paradoxes of serum ferritin, including (i) why it correlates with biomarkers of cell damage, (ii) why it correlates with biomarkers of hydroxyl radical formation (and oxidative stress) and (iii) therefore why it correlates with the presence and/or severity of numerous diseases. This leads to suggestions for how one might exploit the corollaries of the recognition that serum ferritin levels mainly represent a consequence of cell stress and damage.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
144
|
Hadzhieva M, Kirches E, Mawrin C. Review: iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 2014; 40:240-57. [PMID: 24164678 DOI: 10.1111/nan.12096] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/18/2013] [Indexed: 12/12/2022]
Abstract
Iron plays a role for the biogenesis of two important redox-reactive prosthetic groups of enzymes, iron sulphur clusters (ISC) and heme. A part of these biosynthetic pathways takes plays in the mitochondria. While several important proteins of cellular iron uptake and storage and of mitochondrial iron metabolism are well-characterized, limited knowledge exists regarding the mitochondrial iron importers (mitoferrins). A disturbed distribution of iron, hampered Fe-dependent biosynthetic pathways and eventually oxidative stress resulting from an increased labile iron pool are suggested to play a role in several neurodegenerative diseases. Friedreich's ataxia is associated with mitochondrial iron accumulation and hampered ISC/heme biogenesis due to reduced frataxin expression, thus representing a monogenic mitochondrial disorder, which is clearly elicited solely by a disturbed iron metabolism. Less clear are the controversially discussed impacts of iron dysregulation and iron-dependent oxidative stress in the most common neurodegenerative disorders, i.e. Alzheimer's disease (AD) and Parkinson's disease (PD). Amyotrophic lateral sclerosis (ALS) may be viewed as a disease offering a better support for a direct link between iron, oxidative stress and regional neurodegeneration. Altogether, despite significant progress in molecular knowledge, the true impact of iron on the sporadic forms of AD, PD and ALS is still uncertain. Here we summarize the current knowledge of iron metabolism disturbances in neurodegenerative disorders.
Collapse
Affiliation(s)
- M Hadzhieva
- Department of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | |
Collapse
|
145
|
Glass K, Rengifo R, Porkka F, Simon JD. Probing the surface calcium binding sites of melanosomes using molecular rulers. J Phys Chem B 2014; 118:14110-4. [PMID: 25157748 DOI: 10.1021/jp505384j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanosomes have the capacity to bind significant concentrations of calcium, suggesting there are surface binding sites that enable cations to access the interior of fully pigmented melanosomes. The surface of melanosomes is known to contain significant concentrations of carboxylate groups which likely are the initial biding sites for calcium, but their arrangement on the surface of the melanosome is not known. In various calcium proteins, a bidentate coordination by two carboxylate groups is the most common structure. In this study, we determine the distance between neighboring surface carboxylic acid groups by examining the binding of a series of diamines (+)H3N(CH2)mNH3(+) (m = 1-5) to melanosomes isolated from the ink sacs of Sepia officinalis and bovine choroid tissue. Of these amines, ethylenediamine (m = 2) shows optimal bidentate binding, revealing a narrow distribution of distances between neighboring carboxylic acid groups, ∼480 pm, similar to that found in proteins for calcium binding motifs involving two carboxylate groups.
Collapse
Affiliation(s)
- Keely Glass
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | | | | | | |
Collapse
|
146
|
Modi G, Voshavar C, Gogoi S, Shah M, Antonio T, Reith MEA, Dutta AK. Multifunctional D2/D3 agonist D-520 with high in vivo efficacy: modulator of toxicity of alpha-synuclein aggregates. ACS Chem Neurosci 2014; 5:700-17. [PMID: 24960209 DOI: 10.1021/cn500084x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have developed a series of dihydroxy compounds and related analogues based on our hybrid D2/D3 agonist molecular template to develop multifunctional drugs for symptomatic and neuroprotective treatment for Parkinson's disease (PD). The lead compound (-)-24b (D-520) exhibited high agonist potency at D2/D3 receptors and produced efficacious activity in the animal models for PD. The data from thioflavin T (ThT) assay and from transmission electron microscopy (TEM) analysis demonstrate that D-520 is able to modulate aggregation of alpha-synuclein (αSN). Additionally, coincubation of D-520 with αSN is able to reduce toxicity of preformed aggregates of αSN compared to control αSN alone. Finally, in a neuroprotection study with dopaminergic MN9D cells, D-520 clearly demonstrated the effect of neuroprotection from toxicity of 6-hydroxydopamine. Thus, compound D-520 possesses properties characteristic of multifunctionality conducive to symptomatic and neuroprotective treatment of PD.
Collapse
Affiliation(s)
- Gyan Modi
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Chandrashekhar Voshavar
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanjib Gogoi
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Mrudang Shah
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | - Aloke K. Dutta
- Department
of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
147
|
Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI, Finkelstein DI. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson's disease. Mol Neurodegener 2014; 9:27. [PMID: 25011704 PMCID: PMC4114139 DOI: 10.1186/1750-1326-9-27] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/01/2014] [Indexed: 01/16/2023] Open
Abstract
Background The substantia nigra (SN) midbrain nucleus is constitutively iron rich. Iron levels elevate further with age, and pathologically in Parkinson’s disease (PD). Iron accumulation in PD SN involves dysfunction of ceruloplasmin (CP), which normally promotes iron export. We previously showed that ceruloplasmin knockout (CP KO) mice exhibit Parkinsonian neurodegeneration (~30% nigral loss) by 6 months, which is prevented by iron chelation. Here, we explored whether known iron-stressors of the SN (1) aging and (2) MPTP, would exaggerate the lesion severity of CP KO mice. Findings We show that while 5 month old CP KO mice exhibited nigral iron elevation and loss of SN neurons, surprisingly, aging CP KO mice to 14 months did not exacerbate iron elevation or SN neuronal loss. Unlike young mice, iron chelation therapy in CP KO mice between 9–14 months did not rescue neuronal loss. MPTP exaggerated iron elevation in young CP KO mice but did not increase cell death when compared to WTs. Conclusions We conclude that there may exist a proportion of substantia nigra neurons that depend on CP for protection against iron neurotoxicity and could be protected by iron-based therapeutics. Death of the remaining neurons in Parkinson’s disease is likely caused by parallel disease mechanisms, which may call for additional therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David I Finkelstein
- Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
148
|
Wong BX, Duce JA. The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 2014; 5:81. [PMID: 24795635 PMCID: PMC4001010 DOI: 10.3389/fphar.2014.00081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
As with most bioavailable transition metals, iron is essential for many metabolic processes required by the cell but when left unregulated is implicated as a potent source of reactive oxygen species. It is uncertain whether the brain’s evident vulnerability to reactive species-induced oxidative stress is caused by a reduced capability in cellular response or an increased metabolic activity. Either way, dys-regulated iron levels appear to be involved in oxidative stress provoked neurodegeneration. As in peripheral iron management, cells within the central nervous system tightly regulate iron homeostasis via responsive expression of select proteins required for iron flux, transport and storage. Recently proteins directly implicated in the most prevalent neurodegenerative diseases, such as amyloid-β precursor protein, tau, α-synuclein, prion protein and huntingtin, have been connected to neuronal iron homeostatic control. This suggests that disrupted expression, processing, or location of these proteins may result in a failure of their cellular iron homeostatic roles and augment the common underlying susceptibility to neuronal oxidative damage that is triggered in neurodegenerative disease.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| |
Collapse
|
149
|
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 2014; 129:898-915. [PMID: 24548101 DOI: 10.1111/jnc.12686] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ-1 (PARK7), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1), serine/threonine-protein kinase (PINK-1), leucine-rich repeat kinase 2 (LRRK2), cation-transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o-quinone, aminochrome and 5,6-indolequinone are formed. However, both dopamine o-quinone and 5,6-indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o-quinone, aminochrome and 5,6-indolequinone polymerization to neuromelanin and (iii) two-electron reduction of aminochrome catalyzed by DT-diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context. Dopamine oxidation to dopamine o-quinone, aminochrome and 5,6-indolequinone plays an important role in neurodegeneration in Parkinson's disease since they induce mitochondria and protein degradation dysfunction; formation of neurotoxic alpha synuclein protofibrils and oxidative stress. However, the cells have a protective system against dopamine oxidation composed by dopamine uptake mediated by Vesicular monoaminergic transporter-2 (VMAT-2), neuromelanin formation, two-electron reduction and GSH-conjugation mediated by Glutathione S-transferase M2-2 (GSTM2).
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
150
|
Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581256. [PMID: 24527451 PMCID: PMC3914334 DOI: 10.1155/2014/581256] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.
Collapse
|