101
|
Elmowafy M, Alhakamy NA, Shalaby K, Alshehri S, Ali HM, Mohammed EF, Alruwaili NK, Zafar A. Hybrid polylactic acid/Eudragit L100 nanoparticles: A promising system for enhancement of bioavailability and pharmacodynamic efficacy of luteolin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
102
|
Kakavas S, Karayiannis D, Mastora Z. The Complex Interplay between Immunonutrition, Mast Cells, and Histamine Signaling in COVID-19. Nutrients 2021; 13:nu13103458. [PMID: 34684460 PMCID: PMC8537261 DOI: 10.3390/nu13103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing need for new therapeutic modalities against SARS-CoV-2 infection. Mast cell histamine has been implicated in the pathophysiology of COVID-19 as a regulator of proinflammatory, fibrotic, and thrombogenic processes. Consequently, mast cell histamine and its receptors represent promising pharmacological targets. At the same time, nutritional modulation of immune system function has been proposed and is being investigated for the prevention of COVID-19 or as an adjunctive strategy combined with conventional therapy. Several studies indicate that several immunonutrients can regulate mast cell activity to reduce the de novo synthesis and/or release of histamine and other mediators that are considered to mediate, at least in part, the complex pathophysiology present in COVID-19. This review summarizes the effects on mast cell histamine of common immunonutrients that have been investigated for use in COVID-19.
Collapse
Affiliation(s)
- Sotirios Kakavas
- Critical Care Department, “Sotiria” General Hospital of Chest Diseases, 152 Mesogeion Avenue, 11527 Athens, Greece;
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, Evangelismos General Hospital of Athens, Ypsilantou 45-47, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035; Fax: +30-213-2041385
| | - Zafeiria Mastora
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
103
|
Sorokina M, McCaffrey KS, Deaton EE, Ma G, Ordovás JM, Perkins-Veazie PM, Steinbeck C, Levi A, Parnell LD. A Catalog of Natural Products Occurring in Watermelon- Citrullus lanatus. Front Nutr 2021; 8:729822. [PMID: 34595201 PMCID: PMC8476801 DOI: 10.3389/fnut.2021.729822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | | | - Erin E. Deaton
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Guoying Ma
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Penelope M. Perkins-Veazie
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | - Amnon Levi
- United States Department of Agriculture (USDA), Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, United States
| | - Laurence D. Parnell
- United States Department of Agriculture (USDA), Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
104
|
Diotallevi C, Gaudioso G, Fava F, Angeli A, Lotti C, Vrhovsek U, Rinott E, Shai I, Gobbetti M, Tuohy K. Measuring the effect of Mankai® (Wolffia globosa) on the gut microbiota and its metabolic output using an in vitro colon model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
105
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
106
|
Lee S, Ha J, Park J, Kang E, Jeon SH, Han SB, Ningsih S, Paik JH, Cho S. Antioxidant and Anti-Inflammatory Effects of Bischofia javanica (Blume) Leaf Methanol Extracts through the Regulation of Nrf2 and TAK1. Antioxidants (Basel) 2021; 10:antiox10081295. [PMID: 34439543 PMCID: PMC8389227 DOI: 10.3390/antiox10081295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Bischofia javanica (Blume) has been traditionally used to treat inflammatory diseases such as tonsillitis and ulcers throughout Asia, including China, Indonesia, and the Philippines: however, the molecular mechanisms by which B. javanica exerts its antioxidant and anti-inflammatory properties remain largely unknown. In this study, we analyzed the antioxidant and anti-inflammatory mechanisms of methanol extracts of B. javanica leaves (MBJ) in vitro and in vivo. MBJ decreased nitric oxide (NO) production and the expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The observed suppression of inflammatory responses by MBJ was correlated with an inhibition of the nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathways. Additionally, MBJ induced nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that upregulates the expression of anti-inflammatory and antioxidant genes. Furthermore, MBJ exhibited antioxidant and anti-inflammatory effects in an acute hepatitis mouse model. In conclusion, our results confirm the medicinal properties of B. javanica, and therefore MBJ could be applied to improve inflammatory and redox imbalances in different types of pathologies.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
| | - Sung-Hyun Jeon
- Biomedical Mass Spectrometry Lab, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.-H.J.); (S.B.H.)
| | - Sang Beom Han
- Biomedical Mass Spectrometry Lab, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.-H.J.); (S.B.H.)
| | - Sri Ningsih
- Center for Pharmaceutical and Medical Technology, Deputy for Agroindustrial Technology and Biotechnology, The Agency for the Assessment and Application of Technology (BPPT), Jl. Raya Puspiptek, Kota Tangerang Selatan 15310, Banten, Indonesia;
| | - Jin Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.L.); (J.H.); (J.P.); (E.K.)
- Correspondence: ; Tel.: +82-2-820-5595; Fax: +82-2-816-7338
| |
Collapse
|
107
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Calabrese V. Luteolin and hormesis. Mech Ageing Dev 2021; 199:111559. [PMID: 34403687 DOI: 10.1016/j.mad.2021.111559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022]
Abstract
The present paper provides the first integrated assessment of the capacity of luteolin to induce hormetic dose responses. It was shown that luteolin induced hormetic responses in multiple biological systems, including enhancing neuroprotection in various experimental model disease systems, improving wounding healing, especially in experimental models of high-risk population subgroups, such as diabetics, as well as enhancing osteogenesis in models of osteoporosis. The mechanistic basis for the luteolin-induced hormetic dose responses has been demonstrated to commonly involve the upregulation of the nuclear factor erythroid-derived 2-like 2 (Nrf2), which mediates the extensive range of anti-inflammatory effects induced by luteolin in multiple cell types and organ systems.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences,Morrill I - N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
108
|
Bitchagno GTM, Koffi JG, Simo IK, Kagho DUK, Ngouela AS, Lenta BN, Sewald N. LC-ToF-ESI-MS Patterns of Hirsutinolide-like Sesquiterpenoids Present in the Elephantopus mollis Kunth Extract and Chemophenetic Significance of Its Chemical Constituents. Molecules 2021; 26:molecules26164810. [PMID: 34443397 PMCID: PMC8399899 DOI: 10.3390/molecules26164810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
A total of nine sesquiterpenoid lactones together with phenolic compounds and other terpenes were identified from the crude methanol extract of Elephantopus mollis Kunth. Compounds were isolated using different chromatographic techniques and their structures were determined by NMR and IR spectroscopy as well as mass spectrometry. The structures of some detected compounds were assigned based on LC-ToF-ESI-MS screening of main fractions/subfractions from flash chromatography and comparison with isolated analogues as standards. The findings revealed not only the in-source loss of water as the base peak in hirsutinolides but also the in-source loss of corresponding alcohol when the oxygen at position 1 is alkylated. The present study also draws up a complement of data with respect to hirsutinolide-like sesquiterpene lactones whose LC-MS characteristics are not available in the literature. The chemophenetic significance is also discussed. Some of the isolated compounds were reported for the first time to be found in the species, the genus as well as the plant family. The medium-polar fractions of the crude extract, also containing the larger amount of sesquiterpenoid lactones, exhibited activity both against a cancer cell line and bacterial strains. Isolated lactones were also active against the cancer cell line, while the chlorogenic derivatives also valuable in Elephantopus genus showed potent radical scavenging activity. This is the first report of cytotoxic and antibacterial activities of our samples against the tested strains and cell line. The present study follows the ongoing research project dealing with the characterization of taxa with antibacterial and antiparasitic activities from Cameroonian pharmacopeia.
Collapse
Affiliation(s)
- Gabin Thierry M. Bitchagno
- Department of Chemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon; (I.K.S.); (A.S.N.)
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33501 Bielefeld, Germany;
- Correspondence:
| | - Jean Garba Koffi
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47 Yaoundé, Cameroon; (J.G.K.); (B.N.L.)
| | - Ingrid Konga Simo
- Department of Chemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon; (I.K.S.); (A.S.N.)
| | - Donald Ulrich K. Kagho
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon;
| | - Augustin Silvere Ngouela
- Department of Chemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon; (I.K.S.); (A.S.N.)
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47 Yaoundé, Cameroon; (J.G.K.); (B.N.L.)
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33501 Bielefeld, Germany;
| |
Collapse
|
109
|
Dried Destoned Virgin Olive Pomace: A Promising New By-Product from Pomace Extraction Process. Molecules 2021; 26:molecules26144337. [PMID: 34299612 PMCID: PMC8305014 DOI: 10.3390/molecules26144337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
At present the olive oil industry produces large amounts of secondary products once considered waste or by-products. In this paper, we present, for the first time, a new interesting olive by-product named “dried destoned virgin olive pomace” (DDVOP), produced by the pomace oil industry. The production of DDVOP is possible thanks to the use of a new system that differs from the traditional ones by having the dryer set at a lower temperature value, 350 °C instead of 550 °C, and by avoiding the solvent extraction phase. In order to evaluate if DDVOP may be suitable as a new innovative feeding integrator for animal feed, its chemical characteristics were investigated. Results demonstrated that DDVOP is a good source of raw protein and precious fiber; that it is consistent in total phenols (6156 mg/kg); rich in oleic (72.29%), linoleic (8.37%) acids and tocopherols (8.80 mg/kg). A feeding trial was, therefore, carried out on sheep with the scope of investigating the influence of the diet on the quality of milk obtained from sheep fed with DDVOP-enriched feed. The resulting milk was enriched in polyunsaturated (0.21%) and unsaturated (2.42%) fatty acids; and had increased levels of phenols (10.35 mg/kg) and tocopherols (1.03 mg/kg).
Collapse
|
110
|
Melguizo-Rodríguez L, de Luna-Bertos E, Ramos-Torrecillas J, Illescas-Montesa R, Costela-Ruiz VJ, García-Martínez O. Potential Effects of Phenolic Compounds That Can Be Found in Olive Oil on Wound Healing. Foods 2021; 10:1642. [PMID: 34359512 PMCID: PMC8307686 DOI: 10.3390/foods10071642] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
The treatment of tissue damage produced by physical, chemical, or mechanical agents involves considerable direct and indirect costs to health care systems. Wound healing involves a series of molecular and cellular events aimed at repairing the defect in tissue integrity. These events can be favored by various natural agents, including the polyphenols in extra virgin olive oil (EVOO). The objective of this study was to review data on the potential effects of different phenolic compounds that can also be found in EVOO on wound healing and closure. Results of in vitro and animal studies demonstrate that polyphenols from different plant species, also present in EVOO, participate in different aspects of wound healing, accelerating this process through their anti-inflammatory, antioxidant, and antimicrobial properties and their stimulation of angiogenic activities required for granulation tissue formation and wound re-epithelialization. These results indicate the potential usefulness of EVOO phenolic compounds for wound treatment, either alone or in combination with other therapies. Human studies are warranted to verify this proposition.
Collapse
Affiliation(s)
- Lucia Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Rebeca Illescas-Montesa
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Victor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (L.M.-R.); (E.d.L.-B.); (J.R.-T.); (R.I.-M.); (O.G.-M.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4 planta, 18012 Granada, Spain
| |
Collapse
|
111
|
Piva RC, Verdan MH, Branquinho LS, Kassuya CAL, Cardoso CAL. Anti-inflammatory activity and chemical composition of aqueous extract and essential oil from leaves of Ocimum selloi Benth. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114136. [PMID: 33892069 DOI: 10.1016/j.jep.2021.114136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The population uses the aqueous extract as tea from leaves of Ocimum selloi Benth. (alfavaca) for pain and inflammation issues. This study is motivated by a lack of data about inflammation properties of O. selloi. AIM OF THE STUDY This study investigated the chemical composition and anti-inflammatory activity, in mice models, of the aqueous extract (OSAE) and essential oil (OSEO) obtained from leaves of O. selloi. MATERIALS AND METHODS The antioxidant activity and total phenolic content were evaluated for samples, although chemical composition was obtained by U-HPLC-DAD-ESI-MS for OSAE and GC-MS for OSEO. OSAE and OSEO were tested orally at doses of 30, 100 and 300 mg/kg at the carrageenan-induced pleurisy and paw edema, also mechanical hyperalgesia, in mice. RESULTS Four glycosylated flavonoids and one organic acid were identified in OSAE, and nine substances in OSEO, the two majoritarian are E-anethole and methyl chavicol. Oral treatments with OSAE and OSEO significantly inhibited the carrageenan-induced pleurisy in female Swiss mice, besides OSAE and OSEO significantly prevented paw edema (after 1, 2, and 4 h), mechanical hyperalgesia (after 3 and 4 h), and cold hyperalgesia 3 h after carrageenan model in male Swiss mice. The dose of 300 mg/kg of OSEO reduced cold hyperalgesia 4 h after carrageenan. CONCLUSION The results evidenced the anti-inflammatory, anti-edematogenic, anti-hyperalgesic, and anti-nociceptive potentials of both materials obtained from leaves of O. selloi, mainly OSAE, supporting the popular use of this species.
Collapse
Affiliation(s)
- Raul Cremonezi Piva
- Postgraduate Program in Chemistry, Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil.
| | - Maria Helena Verdan
- Postgraduate Program in Chemistry, Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil.
| | - Lidiane Schultz Branquinho
- Postgraduate Program in Health Sciences, Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil.
| | - Cândida Aparecida Leite Kassuya
- Postgraduate Program in Health Sciences, Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Postgraduate Program in Chemistry, Federal University of Grande Dourados (UFGD), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil; Center of Studies in Natural Resources, State University of Mato Grosso Do Sul (UEMS), Rodovia Dourados/Itahum, Km 12, Caixa Postal 364, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
112
|
Luteolin: a blocker of SARS-CoV-2 cell entry based on relaxed complex scheme, molecular dynamics simulation, and metadynamics. J Mol Model 2021; 27:221. [PMID: 34236507 PMCID: PMC8264176 DOI: 10.1007/s00894-021-04833-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Natural products have served human life as medications for centuries. During the outbreak of COVID-19, a number of naturally derived compounds and extracts have been tested or used as potential remedies against COVID-19. Tetradenia riparia extract is one of the plant extracts that have been deployed and claimed to manage and control COVID-19 by some communities in Tanzania and other African countries. The active compounds isolated from T. riparia are known to possess various biological properties including antimalarial and antiviral. However, the underlying mechanism of the active compounds against SARS-CoV-2 remains unknown. Results in the present work have been interpreted from the view point of computational methods including molecular dynamics, free energy methods, and metadynamics to establish the related mechanism of action. Among the constituents of T. riparia studied, luteolin inhibited viral cell entry and was thermodynamically stable. The title compound exhibit residence time and unbinding kinetics of 68.86 ms and 0.014 /ms, respectively. The findings suggest that luteolin could be potent blocker of SARS-CoV-2 cell entry. The study shades lights towards identification of bioactive constituents from T. riparia against COVID-19, and thus bioassay can be carried out to further validate such observations.
Collapse
|
113
|
Huai Y, Zhang WJ, Wang W, Dang K, Jiang SF, Li DM, Li M, Hao Q, Miao ZP, Li Y, Qian AR. Systems pharmacology dissection of action mechanisms for herbs in osteoporosis treatment. CHINESE HERBAL MEDICINES 2021; 13:313-331. [PMID: 36118922 PMCID: PMC9476722 DOI: 10.1016/j.chmed.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.
Collapse
|
114
|
Lo S, Leung E, Fedrizzi B, Barker D. Syntheses of mono-acylated luteolin derivatives, evaluation of their antiproliferative and radical scavenging activities and implications on their oral bioavailability. Sci Rep 2021; 11:12595. [PMID: 34131251 PMCID: PMC8206097 DOI: 10.1038/s41598-021-92135-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/30/2023] Open
Abstract
Luteolin is a flavonoid found in a wide range of plant materials, including commonly eaten fruits and vegetables. It displays a wide range of biological activities but is known to have poor bioavailability. In this study, ten different mono-acyl (nine 5-O-acyl and one 7-O-acyl) derivatives of luteolin were synthesised for the purpose of improving bioactivity and bioavailability, and therefore enhance their therapeutic potential. The antiproliferative activity of these derivatives was assessed against the HCT116 colon cancer and MDA-MB-231 breast cancer cell lines using a 3[H] thymidine incorporation assay. The radical scavenging activity of these derivatives against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical using Trolox as a standard, was also assessed. Some of these derivatives were found to have improved antiproliferative activity with comparable radical scavenging activity compared to luteolin. Increased lipophilicity has been shown to increase the bioavailability of flavonoids implying these analogues will also have increased bioavailability.
Collapse
Affiliation(s)
- Stephen Lo
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand.
| |
Collapse
|
115
|
Cadoná FC, de Souza DV, Fontana T, Bodenstein DF, Ramos AP, Sagrillo MR, Salvador M, Mota K, Davidson CB, Ribeiro EE, Andreazza AC, Machado AK. Açaí (Euterpe oleracea Mart.) as a Potential Anti-neuroinflammatory Agent: NLRP3 Priming and Activating Signal Pathway Modulation. Mol Neurobiol 2021; 58:4460-4476. [PMID: 34021869 DOI: 10.1007/s12035-021-02394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Neurological disorders have been demonstrated to be associated with mitochondrial dysfunction. This impairment may lead to oxidative stress and neuroinflammation, specifically promoted by NLRP3 expression. Açaí (Euterpe oleracea Mart.) has been studied in this field, since it presents important biological activities. We investigated açaí extract's anti-neuroinflammatory capacity, through NLRP3 inflammasome modulation. Microglia (EOC 13.31) were exposed to LPS and nigericin, as agents of inflammatory induction, and treated with açaí extract. Additionally, we used lithium (Li) as an anti-inflammatory control. Three different experiment models were conducted: (1) isolated NLRP3 priming and activation signals; (2) combined NLRP3 priming and activation signals followed by açaí extract as a therapeutic agent; and (3) combined NLRP3 priming and activation signals with açaí extract as a preventive agent. Cells exposed to 0.1 µg/mL of LPS presented high proliferation and increased levels of NO, and ROS, while 0.1 µg/mL of açaí extract was capable to reduce cellular proliferation and recover levels of NO and ROS. Primed and activated cells presented increased levels of NLRP3, caspase-1, and IL-1β, while açaí, Li, and orientin treatments reversed this impairment. We found that açaí, Li, and orientin were effective prophylactic treatments. Preventative treatment with Li and orientin was unable to avoid overexpression of IL-1β compared to the positive control. However, orientin downregulated NLRP3 and caspase-1. Lastly, primed and activated cells impaired ATP production, which was prevented by pre-treatment with açaí, Li, and orientin. In conclusion, we suggest that açaí could be a potential agent to treat or prevent neuropsychiatric diseases related to neuroinflammation.
Collapse
Affiliation(s)
- Francine Carla Cadoná
- Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| | - Diulie Valente de Souza
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Tuyla Fontana
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - David Frederick Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | | | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Kennya Mota
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | | | - Euler Esteves Ribeiro
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
116
|
Li T, Zou QP, Huang F, Cheng GG, Mao ZW, Wang T, Dong FW, Li BJ, He HP, Li YP. Flower extract of Caragana sinica. ameliorates DSS-induced ulcerative colitis by affecting TLR4/NF- κB and TLR4/MAPK signaling pathway in a mouse model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:595-603. [PMID: 34249260 PMCID: PMC8244599 DOI: 10.22038/ijbms.2021.53847.12106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/17/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES This study aimed to find out the protective effects and preliminary mechanisms of the flower extract of Caragana sinica (FEC) on dextran sulfate sodium salt (DSS)-induced colitis. MATERIALS AND METHODS The ulcerative colitis models of mice induced by 3% DSS were established and treated with FEC. Body weight changes, disease activity index (DAI), colon histopathological score, anti-oxidant ability, and the level of inflammatory cytokines were determined. The expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) were assessed in colonic tissue by immunohistochemical staining. Western blot was used to analyze the expression of TLR4/ nuclear factor kappa-B (NF-κB) and TLR4/ mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS FEC significantly prevented body weight loss and colonic shortening and reduced the disease activity index and histopathological score (P<0.05). Moreover, FEC treatment remarkably down-regulated the levels of myeloperoxidase (MPO), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) and up-regulated the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and interleukin 10 (IL-10) in the colon of DSS mice (P<0.05). Furthermore, the expression of TLR4/NF-κB and TLR4/MAPK pathway-related proteins was inhibited by FEC (P<0.05). CONCLUSION Our findings demonstrated that FEC could serve as a potential therapeutic agent for treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ting Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Qiu-ping Zou
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Feng Huang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Gui-guang Cheng
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, People’s Republic of China
| | - Ze-wei Mao
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Ting Wang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Fa-wu Dong
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Bao-jing Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Hong-ping He
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Yan-ping Li
- Corresponding author: Yan-ping Li. College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China. Tel: +8613518719675.
| |
Collapse
|
117
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
118
|
Issinger OG, Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed Pharmacother 2021; 139:111650. [PMID: 33945911 DOI: 10.1016/j.biopha.2021.111650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases belong to the largest family of enzymes controlling every aspect of cellular activity including gene expression, cell division, differentiation and metabolism. They are part of major intracellular signalling pathways. Hence, it is not surprising that they are involved in the development of major diseases such as cardiovascular disorders, diabetes, dementia and, most importantly, cancer when they undergo mutations, modifications and unbalanced expression. This review will explore the possibility to draw a connection between the application of natural phytochemicals and the treatment of cancer. We have chosen to focus on the PI3K/AKT cellular signalling pathway which has been shown to be a major target by natural compounds in cell cultures and animal models.
Collapse
Affiliation(s)
- Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
119
|
J. Hashim F, Vichitphan S, Boonsiri P, Vichitphan K. Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells. PLANTS 2021; 10:plants10050889. [PMID: 33925070 PMCID: PMC8146478 DOI: 10.3390/plants10050889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023]
Abstract
The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric-reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 μmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) revealed MLE active compounds. Intracellular study by nitro-blue tetrazolium (NBT) test showed that MLE and VSE had high O2− scavenging (0.83 ± 0.09 vs. 0.98 ± 0.08 mg/mL, respectively). MLE had the highest ROS scavenging followed by PRE (0.71 ± 0.08 vs. 0.83 ± 0.08 mg/mL, respectively), by 2,7-dichlorodihydrofluorescein diacetate (DCFHDA) assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and neuroprotection tests on SHSY5Y showed that PRE had a better neuroprotective effect but higher cytotoxicity compared to MLE (viable cells 51% vs. 44%, IC50 1.92 ± 0.04 vs. 2.7 ± 0.2 mg/mL, respectively). In conclusion, among the studied plants, MLE has potential for developing as a neuroprotective agent.
Collapse
Affiliation(s)
- Farah J. Hashim
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad 10071, Iraq
| | - Sukanda Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kanit Vichitphan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
- Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +668-685-22929
| |
Collapse
|
120
|
Akter R, Chowdhury MAR, Rahman MH. Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer's Disease and their Antioxidant Activities. Curr Pharm Des 2021; 27:345-356. [PMID: 33138754 DOI: 10.2174/1381612826666201102102810] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
Aging is a normal human cycle and the most important risk factor for neurodegenerative diseases. Alternations in cells due to aging contribute to loss of the nutrient-sensing, cell function, increased oxidative stress, loss of the homeostasis cell, genomic instability, the build-up of malfunctioning proteins, weakened cellular defenses, and a telomere split. Disturbance of these essential cellular processes in neuronal cells can lead to life threats including Alzheimer's disease (AD), Huntington's disease (HD), Lewy's disease, etc. The most common cause of death in the elderly population is AD. Specific therapeutic molecules were created to alleviate AD's social, economic, and health burden. In clinical practice, almost every chemical compound was found to relieve symptoms only in palliative treatment. The reason behind these perfect medicines is that the current medicines are not effective in targeting the cause of this disease. In this paper, we explored the potential role of flavonoid and polyphenolic compounds, which could be the most effective preventative anti-Alzheimer's strategy.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | | | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, South Korea
| |
Collapse
|
121
|
Zuo W, Liu N, Zeng Y, Xiao Z, Wu K, Yang F, Li B, Song Q, Xiao Y, Liu Q. Luteolin Ameliorates Experimental Pulmonary Arterial Hypertension via Suppressing Hippo-YAP/PI3K/AKT Signaling Pathway. Front Pharmacol 2021; 12:663551. [PMID: 33935785 PMCID: PMC8082250 DOI: 10.3389/fphar.2021.663551] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Luteolin is a flavonoid compound with a variety of pharmacological effects. In this study, we explored the effects of luteolin on monocrotaline (MCT) induced rat pulmonary arterial hypertension (PAH) and underlying mechanisms. A rat PAH model was generated through MCT injection. In this model, luteolin improved pulmonary vascular remodeling and right ventricular hypertrophy, meanwhile, luteolin could inhibit the proliferation and migration of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB) in a dose-dependent manner. Moreover, our results showed that luteolin could downregulate the expression of LATS1 and YAP, decrease YAP nuclear localization, reduce the expression of PI3K, and thereby restrain the phosphorylation of AKT induced by PDGF-BB. In conclusion, luteolin ameliorated experimental PAH, which was at least partly mediated through suppressing HIPPO-YAP/PI3K/AKT signaling pathway. Therefore, luteolin might become a promising candidate for treatment of PAH.
Collapse
Affiliation(s)
- Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Yunhong Zeng
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Zhenghui Xiao
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Qingqing Song
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| |
Collapse
|
122
|
Liu J, Sun Y, Cheng M, Liu Q, Liu W, Gao C, Feng J, Jin Y, Tu L. Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech 2021; 22:133. [PMID: 33855636 DOI: 10.1208/s12249-021-02012-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/04/2021] [Indexed: 12/24/2022] Open
Abstract
Luteolin suffers from drawbacks like low solubility and bioavailability, thus hindering its application in the clinic. In this study, we employed sodium dodecyl sulfate (SDS), an efficient tight junction opening agent, to modify the surface of luteolin nanocrystals, aiming to enhance the bioavailability of luteolin (LUT) and luteolin nanocrystals (LNC). The particle sizes of SDS-modified luteolin nanocrystals (SLNC) were slightly larger than that of LNC, and the zeta potential of LNC and SLNC was -25.0 ± 0.7 mV and -43.5 ± 0.4 mV, respectively. Both LNC and SLNC exhibited enhanced saturation solubility and high stability in the liquid state. In the cellular study, we found that SDS has cytotoxicity on caco-2 cells and could open the tight junction of the caco-2 monolayer, which could lead to an enhanced transport of luteolin across the intestinal membrane. The bioavailability of luteolin was enhanced for 1.90-fold by luteolin nanocrystals, and after modification with SDS, the bioavailability was enhanced to 3.48-fold. Our experiments demonstrated that SDS could efficiently open the tight junction and enhance the bioavailability of luteolin thereafter, revealing the construction of SDS-modified nanocrystals is a good strategy for enhancing the oral bioavailability of poorly soluble drugs like luteolin.
Collapse
|
123
|
The Use of Traditional Chinese Medicine in Relieving EGFR-TKI-Associated Diarrhea Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5530898. [PMID: 33868436 PMCID: PMC8032531 DOI: 10.1155/2021/5530898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
In this study, the role of traditional Chinese medicine (TCM) in relieving epidermal growth factor receptor-tyrosine kinase inhibitor- (EGFR-TKI-) associated diarrhea was discussed by network pharmacology and data mining. Prediction of drug targets by introducing the EGFR-TKI molecular structures into the SwissTargetPrediction platform and diarrhea-related targets in the DrugBank, GeneCards, DisGeNET, and OMIM databases were obtained. Compounds in the drug-disease target intersection were screened by absorption, distribution, metabolism, and excretion parameters and Lipinski's rule in Traditional Chinese Medicine Systems Pharmacology. TCM-containing compounds were selected, and information on the property, taste, and meridian tropism of these TCMs was summarized and analyzed. A target-compound-TCM network diagram was constructed, and core targets, compounds, and TCMs were selected. The core targets and components were docked by AutoDock Vina (Version 1.1.2) to explore the target combinations of related compounds and evaluate the docking activity of related targets and compounds. Twenty-three potential therapeutic TCM targets for the treatment of EGFR-TKI-related diarrhea were obtained. There were 339 compounds acting on potential therapeutic targets, involving a total of 402 TCMs. The results of molecular docking showed good binding between the core targets and compounds, and the binding between the core targets and compounds was similar to that of the core target and the recommended drug loperamide. TCMs have multitarget characteristics and are present in a variety of compounds used for relieving EGFR-TKI-associated diarrhea. Antitumor activity and the efficacy of alleviating diarrhea are the pharmacological basis of combining TCMs with EGFR-TKI in the treatment of non-small-cell lung cancer. The core targets, compounds, and TCMs can provide data to support experimental and clinical studies on the relief of EGFR-TKI-associated diarrhea in the future.
Collapse
|
124
|
Novais C, Pereira C, Molina AK, Liberal Â, Dias MI, Añibarro-Ortega M, Alves MJ, Calhelha RC, Ferreira IC, Barros L. Bioactive and Nutritional Potential of Medicinal and Aromatic Plant (MAP) Seasoning Mixtures. Molecules 2021; 26:molecules26061587. [PMID: 33805649 PMCID: PMC7999629 DOI: 10.3390/molecules26061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal and aromatic plants (MAPs), worldwide appreciated and used as condiments, dyes, and preservatives, possess several biological properties that justify their continuous application in the food industry. In the present study, the nutritional and chemical profiles, as well as the bioactive properties of four combinations of condiments, sold for seasoning poultry, meat, fish, and salads, were evaluated. Twenty-five phenolic compounds (HPLC-DAD-ESI/MS) were identified, with apigenin-O-malonyl-pentoside-hexoside as the major compound detected in all extracts. Oxalic and citric acids were identified in all mixtures (UFLC-PDA), as well as all the four tocopherol isoforms (HPLC-fluorescence). Regarding bioactivities, the mixtures for meat and salads (TBARS) and meat and poultry (OxHLIA) stood out for their antioxidant potential, whereas for the anti-inflammatory and antitumor properties, the mixtures revealing the greatest results were those for poultry and salad, respectively. In terms of antimicrobial activity, all the mixtures revealed the capacity to inhibit the growth of some bacterial strains. In brief, condiment mixtures showed to be a good source of bioactive compounds, as they confer health benefits, validating the importance of their inclusion in the human diet as a good dietary practice.
Collapse
Affiliation(s)
| | - Carla Pereira
- Correspondence: (C.P.); (L.B.); Tel.: +351-2733-309-04 (C.P.); +351-2733-309-01 (L.B.)
| | | | | | | | | | | | | | | | - Lillian Barros
- Correspondence: (C.P.); (L.B.); Tel.: +351-2733-309-04 (C.P.); +351-2733-309-01 (L.B.)
| |
Collapse
|
125
|
Li X, He X, Chen S, Le Y, Bryant MS, Guo L, Witt KL, Mei N. The genotoxicity potential of luteolin is enhanced by CYP1A1 and CYP1A2 in human lymphoblastoid TK6 cells. Toxicol Lett 2021; 344:58-68. [PMID: 33727136 DOI: 10.1016/j.toxlet.2021.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (5,7,3',4'-tetrahydroxyflavone) belongs to the flavone subclass of flavonoids. Luteolin and its glycosides are present in many botanical families, including edible plants, fruits, and vegetables. While the beneficial properties of luteolin have been widely studied, fewer studies have investigated its toxicity. In the present study, using human lymphoblastoid TK6 cells and our newly developed TK6-derived cell lines that each stably express a single human cytochrome P450 (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C18, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7), we systematically evaluated luteolin-induced cytotoxicity and genotoxicity, and the role of specific CYPs in the bioactivation of luteolin. Treatments with luteolin for 4-24 h induced cytotoxicity, apoptosis, DNA damage, and chromosome damage in a concentration-dependent manner. Subsequently, we observed that luteolin-induced cytotoxicity and genotoxicity, measured by the high-throughput micronucleus assay, were significantly increased in TK6 cells transduced with CYP1A1 and 1A2. In addition, key apoptosis and DNA damage biomarkers, including cleaved PARP-1, cleaved caspase-3, and phosphorylated histone 2AX (γH2A.X), were all significantly increased in the CYP1A1- and 1A2-expressing cells compared with the empty vector controls. Analysis by LC-MS/MS revealed that TK6 cells biotransformed the majority of luteolin into diosmetin, a less toxic O-methylated flavone, after 24 h; the presence of CYP1A1 and 1A2 partially reversed this process. Altogether, these results indicate that metabolism by CYP1A1 and 1A2 enhanced the toxicity of luteolin in vitro. Our results further support the utility of our TK6 cell system for identification of the specific CYPs responsible for chemical bioactivation and toxicity potential.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Matthew S Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
126
|
Exploring the Mechanism of Action of Banxia Baizhu Tianma Decoction against Preeclampsia by a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021. [DOI: 10.1155/2021/8843833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Banxia Baizhu Tianma Decoction (BBTD) is a traditional Chinese medicine (TCM) and has been revealed to promote symptoms of preeclampsia (PE) in clinical practice. However, its mechanisms of action and molecular targets for the treatment of PE are not clear. Method. The potential mechanisms of the BBTD against PE were explored using network pharmacology approach and bioinformatic analysis. The PE animal model was induced by phosphatidylserine/dioleoyl-phosphatidylcholine. The effects of BBTD in the treatment of PE were evaluated in vitro and in vivo. The expressions of RNA and proteins were measured by quantitative real-time polymerase chain reaction and western blotting, respectively. The cell behavior was detected using the MMT assay, Transwell assay, and flow cytometry assay. Results. A total of 173 active compounds of BBTD with 346 targets were identified, and 516 target genes related to PE were also identified from databases. 195 candidate targets for BBTD were screened from the merged PPI network of BBTD-target proteins and PE-related targets. The pathway enrichment analyses showed that the BBTD had the potential to influence a variety of biological pathways. Further pathway-gene network analysis suggested BBTD may improve symptoms of PE via several genes, including MDM2, TP53, RELA, MYC, AKT1, and EGFR. The validation results demonstrated that BBTD treatment promoted pregnancy outcome in the PE animal model. Meanwhile, BBTD regulated the gene expression of MDM2, TP53, RELA, MYC, and EGFR and inhibited the EGFR-JAK/STAT signaling pathway in placental tissue and trophoblast cells. In addition, BBTD promoted the proliferation and invasion and reduced the apoptosis of trophoblast cells. Conclusion. BBTD improved PE by inhibiting the EGFR-JAK/STAT signaling pathway and promoting the proliferation and invasion and reduced the apoptosis of trophoblast cells.
Collapse
|
127
|
Characterization and Quantification of Luteolin-Metal Complexes in Aqueous Extract of Lonicerae Japonicae Flos and Huangshan Wild Chrysanthemum. Int J Anal Chem 2021; 2021:6677437. [PMID: 33777144 PMCID: PMC7979300 DOI: 10.1155/2021/6677437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Luteolin is a flavonoid compound widely found in vegetables, fruits, and medicinal plants. In this study, the reaction conditions for luteolin and five metal ions (Ca2+, Mg2+, Zn2+, Fe3+, and Cu2+) to form complexes in hot water were optimized, which was at a molar ratio of 1 : 1 for luteolin and metal ions at 90°C in a volume of 20 mL for 2 h, and the ability of luteolin to form complexes with Cu2+ was the strongest. The DPPH scavenging test showed that luteolin exerted a dose-dependent effect on the clearance of free radicals; luteolin-Cu2+ complexes and luteolin-Fe3+ complexes accentuated the clearance of free radicals. Furthermore, we used high performance liquid chromatography (HPLC) to analyze luteolin in samples from two medicinal plants, obtained from the dissolution of aqueous extracts in two different solvents. The results showed that the peak areas for luteolin in the samples dissolved in 20% formic acid-methanol were significantly larger than those from the samples dissolved in methanol alone, with increases in the peak area being 135.6% (Lonicerae Japonicae Flos), and 161.16% (Huangshan wild chrysanthemum). The aforementioned results indicate that complexes formed from organic compounds and metal ions are present in the decoction of a plant.
Collapse
|
128
|
Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors 2021; 47:232-241. [PMID: 33847020 PMCID: PMC8250989 DOI: 10.1002/biof.1726] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUSA
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUSA
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- Department of PsychiatryTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- BrainGateThessalonikiGreece
| | | | | | - Antonios Politis
- First Department of PsychiatryEginition Hospital, National and Kapodistrian UniversityAthensGreece
| |
Collapse
|
129
|
Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021; 47:170-180. [PMID: 33368702 DOI: 10.1002/biof.1699] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Luteolin belongs to the group of flavonoids and can be found in flowers, herbs, vegetables and spices. It plays an important role in defending plants, for example against UV radiation by partially absorbing UVA and UVB radiation. Thus, luteolin can also decrease adverse photobiological effects in the skin by acting as a first line of defense. Furthermore, anti-oxidative and anti-inflammatory activities of luteolin were described on keratinocytes and fibroblasts as well as on several immune cells (e.g., macrophages, mast cell, neutrophils, dendritic cells and T cells). Luteolin can suppress proinflammatory mediators (e.g., IL-1β, IL-6, IL-8, IL-17, IL-22, TNF-α and COX-2) and regulate various signaling pathway (e.g., the NF-κB, JAK-STAT as well as TLR signaling pathway). In this way, luteolin modulates many inflammatory processes of the skin. The present review summarizes the recent in vitro and in vivo research on luteolin in the field of skin aging and skin cancer, wound healing as well as inflammatory skin diseases, including psoriasis, contact dermatitis and atopic dermatitis. In conclusion, luteolin might be a promising molecule for the development of topic formulations and systemic agents against inflammatory skin diseases.
Collapse
Affiliation(s)
- Fabian Gendrisch
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph M Schempp
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Wölfle
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
130
|
Delgado A, Cholevas C, Theoharides TC. Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. Biofactors 2021; 47:207-217. [PMID: 33615581 DOI: 10.1002/biof.1714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), already the world's most common form of dementia, is projected to continue increasing in prevalence over the next several decades. The current lack of understanding of the pathogenesis of AD has hampered the development of effective treatments. Historically, AD research has been predicated on the amyloid cascade hypothesis (ACH), which attributes disease progression to the build-up of amyloid protein. However, multiple clinical studies of drugs interfering with ACH have failed to show any benefit demonstrating that AD etiology is more complex than previously thought. Here we review the current literature on the emerging key role of neuroinflammation, especially activation of microglia, in AD pathogenesis. Moreover, we provide compelling evidence that certain flavonoids, especially luteolin formulated in olive pomace oil together with hydroxytyrosol, offers a reasonable prophylactic treatment approach due to its many beneficial actions.
Collapse
Affiliation(s)
- Alejandro Delgado
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Christos Cholevas
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- BrainGate, Thessaloniki, Greece
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts, USA
- BrainGate, Thessaloniki, Greece
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
131
|
Theoharides TC. Luteolin supplements: All that glitters is not gold. Biofactors 2021; 47:242-244. [PMID: 33159817 DOI: 10.1002/biof.1689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
|
132
|
Budzianowska A, Budzianowski J. A new flavonoid, a new phenylethanoid glycoside and related compounds isolated from the inflorescences of Plantago lanceolata L. Nat Prod Res 2021; 36:3813-3824. [PMID: 33599564 DOI: 10.1080/14786419.2021.1888289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
For the first time inflorescences of a plant species from the genus Plantago (Pantaginaceae)-Plantago lanceolata L. (Ribwort Plantain), a known medicinal plant, were subjected to studies of phenolic compounds, which resulted in an isolation of two new compounds: a flavonoid-isorhamnetin 3-O-α-L-4C1-arabinopyranosyl-(1→2)-β-D-4C1-glucopyranoside) (1) and a phenylethanoid glycoside-2-(3,4-dihydroxyphenyl)ethyl O-α-L-arabinofuranosyl-(1→2)-[α-L-1C4-rhamnopyranosyl-(1→3)][E-caffeoyl-1→4]-β-D-4C1-glucopyranoside (14), along with fourteen known compounds-eight flavonoids (2-9) and six phenylethanoid glycosides (10-13, 15-16). The chemical structures were established by 1 D and 2 D NMR and HRESIMS spectral methods. The known phenylethanoids were the same as reported for leaves or aerial parts of P. lanceolata or other Plantago species. The flavonoids appeared to be only flavonols, mainly isorhamnetin 3-O- and 3,4'-O- glycosides, and thus completely different from flavones, mainly luteolin and apigenin glucuronides, previously reported in the leaves. The possible medicinal and chemotaxonomic relevance of the phenolics found in P. lanceolata inflorescences were taken into consideration.
Collapse
Affiliation(s)
- Anna Budzianowska
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jaromir Budzianowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
133
|
Akawa OB, Subair TI, Soremekun OS, Olotu FA, Soliman MES. Structural alterations in the catalytic core of hSIRT2 enzyme predict therapeutic benefits of Garcinia mangostana derivatives in Alzheimer's disease: molecular dynamics simulation study. RSC Adv 2021; 11:8003-8018. [PMID: 35423339 PMCID: PMC8695224 DOI: 10.1039/d0ra10459k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that inhibition of the hSIRT2 enzyme provides favorable effects in neurodegenerative diseases such as Alzheimer's disease. Prenylated xanthone phytochemicals including α-mangostin, β-mangostin and γ-mangostin obtained from Garcinia mangostana, a well-established tropical plant, have been shown experimentally to inhibit sirtuin enzymatic activity. However, the molecular mechanism of this sirtuin inhibition has not been reported. Using comprehensive integrated computational techniques, we provide molecular and timewise dynamical insights into the structural alterations capable of facilitating therapeutically beneficial effects of these phytochemicals at the catalytic core of the hSIRT2 enzyme. Findings revealed the enhanced conformational stability and compactness of the hSIRT2 catalytic core upon binding of γ-mangostin relative to the apoenzyme and better than α-mangostin and β-mangostin. Although thermodynamic calculations revealed favorable binding of all the phytochemicals to the hSIRT2 enzyme, the presence of only hydroxy functional groups on γ-mangostin facilitated the occurrence of additional hydrogen bonds involving Pro115, Phe119, Asn168 and His187 which are absent in α-mangostin- and β-mangostin-bound systems. Per-residue energy contributions showed that van der Waals and more importantly electrostatic interactions are involved in catalytic core stability with Phe96, Tyr104 and Phe235 notably contributing π-π stacking, π-π T shaped and π-sigma interactions. Cumulatively, our study revealed the structural alterations leading to inhibition of hSIRT2 catalysis and findings from this study could be significantly important for the future design and development of sirtuin inhibitors in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University Ado Ekiti Nigeria
| | - Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4001 South Africa http://soliman.ukzn.ac.za +27 31 260 7872 +27 31 260 8048
| |
Collapse
|
134
|
Wang X, Chen B, Xu D, Li Z, Liu H, Huang Z, Huang K, Lin X, Yao H. Molecular mechanism and pharmacokinetics of flavonoids in the treatment of resistant EGF receptor-mutated non-small-cell lung cancer: A narrative review. Br J Pharmacol 2021; 178:1388-1406. [PMID: 33450055 DOI: 10.1111/bph.15360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Here, we review the molecular mechanism and pharmacokinetics of flavonoids in the treatment of resistant EGF receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) and particularly the possible mechanism(s) of delicaflavone, a biflavonoid extracted from Selaginella doederleinii Hieron. EGFR TK inhibitors (EGFR-TKI) are ubiquitously used in the treatment of NSCLC bearing EGFR mutations. However, patients treated with EGFR-TKI inevitably and continuously develop resistance. In laboratory studies, flavonoids, as potential adjuvants for cancer chemotherapy, exhibited anti-cancer properties such as inhibition of chemoresistance by interference with ABC transporters-induced drug efflux, curbing of c-MET amplification, or reversal of T790M mutation-mediated resistance. The current review aims at summarizing the association between the anti-cancer potentials of flavonoids and their possible regulatory roles in certain types of mutation that could trigger EGFR-TKI resistance in NSCLC. Potential practical applications of these phytochemicals, as well as the relevant pharmacokinetics, are also discussed.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhijun Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Hao Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhengjun Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Kangping Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.,Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
135
|
Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life (Basel) 2021; 11:life11020079. [PMID: 33499180 PMCID: PMC7912639 DOI: 10.3390/life11020079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Retinopathy of prematurity (ROP), the most common cause of childhood blindness, is a hypoxia-induced eye disease characterized by retinal neovascularization. In the normal retina, a well-organized vascular network provides oxygen and nutrients as energy sources to maintain a normal visual function; however, it is disrupted when pathological angiogenesis is induced in ROP patients. Under hypoxia, inadequate oxygen and energy supply lead to oxidative stress and stimulate neovasculature formation as well as affecting the function of photoreceptors. In order to meet the metabolic needs in the developing retina, protection against abnormal vascular formation is one way to manage ROP. Although current treatments provide beneficial effects in reducing the severity of ROP, these invasive therapies may also induce life-long consequences such as systemic structural and functional complications as well as neurodevelopment disruption in the developing infants. Nutritional supplements for the newborns are a novel concept for restoring energy supply by protecting the retinal vasculature and may lead to better ROP management. Nutraceuticals are provided in a non-invasive manner without the developmental side effects associated with current treatments. These nutraceuticals have been investigated through various in vitro and in vivo methods and are indicated to protect retinal vasculature. Here, we reviewed and discussed how the use of these nutraceuticals may be beneficial in ROP prevention and management.
Collapse
|
136
|
Suppressive Effect of Two Cucurbitane-Type Triterpenoids from Momordica charantia on Cutibacterium acnes-Induced Inflammatory Responses in Human THP-1 Monocytic Cell and Mouse Models. Molecules 2021; 26:molecules26030579. [PMID: 33499307 PMCID: PMC7865737 DOI: 10.3390/molecules26030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/07/2023] Open
Abstract
Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5β,19-epoxycucurbita-6,23-dien-3β,19,25-triol (Kuguacin R; KR) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1β, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1β-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.
Collapse
|
137
|
Wu T, Zou R, Pu D, Lan Z, Zhao B. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC PLANT BIOLOGY 2021; 21:55. [PMID: 33478393 PMCID: PMC7818752 DOI: 10.1186/s12870-021-02841-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Intercropping is often used in the tea producing areas where land resources are not so abundant, and the produced green tea is tasted more delicious through a tea-Chinese chestnut intercropping system according to the experience of indigenous farmers. The length and weight of tea leaf increase under this intercropping system and their root systems are stratified vertically and coordinate symbiosis. However, the delicacy mechanism under the intercropping is not fully understood. RESULTS Green tea from the Chinese chestnut-tea intercropping system established in the 1980s ranked highest compared with a pure tea plantation from the same region. Based on the non-targeted metabolomics, 100 differential metabolites were upregulated in the tea leaves from intercropping system relative to monoculture system. Twenty-one amino acids were upregulated and three downregulated in response to the intercropping based on the targeted metabolomics; half of the upregulated amino acids had positive effects on the tea taste. Levels of allantoic acid, sugars, sugar alcohols, and oleic acid were higher and less bitter flavonoids in the intercropping system than those in monoculture system. The upregulated metabolites could promote the quality of tea and its health-beneficial health effects. Flavone and flavonol biosynthesis and phenylalanine metabolism showed the greatest difference. Numerous pathways associated with amino acid metabolism altered, suggesting that the intercropping of Chinese chestnut-tea could greatly influence amino acid metabolism in tea plants. CONCLUSIONS These results enhance our understanding of the metabolic mechanisms by which tea quality is improved in the Chinese chestnut-tea intercropping system and demonstrate that there is great potential to improve tea quality at the metabolomic level by adopting such an intercropping system.
Collapse
Affiliation(s)
- Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Southwest Forestry University, Kunming, 650224, Yunnan, China.
| | - Rui Zou
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Dian Pu
- Ecology and Environment Department, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Zengquan Lan
- Southwest Institute of Ecology Development, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
138
|
Assunção HCR, Cruz YMC, Bertolino JS, Garcia RCT, Fernandes L. Protective effects of luteolin on the venous endothelium. Mol Cell Biochem 2021; 476:1849-1859. [PMID: 33469821 DOI: 10.1007/s11010-020-04025-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Luteolin is a flavonoid with antioxidant properties already demonstrated in studies related to inflammation, tumor, and cardiovascular processes; however, there are no available information regarding its antioxidant effects at the venous endothelial site. We investigated the effects of luteolin (10, 20, and 50 μmol/L) in cultures of rat venous endothelial cells. Nitric oxide (NO) and reactive oxygen species (ROS) were analyzed by fluorimetry; 3-nitrotyrosine (3-NT) residues were evaluated by immunofluorescence, and prostacyclin (PGI2) release was investigated by colorimetry. Intracellular NO levels were significantly enhanced after 10 min of luteolin incubation, with a parallel decrease in ROS generation. These results were accompanied by a significant reduction in the expression of 3-NT residues and enhanced PGI2 rates. Therefore, luteolin is effective in reducing ROS thereby improving NO availability in venous endothelial cells. Besides, luteolin-induced decrease in 3-NT residues may correlate with the enhancement in endothelial PGI2 bioavailability. These findings suggest the future application of this flavonoid as a protective agent by improving endothelial function in several circulatory disorders related to venous insufficiency.
Collapse
Affiliation(s)
- Henrique Charlanti Reis Assunção
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Yan Milen Coelho Cruz
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Jéssica Silva Bertolino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Raphael Caio Tamborelli Garcia
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Liliam Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil.
| |
Collapse
|
139
|
Niu X, Huang Y, Zhang W, Yan L, Wang L, Li Z, Sun W. Synthesis of gold nanoflakes decorated biomass-derived porous carbon and its application in electrochemical sensing of luteolin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
140
|
Özcan K. Determination of biological activity of Carduus lanuginosus: an endemic plant in Turkey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:45-53. [PMID: 31179726 DOI: 10.1080/09603123.2019.1628187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The genus Carduus is traditionally used in the Anatolian folk medicine for treating various diseases. Therefore, the enzyme inhibiting potential, antioxidant-antimicrobial activity, and phytochemical profile of Carduus lanuginosus extracts were investigated. The analysis of phenolic compounds was carried out by using RP-HPLC for the chemical characterization of methanol extract. The total polyphenols, total phenolic and flavonoid contents, antioxidant activity (ABTS and DPPH assay), α-amylase, and α-glucosidase inhibition activities were determined using colorimetric methods. Moreover, the antimicrobial activity was examined using the disc diffusion and microdilution methods. The ethylacetate extract was found to have the highest flavonoid and phenolic content. The water and hexane extracts showed strong enzyme inhibitory activity against the α-amylase and α-glucosidase. The methanol extract was found to contain high concentration of chlorogenic acid. The hexane and ethylacetate extracts showed to have significant MIC values on Enterococcus faecium. In conclusion, the extracts of C. lanuginosus might have a significant potential for the use as a natural pharmaceutical agent.
Collapse
Affiliation(s)
- Kadriye Özcan
- Department of Genetic and Bioengineering, Giresun University , Giresun, Turkey
| |
Collapse
|
141
|
Bae HR, Choi MS, Kim S, Young HA, Gershwin ME, Jeon SM, Kwon EY. IFNγ is a Key Link between Obesity and Th1-Mediated AutoImmune Diseases. Int J Mol Sci 2020; 22:ijms22010208. [PMID: 33379198 PMCID: PMC7794719 DOI: 10.3390/ijms22010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity, a characteristic of metabolic syndrome, is also associated with chronic inflammation and the development of autoimmune diseases. However, the relationship between obesity and autoimmune diseases remains to be investigated in depth. Here, we compared hepatic gene expression profiles among high-fat diet (HFD) mice using the primary biliary cholangitis (PBC) mouse model based on the chronic expression of interferon gamma (IFNγ) (ARE-Del-/- mice). The top differentially expressed genes affected by upstream transcriptional regulators IFNγ, LPS, and TNFα displayed an overlap in HFD and ARE-Del-/- mice, indicating that obesity-induced liver inflammation may be dependent on signaling via IFNγ. The top pathways altered in HFD mice were mostly involved in the innate immune responses, which overlapped with ARE-Del-/- mice. In contrast, T cell-mediated signaling pathways were exclusively altered in ARE-Del-/- mice. We further evaluated the therapeutic effect of luteolin, known as anti-inflammatory flavonoid, in HFD and ARE-Del-/- mice. Luteolin strongly suppressed the MHC I and II antigen presentation pathways, which were highly activated in both HFD and ARE-Del-/- mice. Conversely, luteolin increased metabolic processes of fatty acid oxidation and oxidative phosphorylation in the liver, which were suppressed in ARE-Del-/- mice. Luteolin also strongly induced PPAR signaling, which was downregulated in HFD and ARE-Del-/- mice. Using human GWAS data, we characterized the genetic interaction between significant obesity-related genes and IFNγ signaling and demonstrated that IFNγ is crucial for obesity-mediated inflammatory responses. Collectively, this study improves our mechanistic understanding of the relationship between obesity and autoimmune diseases. Furthermore, it provides new methodological insights into how immune network-based analyses effectively integrate RNA-seq and microarray data.
Collapse
Affiliation(s)
- Heekyong R. Bae
- Omixplus, LLC., Gaithersburg, MD 20885, USA; (H.R.B.); (S.K.)
- Laboratory of Cancer Immunometabolism, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701, USA;
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
| | - Suntae Kim
- Omixplus, LLC., Gaithersburg, MD 20885, USA; (H.R.B.); (S.K.)
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701, USA;
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA;
| | - Seon-Min Jeon
- R&D Center, APtechnologies Corp., Gyeonggi-do, Hwaseong-si 18469, Korea
- Correspondence: (S.-M.J.); (E.-Y.K.); Tel.: +82-53-950-7936 (S.-M.J.); +82-53-950-6231 (E.-Y.K.)
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (S.-M.J.); (E.-Y.K.); Tel.: +82-53-950-7936 (S.-M.J.); +82-53-950-6231 (E.-Y.K.)
| |
Collapse
|
142
|
Liu YS, Yang Q, Li S, Luo L, Liu HY, Li XY, Gao ZN. Luteolin attenuates angiotensin II‑induced renal damage in apolipoprotein E‑deficient mice. Mol Med Rep 2020; 23:157. [PMID: 33355379 PMCID: PMC7789115 DOI: 10.3892/mmr.2020.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Renal damage is a common and severe condition encountered in the clinic. Luteolin (Lut) exhibits anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Thus, the present study aimed to investigate the pharmacological effects of Lut on angiotensin II (AngII)-induced renal damage in apolipoprotein E-deficient (ApoE−/−) mice. Male ApoE−/− mice (age, 8 weeks) were randomly divided into the following three groups: i) Control group (n=6); ii) AngII group (n=6); and iii) AngII + Lut group (n=6). Lut was administered by gavage (100 mg/kg/d). ApoE−/− mice were implanted with Alzet osmotic minipumps, filled with either saline vehicle or AngII solution for a maximum period of 4 weeks. After 4 weeks, metabolic characteristics were measured and the histopathological alterations in the kidney tissue were observed. The metabolic characteristics of blood creatinine (CRE) levels were lower in the AngII + Lut group compared with in the AngII group. The expression levels of collagen I and III were lower in the kidney tissues of the AngII + Lut group compared with the corresponding tissues of the AngII group. The gene expression levels of IL-1β, IL-6, TNF-α and IL-10 were also suppressed in the kidney tissues of the AngII + Lut group compared with those in the corresponding tissues of the AngII group. Furthermore, the AngII + Lut group exhibited markedly increased LC3 protein expression and notably decreased p62 protein expression in the kidney tissues compared with the expression levels in the AngII group. The data demonstrated that Lut attenuated AngII-induced collagen deposition and inflammation, while inducing autophagy. Collectively, the results suggested that Lut treatment exhibited a exerted effect on AngII-induced renal injury in ApoE−/− mice.
Collapse
Affiliation(s)
- Ying-Shu Liu
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaodong 116011, P.R. China
| | - Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Lan Luo
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Hong-Yang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Xin-Yu Li
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| | - Zheng-Nan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaodong 116011, P.R. China
| |
Collapse
|
143
|
Sood A, Kumar B, Singh SK, Prashar P, Gautam A, Gulati M, Pandey NK, Melkani I, Awasthi A, Saraf SA, Vidari G, Ozdemir M, Hussain FHS, Anwar ET, Ameen MSM, Gupta S, Porwal O. Flavonoids as Potential Therapeutic Agents for the Management of Diabetic Neuropathy. Curr Pharm Des 2020; 26:5468-5487. [DOI: 10.2174/1381612826666200826164322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds
are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones, and
anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory,
anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder
that affects several biochemical pathways and leads to secondary complications such as neuropathy, retinopathy,
nephropathy, and cardiomyopathy. Among them, the management of diabetic neuropathy is one of the major
challenges for physicians as well as the pharmaceutical industries. Naturally occurring flavonoids are extensively
used for the treatment of diabetes and its related complications due to their antioxidant properties. Moreover,
flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like the reduction
of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced
glycation end products, and inhibition of the α-glucosidase enzyme. This review entails current updates on the
therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains the pathological
aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic
pain through preclinical studies either alone or in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Ankita Sood
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pankaj Prashar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anamika Gautam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Subhini A Saraf
- Department of Pharmaceutical Sciences, School of Bioscience and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Giovani Vidari
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mehmet Ozdemir
- Department of Densitry, Tishk International University- Erbil, Kurdistan Region, Iraq
| | | | - Esra Tariq Anwar
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | | | - Saurabh Gupta
- Department of Pharmacology, Chitkara University, Rajpura, Punjab, India
| | - Omji Porwal
- Department of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| |
Collapse
|
144
|
Sönmez M. Effects of luteolin on random pattern skin flaps in rats. EUROPEAN JOURNAL OF PLASTIC SURGERY 2020. [DOI: 10.1007/s00238-020-01719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
145
|
Alshehri AA, Malik MA. Phytomediated Photo-Induced Green Synthesis of Silver Nanoparticles Using Matricaria chamomilla L. and Its Catalytic Activity against Rhodamine B. Biomolecules 2020; 10:E1604. [PMID: 33256218 PMCID: PMC7760056 DOI: 10.3390/biom10121604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
The bio-fabrication of silver nanoparticles (AgNPs) was carried out through the facile green route, using the aqueous extract of Matricaria chamomilla L. Herein, we have developed a cost-efficient, ecofriendly, and photo-induced method for the biomolecule-assisted synthesis of AgNPs using an aqueous extract of Matricaria chamomilla L. as a bio-reducing and capping/stabilizing agent. The biomolecule-capped AgNPs were confirmed from the surface plasmon resonance (SPR) band at λmax = 450 nm using a UV-visible spectrometer. The stability of the AgNPs was confirmed by recording the UV-visible spectra for a more extended period, and no precipitation was observed in the sol. The morphology and structure of photo-induced biomolecule-capped AgNPs were characterized by different microscopic and spectroscopy techniques such as TEM, SEM, EDX, XRD, and FTIR analysis. The role of phytochemicals as reducing and stabilizing agents was confirmed by comparative FTIR analysis of the AgNPs and pure Matricaria chamomilla L. aqueous extract. The obtained result shows that the AgNPs are mostly spherical morphology with an average size of about 26 nm. Furthermore, the thermal stability of biomolecule-capped AgNPs was examined by TGA-DTG analysis that showed a weight loss of approximately 36.63% up to 800 °C. Moreover, the potential photocatalytic activity of photo-induced AgNPs against Rhodamine B (RB) was examined in the presence of UV light irradiation. The catalyst reusability, the effect of catalyst dosage and initial dye concentration, and the effect of the temperature and pH of the reaction medium were also assessed.
Collapse
Affiliation(s)
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
146
|
Demopoulos C, Antonopoulou S, Theoharides TC. COVID-19, microthromboses, inflammation, and platelet activating factor. Biofactors 2020; 46:927-933. [PMID: 33296106 DOI: 10.1002/biof.1696] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in the formation of thrombi and their most potent trigger is platelet activating factor (PAF), first characterized by Demopoulos and colleagues in 1979. PAF is produced by cells involved in host defense and its biological actions bear similarities with COVID-19 disease manifestations. PAF can also stimulate perivascular mast cell activation, leading to inflammation implicated in severe acute respiratory syndrome (SARS). Mast cells are plentiful in the lungs and are a rich source of PAF and of inflammatory cytokines, such as IL-1β and IL-6, which may contribute to COVID-19 and especially SARS. The histamine-1 receptor antagonist rupatadine was developed to have anti-PAF activity, and also inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis alone or together with other PAF-inhibitors of natural origin such as the flavonoids quercetin and luteolin, which have antiviral, anti-inflammatory, and anti-PAF actions.
Collapse
Affiliation(s)
- Constantinos Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University, Athens, Greece
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
147
|
Oyagbemi AA, Akinrinde AS, Adebiyi OE, Jarikre TA, Omobowale TO, Ola-Davies OE, Saba AB, Emikpe BO, Adedapo AA. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103488. [PMID: 32898663 DOI: 10.1016/j.etap.2020.103488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-induced cardiomyopathy and renal toxicity have been reported in workers in processing plants, hard metal industries, diamond polishing and manufacture of ceramics. This study was designed to investigate the influence of Luteolin supplementation on cobalt-induced cardiac and renal toxicity in rats. Exposure of rats to cobalt chloride (CoCl2) alone caused significant (p < 0.05) increases in cardiac and renal H2O2, malondialdehyde (MDA) and nitric oxide (NO), along with increased serum myeloperoxidase (MPO) activity. In addition, there were significant (p < 0.05) reductions in cardiac and renal glutathione peroxidase (GPx), glutathione S-transferase (GST) and reduced glutathione (GSH). CoCl2 induced higher immuno-staining of nuclear factor kappa beta (NF-κB) in the heart and kidneys, and the kidney injury molecule (Kim-1) in the kidneys. Treatment with Luteolin or Gallic acid produced significant reversal of the oxidative stress parameters with reductions in NF-κB and Kim-1 expressions, leading to suppression of histopathological lesions observed in the tissues.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
148
|
Treatment with Luteolin Improves Lipopolysaccharide-Induced Periodontal Diseases in Rats. Biomedicines 2020; 8:biomedicines8100442. [PMID: 33096800 PMCID: PMC7590181 DOI: 10.3390/biomedicines8100442] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a dental disease that produces the progressive destruction of the bone surrounding the tooth. Especially, lipopolysaccharide (LPS) is involved in the deterioration of the alveolar bone, inducing the release of pro-inflammatory mediators, which cause periodontal tissue inflammation. Luteolin (Lut), a molecule of natural origin present in a large variety of fruits and vegetables, possess beneficial properties for human health. On this basis, we investigated the anti-inflammatory properties of Lut in a model of periodontitis induced by LPS in rats. Animal model predicted a single intragingival injection of LPS (10 μg/μL) derived from Salmonella typhimurium. Lut administration, was performed daily at different doses (10, 30, and 100 mg/kg, orally), starting from 1 h after the injection of LPS. After 14 days, the animals were sacrificed, and their gums were processed for biochemical analysis and histological examinations. Results showed that Lut (30 and 100 mg/kg) was equally able to reduce alveolar bone loss, tissue damage, and neutrophilic infiltration. Moreover, Lut treatment reduced the concentration of collagen fibers, mast cells degranulation, and NF-κB activation, as well as the presence of pro-inflammatory enzymes and cytokines. Therefore, Lut implementation could represent valid support in the pharmacological strategy for periodontitis, thus improving the well-being of the oral cavity.
Collapse
|
149
|
Majeed M, Majeed S, Nagabhushanam K, Mundkur L, Neupane P, Shah K. Clinical Study to Evaluate the Efficacy and Safety of a Hair Serum Product in Healthy Adult Male and Female Volunteers with Hair Fall. Clin Cosmet Investig Dermatol 2020; 13:691-700. [PMID: 33061509 PMCID: PMC7522433 DOI: 10.2147/ccid.s271013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
Background Hair fall is a widespread problem among all genders, ages, and ethnicity with both physical and psychological effects. Objective This clinical study was designed to evaluate the efficacy and safety of a hair serum formulation containing amla extract, freeze-dried coconut water, and the micronutrient selenium along with sandalwood odorant and peanut shell extract in healthy male and female volunteers with hair fall. Methods A total of 42 subjects were enrolled and completed the study and they used the test product daily for 90 days. TrichoScan® was used to evaluate the efficacy of the test product for improving hair growth rate, hair density, anagen hair, telogen hair, and the density of vellus and terminal hair. Hair thinning and hair fall reduction were compared to its basline by both dermatologists and subject self-assessment questionnaires. Result and Discussion After 90 days of test product application, there was a significant improvement in hair growth rate (<0.0001), hair density (<0.0001), vellus hair density (<0.0001), and terminal hair density (<0.0001) in comparison to baseline. There was a significant reduction in hair fall with bulb (<0.0001) and without bulb (<0.0001), and hair thinning (<0.0001) compared to the baseline measurement. Adverse events were not recorded during the study. No skin intolerance was reported during the study, and the test product was considered dermatologically safe to use.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India.,Sabinsa Corporation, New Jersey, East Windsor 08520, USA.,ClinWorld Private Limited, Bangalore, Karnataka, India
| | - Shaheen Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India.,Sabinsa Corporation, New Jersey, East Windsor 08520, USA.,ClinWorld Private Limited, Bangalore, Karnataka, India
| | | | | | | | - Kalpesh Shah
- ClinWorld Private Limited, Bangalore, Karnataka, India
| |
Collapse
|
150
|
Káňová K, Petrásková L, Pelantová H, Rybková Z, Malachová K, Cvačka J, Křen V, Valentová K. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11197-11206. [PMID: 32910657 DOI: 10.1021/acs.jafc.0c03997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Authentic standards of food flavonoids are important for human metabolic studies. Their isolation from biological materials is impracticable; however, they can be prepared in vitro. Twelve sulfated metabolites of luteolin, myricetin, and ampelopsin were obtained with arylsulfotransferase from Desulfitobacterium hafniense and fully characterized by high-performance liquid chromatography, MS, and NMR. The compounds were tested for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and N,N-dimethyl-p-phenylenediamine radicals, to reduce ferric ions and Folin-Ciocalteu reagent, and to inhibit tert-butyl hydroperoxide-induced lipid peroxidation of rat liver microsomes. The activity differed considerably even between monosulfate isomers. The parent compounds and myricetin-3'-O-sulfate were the most active while other compounds displayed significantly lower activity, particularly luteolin sulfates. No mutagenic activity of the parent compounds and their main metabolites was observed; only myricetin showed minor pro-mutagenicity. The prepared sulfated metabolites are now available as authentic standards for future in vitro and in vivo metabolic studies.
Collapse
Affiliation(s)
- Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, CZ 166 28 Prague, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Zuzana Rybková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| |
Collapse
|