101
|
Costa A, Thirant C, Kramdi A, Pierre-Eugène C, Louis-Brennetot C, Blanchard O, Surdez D, Gruel N, Lapouble E, Pierron G, Sitbon D, Brisse H, Gauthier A, Fréneaux P, Bohec M, Raynal V, Baulande S, Leclere R, Champenois G, Nicolas A, Meseure D, Bellini A, Marabelle A, Geoerger B, Mechta-Grigoriou F, Schleiermacher G, Menger L, Delattre O, Janoueix-Lerosey I. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. J Immunother Cancer 2022; 10:jitc-2022-004807. [PMID: 36054452 PMCID: PMC9362821 DOI: 10.1136/jitc-2022-004807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Collapse
Affiliation(s)
- Ana Costa
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Thirant
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Orphée Blanchard
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Didier Surdez
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadege Gruel
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Department of Translational Research, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Deborah Sitbon
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Hervé Brisse
- Department of Imaging, PSL Research University, Institut Curie, Paris, France
| | | | - Paul Fréneaux
- Department of Biopathology, Institut Curie, Paris, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Virginie Raynal
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Renaud Leclere
- Department of Biopathology, Institut Curie, Paris, France
| | | | - Andre Nicolas
- Department of Biopathology, Institut Curie, Paris, France
| | - Didier Meseure
- Department of Biopathology, Institut Curie, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Aurelien Marabelle
- Inserm U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Inserm U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- Inserm U830, Equipe labelisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Centre, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Laurie Menger
- Inserm U932, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|
102
|
Cohn SL, Pearson ADJ. Rethinking high-risk neuroblastoma treatment. Pediatr Blood Cancer 2022; 69:e29730. [PMID: 35441788 DOI: 10.1002/pbc.29730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Susan L Cohn
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Andrew D J Pearson
- Division of Clinical Studies, Institute of Cancer Research, Royal Marsden Hospital, (retired), Sutton, UK
| |
Collapse
|
103
|
Abstract
Neuroblastomas are tumours of sympathetic origin, with a heterogeneous clinical course ranging from localized or spontaneously regressing to widely metastatic disease. Neuroblastomas recapitulate many of the features of sympathoadrenal development, which have been directly targeted to improve the survival outcomes in patients with high-risk disease. Over the past few decades, improvements in the 5-year survival of patients with metastatic neuroblastomas, from <20% to >50%, have resulted from clinical trials incorporating high-dose chemotherapy with autologous stem cell transplantation, differentiating agents and immunotherapy with anti-GD2 monoclonal antibodies. The next generation of trials are designed to improve the initial response rates in patients with high-risk neuroblastomas via the addition of immunotherapies, targeted therapies (such as ALK inhibitors) and radiopharmaceuticals to standard induction regimens. Other trials are focused on testing precision medicine strategies for patients with relapsed and/or refractory disease, enhancing the antitumour immune response and improving the effectiveness of maintenance regimens, in order to prolong disease remission. In this Review, we describe advances in delineating the pathogenesis of neuroblastoma and in identifying the drivers of high-risk disease. We then discuss how this knowledge has informed improvements in risk stratification, risk-adapted therapy and the development of novel therapies.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - Katherine K Matthay
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
104
|
Bird N, Scobie N, Palmer A, Ludwinski D. To transplant, or not to transplant? That is the question. A patient advocate evaluation of autologous stem cell transplant in neuroblastoma. Pediatr Blood Cancer 2022; 69:e29663. [PMID: 35373890 DOI: 10.1002/pbc.29663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022]
Abstract
High-dose chemotherapy with autologous stem cell transplant (ASCT) has been a mainstay of high-risk neuroblastoma treatment for several decades, demonstrating improvements in event-free survival but with risks of serious or even life-threatening acute toxicities, severe long-term adverse health effects for survivors, and ongoing contention regarding overall survival benefit. The merits of ASCT in the modern era of immunotherapy are a source of debate among parents, advocates, and some physicians. Here we examine evidence for and against ASCT, explore parent attitudes and their turmoil over decision-making, and strongly encourage international research consortia to develop a coordinated strategy to accelerate progress toward a future that avoids the routine use of ASCT in high-risk neuroblastoma.
Collapse
|
105
|
Sainero-Alcolado L, Mushtaq M, Liaño-Pons J, Rodriguez-Garcia A, Yuan Y, Liu T, Ruiz-Pérez MV, Schlisio S, Bedoya-Reina O, Arsenian-Henriksson M. Expression and activation of nuclear hormone receptors result in neuronal differentiation and favorable prognosis in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:226. [PMID: 35850708 PMCID: PMC9295514 DOI: 10.1186/s13046-022-02399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuroblastoma (NB), a childhood tumor derived from the sympathetic nervous system, presents with heterogeneous clinical behavior. While some tumors regress spontaneously without medical intervention, others are resistant to therapy, associated with an aggressive phenotype. MYCN-amplification, frequently occurring in high-risk NB, is correlated with an undifferentiated phenotype and poor prognosis. Differentiation induction has been proposed as a therapeutic approach for high-risk NB. We have previously shown that MYCN maintains an undifferentiated state via regulation of the miR-17 ~ 92 microRNA cluster, repressing the nuclear hormone receptors (NHRs) estrogen receptor alpha (ERα) and the glucocorticoid receptor (GR). METHODS Cell viability was determined by WST-1. Expression of differentiation markers was analyzed by Western blot, RT-qPCR, and immunofluorescence analysis. Metabolic phenotypes were studied using Agilent Extracellular Flux Analyzer, and accumulation of lipid droplets by Nile Red staining. Expression of angiogenesis, proliferation, and neuronal differentiation markers, and tumor sections were assessed by immunohistochemistry. Gene expression from NB patient as well as adrenal gland cohorts were analyzed using GraphPad Prism software (v.8) and GSEA (v4.0.3), while pseudo-time progression on post-natal adrenal gland cells from single-nuclei transcriptome data was computed using scVelo. RESULTS Here, we show that simultaneous activation of GR and ERα potentiated induction of neuronal differentiation, reduced NB cell viability in vitro, and decreased tumor burden in vivo. This was accompanied by a metabolic reprogramming manifested by changes in the glycolytic and mitochondrial functions and in lipid droplet accumulation. Activation of the retinoic acid receptor alpha (RARα) with all-trans retinoic acid (ATRA) further enhanced the differentiated phenotype as well as the metabolic switch. Single-cell nuclei transcriptome analysis of human adrenal glands indicated a sequential expression of ERα, GR, and RARα during development from progenitor to differentiated chromaffin cells. Further, in silico analysis revealed that patients with higher combined expression of GR, ERα, and RARα mRNA levels had elevated expression of neuronal differentiation markers and a favorable outcome. CONCLUSION Together, our findings suggest that combination therapy involving activation of several NHRs could be a promising pharmacological approach for differentiation treatment of NB patients.
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Muhammad Mushtaq
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.440526.10000 0004 0609 3164Present address: Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300 Pakistan
| | - Judit Liaño-Pons
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Ye Yuan
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tong Liu
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Present address: Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institutet, SE-171 64 Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Susanne Schlisio
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar Bedoya-Reina
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
106
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
107
|
Urban-Wójciuk Z, Graham A, Barker K, Kwok C, Sbirkov Y, Howell L, Campbell J, Woster PM, Poon E, Petrie K, Chesler L. The biguanide polyamine analog verlindamycin promotes differentiation in neuroblastoma via induction of antizyme. Cancer Gene Ther 2022; 29:940-950. [PMID: 34522028 PMCID: PMC9293756 DOI: 10.1038/s41417-021-00386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressor-antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.
Collapse
Affiliation(s)
- Zuzanna Urban-Wójciuk
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Amy Graham
- School of Natural Sciences, University of Stirling, Stirling, UK
| | - Karen Barker
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Colin Kwok
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Yordan Sbirkov
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Louise Howell
- Cell Imaging Facility, Institute of Cancer Research, London, UK
| | - James Campbell
- Bioinformatics Core Facility, Institute of Cancer Research, London, UK
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Evon Poon
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Kevin Petrie
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
- School of Natural Sciences, University of Stirling, Stirling, UK
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
108
|
Wieczorek A, Stefanowicz J, Hennig M, Adamkiewicz-Drozynska E, Stypinska M, Dembowska-Baginska B, Gamrot Z, Woszczyk M, Geisler J, Szczepanski T, Skoczen S, Ussowicz M, Pogorzala M, Janczar S, Balwierz W. Isolated central nervous system relapses in patients with high-risk neuroblastoma -clinical presentation and prognosis: experience of the Polish Paediatric Solid Tumours Study Group. BMC Cancer 2022; 22:701. [PMID: 35752779 PMCID: PMC9233790 DOI: 10.1186/s12885-022-09776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Although isolated central nervous system (CNS) relapses are rare, they may become a serious clinical problem in intensively treated patients with high-risk neuroblastoma (NBL). The aim of this study is the presentation and assessment of the incidence and clinical course of isolated CNS relapses. Retrospective analysis involved 848 NBL patients treated from 2001 to 2019 at 8 centres of the Polish Paediatric Solid Tumours Study Group (PPSTSG). Group characteristics at diagnosis, treatment and patterns of relapse were analysed. Observation was completed in December 2020. We analysed 286 high risk patients, including 16 infants. Isolated CNS relapse, defined as the presence of a tumour in brain parenchyma or leptomeningeal involvement, was found in 13 patients (4.5%; 8.4% of all relapses), all of whom were stage 4 at diagnosis. Isolated CNS relapses seem to be more common in young patients with stage 4 MYCN amplified NBL, and in this group they may occur early during first line therapy. The only or the first symptom may be bleeding into the CNS, especially in younger children, even without a clear relapse picture on imaging, or the relapse may be clinically asymptomatic and found during routine screening. Although the incidence of isolated CNS relapses is not statistically significantly higher in patients after immunotherapy, their occurrence should be carefully monitored, especially in intensively treated infants, with potential disruption of the brain-blood barrier.
Collapse
Affiliation(s)
- Aleksandra Wieczorek
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland.
| | - Joanna Stefanowicz
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Hennig
- Department of Paediatrics, Haematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | - Marzena Stypinska
- Department of Oncology, The Children Memorial Health Institute in Warsaw, Warsaw, Poland
| | | | - Zuzanna Gamrot
- Unit of Paediatric Haematology and Oncology, City Hospital, Chorzow, Poland
| | - Mariola Woszczyk
- Unit of Paediatric Haematology and Oncology, City Hospital, Chorzow, Poland
| | - Julia Geisler
- Department of Paediatric Haematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Tomasz Szczepanski
- Department of Paediatric Haematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Szymon Skoczen
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland
| | - Marek Ussowicz
- Department and Clinic of Paediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Pogorzala
- Paediatric Haematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Szymon Janczar
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Lodz, Poland
| | - Walentyna Balwierz
- Department of Paediatric Oncology and Haematology, Faculty of Medicine, Jagiellonian University, Medical College, Krakow, Poland
| |
Collapse
|
109
|
Pathania AS, Prathipati P, Olwenyi OA, Chava S, Smith OV, Gupta SC, Chaturvedi NK, Byrareddy SN, Coulter DW, Challagundla KB. miR-15a and miR-15b modulate natural killer and CD8 +T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma. Mol Ther Oncolytics 2022; 25:308-329. [PMID: 35663229 PMCID: PMC9133764 DOI: 10.1016/j.omto.2022.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Oghenetejiri V. Smith
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
110
|
Agostini M, Melino G, Habeb B, Calandria JM, Bazan NG. Targeting lipid metabolism in cancer: neuroblastoma. Cancer Metastasis Rev 2022; 41:255-260. [PMID: 35687185 PMCID: PMC9363363 DOI: 10.1007/s10555-022-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Bola Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
111
|
Federico SM, Cash T. A bridge over troubled water—Extending induction for high‐risk neuroblastoma patients with poor end‐of‐induction response. Cancer 2022; 128:2880-2882. [PMID: 35665920 PMCID: PMC9728546 DOI: 10.1002/cncr.34267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sara M. Federico
- Department of Oncology St. Jude Children's Research Hospital Memphis Tennessee
- Department of Pediatrics, College of Medicine University of Tennessee Health Science Center Memphis Tennessee
| | - Thomas Cash
- Department of Pediatrics Emory University Atlanta Georgia
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta Atlanta Georgia
| |
Collapse
|
112
|
Binlateh T, Reudhabibadh R, Prommeenate P, Hutamekalin P. Investigation of mechanisms underlying the inhibitory effects of metformin against proliferation and growth of neuroblastoma SH-SY5Y cells. Toxicol In Vitro 2022; 83:105410. [DOI: 10.1016/j.tiv.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
113
|
Mora J. Autologous Stem-Cell Transplantation for High-Risk Neuroblastoma: Historical and Critical Review. Cancers (Basel) 2022; 14:cancers14112572. [PMID: 35681553 PMCID: PMC9179268 DOI: 10.3390/cancers14112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The original idea that providing higher doses of cytotoxic agents will result in higher rates of tumor cell killing was proposed in the 1980s. Preclinical data supported clinical testing. Advancements in bone marrow and peripheral stem-cell support technologies during the 1980s and 1990s allowed for clinical developments that permitted testing the higher dose hypothesis in oncology patients. The results of almost 20 years of clinical trials proved the linear relationship between dosing and clinical outcome to be mostly inaccurate. As a consequence, the adult oncology field abandoned high-dose chemotherapy strategies by the turn of the 21st century. Neuroblastoma is the only pediatric extracranial solid tumor where high-dose chemotherapy has remained part of the standard management for high-risk cases. This systematic review aims to understand the historical reason for such an exception and analyzes data challenging the benefit of high-dose chemotherapy and autologous stem-cell transplants in the era of anti-GD2 immunotherapy. Abstract Curing high-risk neuroblastoma (HR-NB) is a challenging endeavor, which involves the optimal application of several therapeutic modalities. Treatment intensity for cancer became highly appealing in the 1990s. Investigative trials assumed that tumor response correlated with the dosage or intensity of drug(s) administered, and that this response would translate into improved survival. It was postulated that, if myelotoxicity could be reversed by stem-cell rescue, cure might be possible by increasing the dose intensity of treatment. The principle supported autologous stem-cell transplant (ASCT) strategies. High-dose therapy transformed clinical practice, legislation, and public health policy, and it drove a two-decade period of entrepreneurial oncology. However, today, no ASCT strategies remain for any solid tumor indication in adults. As with most solid malignancies, higher dosing of cytotoxic agents has not resulted in a clear benefit in survival for HR-NB patients, whereas the long-term toxicity has been well defined. Fortunately, novel approaches such as anti-GD2 immunotherapy have demonstrated a significant survival benefit with a much less adverse impact on the patient’s wellbeing. On the basis of extensive experience, persisting with administering myeloablative chemotherapy as the standard to treat children with HR-NB is not consistent with the overall aim in pediatric oncology of curing with as little toxicity as possible.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| |
Collapse
|
114
|
DuBois SG, Macy ME, Henderson TO. High-Risk and Relapsed Neuroblastoma: Toward More Cures and Better Outcomes. Am Soc Clin Oncol Educ Book 2022; 42:1-13. [PMID: 35522915 DOI: 10.1200/edbk_349783] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately half of the patients diagnosed with neuroblastoma are classified as having high-risk disease. This group continues to have inadequate cure rates despite multiagent chemotherapy, surgery, high-dose chemotherapy with autologous stem cell rescue, and immunotherapy directed against GD2. We review current efforts to try to improve outcomes in patients with newly diagnosed disease by integrating novel targeted therapies earlier in the course of the disease. We further examine a growing list of options available for patients with relapsed or refractory high-risk disease, with an eye toward graduating successful strategies from a relapsed/refractory setting to the frontline setting. Last, we review efforts to study and potentially mitigate the array of late effects faced by survivors of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Tara O Henderson
- Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL
| |
Collapse
|
115
|
Neuroblastoma: Essential genetic pathways and current therapeutic options. Eur J Pharmacol 2022; 926:175030. [DOI: 10.1016/j.ejphar.2022.175030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
|
116
|
Lyvannak S, Sreynich K, Heng S, Farrilend P, Jarzembowski J, Camitta B. Pyrites: A Bone Lesion. J Pediatr Hematol Oncol 2022; 44:173-174. [PMID: 35180767 DOI: 10.1097/mph.0000000000002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Sam Lyvannak
- Angkor Hospital for Children, Siem Reap, Cambodia
| | | | - Sing Heng
- Angkor Hospital for Children, Siem Reap, Cambodia
| | | | | | | |
Collapse
|
117
|
Hobbie WL, Li Y, Carlson C, Goldfarb S, Laskin B, Denburg M, Goldmuntz E, Mostoufi-Moab S, Wilkes J, Smith K, Sacks N, Szalda D, Ginsberg JP. Late effects in survivors of high-risk neuroblastoma following stem cell transplant with and without total body irradiation. Pediatr Blood Cancer 2022; 69:e29537. [PMID: 34971017 DOI: 10.1002/pbc.29537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumor in children. Those with high-risk disease are treated with multimodal therapy, including high-dose chemotherapy, stem cell transplant, radiation, and immunotherapy that have led to multiple long-term complications in survivors. In the late 1990s, consolidation therapy involved myeloablative conditioning including total body irradiation (TBI) with autologous stem cell rescue. Recognizing the significant long-term toxicities of exposure to TBI, more contemporary treatment protocols have removed this from conditioning regimens. This study examines an expanded cohort of 48 high-risk neuroblastoma patients to identify differences in the late effect profiles for those treated with TBI and those treated without TBI. PROCEDURE Data on the study cohort were collected from clinic charts, provider documentation in the electronic medical record of visits to survivorship clinic, including all subspecialists, and ancillary reports of laboratory and diagnostic tests done as part of risk-based screening at each visit. RESULTS All 48 survivors of BMT for high-risk neuroblastoma had numerous late effects of therapy, with 73% having between five and 10 late effects. TBI impacted some late effects significantly, including growth hormone deficiency (GHD), bone outcomes, and cataracts. CONCLUSION Although high-risk neuroblastoma survivors treated with TBI have significant late effects, those treated without TBI also continue to have significant morbidity related to high-dose chemotherapy and local radiation. A multidisciplinary care team assists in providing comprehensive care to those survivors who are at highest risk for significant late effects.
Collapse
Affiliation(s)
- Wendy L Hobbie
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yimei Li
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claire Carlson
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel Goldfarb
- Division of Pulmonary and Sleep Medicine, Masonic Children's Hospital, Minneapolis, Minnesota, USA.,University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Benjamin Laskin
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michelle Denburg
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Goldmuntz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sogol Mostoufi-Moab
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer Wilkes
- Department of Pediatrics, Cancer and Blood Disorders Center, Seattle, Washington, USA.,University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Nancy Sacks
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dava Szalda
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill P Ginsberg
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
118
|
Thomas Lucas J. Risk Factors Associated with Metastatic Site Failure in Patients with High-Risk Neuroblastoma. Clin Transl Radiat Oncol 2022; 34:42-50. [PMID: 35345864 PMCID: PMC8956847 DOI: 10.1016/j.ctro.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
We observed an increased hazard for failure at metastatic sites which remain persistently avid on MIBG following systemic therapy. -Limited response to induction therapy described by Curie and SIOPEN score selects patients at greater risk for poly-metastatic site failure. -The low proportion of metastatic sites treated with radiotherapy precluded definitive testing of its impact on the hazard for metastatic site failure. -Patients who are unable to undergo transplant, and/or have extensive disease at diagnosis (lung metastases) may be poor candidates for consolidative metastatic site directed radiotherapy given the high competing risk of failure at a new metastatic site.
Purpose This retrospective study sought to identify predictors of metastatic site failure (MSF) at new and/or original (present at diagnosis) sites in high-risk neuroblastoma patients. Methods and materials Seventy-six high-risk neuroblastoma patients treated on four institutional prospective trials from 1997 to 2014 with induction chemotherapy, surgery, myeloablative chemotherapy, stem-cell rescue, and were eligible for consolidative primary and metastatic site (MS) radiotherapy were eligible for study inclusion. Computed-tomography and I123 MIBG scans were used to assess disease response and Curie scores at diagnosis, post-induction, post-transplant, and treatment failure. Outcomes were described using the Kaplan–Meier estimator. Cox proportional hazards frailty (cphfR) and CPH regression (CPHr) were used to identify covariates predictive of MSF at a site identified either at diagnosis or later. Results MSF occurred in 42 patients (55%). Consolidative MS RT was applied to 30 MSs in 10 patients. Original-MSF occurred in 146 of 383 (38%) nonirradiated and 18 of 30 (60%) irradiated MSs (p = 0.018). Original- MSF occurred in postinduction MIBG-avid MSs in 68 of 81 (84%) nonirradiated and 12 of 14 (85%) radiated MSs (p = 0.867). The median overall and progression-free survival rates were 61 months (95% CI 42.6Not Reached) and 24.1 months (95% CI 16.538.7), respectively. Multivariate CPHr identified inability to undergo transplant (HR 32.4 95%CI 9.396.8, p < 0.001) and/or maintenance chemotherapy (HR 5.2, 95%CI 1.716.2, p = 0.005), and the presence of lung metastases at diagnosis (HR 4.4 95%CI 1.711.1, p = 0.002) as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. Conclusions Incremental improvements in systemic therapy influence the patterns and type of metastatic site failure in neuroblastoma. Persistence of MIBG-avidity following induction chemotherapy and transplant at MSs increased the hazard for MSF.
Collapse
|
119
|
Neuroblastoma survivors at risk for developing subsequent neoplasms: A systematic review. Cancer Treat Rev 2022; 104:102355. [DOI: 10.1016/j.ctrv.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
|
120
|
Delafoy M, Verschuur A, Scheleirmacher G, Tabone MD, Sudour-Bonnange H, Thébaud E, Freycon C, Notz-Carrère A, Boulanger C, Pellier I, Irtan S, Muracciole X, Coulomb-L'Hermine A, Dijoud F, Morelle M, Bergeron C, Pasqualini C. High-dose chemotherapy followed by autologous stem cell rescue in Wilms tumors: French report on toxicity and efficacy. Pediatr Blood Cancer 2022; 69:e29431. [PMID: 34811873 DOI: 10.1002/pbc.29431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Heterogeneous data have been reported on high-dose chemotherapy (HDCT) with autologous stem cell rescue (ASCR) in Wilms tumors (WTs). We aimed to define its safety and efficacy in the French cohort, and to compare this management to current international recommendations. METHODS Data prospectively collected from children, adolescents, and young adults with WT treated with HDCT/ASCR between 2000 and 2016 in French centers were retrospectively analyzed. Toxicity was reported according to CTCAE v4.03. RESULTS Fifty-four patients received HDCT/ASCR (first line, n = 13; recurrence, n = 41). Their median age at the time of ASCR was 5.3 years (range 2.2-21.6). Main nonhematological acute grades 3-4 toxicities were digestive and renal. No significant difference of toxicity rate was observed among HDCT regimens and schedules. Two patients died shortly after ASCR (renal and multiorgan failure), and one heavily pretreated patient died of late respiratory failure. The selection criteria applied to define those patients eligible for HDCT/ASCR retrospectively matched to those currently used in the International Society of Pediatric Oncology (SIOP) UMBRELLA protocol for 38 patients, with encouraging survival rates compared to published data. The objective response rate to HDCT was 21%, with a disease control rate after HDCT of 85%. After a median follow-up of 7 years, the 5-year event-free survival (EFS) and overall survival (OS) were 54% (95% CI: 32%-76%) and 62% (95% CI: 31%-82%) for frontline patients, and 57% (95% CI: 39%-71%) and 69% (95% CI: 52%-81%) at recurrence. CONCLUSION HDCT was feasible and showed encouraging results in well-defined settings. Data from the current prospective protocol will help to better evaluate HDCT impact on survival.
Collapse
Affiliation(s)
- Manon Delafoy
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Arnauld Verschuur
- Pediatric Hematology-Oncology Department, La Timone Hospital, AP-HM, Marseille, France
| | | | | | | | - Estelle Thébaud
- Pediatric Onco-Hematology Department, University Hospital Center of Nantes, Nantes, France
| | - Claire Freycon
- Pediatric Hematology-Oncology Department, University Hospital Center of Grenoble, Grenoble, France
| | - Anne Notz-Carrère
- Pediatric Onco-Hematology Department, University Hospital Center of Bordeaux, Bordeaux, France
| | - Cécile Boulanger
- Pediatric Hematology-Oncology Department, University Hospital Center of Toulouse, Toulouse, France
| | - Isabelle Pellier
- Pediatric Hematology-Oncology Department, University Hospital Center of Angers, Angers, France
| | - Sabine Irtan
- Department of Pediatric Surgery, Sorbonne Université, Armand Trousseau Hospital, APHP, Paris, France
| | - Xavier Muracciole
- Department of Radiotherapy, La Timone Hospital, AP-HM, Marseille, France
| | | | | | - Magali Morelle
- Department of Statistic, Centre Léon Bérard, Lyon, France
| | - Christophe Bergeron
- Pediatric Onco-Hematology Department, Centre Leon Bérard/IHOPE, Lyon, France
| | - Claudia Pasqualini
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
121
|
Nishimaki H, Nakanishi Y, Yagasaki H, Masuda S. Multiple Immunofluorescence Imaging Analysis Reveals Differential Expression of Disialogangliosides GD3 and GD2 in Neuroblastomas. Pediatr Dev Pathol 2022; 25:141-154. [PMID: 34674560 DOI: 10.1177/10935266211048733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral neuroblastic tumors (pNTs) are the most common childhood extracranial solid tumors. There are several therapeutic strategies targeting disialoganglioside GD2. Disialoganglioside GD3 has become a potential target. However, the mechanism by which pNTs express GD3 and GD2 remains unclear. We investigated the combined expression status of GD3 and GD2 in pNTs and delineated their clinicopathological values. METHODS GD3 and GD2 expression was examined in pNT tissue samples (n = 35) using immunohistochemistry and multiple immunofluorescence imaging. RESULTS GD3 and GD2 expression was positive in 32/35 and 25/35 samples, respectively. Combinatorial analysis of GD3 and GD2 expression in neuroblastoma showed that both were heterogeneously expressed from cell to cell. There were higher numbers of GD3-positive and GD2-negative cells in the low-risk group than in the intermediate-risk (P = 0.014) and high-risk (P = 0.009) groups. Cases with high proportions of GD3-positive and GD2-negative cells were associated with the International Neuroblastoma Staging System stage (P = 0.004), Children's Oncology Group risk group (P = 0.001), and outcome (P = 0.019) and tended to have a higher overall survival rate. CONCLUSION We demonstrated that neuroblastomas from low-risk patients included more GD3-positive and GD2-negative cells than those from high-risk patients. Clarifying the heterogeneity of neuroblastoma aids in better understanding the biological characteristics and clinical behavior.
Collapse
Affiliation(s)
- Haruna Nishimaki
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroshi Yagasaki
- Department of Pediatric and Child Health, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
122
|
Abbas AA, Samkari AMN. High-Risk Neuroblastoma: Poor Outcomes Despite Aggressive Multimodal
Therapy. CURRENT CANCER THERAPY REVIEWS 2022. [DOI: 10.2174/1573394717666210805114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Neuroblastoma (NBL) is a highly malignant embryonal tumor that originates from the
primordial neural crest cells. NBL is the most common tumor in infants and the most common extracranial
solid tumor in children. The tumor is more commonly diagnosed in children of 1-4 years
of age. NBL is characterized by enigmatic clinical behavior that ranges from spontaneous regression
to an aggressive clinical course leading to frequent relapses and death. Based on the likelihood
of progression and relapse, the International Neuroblastoma Risk Group classification system categorized
NBL into very low risk, low risk, intermediate risk, and high risk (HR) groups. HR NBL is
defined based on the patient's age (> 18 months), disease metastasis, tumor histology, and MYCN
gene amplification. HR NBL is diagnosed in nearly 40% of patients, mainly those > 18 months of
age, and is associated with aggressive clinical behavior. Treatment strategies involve the use of intensive
chemotherapy (CTR), surgical resection, high dose CTR with hematopoietic stem cell support,
radiotherapy, biotherapy, and immunotherapy with Anti-ganglioside 2 monoclonal antibodies.
Although HR NBL is now better characterized and aggressive multimodal therapy is applied, the
outcomes of treatment are still poor, with overall survival and event-free survival of approximately
40% and 30% at 3-years, respectively. The short and long-term side effects of therapy are tremendous.
HR NBL carries a high mortality rate accounting for nearly 15% of pediatric cancer deaths.
However, most mortalities are attributed to the high frequency of disease relapse (50%) and disease
reactiveness to therapy (20%). Newer treatment strategies are therefore urgently needed. Recent
discoveries in the field of biology and molecular genetics of NBL have led to the identification
of several targets that can improve the treatment results. In this review, we discuss the different
aspects of the epidemiology, biology, clinical presentations, diagnosis, and treatment of HR
NBL, in addition to the recent developments in the management of the disease.
Collapse
Affiliation(s)
- Adil Abdelhamed Abbas
- College of Medicine King Saud bin Abdulaziz, University for Health Sciences Consultant Pediatric Hematology / Oncology
& BMT The Pediatric Hematology/Oncology Section Princess Nourah Oncology Centre King Abdulaziz Medical
City, Jeddah, Saudi Arabia
| | - Alaa Mohammed Noor Samkari
- College of Medicine King Saud bin Abdulaziz, University for Health Sciences Consultant
Anatomical Pathologist Department of Laboratory Medicine King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
123
|
Lopez Quiñones AJ, Vieira LS, Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos 2022; 50:DMD-MR-2021-000707. [PMID: 35197314 PMCID: PMC9488973 DOI: 10.1124/dmd.121.000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters on the plasma membrane of tumor cells are promising molecular "Trojan horses" to deliver drugs and imaging agents into cancer cells. Radioiodine-labeled meta-iodobenzylguanidine (mIBG) is used as a diagnostic agent (123I-mIBG) and a targeted radiotherapy (131I-mIBG) for neuroendocrine cancers. mIBG enters cancer cells through the norepinephrine transporter (NET) where the radioactive decay of 131I causes DNA damage, cell death, and tumor necrosis. mIBG is predominantly eliminated unchanged by the kidney. Despite its selective uptake by neuroendocrine tumors, mIBG accumulates in several normal tissues and leads to tissue-specific radiation toxicities. Emerging evidences suggest that the polyspecific organic cation transporters play important roles in systemic disposition and tissue-specific uptake of mIBG. In particular, human organic cation transporter 2 (hOCT2) and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) likely mediate renal secretion of mIBG whereas hOCT1 and hOCT3 may contribute to mIBG uptake into normal tissues such as the liver, salivary glands, and heart. This mini-review focuses on the clinical applications of mIBG in neuroendocrine cancers and the differential roles of NET, OCT and MATE transporters in mIBG disposition, response and toxicity. Understanding the molecular mechanisms governing mIBG transport in cancer and normal cells is a critical step for developing strategies to optimize the efficacy of 131I-mIBG while minimizing toxicity in normal tissues. Significance Statement Radiolabeled mIBG has been used as a diagnostic tool and as radiotherapy for neuroendocrine cancers and other diseases. NET, OCT and MATE transporters play differential roles in mIBG tumor targeting, systemic elimination, and accumulation in normal tissues. The clinical use of mIBG as a radiopharmaceutical in cancer diagnosis and treatment can be further improved by taking a holistic approach considering mIBG transporters in both cancer and normal tissues.
Collapse
Affiliation(s)
| | | | - Joanne Wang
- Dept. of Pharmaceutics, University of Washington, United States
| |
Collapse
|
124
|
Hoemberg M, Schwenzfeur R, Berthold F, Simon T, Hero B. Hypercalcemia is a frequent side effect of 13-cis-retinoic acid treatment in patients with high-risk neuroblastoma. Pediatr Blood Cancer 2022; 69:e29374. [PMID: 34569150 DOI: 10.1002/pbc.29374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE 13-cis-Retinoic acid (13-cisRA) is used as a postconsolidation treatment in patients with high-risk neuroblastoma. Hypercalcemia is a known side effect of retinoids. Frequency, symptoms, treatment, and risk factors for hypercalcemia were analyzed. PATIENTS Data were retrospectively analyzed for 350 patients registered in the German Neuroblastoma trials NB97 and NB04 who were treated with high-risk protocols-including myeloablative chemotherapy with autologous stem cell transplantation (SCT) or maintenance therapy-and had received 13-cisRA between January 1, 2000 and December 31, 2010. RESULTS Hypercalcemia was reported in 78 patients (22.3%), and 37 patients (10.6%) developed Common Terminology Criteria for Adverse Events (CTCAE) grade 3 or 4 hypercalcemia. The calcium levels were 2.5-4.6 mmol/L (median 3.1 mmol/L). Patients with a single kidney were at a higher risk of developing hypercalcemia (p = .001). Regarding postinduction treatment, 69 of 280 patients with SCT (24.6%) and nine of 70 patients without SCT (12.9%) developed hypercalcemia during 13-cisRA treatment (p = .037). Most patients developed hypercalcemia in the first cycle of 13-cisRA, and only in a single cycle. Hypercalcemia symptoms were frequent but moderate. In most patients, treatment with 13-cisRA was continued without dose reduction in subsequent cycles. CONCLUSION In this cohort, grades 3 and 4 hypercalcemia were observed more often than previously reported. A single kidney and pretreatment with myeloablative chemotherapy with stem cell transplantation were identified as potential risk factors for the development of hypercalcemia.
Collapse
Affiliation(s)
- Marc Hoemberg
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Ruth Schwenzfeur
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
125
|
Weng TF, Wu KH. Haploidentical peripheral blood stem cell transplantation with posttransplant cyclophosphamide in a child with neuroblastoma relapse after autologous peripheral blood stem cell transplantation. Pediatr Blood Cancer 2022; 69:e29439. [PMID: 34854555 DOI: 10.1002/pbc.29439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
126
|
Munipalle K, Kommalapati VK, Patel HK, Olanipekun BE, Tangutur AD, Ponnapalli MG. Targeting Neuroblastoma by Limonoids from the Underutilized Fruits of
Xylocarpus granatum. ChemistrySelect 2022. [DOI: 10.1002/slct.202103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiran Munipalle
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vamsi Krishna Kommalapati
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
| | - Hemendra Kumar Patel
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Bolatito Eunice Olanipekun
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Chemistry Kwara State University Malete, PMB 1530 Kwara State Nigeria
| | - Anjana Devi Tangutur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
| | - Mangala Gowri Ponnapalli
- Centre for Natural Products and Traditional Knowledge CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad Telangana State India 500 007
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
127
|
Mandura RA. Rapidly Progressive Ocular Proptosis as the First Sign of Neuroblastoma in a 16-Month-Old Child: Case Report and Review of Literature. Cureus 2022; 14:e20982. [PMID: 35154958 PMCID: PMC8817620 DOI: 10.7759/cureus.20982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma (NB) is a malignant neoplasm accounting for 7.5% of malignancy in children. It can originate anywhere along the sympathetic chain with the adrenal medulla being the most common site in 35% of cases. The initial presentation of orbital metastasis is very unusual that accounts for only 8% of all NB cases. We report a rare case of a 16-month-old girl who initially presented with bilateral rapidly progressive ocular proptosis for two weeks. CT scan of the brain and orbits revealed bilateral heterogeneous lateral orbital lesions, and CT scan of the abdomen and pelvis revealed huge heterogeneous right adrenal lesions. Histopathology of the abdominal mass confirmed the diagnosis of stage IV NB with orbital metastasis and the patient was started on an aggressive chemotherapy regimen. Ophthalmologists have a vital role in the diagnosis of NB which should be considered in the differential diagnosis of any rapidly progressive proptosis in young children. Early investigation and systemic workup should be made immediately, as it is a potentially life-threatening malignant tumor that requires aggressive management.
Collapse
|
128
|
Ko KY, Yen RF, Ko CL, Chou SW, Chang HH, Yang YL, Jou ST, Hsu WM, Lu MY. Prognostic Value of Interim 18F-DOPA and 18F-FDG PET/CT Findings in Stage 3-4 Pediatric Neuroblastoma. Clin Nucl Med 2022; 47:21-25. [PMID: 34874346 DOI: 10.1097/rlu.0000000000003972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This retrospective study aimed to determine the prognostic value of imaging parameters derived from midtherapy 18F-fluorodihydroxyphenylalanine (18F-DOPA) and 18F-FDG PET in pediatric patients with stage 3-4 neuroblastoma. METHODS We enrolled 32 stage 3-4 pediatric neuroblastoma patients who underwent 18F-DOPA and 18F-FDG PET/CT scans before and after 3 chemotherapy cycles. We measured metabolic and volumetric parameters and applied a metabolic burden scoring system to evaluate the primary tumor extent and soft tissue metastases and that of bone/bone marrow involvement. The associations between these parameters and clinical outcomes were investigated. RESULTS Over a median follow-up period of 47 months (range, 3-137 months), 16 patients experienced disease progression, and 13 died. After adjustment for clinical factors, multivariate Cox proportional hazard models showed that interim tumor FDG/FDOPA SUVmax (hazard ratio [HR], 5.94; 95% confidence interval [CI], 1.10-34.98) and interim FDOPA whole-body metabolic burden scores (WBMB) (HR, 7.30; 95% CI, 1.50-35.50) were significant prognostic factors for overall survival (OS). Only interim FDOPA WBMB scores (HR, 7.05; 95% CI, 1.02-48.7) were predictive of progression-free survival. Based on median cutoff values, prognosis (OS and progression-free survival) was significantly associated with an interim FDOPA WBMB score ≥21.92 (all P < 0.05) and interim tumor FDG/FDOPA (SUVmax) score ≥0.57 with poor OS (P < 0.05). CONCLUSIONS Our results indicate that midtreatment FDG and FDOPA PET/CT could serve as prognostic markers in stage 3-4 neuroblastoma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Ming Hsu
- Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
129
|
Burak Z. Radionuclide Therapy in Neuroectodermal Tumors. RADIONUCLIDE THERAPY 2022:199-222. [DOI: 10.1007/978-3-030-97220-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
130
|
Kinoshita M, Yamada A, Saito Y, Kamimura S, Moritake H. Successful treatment with rituximab for autoimmune cytopenia after autologous hematopoietic stem cell transplantation. Pediatr Int 2022; 64:e14975. [PMID: 35139246 DOI: 10.1111/ped.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
131
|
Leary SES, Kilburn L, Geyer JR, Kocak M, Huang J, Smith KS, Hadley J, Ermoian R, MacDonald TJ, Goldman S, Phillips P, Young Poussaint T, Olson JM, Ellison DW, Dunkel IJ, Fouladi M, Onar-Thomas A, Northcott PA. Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: A report from the Pediatric Brain Tumor Consortium (PBTC-026). Neuro Oncol 2021; 24:1178-1190. [PMID: 34935967 PMCID: PMC9248403 DOI: 10.1093/neuonc/noab293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Embryonal tumors of the CNS are the most common malignant tumors occurring in the first years of life. This study evaluated the feasibility and safety of incorporating novel non-cytotoxic therapy with vorinostat and isotretinoin to an intensive cytotoxic chemotherapy backbone. METHODS PBTC-026 was a prospective multi-institutional clinical trial for children <48 months of age with newly diagnosed embryonal tumors of the CNS. Treatment included three 21-day cycles of induction therapy with vorinostat and isotretinoin, cisplatin, vincristine, cyclophosphamide, and etoposide; three 28-day cycles of consolidation therapy with carboplatin and thiotepa followed by stem cell rescue; and twelve 28-day cycles of maintenance therapy with vorinostat and isotretinoin. Patients with M0 medulloblastoma (MB) received focal radiation following consolidation therapy. Molecular classification was by DNA methylation array. RESULTS Thirty-one patients with median age of 26 months (range 6-46) received treatment on study; 19 (61%) were male. Diagnosis was MB in 20 and supratentorial CNS embryonal tumor in 11. 24/31 patients completed induction therapy within a pre-specified feasibility window of 98 days. Five-year progression-free survival (PFS) and overall survival (OS) for all 31 patients were 55 ± 15 and 61 ± 13, respectively. Five-year PFS was 42 ± 13 for group 3 MB (n = 12); 80 ± 25 for SHH MB (n = 5); 33 ± 19 for embryonal tumor with multilayered rosettes (ETMR, n = 6). CONCLUSION It was safe and feasible to incorporate vorinostat and isotretinoin into an intensive chemotherapy regimen. Further study to define efficacy in this high-risk group of patients is warranted.
Collapse
Affiliation(s)
- Sarah E S Leary
- Corresponding Author: Sarah E. S. Leary, MD, MS, Seattle Children’s Hospital, Mail Stop MB.8.501, 4800 Sand Point Way NE, Seattle, WA 98105, USA ()
| | - Lindsay Kilburn
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - J Russell Geyer
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mehmet Kocak
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Peter Phillips
- Department of Pediatric Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tina Young Poussaint
- Department of Radiology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Olson
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, Washington, USA,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maryam Fouladi
- Department of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
132
|
Therapeutically targeting oncogenic CRCs facilitates induced differentiation of NB by RA and the BET bromodomain inhibitor. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:181-191. [PMID: 34729395 PMCID: PMC8526497 DOI: 10.1016/j.omto.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Retinoic acids (RAs) are the most successful therapeutics for cancer differentiation therapy used in high-risk neuroblastoma (NB) maintenance therapy but are limited in effectiveness. This study identifies a strategy for improving efficacy through disruption of cancer cell identity via BET inhibitors. Mutations that block development are theorized to cause NB through retention of immature cell identities contributing to oncogenesis. NB has two interchangeable cell identities, maintained by two different core transcriptional regulatory circuitries (CRCs): a therapy-resistant mesenchymal/stem cell state and a proliferative adrenergic cell state. MYCN amplification is a common mutation of high-risk NB and recently found to block differentiation by driving high expression of the adrenergic CRC transcription factor ASCL1. We investigated whether disruption of immature CRCs can promote RA-induced differentiation since only a subset of NB patients responds to RA. We found that silencing ASCL1, a critical member of the adrenergic CRC, or global disruption of CRCs with the BET inhibitor JQ1, suppresses gene expression of multiple CRC factors, improving RA-mediated differentiation. Further, JQ1 and RA synergistically decrease proliferation and induce differentiation in NB cell lines. Our findings support preclinical studies of RA and BET inhibitors as a combination therapy in treating NB.
Collapse
|
133
|
Zhao ZS, Shao W, Liu JK. Autologous or allogeneic hematopoietic stem cells transplantation combined with high-dose chemotherapy for refractory neuroblastoma: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28096. [PMID: 34889262 PMCID: PMC8663834 DOI: 10.1097/md.0000000000028096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Neuroblastoma is a common solid malignant tumor in children. Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor. High-dose chemotherapy and hematopoietic stem cell (HSC) transplantation might improve survival of patients with refractory neuroblastoma. In this study, we aimed to summarize the efficacy of autologous or allogeneic HSC transplantation combined with high-dose chemotherapy for patients with refractory neuroblastoma through the meta-analysis. METHODS AND ANALYSIS Relevant clinical trials of autologous or allogeneic HSC transplantation for the treatment refractory neuroblastoma patients will be searched in Web of Science, Cochrane Library, PubMed, Google Scholar, Embase, Medline, China National Knowledge Infrastructure, China Scientific Journal Database, Chinese Biomedical Literature Database and Wanfang Database from their inception to December 2020. Two researchers will perform data extraction and risk of bias assessment independently. The clinical outcomes including tumor response, overall survival, event-free survival (EFS), quality of life (QoL) and adverse events, were systematically evaluated by using Review Manager 5.3 and Stata 14.0 statistical software. RESULTS The results of this study will provide high-quality evidence for the effect of autologous or allogeneic HSC transplantation combined with high-dose chemotherapy on tumor response, survival, and QoL in patients with refractory neuroblastoma. CONCLUSIONS The conclusions of this meta-analysis will be published in a peer-reviewed journal, and provide more evidence-based guidance in clinical practice.
Collapse
|
134
|
Zhang D, Kaweme NM, Duan P, Dong Y, Yuan X. Upfront Treatment of Pediatric High-Risk Neuroblastoma With Chemotherapy, Surgery, and Radiotherapy Combination: The CCCG-NB-2014 Protocol. Front Oncol 2021; 11:745794. [PMID: 34868944 PMCID: PMC8634583 DOI: 10.3389/fonc.2021.745794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/22/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose The Chinese Children’s Cancer Group developed the CCCG-NB-2014 study to formulate optimal treatment strategies for high-risk (HR) neuroblastoma (NB). The safety and efficacy of this protocol were evaluated. Method Patients with newly diagnosed neuroblastoma and defined as HR according to the Children’s Oncology Group study were included. They were treated with a combination of chemotherapy, surgery, and radiotherapy. The treatment-related toxicities, response rate, 3-year progression-free survival (PFS), and overall survival (OS) were analyzed. Results Of 159 patients enrolled between 2014 and 2018, 80 were eligible, including 19 girls and 61 boys, with a median age of 3.9 years (range 0.9–11). After a median follow-up of 24 months (range 3–40), the median OS was 31.8 months, and 3-year OS was 83.8%. In multivariate analyses, the OS was affected by N-MYC amplification (hazard ratio 0.212, 95% confidence interval (CI) 0.049–0.910; p = 0.037) and giant tumor mass (hazard ratio 0.197, 95% CI 0.071–0.552; p = 0.002). The median 3-year PFS was 25.8 months, and 3-year PFS was 57.5%. The univariate analysis showed that only the giant tumor mass was associated with the outcome. Of the 13 deaths, 11 died from the rapid progression of the disease and two from treatment-related toxicities. The most common adverse reaction was chemotherapy-induced hematological toxicity. Conclusion The PFS and OS reported in our study were similar to Western countries. The CCCG-NB-2014 protocol proved to be an efficient regimen with tolerable side-effect for the treatment of pediatric HR-NB.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Youhong Dong
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiaojun Yuan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
135
|
Bremner JD. Isotretinoin and neuropsychiatric side effects: Continued vigilance is needed. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100230. [PMID: 37168254 PMCID: PMC10168661 DOI: 10.1016/j.jadr.2021.100230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Isotretinoin (13-cis-retinoic acid, marketed under the names Accutane, Roaccutane, and others) is an effective treatment for acne that has been on the market for over 30 years, although reports of neuropsychiatric side effects continue to be reported. Isotretinoin is an isomer of the active form of Vitamin A, 13-trans-retinoic acid, which has known psychiatric side effects when given in excessive doses, and is part of the family of compounds called retinoids, which have multiple functions in the central nervous system. Methods The literature was reviewed in pubmed and psychinfo for research related to isotretinoin and neuropsychiatric side effects including depression, suicidal thoughts, suicide, mania, anxiety, impulsivity, emotional lability, violence, aggression, and psychosis. Results Multiple case series have shown that successful treatment of acne with isotretinoin results in improvements in measures of quality of life and self esteem However, studies show individual cases of clinically significant depression and other neuropsychiatric events that, although not common, are persistent in the literature. Since the original cases of depression were reported to the United States Food and Drug Administration, numerous cases have been reported to regulatory agencies in the United Kingdom, France, Ireland, Denmark, Australia, Canada, and other countries, making isotretinoin one of the top five medications in the world associated with depression and other neuropsychiatric side effects. Clinicians are advised to warn patients of the risks of neuropsychiatric side effects with isotretinoin which may arise from the medication itself, and not just as a side effect of acne or youth.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, and Department of Radiology and Imaging Sciences, Emory University School of Medicine, VA Medical Center, Decatur, GA, United States
| |
Collapse
|
136
|
Kuroda R, Wakabayashi H, Araki R, Inaki A, Nishimura R, Ikawa Y, Yoshimura K, Murayama T, Imai Y, Funasaka T, Wada T, Kinuya S. Phase I/II clinical trial of high-dose [ 131I] meta-iodobenzylguanidine therapy for high-risk neuroblastoma preceding single myeloablative chemotherapy and haematopoietic stem cell transplantation. Eur J Nucl Med Mol Imaging 2021; 49:1574-1583. [PMID: 34837510 DOI: 10.1007/s00259-021-05630-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Paediatric high-risk neuroblastoma has poor prognosis despite modern multimodality therapy. This phase I/II study aimed to determine the safety, dose-limiting toxicity (DLT), and efficacy of high-dose 131I-meta-iodobenzylguanidine (131I-mIBG) therapy combined with single high-dose chemotherapy (HDC) and haematopoietic stem cell transplantation (HSCT) in high-risk neuroblastoma in Japan. METHODS Patients received 666 MBq/kg of 131I-mIBG and single HDC and HSCT from autologous or allogeneic stem cell sources. The primary endpoint was DLT defined as adverse events associated with 131I-mIBG treatment posing a significant obstacle to subsequent HDC. The secondary endpoints were adverse events/reactions, haematopoietic stem cell engraftment and responses according to the Response Evaluation Criteria in Solid Tumours version 1.1 (RECIST 1.1) and 123I-mIBG scintigraphy. Response was evaluated after engraftment. RESULTS We enrolled eight patients with high-risk neuroblastoma (six females; six newly diagnosed and two relapsed high-risk neuroblastoma; median age, 4 years; range, 1-10 years). Although all patients had adverse events/reactions after high-dose 131I-mIBG therapy, we found no DLT. Adverse events and reactions were observed in 100% and 25% patients during single HDC and 100% and 12.5% patients during HSCT, respectively. No Grade 4 complications except myelosuppression occurred during single HDC and HSCT. The response rate according to RECIST 1.1 was observed in 87.5% (7/8) in stable disease and 12.5% (1/8) were not evaluated. Scintigraphic response occurred in 62.5% (5/8) and 37.5% (3/8) patients in complete response and stable disease, respectively. CONCLUSION 131I-mIBG therapy with 666 MBq/kg followed by single HDC and autologous or allogeneic SCT is safe and efficacious in patients with high-risk neuroblastoma and has no DLT. TRIAL REGISTRATION NUMBER jRCTs041180030. NAME OF REGISTRY Feasibility of high-dose iodine-131-meta-iodobenzylguanidine therapy for high-risk neuroblastoma preceding myeloablative chemotherapy and haematopoietic stem cell transplantation (High-dose iodine-131-meta-iodobenzylguanidine therapy for high-risk neuroblastoma). URL OF REGISTRY: https://jrct.niph.go.jp/en-latest-detail/jRCTs041180030 . DATE OF ENROLMENT OF THE FIRST PARTICIPANT TO THE TRIAL 12/01/2018.
Collapse
Affiliation(s)
- Rie Kuroda
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Raita Araki
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Ryosei Nishimura
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yasuhiro Ikawa
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kenichi Yoshimura
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Toshinori Murayama
- Department of Clinical Development, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Yasuhito Imai
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Tatsuyoshi Funasaka
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Taizo Wada
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
137
|
Chromosome Imbalances in Neuroblastoma-Recent Molecular Insight into Chromosome 1p-deletion, 2p-gain, and 11q-deletion Identifies New Friends and Foes for the Future. Cancers (Basel) 2021; 13:cancers13235897. [PMID: 34885007 PMCID: PMC8657310 DOI: 10.3390/cancers13235897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neuroblastoma is a pediatric cancer that arises in the sympathetic nervous system. High-risk neuroblastoma is clinically challenging and identification of novel therapies, particularly those that offer a reduction in morbidity for these patients, is a high priority. Combining genetic analyses with investigation of molecular mechanisms, while considering recent advances in our understanding of key developmental events, provides avenues for future treatment. Here we review and highlight several recently published articles that address novel molecular mechanisms arising from chromosome 1p, 2p, and 11q aberrations, which likely contribute to high-risk neuroblastoma, and discusses their potential impact on treatment options. Abstract Neuroblastoma is the most common extracranial solid pediatric tumor, with around 15% childhood cancer-related mortality. High-risk neuroblastomas exhibit a range of genetic, morphological, and clinical heterogeneities, which add complexity to diagnosis and treatment with existing modalities. Identification of novel therapies is a high priority in high-risk neuroblastoma, and the combination of genetic analysis with increased mechanistic understanding—including identification of key signaling and developmental events—provides optimism for the future. This focused review highlights several recent findings concerning chromosomes 1p, 2p, and 11q, which link genetic aberrations with aberrant molecular signaling output. These novel molecular insights contribute important knowledge towards more effective treatment strategies for neuroblastoma.
Collapse
|
138
|
Blanco-Luquin I, Lázcoz P, Celay J, Castresana JS, Encío IJ. In Vitro Assessment of the Role of p53 on Chemotherapy Treatments in Neuroblastoma Cell Lines. Pharmaceuticals (Basel) 2021; 14:ph14111184. [PMID: 34832966 PMCID: PMC8624165 DOI: 10.3390/ph14111184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2/p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etoposide, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.
Collapse
Affiliation(s)
- Idoia Blanco-Luquin
- Department of Health Sciences, Public University of Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain; (I.B.-L.); (P.L.); (J.C.)
| | - Paula Lázcoz
- Department of Health Sciences, Public University of Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain; (I.B.-L.); (P.L.); (J.C.)
| | - Jon Celay
- Department of Health Sciences, Public University of Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain; (I.B.-L.); (P.L.); (J.C.)
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
- Correspondence: (J.S.C.); (I.J.E.)
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain; (I.B.-L.); (P.L.); (J.C.)
- Correspondence: (J.S.C.); (I.J.E.)
| |
Collapse
|
139
|
Dhokia V, Macip S. A master of all trades - linking retinoids to different signalling pathways through the multi-purpose receptor STRA6. Cell Death Discov 2021; 7:358. [PMID: 34785649 PMCID: PMC8595884 DOI: 10.1038/s41420-021-00754-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoids are a group of vitamin A-related chemicals that are essential to chordate mammals. They regulate a number of basic processes, including embryogenesis and vision. From ingestion to metabolism and the subsequent cellular effects, retinoid levels are tightly regulated in the organism to prevent toxicity. One component of this network, the membrane receptor STRA6, has been shown to be essential in facilitating the cellular entry and exit of retinol. However, recent data suggests that STRA6 may not function merely as a retinoid transporter but also act as a complex signalling hub in its own right, being able to affect cell fate through the integration of retinoid signalling with other key pathways, such as those involving p53, JAK/STAT, Wnt/β catenin and calcium. This may open new therapeutic strategies in diseases like cancer, where these pathways are often compromised. Here, we look at the growing evidence regarding the novel roles of STRA6 beyond its well characterized classic functions.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
140
|
Missios P, da Rocha EL, Pearson DS, Philipp J, Aleman MM, Pirouz M, Farache D, Franses JW, Kubaczka C, Tsanov KM, Jha DK, Pepe-Mooney B, Powers JT, Gregory RI, Lee AS, Dominguez D, Ting DT, Daley GQ. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131:e145142. [PMID: 34779407 PMCID: PMC8592552 DOI: 10.1172/jci145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/21/2021] [Indexed: 01/21/2023] Open
Abstract
High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7-independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.
Collapse
Affiliation(s)
- Pavlos Missios
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel S. Pearson
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Philipp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joseph W. Franses
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaloyan M. Tsanov
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak K. Jha
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Pepe-Mooney
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - John T. Powers
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard I. Gregory
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA
| | - Amy S.Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David T. Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
141
|
Tarnasky AM, Achey MA, Wachsmuth LP, Williamson H, Thomas SM, Commander SJ, Leraas H, Driscoll T, Tracy ET. Non-inferiority of fragmented care for high-risk pediatric neuroblastoma patients: a single institution analysis. Pediatr Hematol Oncol 2021; 38:731-744. [PMID: 33970762 DOI: 10.1080/08880018.2021.1922557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pediatric neuroblastoma (NB) patients receive multi-modal therapy and may experience care fragmented among multiple institutions with a significant travel burden, which has been associated with poor outcomes for some adult cancers. We hypothesized that fragmented care for pediatric NB patients is associated with inferior outcomes compared to treatment consolidated at one location. We reviewed paper and electronic records for pediatric NB patients who received ≥1 hematopoietic stem cell transplant (HSCT) at Duke from 1990-2017. Fragmented care was defined by treatment at >1 institution and grouped by 2 institutions vs. 3+ institutions. Distances were calculated using Google Maps. To compare all care groups, we used Fisher's Exact and Kruskal-Wallis tests for demographic and treatment characteristics, Kaplan-Meier for unadjusted overall survival (OS), and Cox proportional hazards for factors associated with OS. Of 127 eligible patients, 102 (80.3%) patients experienced fragmented care, with 17 treated at 3+ facilities. Kaplan-Meier analysis did not associate fragmented care with increased mortality (log-rank p = 0.13). With multivariate analysis, only earlier diagnostic decade and greater distance to HSCT remained significantly associated with worsened OS. In this single institutional study, we found fragmented care did not impact overall survival. Worsened overall survival was associated with increased travel distance for HSCT and further research should aim to improve supportive processes for patients undergoing HSCT for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Aaron M Tarnasky
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Meredith A Achey
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Luke P Wachsmuth
- School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Samantha M Thomas
- Duke Cancer Institute, Durham, North Carolina, USA.,Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Sarah Jane Commander
- Division of Pediatric Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Harold Leraas
- Division of Pediatric Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tim Driscoll
- Division of Pediatric Hematology and Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Elisabeth T Tracy
- Division of Pediatric Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
142
|
Parent Perspectives on Information-seeking, Trustworthiness, and Decision-making in High-risk Neuroblastoma. J Pediatr Hematol Oncol 2021; 43:e1099-e1104. [PMID: 33273412 DOI: 10.1097/mph.0000000000002022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND This study explores how parents of children with high-risk neuroblastoma incorporate information from multiple sources into treatment decision-making for their children as they evaluate the trustworthiness of the sources. METHODS Following ethics board approval, parents of children with high-risk neuroblastoma were recruited through purposive sampling from a tertiary care pediatric oncology program in Vancouver, BC, Canada. Participants completed an in-depth, semistructured interview with a study member. The qualitative descriptive methodology was utilized to code interview transcripts and identify emergent themes. RESULTS Nine parents of children with high-risk neuroblastoma during upfront therapy (n=4) or treatment of refractory disease (n=5) were included. Despite almost universal access of web-based information, parents acknowledged distrust in the reliability and consistency of these sources. Open communication between parents and physicians about sources of information outside the clinic and access to regulated, accurate information is highly valued. The impact on the quality of life and the costs, both financial and personal, of travel are key factors in decision-making. DISCUSSION Health care providers shoulder an immense responsibility to augment and contextualize information available about high-risk neuroblastoma for parents to maximize benefit in decision-making. Health care providers should guide access to accurate, evidence-based resources that can be monitored and continuously updated.
Collapse
|
143
|
Zimmerman MW, Durbin AD, He S, Oppel F, Shi H, Tao T, Li Z, Berezovskaya A, Liu Y, Zhang J, Young RA, Abraham BJ, Look AT. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. SCIENCE ADVANCES 2021; 7:eabe0834. [PMID: 34669465 PMCID: PMC8528416 DOI: 10.1126/sciadv.abe0834] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Neuroblastoma cell identity depends on a core regulatory circuit (CRC) of transcription factors that collaborate with MYCN to drive the oncogenic gene expression program. For neuroblastomas dependent on the adrenergic CRC, treatment with retinoids can inhibit cell growth and induce differentiation. Here, we show that when MYCN-amplified neuroblastoma cells are treated with retinoic acid, histone H3K27 acetylation and methylation become redistributed to decommission super-enhancers driving the expression of PHOX2B and GATA3, together with the activation of new super-enhancers that drive high levels of MEIS1 and SOX4 expression. These findings indicate that treatment with retinoids can reprogram the enhancer landscape, resulting in down-regulation of MYCN expression, while establishing a new retino-sympathetic CRC that causes proliferative arrest and sympathetic differentiation. Thus, we provide mechanisms that account for the beneficial effects of retinoids in high-risk neuroblastoma and explain the rapid down-regulation of expression of MYCN despite massive levels of amplification of this gene.
Collapse
Affiliation(s)
- Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Felix Oppel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alla Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard A Young
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
144
|
Takita J. Molecular Basis and Clinical Features of Neuroblastoma. JMA J 2021; 4:321-331. [PMID: 34796286 PMCID: PMC8580727 DOI: 10.31662/jmaj.2021-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/05/2022] Open
Abstract
Neuroblastoma, a neoplasm of the sympathetic nervous system, originates from neuroblastoma stem cells during embryogenesis. It exhibits unique clinical features including a tendency for spontaneous regression of tumors in infants and a high frequency of metastatic disease at diagnosis in patients aged over 18 months. Genetic risk factors and epigenetic dysregulation also play a significant role in the development of neuroblastoma. Over the past decade, our understanding of this disease has advanced considerably. This has included the identification of chromosomal copy number aberrations specific to neuroblastoma development, risk groups, and disease stage. However, high-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. New therapeutic approaches have been developed, either as alternatives to conventional chemotherapy or in combination, to overcome the dismal prognosis. Particularly promising strategies are targeted therapies that directly affect cancer cells or cancer stem cells while exhibiting minimal effect on healthy cells. This review summarizes our understanding of neuroblastoma biology and prognostic features and focuses on novel therapeutic strategies for this intractable disease.
Collapse
Affiliation(s)
- Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
145
|
Hattori N, Asada K, Miyajima N, Mori A, Nakanishi Y, Kimura K, Wakabayashi M, Takeshima H, Nitani C, Hara J, Ushijima T. Combination of a synthetic retinoid and a DNA demethylating agent induced differentiation of neuroblastoma through retinoic acid signal reprogramming. Br J Cancer 2021; 125:1647-1656. [PMID: 34635821 DOI: 10.1038/s41416-021-01571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The CpG island methylator phenotype of neuroblastoma (NBL) is strongly associated with poor prognosis and can be targeted by 5-aza-2'-deoxycytidine (5-aza-dC). Differentiation therapy is a standard maintenance therapy for high-risk NBLs. However, the in vivo effect of tamibarotene, a synthetic retinoic acid, and the efficacy of its combination with 5-aza-dC have not been studied. Here, we conducted a preclinical study to assess the in vivo tamibarotene effect and the combination. METHODS Treatment effects were analysed by in vitro cell growth and differentiation state and by in vivo xenograft suppression. Demethylated genes were analysed by DNA methylation microarrays and geneset enrichment. RESULTS Tamibarotene monotherapy induced neural extension and upregulation of differentiation markers of NBL cells in vitro, and tumour regression without severe side effects in vivo. 5-Aza-dC monotherapy suppressed tumour growth both in vitro and in vivo, and induced demethylation of genes related to nervous system development and function. Pre-treatment with 5-aza-dC in vitro enhanced upregulation of differentiation markers and genes involved in retinoic acid signaling. Pre-treatment with 5-aza-dC in vivo significantly suppressed tumour growth and reduced the variation in tumour sizes. CONCLUSIONS Epigenetic drug-based differentiation therapy using 5-aza-dC and TBT is a promising strategy for refractory NBLs.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Kiyoshi Asada
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nozomu Miyajima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Mori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Chika Nitani
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
146
|
Analysis of Asymmetric Cell Division Using Human Neuroblastoma Cell Lines as a Model System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma is one of the most common childhood solid tumors and develops from neural stem cells that normally comprise the embryonic structure termed the neural crest. Human neuroblastoma cell lines have special properties as they exhibit cell growth and are induced to become mature neurons by drugs such as retinoid. Therefore, we examined asymmetric cell division (ACD) using human neuroblastoma cells as an ACD model, and confirmed that ACD in human cancer cells is evolutionally conserved. Furthermore, we demonstrated that MYCN is involved in cell division fate. We introduce the brief history of ACD study using neuroblastoma cell lines and discuss why human neuroblastoma cells are an ideal model system for clarifying the mechanism of ACD.
Collapse
|
147
|
Treffy RW, Rajan SG, Jiang X, Nacke LM, Malkana UA, Naiche LA, Bergey DE, Santana D, Rajagopalan V, Kitajewski JK, O'Bryan JP, Saxena A. Neuroblastoma differentiation in vivo excludes cranial tumors. Dev Cell 2021; 56:2752-2764.e6. [PMID: 34610330 PMCID: PMC10796072 DOI: 10.1016/j.devcel.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB), the most common cancer in the first year of life, presents almost exclusively in the trunk. To understand why an early-onset cancer would have such a specific localization, we xenotransplanted human NB cells into discrete neural crest (NC) streams in zebrafish embryos. Here, we demonstrate that human NB cells remain in an undifferentiated, tumorigenic state when comigrating posteriorly with NC cells but, upon comigration into the head, differentiate into neurons and exhibit decreased survival. Furthermore, we demonstrate that this in vivo differentiation requires retinoic acid and brain-derived neurotrophic factor signaling from the microenvironment, as well as cell-autonomous intersectin-1-dependent phosphoinositide 3-kinase-mediated signaling, likely via Akt kinase activation. Our findings suggest a microenvironment-driven explanation for NB's trunk-biased localization and highlight the potential for induced differentiation to promote NB resolution in vivo.
Collapse
Affiliation(s)
- Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sriivatsan G Rajan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinghang Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Usama A Malkana
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dani E Bergey
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
148
|
Alazawi S, Hendriksz T. Analysis of the effects of isotretinoin on the premature epiphyseal closure in pediatric populations: a literature review. J Osteopath Med 2021; 122:45-53. [PMID: 34626532 DOI: 10.1515/jom-2021-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Oral isotretinoin, a systemic retinoid and a vitamin A derivative, has been widely utilized to treat acne in both adult and pediatric populations. Additionally, systemic retinoids have also been utilized to treat neuroblastoma in pediatric patients. Common side effects associated with oral isotretinoin include dry eyes, dry mouth, elevated liver enzymes, depression, and arthralgia. Less common side effects of isotretinoin include hearing loss, pseudotumor cerebri, anaphylaxis, and skeletal abnormalities including growth arrest. The U.S. Food and Drug Administration (FDA) has received reports of premature epiphyseal closure in patients treated with isotretinoin retinoids, which are commonly prescribed by primary care providers as a treatment for acne. It is important to raise awareness of the potential side effects of isotretinoin to enable informed treatment decisions before beginning an isotretinoin regimen. OBJECTIVES This chapter aims to elucidate that isotretinoin, given at various doses and durations, has been associated with growth plate abnormalities, which can lead to premature epiphyseal closure. METHODS Two databases were utilized for the literature review and were conducted at different time periods. Our literature review was conducted between December 2020 and June 2021, utilizing PubMed with the following search terms: "isotretinoin" and "isotretinoin and premature epiphyseal closure." In April 2021, we searched the FDA's "Drug Data and Adverse Event Report System" utilizing the terms "isotretinoin" and "epiphysis premature fusion." We included in our query reports of patients worldwide under 18 years of age with premature epiphyseal closure or growth plate damage secondary to isotretinoin. Studies published in English between 1980 and 2020 were also included, as well as background sources relating to an isotretinoin profile with side effects and dosing. We narrowed our search to exclude patients with a history of growth plate disorders due to trauma, malignancy, or other pathological processes, as well as patients with growth arrest due to endocrine factors. Growth plate abnormalities associated with retinoid derivatives other than isotretinoin were also excluded. RESULTS A total of 28 items were selected for our literature review including: one FDA drug label, one FDA website of adverse reactions, 19 supplemental articles, six case reports, and one case series of premature epiphyseal closure secondary to isotretinoin. The FDA received 41 reports worldwide of premature epiphyseal closure related to isotretinoin in patients under 18 years of age. Additionally, premature epiphyseal closure and growth plate abnormalities occurred in nine patients with various durations and doses of isotretinoin ranging from the lowest dose of 0.5 mg/kg/day for a few months to 3.5 mg/kg/day for years. CONCLUSIONS Isotretinoin-induced premature epiphyseal closure and growth plate deformities seem to be linked to higher doses of isotretinoin for the duration of months to years. There have been reported cases of premature epiphyseal closure in individuals receiving therapeutic doses of isotretinoin for acne treatment, which are much lower compared to the high doses utilized for neuroblastoma. Based on this study, isotretinoin appears to impact the growth plates of proximal tibia and distal femur. A cause-and-effect relationship between isotretinoin and premature epiphyseal closure cannot be concluded.
Collapse
Affiliation(s)
- Sama Alazawi
- Touro University College of Osteopathic Medicine, Vallejo, CA, USA
| | - Tami Hendriksz
- Department of Pediatrics, Touro University College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
149
|
Tao L, Moreno‐Smith M, Ibarra‐García‐Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B, Patel T, Kamal AHM, Zhao Y, Hicks J, Vasudevan SA, Putluri N, Coarfa C, Sumazin P, Perini G, Parchem RJ, Uribe RA, Barbieri E. CHAF1A Blocks Neuronal Differentiation and Promotes Neuroblastoma Oncogenesis via Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005047. [PMID: 34365742 PMCID: PMC8498874 DOI: 10.1002/advs.202005047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
Collapse
|
150
|
Zheng DJ, Li A, Ma C, Ribeiro KB, Diller L, Bona K, Marron JM. Socioeconomic disparities in survival after high-risk neuroblastoma treatment with modern therapy. Pediatr Blood Cancer 2021; 68:e29127. [PMID: 34022098 PMCID: PMC8384664 DOI: 10.1002/pbc.29127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Modern therapeutic advances in high-risk neuroblastoma have improved overall survival (OS), but it is unclear whether these survival gains have been equitable. This study examined the relationship between socioeconomic status (SES) and overall survival (OS) in children with high-risk neuroblastoma and whether SES-associated disparities have changed over time. PROCEDURE In this population-based cohort study, children <18 years diagnosed with high-risk neuroblastoma (diagnosis at age ≥12 months with metastatic disease) from 1991 to 2015 were identified through the National Cancer Institute's Surveillance, Epidemiology, and End Results database. Associations of county-level SES variables and OS were tested with univariate Cox proportional hazards regression. For a subcohort diagnosed after 2007, insurance status was examined as an individual-level SES variable. Multivariable regression analyses with treatment era and interaction terms were performed when SES variables reached near-significance (p ≤ .1) in univariate and bivariate modeling with treatment era. RESULTS Among 1217 children, 2-year OS improved from 53.0 ± 3.4% in 1991-1998 to 76.9 ± 2.9% in 2011-2015 (p < .001). In univariate analyses, children in high-poverty counties (hazard ratio [HR] = 1.74, 95% confidence interval [CI] = 1.17-2.60, p = .007), and those with Medicaid (HR = 1.40, 95% CI = 1.05-1.86, p = .02) experienced an increased hazard of death. No interactions between treatment era and SES variables were statistically significant in multivariable analyses, indicating that differences in the OS between SES groups did not change over time. CONCLUSIONS Survival disparities among children with high-risk neuroblastoma have not widened over time, suggesting equitable access to and benefit from therapeutic advances. However, children of low SES experience persistently inferior survival. Interventions to narrow this disparity are paramount.
Collapse
Affiliation(s)
- Daniel J. Zheng
- Department of Pediatrics, Boston Children’s Hospital, Boston MA
- Department of Pediatrics, Boston Medical Center, Boston MA
| | - Anran Li
- University of Michigan Medical School, Ann Arbor, MI
| | - Clement Ma
- Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Karina B. Ribeiro
- Department of Social Medicine, Faculdade de Ciencias Médicas da Santa Casa de São Paulo, Sao Paulo, Brazil
| | - Lisa Diller
- Department of Pediatrics, Boston Children’s Hospital, Boston MA
- Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kira Bona
- Department of Pediatrics, Boston Children’s Hospital, Boston MA
- Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
| | - Jonathan M. Marron
- Department of Pediatrics, Boston Children’s Hospital, Boston MA
- Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
- Center for Bioethics, Harvard Medical School, Boston, MA
| |
Collapse
|