101
|
Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD, Llufrio EM, McCommis KS, Fahrmann J, Pizzato HA, Nunley RM, Lee J, Wolfgang MJ, Patti GJ, Finck BN, Pearce EL, Bhattacharya D. Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity 2016; 45:60-73. [PMID: 27396958 DOI: 10.1016/j.immuni.2016.06.011] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/19/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity.
Collapse
Affiliation(s)
- Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amy M Becker
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Krista M Kennerly
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jonathan D Curtis
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizabeth M Llufrio
- Department of Chemistry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kyle S McCommis
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Johannes Fahrmann
- West Coast Metabolomics Center, University of California, Davis, Davis, CA 95616, USA
| | - Hannah A Pizzato
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ryan M Nunley
- Washington University Orthopedics, Barnes Jewish Hospital, Saint Louis, MO 63110, USA
| | - Jieun Lee
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
102
|
Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A, Lievens M, Kaslow DC, Njuguna P, Marsh K, Bejon P. Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children. N Engl J Med 2016; 374:2519-29. [PMID: 27355532 PMCID: PMC4962898 DOI: 10.1056/nejmoa1515257] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The candidate malaria vaccine RTS,S/AS01 is being evaluated in order to inform a decision regarding its inclusion in routine vaccination schedules. METHODS We conducted 7 years of follow-up in children who had been randomly assigned, at 5 to 17 months of age, to receive three doses of either the RTS,S/AS01 vaccine or a rabies (control) vaccine. The end point was clinical malaria (temperature of ≥37.5°C and infection with Plasmodium falciparum of >2500 parasites per cubic millimeter). In an analysis that was not prespecified, the malaria exposure of each child was estimated with the use of information on the prevalence of malaria among residents within a 1-km radius of the child's home. Vaccine efficacy was defined as 1 minus the hazard ratio or the incidence-rate ratio, multiplied by 100, in the RTS,S/AS01 group versus the control group. RESULTS Over 7 years of follow-up, we identified 1002 episodes of clinical malaria among 223 children randomly assigned to the RTS,S/AS01 group and 992 episodes among 224 children randomly assigned to the control group. The vaccine efficacy, as assessed by negative binomial regression, was 4.4% (95% confidence interval [CI], -17.0 to 21.9; P=0.66) in the intention-to-treat analysis and 7.0% (95% CI, -14.5 to 24.6; P=0.52) in the per-protocol analysis. Vaccine efficacy waned over time (P=0.006 for the interaction between vaccination and time), including negative efficacy during the fifth year among children with higher-than-average exposure to malaria parasites (intention-to-treat analysis: -43.5%; 95% CI, -100.3 to -2.8 [P=0.03]; per-protocol analysis: -56.8%; 95% CI, -118.7 to -12.3 [P=0.008]). CONCLUSIONS A three-dose vaccination with RTS,S/AS01 was initially protective against clinical malaria, but this result was offset by rebound in later years in areas with higher-than-average exposure to malaria parasites. (Funded by the PATH Malaria Vaccine Initiative and others; ClinicalTrials.gov number, NCT00872963.).
Collapse
Affiliation(s)
- Ally Olotu
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Gregory Fegan
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Juliana Wambua
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - George Nyangweso
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Amanda Leach
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Marc Lievens
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - David C Kaslow
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Patricia Njuguna
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Kevin Marsh
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| | - Philip Bejon
- From the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Programme, Kilifi, Kenya (A.O., G.F., J.W., G.N., P.N., K.M., P.B.); Ifakara Health Institute, Bagamoyo, Tanzania (A.O.); the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom (G.F., K.M., P.B.); GlaxoSmithKline Vaccines, Wavre, Belgium (A.L., M.L.); and PATH, Seattle (D.C.K.)
| |
Collapse
|
103
|
Affiliation(s)
- John Clemens
- From iccdr,b, Dhaka, Bangladesh (J.C.); the University of California Los Angeles Fielding School of Public Health, Los Angeles (J.C.); and the World Health Organization, Geneva (V.M.)
| | - Vasee Moorthy
- From iccdr,b, Dhaka, Bangladesh (J.C.); the University of California Los Angeles Fielding School of Public Health, Los Angeles (J.C.); and the World Health Organization, Geneva (V.M.)
| |
Collapse
|
104
|
Horne-Debets JM, Karunarathne DS, Faleiro RJ, Poh CM, Renia L, Wykes MN. Mice lacking Programmed cell death-1 show a role for CD8(+) T cells in long-term immunity against blood-stage malaria. Sci Rep 2016; 6:26210. [PMID: 27217330 PMCID: PMC4877649 DOI: 10.1038/srep26210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8+ T cells even when CD4+ T cells and B cells responded to re-infection. These studies indicate that long-term CD8+ T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response.
Collapse
Affiliation(s)
- Joshua M Horne-Debets
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Deshapriya S Karunarathne
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| | - Rebecca J Faleiro
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Michelle N Wykes
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| |
Collapse
|
105
|
Doll KL, Pewe LL, Kurup SP, Harty JT. Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4253-62. [PMID: 27084099 PMCID: PMC4868661 DOI: 10.4049/jimmunol.1600155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
Abstract
Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target Ags have conferred long-lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8(+) T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8(+) T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. In this article, we show that robust CD8(+) T cell responses of similar phenotype are mounted after prime-boost immunization against Plasmodium berghei glideosome-associated protein 5041-48-, sporozoite-specific protein 20318-325-, thrombospondin-related adhesion protein (TRAP) 130-138-, or circumsporozoite protein (CSP) 252-260-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8(+) T cells provide sterilizing immunity and reduce liver parasite burden after sporozoite challenge. Further, CD8(+) T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not intracellular glideosome-associated protein 50 and sporozoite-specific protein 20, efficiently recognize sporozoite-infected hepatocytes in vitro. These results suggest that: 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8(+) T cells to eliminate liver-stage Plasmodium infection; and 2) proteins expressed on the surface of sporozoites may be good target Ags for protective CD8(+) T cells.
Collapse
Affiliation(s)
- Katherine L Doll
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Lecia L Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
106
|
Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, Vaughan AM, Springer TA, Moritz RL, Kappe SHI, Sinnis P. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016; 12:e1005606. [PMID: 27128092 PMCID: PMC4851412 DOI: 10.1371/journal.ppat.1005606] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. Malaria remains one of the most important infectious diseases in the world, responsible for an estimated 500 million new cases and 600,000 deaths annually. The etiologic agents of the disease are protozoan parasites of the genus Plasmodium that have a complex cycle between mosquito and mammalian hosts. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages that we can make an impact on the economic and health burdens of malaria. Infection is initiated when mosquitoes inoculate sporozoites into the skin as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. The inoculum is low and these early stages of infection are asymptomatic. Though the small amounts of material available for study has made large scale -omics studies difficult, killing the parasite at this stage would prevent infection and block downstream transmission to mosquitoes, thus preventing spread of disease. Here we use state-of-the-art biochemistry tools to identify the proteins on the sporozoite surface and find that two of the most studied proteins, CSP and TRAP, have post-translational modifications. These studies will aid investigations into the novel biology of sporozoites and importantly, significantly expand the pool of potential vaccine candidates.
Collapse
Affiliation(s)
| | - Scott E. Lindner
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lirong Shi
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anke Harupa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ashley M. Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Stefan H. I. Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| |
Collapse
|
107
|
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol 2016; 32:284-295. [DOI: 10.1016/j.pt.2015.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
108
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
109
|
Dudley HJ, Goenka A, Orellana CJ, Martonosi SE. Multi-year optimization of malaria intervention: a mathematical model. Malar J 2016; 15:133. [PMID: 26931111 PMCID: PMC4774123 DOI: 10.1186/s12936-016-1182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
Background Malaria is a mosquito-borne, lethal disease that affects millions and kills hundreds of thousands of people each year, mostly children. There is an increasing need for models of malaria control. In this paper, a model is developed for allocating malaria interventions across geographic regions and time, subject to budget constraints, with the aim of minimizing the number of person-days of malaria infection. Methods The model considers a range of several conditions: climatic characteristics, treatment efficacy, distribution costs, and treatment coverage. An expanded susceptible-infected-recovered compartment model for the disease dynamics is coupled with an integer linear programming model for selecting the disease interventions. The model produces an intervention plan for all regions, identifying which combination of interventions, with which level of coverage, to use in each region and year in a 5-year planning horizon. Results Simulations using the model yield high-level, qualitative insights on optimal intervention policies: The optimal intervention policy is different when considering a 5-year time horizon than when considering only a single year, due to the effects that interventions have on the disease transmission dynamics. The vaccine intervention is rarely selected, except if its assumed cost is significantly lower than that predicted in the literature. Increasing the available budget causes the number of person-days of malaria infection to decrease linearly up to a point, after which the benefit of increased budget starts to taper. The optimal policy is highly dependent on assumptions about mosquito density, selecting different interventions for wet climates with high density than for dry climates with low density, and the interventions are found to be less effective at controlling malaria in the wet climates when attainable intervention coverage is 60 % or lower. However, when intervention coverage of 80 % is attainable, then malaria prevalence drops quickly in all geographic regions, even when factoring in the greater expense of the higher coverage against a constant budget. Conclusions The model provides a qualitative decision-making tool to weigh alternatives and guide malaria eradication efforts. A one-size-fits-all campaign is found not to be cost-effective; it is better to consider geographic variations and changes in malaria transmission over time when determining intervention strategies.
Collapse
Affiliation(s)
- Harry J Dudley
- University of Colorado Boulder, 526 UCB, University of Colorado, Boulder, CO, 80309-0526, USA.
| | - Abhishek Goenka
- Harvey Mudd College, 301 Platt Blvd, Claremont, CA, 91711, USA.
| | | | | |
Collapse
|
110
|
Wilson CB, Karp CL. Can immunological principles and cross-disciplinary science illuminate the path to vaccines for HIV and other global health challenges? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0152. [PMID: 25964461 PMCID: PMC4527394 DOI: 10.1098/rstb.2014.0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vaccines are one of the most impactful and cost-effective public health measures of the twentieth century. However, there remain great unmet needs to develop vaccines for globally burdensome infectious diseases and to allow more timely responses to emerging infectious disease threats. Recent advances in the understanding of immunological principles operative not just in model systems but in humans in concert with the development and application of powerful new tools for profiling human immune responses, in our understanding of pathogen variation and evolution, and in the elucidation of the structural aspects of antibody–pathogen interactions, have illuminated pathways by which these unmet needs might be addressed. Using these advances as foundation, we herein present a conceptual framework by which the discovery, development and iterative improvement of effective vaccines for HIV, malaria and other globally important infectious diseases might be accelerated.
Collapse
Affiliation(s)
- Christopher B Wilson
- Global Health Program, Bill & Melinda Gates Foundation, 500 Fifth Avenue North, Seattle, WA 98109, USA
| | - Christopher L Karp
- Global Health Program, Bill & Melinda Gates Foundation, 500 Fifth Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
111
|
Ganeshan H, Kusi KA, Anum D, Hollingdale MR, Peters B, Kim Y, Tetteh JKA, Ofori MF, Gyan BA, Koram KA, Huang J, Belmonte M, Banania JG, Dodoo D, Villasante E, Sedegah M. Measurement of ex vivo ELISpot interferon-gamma recall responses to Plasmodium falciparum AMA1 and CSP in Ghanaian adults with natural exposure to malaria. Malar J 2016; 15:55. [PMID: 26830334 PMCID: PMC4736649 DOI: 10.1186/s12936-016-1098-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Methods Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9–10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. Results For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9–10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9–10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. Conclusions These results generally demonstrate that CSP and AMA1 peptides recalled ELISpot IFN-γ responses from naturally exposed individuals and that both CSP and AMA1 contain diverse class 1-restricted epitopes that are HLA-promiscuous and are widely recognized in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Kwadwo A Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Dorothy Anum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, San Diego, CA, USA.
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, San Diego, CA, USA.
| | - John K A Tetteh
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Michael F Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Ben A Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Jo Glenna Banania
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA.
| |
Collapse
|
112
|
Abstract
"Infectious diseases of poverty" (IDoP) describes infectious diseases that are more prevalent among poor and vulnerable populations, namely human immunodeficiency virus (HIV) infection, tuberculosis (TB), malaria, and neglected tropical diseases (NTDs). In 2013, 190,000 children died of HIV-related causes and there were 550,000 cases and 80,000 TB deaths in children. Children under age 5 account for 78% of malaria deaths annually. NTDs remain a public health challenge in low- and middle-income countries. This article provides an overview of the major IDoP that affect children. Clinicians must be familiar with the epidemiology and clinical manifestations to ensure prompt diagnosis and treatment.
Collapse
Affiliation(s)
- Caitlin Hansen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Elijah Paintsil
- Department of Pediatrics, Yale University School of Medicine, 464 Congress Ave, New Haven, CT 06520, USA; Department of Pharmacology, Yale University School of Medicine, 464 Congress Avenue, New Haven, CT 06520, USA; Department of Public Health, Yale University School of Medicine, 464 Congress Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
113
|
Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, White MT, Wenger EA, Van de Velde N, Pemberton-Ross P, Griffin JT, Smith TA, Eckhoff PA, Muhib F, Jit M, Ghani AC. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet 2016; 387:367-375. [PMID: 26549466 PMCID: PMC4723722 DOI: 10.1016/s0140-6736(15)00725-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings. METHODS We compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5-17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2-10 year olds (PfPR2-10; range 3-65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2-10 per dose. FINDINGS In regions with a PfPR2-10 of 10-65%, RTS,S/AS01 is predicted to avert a median of 93,940 (range 20,490-126,540) clinical cases and 394 (127-708) deaths for the three-dose schedule, or 116,480 (31,450-160,410) clinical cases and 484 (189-859) deaths for the four-dose schedule, per 100,000 fully vaccinated children. A positive impact is also predicted at a PfPR2-10 of 5-10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2-10 of 10-65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18-211) per clinical case averted and $80 (44-279) per DALY averted for the three-dose schedule, and of $25 (16-222) and $87 (48-244), respectively, for the four-dose schedule. Higher ICERs were estimated at low PfPR2-10 levels. INTERPRETATION We predict a significant public health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across a wide range of settings. Decisions about implementation will need to consider levels of malaria burden, the cost-effectiveness and coverage of other malaria interventions, health priorities, financing, and the capacity of the health system to deliver the vaccine. FUNDING PATH Malaria Vaccine Initiative; Bill & Melinda Gates Foundation; Global Good Fund; Medical Research Council; UK Department for International Development; GAVI, the Vaccine Alliance; WHO.
Collapse
Affiliation(s)
- Melissa A Penny
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Robert Verity
- Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College London, London, UK
| | | | | | - Katya Galactionova
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Stefan Flasche
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael T White
- Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College London, London, UK
| | | | | | - Peter Pemberton-Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jamie T Griffin
- Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College London, London, UK
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | | | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Modelling and Economics Unit, Public Health England, London, UK
| | - Azra C Ghani
- Medical Research Council Centre for Outbreak Analysis and Modelling, Imperial College London, London, UK
| |
Collapse
|
114
|
Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2015; 15:1450-8. [PMID: 26342424 PMCID: PMC4655306 DOI: 10.1016/s1473-3099(15)00239-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. METHODS Using data from 8922 African children aged 5-17 months and 6537 African infants aged 6-12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. FINDINGS RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5-17 months than in those aged 6-12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6-12 weeks and higher immunogenicity in those aged 5-17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5-17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42-48) and that of the long-lived component was 591 days (557-632). After primary vaccination 12% (11-13) of the response was estimated to be long-lived, rising to 30% (28-32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98-153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. INTERPRETATION Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. FUNDING UK Medical Research Council.
Collapse
|
115
|
Whole organism blood stage vaccines against malaria. Vaccine 2015; 33:7469-75. [DOI: 10.1016/j.vaccine.2015.09.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
|
116
|
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
|
117
|
Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, Lien E. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. J Biol Chem 2015; 291:1123-36. [PMID: 26555265 DOI: 10.1074/jbc.m115.683011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.
Collapse
Affiliation(s)
- Robyn Marty-Roix
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Gregory I Vladimer
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Kimberly Pouliot
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Dan Weng
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Rachel Buglione-Corbett
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Kim West
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - John D MacMicking
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Jonathan D Chee
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Shixia Wang
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Shan Lu
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Egil Lien
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and the Centre of Molecular Inflammation Research, Department of Cancer and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
118
|
Penny MA, Pemberton-Ross P, Smith TA. The time-course of protection of the RTS,S vaccine against malaria infections and clinical disease. Malar J 2015; 14:437. [PMID: 26537608 PMCID: PMC4634589 DOI: 10.1186/s12936-015-0969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Recent publications have reported follow-up of the RTS,S/AS01 malaria vaccine candidate Phase III trials at 11 African sites for 32 months (or longer). This includes site- and time-specific estimates of incidence and efficacy against clinical disease with four different vaccination schedules. These data allow estimation of the time-course of protection against infection associated with two different ages of vaccination, both with and without a booster dose. Methods Using an ensemble of individual-based stochastic models, each trial cohort in the Phase III trial was simulated assuming many different hypothetical profiles for the vaccine efficacy against infection in time, for both the primary course and boosting dose and including the potential for either exponential or non-exponential decay. The underlying profile of protection was determined by Bayesian fitting of these model predictions to the site- and time-specific incidence of clinical malaria over 32 months (or longer) of follow-up. Using the same stochastic models, projections of clinical efficacy in each of the sites were modelled and compared to available observed trial data. Results The initial protection of RTS,S immediately following three doses is estimated as providing an efficacy against infection of 65 % (when immunizing infants aged 6–12 weeks old) and 91 % (immunizing children aged 5–17 months old at first vaccination). This protection decays relatively rapidly, with an approximately exponential decay for the 6–12 weeks old cohort (with a half-life of 7.2 months); for the 5–17 months old cohort a biphasic decay with a similar half-life is predicted, with an initial rapid decay followed by a slower decay. The boosting dose was estimated to return protection to an efficacy against infection of 50–55 % for both cohorts. Estimates of clinical efficacy by trial site are consistent with those reported in the trial for all cohorts. Conclusions The site- and time-specific clinical observations from the RTS,S/AS01 trial data allowed a reasonably precise estimation of the underlying vaccine protection against infection which is consistent with common underlying efficacy and decay rates across the trial sites. This calibration suggests that the decay in efficacy against clinical disease is more rapid than that against infection because of age-shifts in the incidence of disease. The dynamical models predict that clinical effectiveness will continue to decay and that likely effects beyond the time-scale of the trial will be small. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0969-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa A Penny
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, Basel, Switzerland.
| | - Peter Pemberton-Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, Basel, Switzerland.
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, Basel, Switzerland.
| |
Collapse
|
119
|
Parra M, Liu X, Derrick SC, Yang A, Molina-Cruz A, Barillas-Mury C, Zheng H, Thao Pham P, Sedegah M, Belmonte A, Litilit DD, Waldmann TA, Kumar S, Morris SL, Perera LP. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein. PLoS One 2015; 10:e0141141. [PMID: 26505634 PMCID: PMC4624717 DOI: 10.1371/journal.pone.0141141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/04/2015] [Indexed: 01/01/2023] Open
Abstract
Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)–based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.
Collapse
Affiliation(s)
- Marcela Parra
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Xia Liu
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Steven C. Derrick
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Amy Yang
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, 20852, United States of America
| | - Hong Zheng
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Phuong Thao Pham
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Arnel Belmonte
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Dianne D. Litilit
- Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Thomas A. Waldmann
- National Cancer Institute, Bethesda, MD, 20892, United States of America
| | - Sanjai Kumar
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Sheldon L. Morris
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, 20993, United States of America
| | - Liyanage P. Perera
- National Cancer Institute, Bethesda, MD, 20892, United States of America
- * E-mail:
| |
Collapse
|
120
|
White MT, Verity R, Churcher TS, Ghani AC. Vaccine approaches to malaria control and elimination: Insights from mathematical models. Vaccine 2015; 33:7544-50. [PMID: 26476361 DOI: 10.1016/j.vaccine.2015.09.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
A licensed malaria vaccine would provide a valuable new tool for malaria control and elimination efforts. Several candidate vaccines targeting different stages of the malaria parasite's lifecycle are currently under development, with one candidate, RTS,S/AS01 for the prevention of Plasmodium falciparum infection, having recently completed Phase III trials. Predicting the public health impact of a candidate malaria vaccine requires using clinical trial data to estimate the vaccine's efficacy profile--the initial efficacy following vaccination and the pattern of waning of efficacy over time. With an estimated vaccine efficacy profile, the effects of vaccination on malaria transmission can be simulated with the aid of mathematical models. Here, we provide an overview of methods for estimating the vaccine efficacy profiles of pre-erythrocytic vaccines and transmission-blocking vaccines from clinical trial data. In the case of RTS,S/AS01, model estimates from Phase II clinical trial data indicate a bi-phasic exponential profile of efficacy against infection, with efficacy waning rapidly in the first 6 months after vaccination followed by a slower rate of waning over the next 4 years. Transmission-blocking vaccines have yet to be tested in large-scale Phase II or Phase III clinical trials so we review ongoing work investigating how a clinical trial might be designed to ensure that vaccine efficacy can be estimated with sufficient statistical power. Finally, we demonstrate how parameters estimated from clinical trials can be used to predict the impact of vaccination campaigns on malaria using a mathematical model of malaria transmission.
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Robert Verity
- MRC Centre for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
121
|
Agnandji ST, Fernandes JF, Bache EB, Ramharter M. Clinical development of RTS,S/AS malaria vaccine: a systematic review of clinical Phase I-III trials. Future Microbiol 2015; 10:1553-78. [PMID: 26437872 DOI: 10.2217/fmb.15.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first clinical Phase III trial evaluating a malaria vaccine was completed in December 2013 at 11 sites from seven sub-Saharan African countries. This systematic review assesses data of Phase I-III trials including malaria-naive adults and adults, children and infants from malaria endemic settings in sub-Saharan Africa. The main endpoint of this systematic review was an analysis of the consistency of efficacy and immunogenicity data from respective Phase I-III trials. In addition, safety data from a pooled analysis of RTS/AS Phase II trials and RTS,S/AS01 Phase III trial were reviewed. The RTS,S/AS01 malaria vaccine may become available on the market in the coming year. If so, further strategies should address challenges on how to optimize vaccine efficacy and implementation of RTS,S/AS01 vaccine within the framework of established malaria control measures.
Collapse
Affiliation(s)
- Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Emmanuel B Bache
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon, Hôpital Albert Schweitzer BP 118, Lambaréné, Gabon.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Germany, Wilhelmstraße 27, 72074 Tübingen, Germany.,Department of Medicine I, Division of Infectious Diseases & Tropical Medicine, Medical University of Vienna, Austria, Währinger Gürtel 18-20, 1190 Vienna, Austria
| |
Collapse
|
122
|
Romore I, Ali AM, Semali I, Mshinda H, Tanner M, Abdulla S. Assessment of parental perception of malaria vaccine in Tanzania. Malar J 2015; 14:355. [PMID: 26383545 PMCID: PMC4573291 DOI: 10.1186/s12936-015-0889-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/02/2015] [Indexed: 11/13/2022] Open
Abstract
Background Clinical trials of the RTS,S malaria vaccine have completed Phase III and the vaccine is on track for registration. Before making decisions about implementation, it is essential to prepare the ground for introducing the vaccine by assessing awareness and willingness to use malaria vaccines and to provide policy makers with evidence-based information on the best strategies to engage communities to manage the introduction of malaria vaccine in Tanzania. Methods In November 2011, as part of a large cross-sectional study of all 23 regions of Tanzania (mainland Tanzania and Zanzibar) was conducted during Tanzanian Integrated Measles Campaign (IMC) survey. In this study, the variables of interests were awareness and willingness to use a malaria vaccine. The main outcome measure was willingness to use a malaria vaccine. Logistic regression was used to examine the influence of predictive factors. Results A representative sample of 5502 (out of 6210) women, aged 18 years or older and with children under 11 months old, was selected to participate, using random sampling probability. Awareness of the forthcoming malaria vaccine, 11.8 % of participants in mainland Tanzania responded affirmatively, compared to 3.4 % in Zanzibar (p value <0.0001). 94.5 % of all respondents were willing to vaccinate their children against malaria, with a slight difference between mainland Tanzania (94.3 %) and Zanzibar (96.8 %) (p value = 0.0167). Conclusions Although mothers had low awareness and high willingness to use malaria vaccine, still availability of malaria vaccine RTS,S will compliment other existing malaria interventions and it will be implemented through the Immunization, Vaccines and Biologicals (IVB) programme (formerly EPI). The information generated from this study can aid policy makers in planning and setting priorities for introducing and implementing the malaria vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0889-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Idda Romore
- Swiss Tropical and Public health Institute, Socinstrasse 57, Postfach, 4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Ifakara Health Institute (IHI), P.O. Box 78373, Dar Es Salaam, Tanzania.
| | - Ali Mohamed Ali
- Swiss Tropical and Public health Institute, Socinstrasse 57, Postfach, 4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Ifakara Health Institute (IHI), P.O. Box 78373, Dar Es Salaam, Tanzania.
| | - Innocent Semali
- Muhimbili University of Health and Allied Science (MUHAS), P.O. Box 65015, Dar Es Salaam, Tanzania.
| | - Hassan Mshinda
- Commision for Science and Technology (COSTEC), P.O. Box 4302, Dar Es Salaam, Tanzania.
| | - Marcel Tanner
- Swiss Tropical and Public health Institute, Socinstrasse 57, Postfach, 4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Salim Abdulla
- Ifakara Health Institute (IHI), P.O. Box 78373, Dar Es Salaam, Tanzania.
| |
Collapse
|
123
|
Nielsen MA, Resende M, de Jongh WA, Ditlev SB, Mordmüller B, Houard S, Ndam NT, Agerbæk MØ, Hamborg M, Massougbodji A, Issifou S, Strøbæk A, Poulsen L, Leroy O, Kremsner PG, Chippaux JP, Luty AJF, Deloron P, Theander TG, Dyring C, Salanti A. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine. PLoS One 2015; 10:e0135406. [PMID: 26327283 PMCID: PMC4556615 DOI: 10.1371/journal.pone.0135406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2) expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens that induce a broadly strain-transcending antibody response.
Collapse
Affiliation(s)
- Morten A. Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Sisse B. Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Benjamin Mordmüller
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Sophie Houard
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mette Hamborg
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Achille Massougbodji
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Saddou Issifou
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Anette Strøbæk
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Lars Poulsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Odile Leroy
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Peter G. Kremsner
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jean-Philippe Chippaux
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Adrian J. F. Luty
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Charlotte Dyring
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
124
|
Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine 2015; 33 Suppl 4:D13-23. [PMID: 26324116 DOI: 10.1016/j.vaccine.2015.07.091] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023]
Abstract
In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of malaria. Progress during the last few years has been significant, and a first generation malaria candidate vaccine, RTS,S/AS01, is under review by the European Medicines Agency (EMA) for its quality, safety and efficacy under article 58, which allows the EMA to give a scientific opinion about products intended exclusively for markets outside of the European Union. However, much work is in progress to optimize malaria vaccines in regard to magnitude and durability of protective efficacy and the financing and practicality of delivery. Thus, we are hopeful that anti-malaria vaccines will soon be important tools in the battle against malaria.
Collapse
Affiliation(s)
| | | | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
125
|
Aguiar JC, Bolton J, Wanga J, Sacci JB, Iriko H, Mazeika JK, Han ET, Limbach K, Patterson NB, Sedegah M, Cruz AM, Tsuboi T, Hoffman SL, Carucci D, Hollingdale MR, Villasante ED, Richie TL. Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development. PLoS One 2015; 10:e0136109. [PMID: 26292257 PMCID: PMC4546230 DOI: 10.1371/journal.pone.0136109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified. Methodology Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens. Conclusions These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates. Trial Registration ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015
Collapse
Affiliation(s)
- Joao C. Aguiar
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- Camris International, Bethesda, MD 20814, United States of America
- * E-mail:
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Joyce Wanga
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- Technical Resources International, Inc., Bethesda, MD 20817, United States of America
| | - John B. Sacci
- Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Hideyuki Iriko
- Department of International Health, Kobe University Graduate School of Health Science, Kobe 654-0142, Japan
| | - Julie K. Mazeika
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- EMD Millipore Corporation, North Andover, MA 01845, United States of America
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Keith Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Noelle B. Patterson
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Ann-Marie Cruz
- PATH Malaria Vaccine Initiative, Washington, DC 20001, United States of America
| | - Takafumi Tsuboi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Stephen L. Hoffman
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Daniel Carucci
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, MD 20910, United States of America
| |
Collapse
|
126
|
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network. Am J Trop Med Hyg 2015; 93:57-68. [PMID: 26259943 PMCID: PMC4574275 DOI: 10.4269/ajtmh.15-0007] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/27/2015] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs.
Collapse
Affiliation(s)
- Liwang Cui
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| | | | | | | | - Philip J. Rosenthal
- *Address correspondence to Liwang Cui, Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, E-mail: or Philip J. Rosenthal, Department of Medicine, Box 0811, University of California, San Francisco, CA 94110. E-mail:
| |
Collapse
|
127
|
Ndungu FM, Marsh K, Fegan G, Wambua J, Nyangweso G, Ogada E, Mwangi T, Nyundo C, Macharia A, Uyoga S, Williams TN, Bejon P. Identifying children with excess malaria episodes after adjusting for variation in exposure: identification from a longitudinal study using statistical count models. BMC Med 2015; 13:183. [PMID: 26248615 PMCID: PMC4527301 DOI: 10.1186/s12916-015-0422-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The distribution of Plasmodium falciparum clinical malaria episodes is over-dispersed among children in endemic areas, with more children experiencing multiple clinical episodes than would be expected based on a Poisson distribution. There is consistent evidence for micro-epidemiological variation in exposure to P. falciparum. The aim of the current study was to identify children with excess malaria episodes after controlling for malaria exposure. METHODS We selected the model that best fit the data out of the models examined and included the following covariates: age, a weighted local prevalence of infection as an index of exposure, and calendar time to predict episodes of malaria on active surveillance malaria data from 2,463 children of under 15 years of age followed for between 5 and 15 years each. Using parameters from the zero-inflated negative binomial model which best fitted our data, we ran 100 simulations of the model based on our population to determine the variation that might be seen due to chance. RESULTS We identified 212 out of 2,463 children who had a number of clinical episodes above the 95(th) percentile of the simulations run from the model, hereafter referred to as "excess malaria (EM)". We then identified exposure-matched controls with "average numbers of malaria" episodes, and found that the EM group had higher parasite densities when asymptomatically infected or during clinical malaria, and were less likely to be of haemoglobin AS genotype. CONCLUSIONS Of the models tested, the negative zero-inflated negative binomial distribution with exposure, calendar year, and age acting as independent predictors, fitted the distribution of clinical malaria the best. Despite accounting for these factors, a group of children suffer excess malaria episodes beyond those predicted by the model. An epidemiological framework for identifying these children will allow us to study factors that may explain excess malaria episodes.
Collapse
Affiliation(s)
- Francis Maina Ndungu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK.
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK.
| | - Gregory Fegan
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK.
| | | | | | - Edna Ogada
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | | | - Chris Nyundo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Alex Macharia
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Department of Medicine, Imperial College, London, UK.
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
128
|
Penny MA, Galactionova K, Tarantino M, Tanner M, Smith TA. The public health impact of malaria vaccine RTS,S in malaria endemic Africa: country-specific predictions using 18 month follow-up Phase III data and simulation models. BMC Med 2015; 13:170. [PMID: 26219380 PMCID: PMC4518512 DOI: 10.1186/s12916-015-0408-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The RTS,S/AS01 malaria vaccine candidate recently completed Phase III trials in 11 African sites. Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries. Previous predictions of these used only limited information on underlying vaccine properties and have not considered country-specific contextual data. METHODS Each Phase III trial cohort was simulated explicitly using an ensemble of individual-based stochastic models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging over many simulations. RESULTS The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising 6-12 week old infants) and 80 % (children 5-17 months old), with a 1 year half-life (exponential decay). Either schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects and average transmission intensity. CONCLUSIONS For the first time Phase III site- and time-specific data were available to estimate both the underlying profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly. Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health system performance, will potentially avert 100-580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000 fully vaccinated children over an initial 10-year phase.
Collapse
Affiliation(s)
- Melissa A Penny
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Katya Galactionova
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Michael Tarantino
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Marcel Tanner
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
129
|
Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J 2015; 14:287. [PMID: 26206255 PMCID: PMC4513612 DOI: 10.1186/s12936-015-0805-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
Effective population-level interventions against Plasmodium falciparum malaria lead to age-shifts, delayed morbidity or rebounds in morbidity and mortality whenever they are deployed in ways that do not permanently interrupt transmission. When long-term intervention programmes target specific age-groups of human hosts, the age-specific morbidity rates ultimately adjust to new steady-states, but it is very difficult to study these rates and the temporal dynamics leading up to them empirically because the changes occur over very long time periods. This study investigates the age and magnitude of age- and time- shifting of incidence induced by either pre-erythrocytic vaccination (PEV) programmes or seasonal malaria chemo-prevention (SMC), using an ensemble of individual-based stochastic simulation models of P. falciparum dynamics. The models made various assumptions about immunity decay, transmission heterogeneity and were parameterized with data on both age-specific infection and disease incidence at different levels of exposure, on the durations of different stages of the parasite life-cycle and on human demography. Effects of transmission intensity, and of levels of access to malaria treatment were considered. While both PEV and SMC programmes are predicted to have overall strongly positive health effects, a shift of morbidity into older children is predicted to be induced by either programme if transmission levels remain static and not reduced by other interventions. Predicted shifting of burden continue into the second decade of the programme. Even if long-term surveillance is maintained it will be difficult to avoid mis-attribution of such long-term changes in age-specific morbidity patterns to other factors. Conversely, short-lived transient changes in incidence measured soon after introduction of a new intervention may give over-positive views of future impacts. Complementary intervention strategies could be designed to specifically protect those age-groups at risk from burden shift.
Collapse
Affiliation(s)
- Peter Pemberton-Ross
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Katherine Kay
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| |
Collapse
|
130
|
Zak DE, Aderem A. Systems integration of innate and adaptive immunity. Vaccine 2015; 33:5241-8. [PMID: 26102534 DOI: 10.1016/j.vaccine.2015.05.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
Abstract
The pathogens causing AIDS, malaria, and tuberculosis have proven too complex to be overcome by classical approaches to vaccination. The complexities of human immunology and pathogen-induced modulation of the immune system mandate new approaches to vaccine discovery and design. A new field, systems vaccinology, weds holistic analysis of innate and adaptive immunity within a quantitative framework to enable rational design of new vaccines that elicit tailored protective immune responses. A key step in the approach is to discover relationships between the earliest innate inflammatory responses to vaccination and the subsequent vaccine-induced adaptive immune responses and efficacy. Analysis of these responses in clinical studies is complicated by the inaccessibility of relevant tissue compartments (such as the lymph node), necessitating reliance upon peripheral blood responses as surrogates. Blood transcriptomes, although indirect to vaccine mechanisms, have proven very informative in systems vaccinology studies. The approach is most powerful when innate and adaptive immune responses are integrated with vaccine efficacy, which is possible for malaria with the advent of a robust human challenge model. This is more difficult for AIDS and tuberculosis, given that human challenge models are lacking and efficacy observed in clinical trials has been low or highly variable. This challenge can be met by appropriate clinical trial design for partially efficacious vaccines and by analysis of natural infection cohorts. Ultimately, systems vaccinology is an iterative approach in which mechanistic hypotheses-derived from analysis of clinical studies-are evaluated in model systems, and then used to guide the development of new vaccine strategies. In this review, we will illustrate the above facets of the systems vaccinology approach with case studies.
Collapse
Affiliation(s)
- Daniel E Zak
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA
| | - Alan Aderem
- The Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, USA.
| |
Collapse
|
131
|
Abstract
INTRODUCTION Placental malaria (PM) is a major public health problem that constitutes a significant health concern for the mother, and especially for the developing fetus and offspring. Current means of prevention have limitations, including a restricted window of intervention that excludes the first trimester of pregnancy, and the fact that very few drugs can be used for this purpose. The identification of the VAR2CSA antigen, specific to PM parasites, offers an excellent opportunity to develop a vaccine against this disease. Proof of concept of a first-generation vaccine is nearing completion, and two clinical trials are underway. AREAS COVERED This review focuses on PM, which is mainly caused by Plasmodium falciparum. The review highlights recent advances and the key milestones that led to the identification of the optimal vaccine target within the large VAR2CSA protein. The paper also points out how future improvements can strengthen this process to achieve an effective vaccine in the field. EXPERT OPINION The approach taken to develop a P. falciparum erythrocyte membrane protein 1-based vaccine to protect pregnant women is very promising in view of the current difficulties of achieving a sterilizing vaccine against malaria parasite. This approach could help us to control the deleterious effect of malaria infections that characterize severe clinical forms.
Collapse
|
132
|
Wu Y, Sinden RE, Churcher TS, Tsuboi T, Yusibov V. Development of malaria transmission-blocking vaccines: from concept to product. ADVANCES IN PARASITOLOGY 2015; 89:109-52. [PMID: 26003037 DOI: 10.1016/bs.apar.2015.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches.
Collapse
Affiliation(s)
- Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | | | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Takafumi Tsuboi
- Division of Malaria Research, Ehime University, Matsuyama, Ehime, Japan
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
133
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
134
|
Whitacre DC, Espinosa DA, Peters CJ, Jones JE, Tucker AE, Peterson DL, Zavala FP, Milich DR. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections. PLoS One 2015; 10:e0124856. [PMID: 25933001 PMCID: PMC4416889 DOI: 10.1371/journal.pone.0124856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Hepatitis B Virus, Woodchuck/immunology
- Immunity
- Immunization
- Life Cycle Stages
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protozoan Proteins/immunology
- Rabbits
- Repetitive Sequences, Amino Acid
- Reproducibility of Results
- Virion/immunology
Collapse
Affiliation(s)
- David C. Whitacre
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cory J. Peters
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Joyce E. Jones
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Amy E. Tucker
- VLP Biotech, Inc., San Diego, California, United States of America
| | - Darrell L. Peterson
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fidel P. Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David R. Milich
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- VLP Biotech, Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
135
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-753. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
136
|
Mo AXY, Pesce J, Hall BF. Exploring immunological mechanisms of the whole sporozoite vaccination against P. falciparum malaria. Vaccine 2015; 33:2851-7. [PMID: 25917675 DOI: 10.1016/j.vaccine.2015.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
Great progress has been made in the development of whole sporozoite vaccines including the manufacturing of cryopreserved Plasmodium falciparum sporozoites (PfSPZ) suitable for clinical application. Such whole sporozoites are being used for clinical studies of controlled human malaria infection (CHMI) as well as for evaluation of candidate vaccine approaches (both attenuated sporozoites and infectious sporozoites administered with chemoprophylaxis) and as reagents for immunology and cell biology assays. CHMI studies with whole sporozoites provide a great opportunity to better understand the intrinsic mechanisms of resistance to P. falciparum (e.g. due to sickle cell trait and other hemoglobinopathies) as well as host responses to an initial P. falciparum infection. High-level protective efficacy has been demonstrated in a small number of volunteers after intravenous (IV) inoculation of radiation-attenuated PfSPZ or in those who were exposed to live PfSPZ while on malaria chemoprophylaxis. These advances and data warrant further investigations of the immunological mechanism(s) whereby whole sporozoite inoculation elicits protective immunity in order to facilitate whole sporozoite vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on Sept. 2-3, 2014 involving participation of international experts in the field of malaria vaccine development, and in basic and clinical immunology research. The workshop discussed the current understanding of host immune responses to whole malaria sporozoite inoculation, identified gaps in knowledge, resources to facilitate progress, and applicable new technologies and approaches to accelerate immunologic and vaccinologic studies and biomarker identification. This report summarizes the discussions and major conclusions from the workshop participants.
Collapse
Affiliation(s)
- Annie X Y Mo
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA.
| | - John Pesce
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - B Fenton Hall
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
137
|
Antimalarial activity of tulathromycin in a murine model of malaria. Antimicrob Agents Chemother 2015; 59:3672-4. [PMID: 25870067 DOI: 10.1128/aac.02858-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need for new antimalarial agents and strategies to treat and control malaria. This study shows an antiplasmodium effect of tulathromycin in mice infected with Plasmodium yoelii. The administration of tulathromycin around the time of infection prevented the progression of disease in 100% of the animals. In addition, highly parasitized mice treated with tulathromycin showed a decreased parasite burden and cleared the parasite faster than did untreated infected mice.
Collapse
|
138
|
A pantetheinase-resistant pantothenamide with potent, on-target, and selective antiplasmodial activity. Antimicrob Agents Chemother 2015; 59:3666-8. [PMID: 25845876 DOI: 10.1128/aac.04970-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Pantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC50], ∼20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of α-methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC50, 52 ± 6 nM), target specificity, and low toxicity.
Collapse
|
139
|
Hopp CS, Sinnis P. The innate and adaptive response to mosquito saliva and Plasmodium sporozoites in the skin. Ann N Y Acad Sci 2015; 1342:37-43. [PMID: 25694058 PMCID: PMC4405444 DOI: 10.1111/nyas.12661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A malaria infection begins when an infected mosquito takes a blood meal and inoculates parasites into the skin of its mammalian host. The parasite then has to exit the skin and escape the immune cells that protect the body from infection and alert the system to intruding pathogens. It has become apparent that this earliest stage of infection is amenable to vaccine interventions. Here, we discuss how the innate and adaptive host response to both mosquito saliva and the parasite may interfere with the infection, as well as possible mechanisms the parasite might use to circumvent the host defense.
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland; Johns Hopkins Malaria Research Institute, Baltimore, Maryland
| | | |
Collapse
|
140
|
Brücher K, Gräwert T, Konzuch S, Held J, Lienau C, Behrendt C, Illarionov B, Maes L, Bacher A, Wittlin S, Mordmüller B, Fischer M, Kurz T. Prodrugs of reverse fosmidomycin analogues. J Med Chem 2015; 58:2025-35. [PMID: 25633870 DOI: 10.1021/jm5019719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fosmidomycin inhibits IspC (Dxr, 1-deoxy-d-xylulose 5-phosphate reductoisomerase), a key enzyme in nonmevalonate isoprenoid biosynthesis that is essential in Plasmodium falciparum. The drug has been used successfully to treat malaria patients in clinical studies, thus validating IspC as an antimalarial target. However, improvement of the drug's pharmacodynamics and pharmacokinetics is desirable. Here, we show that the conversion of the phosphonate moiety into acyloxymethyl and alkoxycarbonyloxymethyl groups can increase the in vitro activity against asexual blood stages of P. falciparum by more than 1 order of magnitude. We also synthesized double prodrugs by additional esterification of the hydroxamate moiety. Prodrugs with modified hydroxamate moieties are subject to bioactivation in vitro. All prodrugs demonstrated improved antiplasmodial in vitro activity. Selected prodrugs and parent compounds were also tested for their cytotoxicity toward HeLa cells and in vivo in a Plasmodium berghei malaria model as well as in the SCID mouse P. falciparum model.
Collapse
Affiliation(s)
- Karin Brücher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Yilmaz B, Portugal S, Tran TM, Gozzelino R, Ramos S, Gomes J, Regalado A, Cowan PJ, d'Apice AJF, Chong AS, Doumbo OK, Traore B, Crompton PD, Silveira H, Soares MP. Gut microbiota elicits a protective immune response against malaria transmission. Cell 2015; 159:1277-89. [PMID: 25480293 PMCID: PMC4261137 DOI: 10.1016/j.cell.2014.10.053] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Silvia Portugal
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Raffaella Gozzelino
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Joana Gomes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Regalado
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 2900, Australia
| | - Anthony J F d'Apice
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Melbourne, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 2900, Australia
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Ogobara K Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, 1805 Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, 1805 Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, Room 125, 12441 Parklawn Drive, Rockville, MD 20852-8180, USA
| | - Henrique Silveira
- Centro de Malaria e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
142
|
Schenkelberg T, Kieny MP, Bianco AE, Koff WC. Building the Human Vaccines Project: strategic management recommendations and summary report of the 15-16 July 2014 business workshop. Expert Rev Vaccines 2015; 14:629-36. [PMID: 25673514 DOI: 10.1586/14760584.2015.1013466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Human Vaccines Project is a bold new initiative, with the goal of solving the principal scientific problem impeding vaccine development for infectious diseases and cancers: the generation of specific, broad, potent and durable immune responses in humans. In the July 2014 workshop, 20 leaders from the public and private sectors came together to give input on strategic business issues for the creation of the Human Vaccines Project. Participants recommended the Project to be established as a nonprofit public-private partnership, structured as a global R&D consortium closely engaged with industrial partners, and located/affiliated with one or more major academic centers conducting vaccine R&D. If successful, participants concluded that the Project could greatly accelerate the development of new and improved vaccines, with the potential to transform disease prevention in the 21st century.
Collapse
|
143
|
Proietti C, Doolan DL. The case for a rational genome-based vaccine against malaria. Front Microbiol 2015; 5:741. [PMID: 25657640 PMCID: PMC4302942 DOI: 10.3389/fmicb.2014.00741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/06/2014] [Indexed: 12/22/2022] Open
Abstract
Historically, vaccines have been designed to mimic the immunity induced by natural exposure to the target pathogen, but this approach has not been effective for any parasitic pathogen of humans or complex pathogens that cause chronic disease in humans, such as Plasmodium. Despite intense efforts by many laboratories around the world on different aspects of Plasmodium spp. molecular and cell biology, epidemiology and immunology, progress towards the goal of an effective malaria vaccine has been disappointing. The premise of rational vaccine design is to induce the desired immune response against the key pathogen antigens or epitopes targeted by protective immune responses. We advocate that development of an optimally efficacious malaria vaccine will need to improve on nature, and that this can be accomplished by rational vaccine design facilitated by mining genomic, proteomic and transcriptomic datasets in the context of relevant biological function. In our opinion, modern genome-based rational vaccine design offers enormous potential above and beyond that of whole-organism vaccines approaches established over 200 years ago where immunity is likely suboptimal due to the many genetic and immunological host-parasite adaptations evolved to allow the Plasmodium parasite to coexist in the human host, and which are associated with logistic and regulatory hurdles for production and delivery.
Collapse
Affiliation(s)
- Carla Proietti
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Denise L Doolan
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| |
Collapse
|
144
|
Synergistic and antagonistic interactions between bednets and vaccines in the control of malaria. Proc Natl Acad Sci U S A 2015; 112:3014-9. [PMID: 25605894 DOI: 10.1073/pnas.1409467112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is extremely likely that the malaria vaccines currently in development will be used in conjunction with treated bednets and other forms of malaria control. The interaction of different intervention methods is at present poorly understood in a disease such as malaria where immunity is more complex than for other pathogens that have been successfully controlled by vaccination. Here we develop a general mathematical model of malaria transmission to examine the interaction between vaccination and bednets. Counterintuitively, we find that the frailty of malaria immunity will potentially cause both synergistic and antagonistic interactions between vaccination and the use of bednets. We explore the conditions that create these tensions, and outline strategies that minimize their detrimental impact. Our analysis specifically considers the three leading vaccine classes currently in development: preerythrocytic (PEV), blood stage (BSV), and transmission blocking (TBV). We find that the combination of BSV with treated bednets can lead to increased morbidity with no added value in terms of elimination; the interaction is clearly antagonistic. In contrast, there is strong synergy between PEV and treated bednets that may facilitate elimination, although transient stages are likely to increase morbidity. The combination of TBV with treated bednets is synergistic, lowering both morbidity and elimination thresholds. Our results suggest that vaccines will not provide a straightforward solution to malaria control, and that future programs need to consider the synergistic and antagonistic interactions between vaccines and treated bednets.
Collapse
|
145
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
146
|
da Costa M, Pinheiro-Silva R, Antunes S, Moreno-Cid JA, Custódio A, Villar M, Silveira H, de la Fuente J, Domingos A. Mosquito Akirin as a potential antigen for malaria control. Malar J 2014; 13:470. [PMID: 25472895 PMCID: PMC4265507 DOI: 10.1186/1475-2875-13-470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background The control of vector-borne diseases is important to improve human and animal health worldwide. Malaria is one of the world’s deadliest diseases and is caused by protozoan parasites of the genus Plasmodium, which are transmitted by Anopheles spp. mosquitoes. Recent evidences using Subolesin (SUB) and Akirin (AKR) vaccines showed a reduction in the survival and/or fertility of blood-sucking ectoparasite vectors and the infection with vector-borne pathogens. These experiments suggested the possibility of using AKR for malaria control. Methods The role of AKR on Plasmodium berghei infection and on the fitness and reproduction of the main malaria vector, Anopheles gambiae was characterized by evaluating the effect of akr gene knockdown or vaccination with recombinant mosquito AKR on parasite infection levels, fertility and mortality of female mosquitoes. Results Gene knockdown by RNA interference in mosquitoes suggested a role for akr in mosquito survival and fertility. Vaccination with recombinant Aedes albopictus AKR reduced parasite infection in mosquitoes fed on immunized mice when compared to controls. Conclusions These results showed that recombinant AKR could be used to develop vaccines for malaria control. If effective, AKR-based vaccines could be used to immunize wildlife reservoir hosts and/or humans to reduce the risk of pathogen transmission. However, these vaccines need to be evaluated under field conditions to characterize their effect on vector populations and pathogen infection and transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| |
Collapse
|
147
|
Abstract
Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.
Collapse
|
148
|
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 2014; 5:586. [PMID: 25452745 PMCID: PMC4233905 DOI: 10.3389/fmicb.2014.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/17/2022] Open
Abstract
Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood stage, or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50%) protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research Singapore, Singapore ; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
149
|
A replicating adenovirus capsid display recombinant elicits antibodies against Plasmodium falciparum sporozoites in Aotus nancymaae monkeys. Infect Immun 2014; 83:268-75. [PMID: 25368113 DOI: 10.1128/iai.02626-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Decades of success with live adenovirus vaccines suggest that replication-competent recombinant adenoviruses (rAds) could serve as effective vectors for immunization against other pathogens. To explore the potential of a live rAd vaccine against malaria, we prepared a viable adenovirus 5 (Ad5) recombinant that displays a B-cell epitope from the circumsporozoite protein (CSP) of Plasmodium falciparum on the virion surface. The recombinant induced P. falciparum sporozoite-neutralizing antibodies in mice. Human adenoviruses do not replicate in mice. Therefore, to examine immunogenicity in a system in which, as in humans, the recombinant replicates, we constructed a similar recombinant in an adenovirus mutant that replicates in monkey cells and immunized four Aotus nancymaae monkeys. The recombinant replicated in the monkeys after intratracheal instillation, the first demonstration of replication of human adenoviruses in New World monkeys. Immunization elicited antibodies both to the Plasmodium epitope and the Ad5 vector. Antibodies from all four monkeys recognized CSP on intact parasites, and plasma from one monkey neutralized sporozoites in vitro and conferred partial protection against P. falciparum sporozoite infection after passive transfer to mice. Prior enteric inoculation of two animals with antigenically wild-type adenovirus primed a response to the subsequent intratracheal inoculation, suggesting a route to optimizing performance. A vaccine is not yet available against P. falciparum, which induces the deadliest form of malaria and kills approximately one million children each year. The live capsid display recombinant described here may constitute an early step in a critically needed novel approach to malaria immunization.
Collapse
|
150
|
Rodrigues MM, Soares IS. Gene-therapy for malaria prevention. Trends Parasitol 2014; 30:511-3. [DOI: 10.1016/j.pt.2014.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|